
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

HetGPT: Harnessing the Power of Prompt Tuning in Pre-Trained
Heterogeneous Graph Neural Networks

Anonymous Author(s)

ABSTRACT
Graphs have emerged as a natural choice to represent and analyze
the intricate patterns and rich information of the Web, enabling
applications such as online page classification and social recom-
mendation. The prevailing “pre-train, fine-tune” paradigm has been
widely adopted in graph machine learning tasks, particularly in
scenarios with limited labeled nodes. However, this approach often
exhibits a misalignment between the training objectives of pre-
text tasks and those of downstream tasks. This gap can result in
the “negative transfer” problem, wherein the knowledge gained
from pre-training adversely affects performance in the downstream
tasks. The surge in prompt-based learning within Natural Language
Processing (NLP) suggests the potential of adapting a “pre-train,
prompt" paradigm to graphs as an alternative. However, existing
graph prompting techniques are tailored to homogeneous graphs,
neglecting the inherent heterogeneity of Web graphs. To bridge
this gap, we propose HetGPT, a general post-training prompting
framework to improve the predictive performance of pre-trained
heterogeneous graph neural networks (HGNNs). The key is the
design of a novel prompting function that integrates a virtual class
prompt and a heterogeneous feature prompt, with the aim to re-
formulate downstream tasks to mirror pretext tasks. Moreover,
HetGPT introduces a multi-view neighborhood aggregation mech-
anism, capturing the complex neighborhood structure in heteroge-
neous graphs. Extensive experiments on three benchmark datasets
demonstrate HetGPT’s capability to enhance the performance of
state-of-the-art HGNNs on semi-supervised node classification.

1 INTRODUCTION
The Web, an ever-expanding digital universe, has transformed into
an unparalleled data warehouse. Within this intricate web of data,
encompassing diverse entities and patterns, graphs have risen as
an intuitive representation to encapsulate and examine the Web’s
multifaceted content, such as academic articles [7], social media
interactions [3], chemical molecules [8], and online grocery items
[31]. In light of this, graph neural networks (GNNs) have emerged
as the state of the art for graph representation learning, which
enables awide range of web-centric applications such as online page
classification [25], social recommendation [4], pandemic trends
forecasting [21], and dynamic link prediction [32, 33].

A primary challenge in traditional supervised graph machine
learning is its heavy reliance on labeled data. Given the magnitude
and complexity of the Web, obtaining annotations can be costly
and often results in data of low quality. To address this limitation,
the “pre-train, fine-tune” paradigm has been widely adopted, where
GNNs are initially pre-trained with some self-supervised pretext
tasks and are then fine-tuned with labeled data for specific down-
stream tasks. Yet, this paradigm faces the following challenges:

Under Review at ACM TheWebConf 2024, ,
2023.

• (C1) Fine-tuning methods often overlook the inherent gap be-
tween the training objectives of the pretext and the downstream
task. For example, while graph pre-training may utilize binary
edge classification to draw topologically proximal node embed-
dings closer, the core of a downstream node classification task
would be to ensure nodes with the same class cluster closely.
Such misalignment makes the transferred node embeddings sub-
optimal for downstream tasks, i.e., negative transfer [34, 43].
The challenge arises: how to reformulate the downstream node
classification task to better align with the contrastive pretext task?

• (C2) In semi-supervised node classification, there often exists a
scarcity of labeled nodes. This limitation can cause fine-tuned
networks to highly overfit these sparse [29] or potentially im-
balanced [22] nodes, compromising their ability to generalize
to new and unlabeled nodes. The challenge arises: how to cap-
ture and generalize the intricate characteristics of each class in the
embedding space to mitigate this overfitting?

• (C3) Given the typically large scale of pre-trained GNNs, the
attempt to recalibrate all their parameters during the fine-tuning
phase can considerably slow down the rate of training conver-
gence. The challenge arises: how to introduce only a small number
of trainable parameters in the fine-tuning stage while keeping the
parameters of the pre-trained network unchanged?

One potential solution that could partially address these chal-
lenges is to adapt the “pre-train, prompt” paradigm from natural
language processing (NLP) to the graph domain. In NLP, prompt-
based learning has effectively generalized pre-trained language
models across diverse tasks. For example, a sentiment classification
task like “The WebConf will take place in the scenic city of Singapore
in 2024” can be reframed by appending a specific textual prompt
“I feel so [MASK]” to the end. It is highly likely that a language
model pre-trained on next word prediction will predict “[MASK]”
as “excited” instead of “frustrated”, without necessitating extensive
fine-tuning. With this methodology, certain downstream tasks can
be seamlessly aligned with the pre-training objectives. While few
prior work [5, 19, 27–29] has delved into crafting various prompting
templates for graphs, their emphasis remains strictly on homoge-
neous graphs. This narrow focus underscores the last challenge
inherent to the heterogeneous graph structures typical of the Web:

• (C4) Homogeneous graph prompting techniques typically rely on
the pre-trained node embeddings of the target node or the aggre-
gation of its immediate neighbors’ embeddings for downstream
node classification, which ignores the intricate neighborhood
structure inherent to heterogeneous graphs. The challenge arises:
how to leverage the complex heterogeneous neighborhood structure
of a node to yield more reliable classification decisions?

To comprehensively address all four aforementioned challenges,
we propose HetGPT, a general post-training prompting framework
tailored for heterogeneous graphs. Represented by the acronym

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Under Review at ACM TheWebConf 2024, , Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Heterogeneous Graph Prompt Tuning, HetGPT serves as an aux-
iliary system for HGNNs that have undergone constrastive pre-
training. At the core of HetGPT is a novel graph prompting function
that reformulates the downstream node classification task to align
closely with the pretext contrastive task. We begin with the the
virtual class prompt, which generalizes the intricate characteristics
of each class in the embedding space. Then we introduce the hetero-
geneous feature prompt, which acts as a task-specific augmentation
to the input graph. This prompt is injected into the feature space
and the prompted node features are then passed through the pre-
trained HGNN, with all parameters in a frozen state. Furthermore, a
multi-view neighborhood aggregation mechanism, that encapsulates
the complexities of the heterogeneous neighborhood structure, is
applied to the target node, generating a node token for classification.
Finally, Pairwise similarity comparisons are performed between
the node token and the class tokens derived from the virtual class
prompt via the contrastive learning objectives established during
pre-training, which effectively simulates the process of deriving a
classification decision. In summary, our main contributions include:

• To the best of our knowledge, this is the first attempt to adapt
the “pre-train, prompt” paradigm to heterogeneous graphs.

• We propose HetGPT, a general post-training prompting frame-
work tailored for heterogeneous graphs. By coherently integrat-
ing a virtual class prompt, a heterogeneous feature prompt, and
a multi-view neighborhood aggregation mechanism, it elegantly
bridges the objective gap between pre-training and downstream
tasks on heterogeneous graphs.

• Extensive experiments on three benchmark datasets demonstrate
HetGPT’s capability to enhance the performance of state-of-the-
art HGNNs on semi-supervised node classification.

2 RELATEDWORK
Heterogeneous graphneural networks. Recently, there has been
a surge in the development of heterogeneous graph neural networks
(HGNNs) designed to learn node representations on heterogeneous
graphs [20, 35, 40]. For example, HAN [36] introduces hierarchi-
cal attention to learn the node-level and semantic-level structures.
MAGNN [7] incorporates intermediate nodes along metapaths to
encapsulate the rich semantic information inherent in heteroge-
neous graphs. HetGNN [42] employs random walk to sample node
neighbors and utilizes LSTM to fuse heterogeneous features. HGT
[11] adopts a transformer-based architecture tailored for web-scale
heterogeneous graphs. However, a shared challenge across these
models is their dependency on high-quality labeled data for training.
In real-world scenarios, obtaining such labeled data can be resource-
intensive and sometimes impractical. This has triggered numerous
studies to explore pre-training techniques for heterogeneous graphs
as an alternative to traditional supervised learning.
Heterogeneous graphpre-training. Pre-training techniques have
gained significant attention in heterogeneous graph machine learn-
ing, especially under the scenariowith limited labeled nodes [18, 39].
Heterogeneous graphs, with their complex types of nodes and edges,
require specialized pre-training strategies. These can be broadly
categorized into generative and contrastive methods. Generative
learning in heterogeneous graphs primarily focuses on reconstruct-
ing masked segments of the input graph, either in terms of the

underlying graph structures or specific node attributes [6, 10, 30].
On the other hand, contrastive learning on heterogeneous graphs
aims to refine node representations by magnifying the mutual in-
formation of positive pairs while diminishing that of negative pairs.
Specifically, representations generated from the same data instance
form a positive pair, while those from different instances consti-
tute a negative pair. Some methods emphasizes contrasting node-
level representations [13, 14, 37, 41], while another direction con-
trasts node-level representations with graph-level representations
[15, 24, 26]. In general, the efficacy of contrastive methods surpasses
that of generative ones [30], making them the default pre-training
strategies adopted in this paper.
Prompt-based learning on graphs. The recent trend in Natu-
ral Language Processing (NLP) has seen a shift from traditional
fine-tuning of pre-trained language models (LMs) to a new para-
digm: “pre-train, prompt” [17]. Instead of fine-tuning LMs through
task-specific objective functions, this paradigm reformulates down-
stream tasks to resemble pre-training tasks by incorporating textual
prompts to input texts. This not only bridges the gap between pre-
training and downstream tasks but also instigates further research
integrating prompting with pre-trained graph neural networks [28].
For example, GPPT [27] and GraphPrompt [19] introduce prompt
templates to align the pretext task of link prediction with down-
stream classification. GPF [5] and VNT-GPPE [29] employ learnable
perturbations to the input graph, modulating pre-trained node rep-
resentations for downstream tasks. However, all these techniques
cater exclusively to homogeneous graphs, overlooking the distinct
complexities inherent to the heterogeneity in real-world systems.

3 PRELIMINARIES
Definition 1: Heterogeneous graph. A heterogeneous graph is
defined as G = {V, E}, where V is the set of nodes and E is the
set of edges. It is associated with a node type mapping function
𝜙 : V → A and an edge type mapping function 𝜑 : E → R. A
and R denote the node type set and edge type set, respectively. For
heterogeneous graphs, we require |A| + |R| > 2. Let X = {𝑿𝐴 |
𝐴 ∈ A} be the set of all node feature matrices for different node
types. Specifically, 𝑿𝐴 ∈ R |V𝐴 |×𝑑𝐴 is the feature matrix where
each row corresponds to a feature vector 𝒙𝐴

𝑖
of node 𝑖 of type𝐴. All

nodes of type 𝐴 share the same feature dimension 𝑑𝐴 , and nodes of
different types can have different feature dimensions.

Figure 1(a) illustrates an example heterogeneous graph with
three types of nodes: author (A), paper (P), and subject (S), as well
as two types of edges: “write” and “belong to”.
Definition 2: Network schema. The network schema is defined
as S = (A,R), which can be seen as a meta template for a hetero-
geneous graph G. Specifically, network schema is a graph defined
over the set of node types A, with edges representing relations
from the set of edge types R.

Figure 1(b) presents the network schema for a heterogeneous
graph. As per the network schema, we learn that a paper is written
by an author and that a paper belongs to a subject.
Definition 3: Metapath. A metapath 𝑃 is a path defined by a

pattern of node and edge types, denoted as 𝐴1
𝑅1−−→ 𝐴2

𝑅2−−→ · · · 𝑅𝑙−−→
𝐴𝑙+1 (abbreviated as 𝐴1𝐴2 · · ·𝐴𝑙+1), where 𝐴𝑖 ∈ A and 𝑅𝑖 ∈ R.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

HetGPT: Harnessing the Power of Prompt Tuning in Pre-Trained Heterogeneous Graph Neural Networks Under Review at ACM TheWebConf 2024, ,

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 1: A example of a heterogeneous graph.

Figure 1(c) shows two metapaths for a heterogeneous graph:
“PAP” represents that two papers are written by the same author,
while “PSP” indicates that two papers share the same subject.
Definition 4: Semi-supervised node classification. Given a
heterogeneous graph G = {V, E} with node features X, we aim to
predict the labels of the target node set V𝑇 of type 𝑇 ∈ A. Each
target node 𝑣 ∈ V𝑇 corresponds to a class label 𝑦𝑣 ∈ Y. Under
the semi-supervised learning setting, while the node labels in the
labeled set V𝐿 ⊂ V𝑇 are provided, our objective is to predict the
labels for nodes in the unlabeled setV𝑈 = V𝑇 \ V𝐿 .

Definition 5: Pre-train, fine-tune. We introduce the “pre-train,
fine-tune” paradigm for heterogeneous graphs. During the pre-
training stage, an encoder 𝑓\ parameterized by \ maps each node
𝑣 ∈ V to a low-dimensional representation 𝒉𝑣 ∈ R𝑑 . Typically, 𝑓\
is an HGNN that takes a heterogeneous graph G = {V, E} and its
node features X as inputs. For each target node 𝑣 ∈ V𝑇 , we con-
struct its positive P𝑣 and negative sample sets N𝑣 for contrastive
learning. The contrastive head 𝑔𝜓 , parameterized by 𝜓 , discrimi-
nates the representations between positive and negative pairs. The
pre-training objective can be formulated as:

\∗,𝜓∗ = argmin
\,𝜓

L𝑐𝑜𝑛
(
𝑔𝜓 , 𝑓\ ,V𝑇 ,P,N

)
, (1)

where L𝑐𝑜𝑛 denotes the contrastive loss. Both P = {P𝑣 | 𝑣 ∈ V𝑇 }
andN = {N𝑣 | 𝑣 ∈ V𝑇 } can be nodes or graphs. Theymay be direct
augmentations or distinct views of the corresponding data instances,
contingent on the contrastive learning techniques employed.

In the fine-tuning stage, a prediction head ℎ[, parameterized
by [, is employed to optimize the learned representations for the
downstream node classification task. Given a set of labeled target
nodes V𝐿 and their corresponding label set Y, the fine-tuning
objective can be formulated as:

\∗∗, [∗ = argmin
\ ∗,[

L𝑠𝑢𝑝
(
ℎ[, 𝑓\ ∗ ,V𝐿,Y

)
, (2)

where L𝑠𝑢𝑝 is the supervised loss. Notably, the parameters \ are
initialized with those obtained from the pre-training stage, \∗.

4 METHOD
In this section, we introduce HetGPT, a novel graph prompting tech-
nique specifically designed for heterogeneous graphs, to address
the four challenges outlined in Section 1. In particular, HetGPT

consists of the following key components: (1) prompting function
design; (2) virtual class prompt; (3) heterogeneous feature prompt; (4)
multi-view neighborhood aggregation; (5) prompt-based learning and
inference. The overall framework of HetGPT is shown in Figure 2.

4.1 Prompting Function Design (C1)
Traditional fine-tuning approaches typically append an additional
prediction head and a supervised loss for downstream tasks, as de-
picted in Equation 2. In contrast, HetGPT pivots towards leveraging
and tuning prompts specifically designed for node classification.

In prompt-based learning for NLP, a prompting function em-
ploys a pre-defined template to modify the textual input, ensuring
its alignment with the input format used during pre-training. Mean-
while, within graph-based pre-training, contrastive learning has
overshadowed generative learning, especially in heterogeneous
graphs [15, 24, 37], as it offers broader applicability and harnesses
overlapping task subspaces, which are optimal for knowledge trans-
fer. Therefore, these findings motivate us to reformulate the down-
stream node classification task to align with contrastive approaches.
Subsequently, a good design of graph prompting function becomes
pivotal in matching these contrastive pre-training strategies.

Central to graph contrastive learning is the endeavor tomaximize
mutual information between node-node or node-graph pairs. In
light of this, we propose a graph prompting function, denoted as 𝑙 (·).
This function transforms an input node 𝑣 into a pairwise template
that encompasses a node token 𝒛𝑣 and a class token 𝒒𝑐 :

𝑙 (𝑣) = [𝒛𝑣, 𝒒𝑐] . (3)

Within the framework, 𝒒𝑐 represents a trainable embedding for
class 𝑐 in the downstream node classification task, as explained in
Section 4.2. Concurrently, 𝒛𝑣 denotes the latent representation of
node 𝑣 , derived from the pre-trained HGNN, which will be further
discussed in Section 4.3 and Section 4.4.

4.2 Virtual Class Prompt (C2)
Instead of relying solely on direct class labels, we propose the con-
cept of a virtual class prompt, a paradigm shift from traditional node
classification. Serving as a dynamic proxy for each class, the prompt
bridges the gap between the abstract representation of nodes and
the concrete class labels they are affiliated with. By leveraging
the virtual class prompt, we aim to reformulate downstream node
classification as a series of mutual information calculation tasks,
thereby refining the granularity and adaptability of the classifica-
tion predictions. This section delves into the design and intricacies
of the virtual class prompt, illustrating how it can be seamlessly
integrated into the broader contrastive pre-training framework.

4.2.1 Class tokens. We introduce class tokens, the building blocks
of the virtual class prompt, which serve as representative symbols
for each specific class. Distinct from discrete class labels, these
tokens can capture intricate class-specific semantics, providing a
richer context for node classification. We formally define the set of
class tokens, denoted as Q, as follows:

Q = {𝒒1, 𝒒2, . . . , 𝒒𝐶 } , (4)
3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Under Review at ACM TheWebConf 2024, , Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 2: Overview of the HetGPT architecture: Initially, an HGNN is pre-trained alongside a contrastive head using a contrastive
learning objective, after which their parameters are frozen. Following this, a heterogeneous feature prompt (Sec. 4.3) is injected
into the input graph’s feature space. These prompted node features are then processed by the pre-trained HGNN, producing
the prompted node embeddings. Next, amulti-view neighborhood aggregation mechanism (Sec. 4.4) captures both local and
global heterogeneous neighborhood information of the target node, generating a node token. Finally, pairwise similarity
comparisons are performed between this node token and class tokens derived from the virtual class prompt (Sec. 4.2) via the
same contrastive learning objective from pre-training. As an illustrative example of employing HetGPT for node classification:
consider a target node 𝑃2 associated with class 1, its positive samples during prompt tuning are constructed using the class
token of class 1, while negative samples are drawn from class tokens of classes 2 and 3 (i.e., all remaining classes).

where 𝐶 is the total number of classes in Y. Each token 𝒒𝑐 ∈ R𝑑
is a trainable vector and shares the same embedding dimension 𝑑
with the node representations from the pre-trained network 𝑓\ ∗ .

4.2.2 Prompt initialization. Effective initialization of class tokens
facilitates a smooth knowledge transfer from pre-trained heteroge-
neous graphs to the downstream node classification. We initialize
each class token, 𝒒𝑐 , by computing the mean of embeddings for
labeled nodes that belong to the respective class. Formally,

𝒒𝑐 =
1
𝑁𝑐

∑︁
𝑣∈V𝐿
𝑦𝑣=𝑐

𝒉𝑣, ∀𝑐 ∈ {1, 2, . . . ,𝐶}, (5)

where 𝑁𝑐 denotes the number of nodes with class 𝑐 in the labeled
setV𝐿 , and 𝒉𝑣 represents the pre-trained embedding of node 𝑣 . This
initialization aligns each class token with the prevalent patterns of
its respective class, enabling efficient prompt tuning afterward.

4.3 Heterogeneous Feature Prompt (C3)
Inspired by recent progress with visual prompts in the vision do-
main [1, 12], we propose a heterogeneous feature prompt. This ap-
proach incorporates a small amount of trainable parameters directly
into the feature space of the heterogeneous graph G. Throughout
the training phase of the downstream task, the parameters of the
pre-trained network 𝑓\ ∗ remain unchanged. The key insight behind
this feature prompt lies in its ability to act as task-specific augmen-
tations to the original graph. It implicitly tailors the pre-trained
node representations for an effective and efficient transfer of the
learned knowledge from pre-training to the downstream task.

Prompting techniques fundamentally revolve around the idea of
augmenting the input data to better alignwith the pretext objectives.

This makes the design of a graph-level transformation an important
factor for the efficacy of prompting. To illustrate, let’s consider a
homogeneous graphGwith its adjacencymatrix𝑨 and node feature
matrix 𝑿 . We introduce 𝑡b , a graph-level transformation function
parameterized by b , such as changing node features, adding or
removing edges, etc. Prior research [5, 28] has proved that for any
transformation function 𝑡b , there always exists a corresponding
feature prompt 𝒑∗ that satisfies the following property:

𝑓\ ∗ (𝑨,𝑿 + 𝒑∗) ≡ 𝑓\ ∗ (𝑡b (𝑨,𝑿)) +𝑂𝒑\ , (6)

where 𝑂𝒑\ represents the deviation between the node representa-
tions from the graph that’s augmented by 𝑡b and the graph that’s
prompted by 𝒑∗. This discrepancy is primarily contingent on the
quality of the learned prompt 𝒑∗ as the parameters \∗ of the pre-
trained model are fixed. This perspective further implies the feasi-
bility and significance of crafting an effective feature prompt within
the graph’s input space, which emulates the impact of learning a
specialized augmentation function tailored for downstream tasks.

However, in heterogeneous graphs, nodes exhibit diverse at-
tributes based on their types, and each type has unique dimension-
alities and underlying semantic meanings. Take a citation network
for instance: while paper nodes have features represented by word
embeddings derived from their abstracts, author nodes utilize one-
hot encoding as features. Given this heterogeneity, the approach
used in homogeneous graph prompting methods may not be effec-
tive or yield optimal results when applied to heterogeneous graphs,
as it uniformly augments node features for all node types via a
single and all-encompassing feature prompt.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

HetGPT: Harnessing the Power of Prompt Tuning in Pre-Trained Heterogeneous Graph Neural Networks Under Review at ACM TheWebConf 2024, ,

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

4.3.1 Type-specific feature tokens. To address the above challenge,
we introduce type-specific feature tokens, which are a set of desig-
nated tokens that align with the diverse input features inherent to
each node type. Given the diversity in scales and structures across
various graphs, equating the number of feature tokens to the node
count is often sub-optimal. This inefficiency is especially obvious
in large-scale graphs, as this design demands extensive storage due
to its 𝑂 (|V|) learnable parameters. In light of this, for each node
type, we employ a feature prompt consisting of a limited set of
independent basis vectors of size 𝐾 , i.e., 𝒇𝐴

𝑘
∈ R𝑑𝐴 , with 𝑑𝐴 as the

feature dimension associated with node type 𝐴 ∈ A:

F = {F𝐴 | 𝐴 ∈ A} , F𝐴 =

{
𝒇𝐴1 ,𝒇

𝐴
2 , . . . ,𝒇

𝐴
𝐾

}
, (7)

where 𝐾 is a hyperparameter and its value can be adjusted based
on the specific dataset in use.

4.3.2 Prompted node features. For each node 𝑖 of type 𝐴 ∈ A,
its node feature vector 𝒙𝐴

𝑖
is augmented by a linear combination

of feature token 𝒇𝐴
𝑘

through an attention mechanism, where the
attention weights are denoted by𝑤𝐴

𝑖,𝑘
. Consequently, the prompted

node feature vector evolves as:

�̃�𝐴𝑖 = 𝒙𝐴𝑖 +
𝐾∑︁
𝑘=1

𝑤𝐴
𝑖,𝑘

· 𝒇𝐴
𝑘
, (8)

𝑤𝐴
𝑖,𝑘

=

exp
(
𝜎

(
(𝒇𝐴
𝑘
)⊤ · 𝒙𝐴

𝑖

))
∑𝐾
𝑗=1 exp

(
𝜎

(
(𝒇𝐴
𝑗
)⊤ · 𝒙𝐴

𝑖

)) , (9)

where𝜎 (·) represents a non-linear activation function. Subsequently,
we utilize these prompted node features, represented as X̃, together
with the heterogeneous graph, G. They are then passed through the
pre-trained HGNN 𝑓\ ∗ during the prompt tuning phase to obtain a
prompted node embedding matrix �̃� :

�̃� = 𝑓\ ∗ (G, X̃) ∈ R |V |×𝑑 . (10)

4.4 Multi-View Neighborhood Aggregation (C4)
In prompt-based learning for homogeneous graphs, the node token
𝒛𝑣 in Equation 3 for a given node 𝑣 ∈ V is directly equated to 𝒉𝑣 ,
which is the embedding generated by the pre-trained network 𝑓\ ∗
[38]. Alternatively, it can also be derived from an aggregation of
the embeddings of its immediate neighboring nodes [27]. However,
in heterogeneous graphs, such aggregations are complicated due to
the inherent heterogeneity of neighboring structures. For example,
given a target node with the type “paper”, connections can be estab-
lished either with other “paper” nodes through different metapaths
(e.g., PAP, PSP) or with nodes of varied types (i.e., author or subject)
based on the network schema. Furthermore, it is also vital to lever-
age the prompted pre-trained node embeddings �̃� (as detailed in
Section 4.3) in the aggregation. Taking all these into consideration,
we introduce a multi-view neighborhood aggregation mechanism.
This strategy incorporates both type-based and metapath-based
neighbors, ensuring a comprehensive representation that captures
both local (i.e., network schema) and global (i.e.,metapath) patterns.

4.4.1 Type-based aggregation. Based on the network schema out-
lined in Definition 2, a target node 𝑖 ∈ V𝑇 can directly connect
to 𝑀 different node types {𝐴1, 𝐴2, . . . , 𝐴𝑀 }. Given the variability

in contributions from different nodes of the same type to node
𝑖 and the diverse influence from various types of neighbors, we
utilize a two-level attention mechanism [36] to aggregate the local
information of node 𝑖 . For the first level, the information 𝒉𝐴𝑚

𝑖
is

fused from the neighbor set N𝐴𝑚

𝑖
for node 𝑖 using node attention:

𝒉𝐴𝑚

𝑖
= 𝜎

©«
∑︁

𝑗∈N𝐴𝑚
𝑖

∪{𝑖 }

𝛼
𝐴𝑚

𝑖, 𝑗
· �̃� 𝑗

ª®®¬ , (11)

𝛼
𝐴𝑚

𝑖, 𝑗
=

exp
(
𝜎

(
a⊤
𝐴𝑚

· [�̃�𝑖 ∥�̃� 𝑗]
))

∑
𝑘∈N𝐴𝑚

𝑖
∪{𝑖 } exp

(
𝜎

(
a⊤
𝐴𝑚

· [�̃�𝑖 ∥�̃�𝑘]
)) , (12)

where 𝜎 (·) is a non-linear activation function, ∥ denotes concatena-
tion, and a𝐴𝑚

∈ R2𝑑×1 is the node attention vector shared across
all nodes of type 𝐴𝑚 . For the second level, the type-based embed-
ding of node 𝑖 , denoted as 𝒛TP

𝑖
, is derived by synthesizing all type

representations {𝒉𝐴1
𝑖
,𝒉𝐴2
𝑖
, . . . ,𝒉𝐴𝑀

𝑖
} through semantic attention:

𝒛TP𝑖 =

𝑀∑︁
𝑖=1

𝛽𝐴𝑚
· 𝒉𝐴𝑚

𝑖
, 𝛽𝐴𝑚

=
exp(𝑤𝐴𝑚

)∑𝑀
𝑘=1 exp(𝑤𝐴𝑘

)
, (13)

𝑤𝐴𝑚
=

1
|V𝑇 |

∑︁
𝑖∈V𝑇

a⊤TP · tanh(𝑾TP · 𝒉𝐴𝑚

𝑖
+ 𝒃TP), (14)

where aTP ∈ R𝑑×1 is the type-based semantic attention vector
shared across all node types,𝑾TP ∈ R𝑑×𝑑 is the weight matrix, and
𝒃TP ∈ R𝑑×1 is the bias vector.

4.4.2 Metapath-based aggregation. In contrast to type-based ag-
gregation, metapath-based aggregation provides a perspective to
capture global information of a target node 𝑖 ∈ V𝑇 . This is attrib-
uted to the nature of metapaths, which encompass connections
that are at least two hops away. Given a set of defined metapaths
{𝑃1, 𝑃2, . . . , 𝑃𝑁 }, the information from neighbors of node 𝑖 con-
nected through metapath 𝑃𝑛 is aggregated via node attention:

𝒉𝑃𝑛
𝑖

= 𝜎
©«

∑︁
𝑗∈N𝑃𝑛

𝑖
∪{𝑖 }

𝛼
𝑃𝑛
𝑖, 𝑗

· �̃�𝑖
ª®®¬ , (15)

𝛼
𝑃𝑛
𝑖, 𝑗

=

exp
(
𝜎

(
a⊤
𝑃𝑛

· [�̃�𝑖 ∥�̃� 𝑗]
))

∑
𝑘∈N𝑃𝑛

𝑖
∪{𝑖 } exp

(
𝜎

(
a⊤
𝑃𝑛

· [�̃�𝑖 ∥�̃�𝑘]
)) , (16)

where a𝑃𝑛 ∈ R2𝑑×1 is the node attention vector shared across
all nodes connected through metapath 𝑃𝑛 . To compile the global
structural information from various metapaths, we fuse the node
embeddings {𝒉𝑃1

𝑖
,𝒉𝑃2
𝑖
, . . . ,𝒉𝑃𝑁

𝑖
} derived from each metapath into a

single embedding using semantic attention:

𝒛MP
𝑖 =

𝑁∑︁
𝑖=1

𝛽𝑃𝑛 · 𝒉𝑃𝑛
𝑖
, 𝛽𝑃𝑛 =

exp(𝑤𝑃𝑛)∑𝑁
𝑘=1 exp(𝑤𝑃𝑘)

, (17)

𝑤𝑃𝑛 =
1

|V𝑇 |
∑︁
𝑖∈V𝑇

a⊤MP · tanh(𝑾MP · 𝒉𝑃𝑛
𝑖

+ 𝒃MP), (18)

where aMP ∈ R𝑑×1 is the metapath-based semantic- attention vec-
tor shared across all metapaths,𝑾MP ∈ R𝑑×𝑑 is the weight matrix,

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Under Review at ACM TheWebConf 2024, , Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

and 𝒃MP ∈ R𝑑×1 is the bias vector. Integrating the information
from both aggregation views, we obtain the final node token, 𝒛𝑖 , by
concatenating the type-based and the metapath-based embedding:

𝒛𝑖 = 𝜎
(
𝑾 [𝒛MP

𝑖 ∥𝒛TP𝑖] + 𝒃
)
, (19)

where 𝜎 (·) is a non-linear activation function,𝑾 ∈ R2𝑑×𝑑 is the
weight matrix, and 𝒃 ∈ R𝑑×1 is the bias vector.

4.5 Prompt-Based Learning and Inference
Building upon our prompt design detailed in the preceding sections,
we present a comprehensive overview of the prompt-based learn-
ing and inference process for semi-supervised node classification.
This methodology encompasses three primary stages: (1) prompt
addition, (2) prompt tuning, and (3) prompt-assisted prediction.

4.5.1 Prompt addition. Based on the graph prompting function
𝑙 (·) outlined in Equation (3), we parameterize it using the trainable
virtual class prompt Q and the heterogeneous feature prompt F . To
ensure compatibility during the contrastive loss calculation, which
we detail later, we use a single-layer Multilayer Perceptron (MLP) to
project both 𝒛𝑣 and 𝒒𝑐 , onto the same embedding space. Formally:

𝒛′𝑣 = MLP(𝒛𝑣), 𝒒′𝑐 = MLP(𝒒𝑐), 𝑙Q,F (𝑣) = [𝒛′𝑣, 𝒒′𝑐] . (20)

4.5.2 Prompt tuning. Our prompt design allows us to reuse the
contrastive head from Equation 1 for downstream node classifica-
tion without introducing a new prediction head. Thus, the original
positive P𝑣 and negative samples N𝑣 of a labeled node 𝑣 ∈ V𝐿
used during pre-training are replaced with the virtual class prompt
corresponding to its given class label 𝑦𝑣 .

P𝑣 =
{
𝒒𝑦𝑣

}
, N𝑣 = Q \

{
𝒒𝑦𝑣

}
, (21)

Consistent with the contrastive pre-training phase, we employ the
InfoNCE [23] loss to replace the supervised classification loss L𝑠𝑢𝑝 :

L𝑐𝑜𝑛 = −
∑︁
𝑣∈V𝐿

log

(
exp(sim(𝒛′𝑣, 𝒒′𝑦𝑣)/𝜏)∑𝐶
𝑐=1 exp(sim(𝒛′𝑣, 𝒒′𝑐)/𝜏)

)
. (22)

Here, sim(·) denotes a similarity function between two vectors, and
𝜏 denotes a temperature hyperparameter. To obtain the optimal
prompts, we utilize the following prompt tuning objective:

Q∗, F ∗ = argmin
Q,F

L𝑐𝑜𝑛
(
𝑔𝜓 ∗ , 𝑓\ ∗ , 𝑙Q,F,V𝐿

)
+ _L𝑜𝑟𝑡ℎ, (23)

where _ is a regularization hyperparameter. The orthogonal reg-
ularization [2] loss L𝑜𝑟𝑡ℎ is defined to ensure the label tokens in
the virtual class prompt remain orthogonal during prompt tuning,
fostering diversified representations of different classes:

L𝑜𝑟𝑡ℎ =
𝑸𝑸⊤ − 𝑰

2
𝐹
, (24)

where 𝑸 = [𝒒1, 𝒒2, . . . , 𝒒𝐶]⊤ ∈ R𝐶×𝑑 is the matrix form of the
virtual class prompt Q, and 𝑰 ∈ R𝐶×𝐶 is an identity matrix.

4.5.3 Prompt-assisted prediction. During the inference phase, for
an unlabeled target node 𝑣 ∈ V𝑈 , the predicted probability of node
𝑣 belonging to class 𝑐 is given by:

𝑃 (𝑦𝑣 = 𝑐) =
exp(sim(𝒛′𝑣, 𝒒′𝑐))∑𝐶
𝑘=1 exp(sim(𝒛′𝑣, 𝒒′𝑘))

. (25)

Table 1: Detailed statistics of the benchmark datasets. Under-
lined node types are the target nodes for classification.

Dataset # Nodes # Edges Metapaths # Classes

ACM
Paper: 4,019
Author: 7,167
Subject: 60

P-A: 13,407
P-S: 4,019

PAP
PSP 3

DBLP

Author: 4,057
Paper: 14,328
Term: 7,723

Conference: 20

P-A: 19,645
P-T: 85,810
P-C: 14,328

APA
APCPA
APTPA

4

IMDB
Movie: 4,278
Director: 2,081
Actor: 5,257

M-D: 4,278
M-A: 12,828

MAM
MDM 3

This equation computes the similarity between the projected node
token 𝒛′𝑣 and each projected class token 𝒒′𝑐 , using the softmax
function to obtain class probabilities. The class with the maximum
likelihood for node 𝑣 is designated as the predicted class 𝑦𝑣 :

𝑦𝑣 = argmax
𝑐

𝑃 (𝑦𝑣 = 𝑐), (26)

5 EXPERIMENTS
In this section, we conduct a thorough evaluation of our proposed
HetGPT to address the following research questions:
• (RQ1) Can HetGPT improve the performance of pre-trained

heterogeneous graph neural networks on the semi-supervised
node classification task?

• (RQ2) How does HetGPT perform under different settings, i.e.,
ablated models and hyperparameters?

• (RQ3) How does the prompt tuning efficiency of HetGPT com-
pare to its fine-tuning counterpart?

• (RQ4) How interpretable is the learned prompt in HetGPT?

5.1 Experiment Settings
5.1.1 Datasets. We evaluate our methods using three benchmark
datasets: ACM [44], DBLP [7], and IMDB [7]. Detailed statistics
and descriptions of these datasets can be found in Table 1. For the
semi-supervised node classification task, we randomly select 1, 5,
20, 40, or 60 labeled nodes per class as our training set. Additionally,
we set aside 1,000 nodes for validation and another 1,000 nodes for
testing. Our evaluation metrics include Macro-F1 and Micro-F1.
5.1.2 Baseline models. We compare our approach against methods
belonging to three different categories:
• Supervised HGNNs: HAN [36], HGT [11], MAGNN [7];
• HGNNs with “pre-train, fine-tune”:

– Generative: HGMAE [30];
– Contrastive (our focus):DMGI [24],HeCo [37],HDMI [15];

• GNNs with“pre-train, prompt”: GPPT [27].

5.1.3 Implementation details. For the homogeneous method GPPT,
we evaluate using all the metapaths and present the results with
the best performance. Regarding the parameters of other baselines,
we adhere to the configuration specified in their original papers.

In our HetGPT model, the heterogeneous feature prompt is ini-
tialized using Kaiming initialization [9]. During the prompt tuning
phase, we employ the Adam optimizer [16] and search within a

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

HetGPT: Harnessing the Power of Prompt Tuning in Pre-Trained Heterogeneous Graph Neural Networks Under Review at ACM TheWebConf 2024, ,

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Experiments results on three semi-supervised node classification benchmark datasets. We report the average perfor-
mance for 10 repetitions. The best results are highlighted in bold, while improved results attributed to HetGPT are underlined.
The “+” symbol indicates the integration of HetGPT with the corresponding original models as an auxiliary system.

Dataset Metric # Train HAN HGT MAGNN HGMAE GPPT DMGI +HetGPT HeCo +HetGPT HDMI +HetGPT

ACM

Ma-F1

1 27.08±2.05 49.74±9.38 38.62±2.87 28.00±7.21 21.85±1.09 47.28±0.23 52.07±3.28 54.24±8.42 55.90±8.42 65.58±7.45 71.00±5.32

5 84.84±0.95 84.40±7.48 84.45±0.79 87.34±1.62 71.77±6.73 86.12±0.45 87.91±0.77 86.55±1.36 87.03±1.15 88.88±1.73 91.08±0.37

20 84.37±1.25 84.40±5.31 85.13±1.58 88.61±1.10 80.90±0.88 86.64±0.65 88.65±0.81 88.09±1.21 88.63±0.88 90.76±0.79 92.15±0.25

40 86.33±0.66 86.17±6.26 86.26±0.67 88.31±1.09 81.78±1.46 87.52±0.46 87.88±0.69 87.03±1.40 86.88±0.95 90.62±0.21 91.31±0.39

60 86.31±2.16 86.15±6.05 86.56±1.96 88.81±0.72 84.15±0.47 88.71±0.59 90.33±0.41 88.95±0.85 89.13±0.59 91.29±0.57 92.09±0.35

Mi-F1

1 49.76±0.35 58.52±6.75 51.27±0.45 40.82±7.26 34.32±3.87 49.63±0.25 54.29±4.49 54.81±9.88 63.01±9.61 64.89±8.20 73.41±2.51

5 84.96±1.12 85.11±4.06 85.31±1.14 87.47±1.53 75.41±3.66 86.16±0.47 88.05±0.77 86.85±1.33 87.26±1.09 89.01±1.69 91.09±0.37

20 83.33±1.58 83.05±3.62 83.88±1.60 88.31±1.15 81.20±0.63 85.94±0.64 88.40±0.79 87.87±1.24 88.60±0.79 90.55±0.82 91.85±0.26

40 86.24±0.67 86.21±3.68 86.39±0.69 88.29±1.04 82.02±1.49 87.09±0.47 87.78±0.79 86.56±1.56 86.64±1.05 90.41±0.23 91.11±0.39

60 85.56±2.48 85.49±4.74 86.03±2.40 88.59±0.71 84.16±0.45 88.34±0.63 90.13±0.43 88.48±0.94 88.91±0.62 91.16±0.56 91.94±0.33

DBLP

Ma-F1

1 50.28±8.41 70.86±6.82 52.52±8.67 82.75±7.96 39.17±1.25 76.00±3.27 81.33±1.90 88.79±0.44 89.44±0.54 88.28±0.58 90.25±0.29

5 82.85±8.60 82.70±5.28 82.24±0.85 83.47±4.57 54.13±1.06 81.12±1.20 81.85±1.89 91.56±0.23 91.87±0.43 91.00±0.38 91.39±0.46
20 89.41±0.61 89.61±5.70 89.36±0.58 89.31±1.47 71.06±0.31 84.03±1.20 84.41±1.32 89.90±0.37 91.17±0.52 91.30±0.17 91.64±0.33

40 89.25±0.55 89.59±6.69 89.42±0.53 89.99±0.45 73.39±0.59 85.43±1.09 85.91±0.91 90.45±0.31 91.48±0.41 90.77±0.28 91.84±0.34

60 89.77±0.55 88.99±8.69 89.15±0.52 91.30±0.28 72.99±0.44 86.54±0.95 87.09±0.70 90.25±0.29 91.27±0.17 90.67±0.33 91.39±0.14

Mi-F1

1 51.72±8.02 73.71±5.74 51.23±0.76 84.34±7.02 41.84±1.11 78.62±2.53 82.83±1.63 89.59±0.37 90.15±0.52 89.71±0.41 91.02±0.22

5 83.35±8.43 84.03±3.44 83.45±0.89 83.59±4.57 54.82±0.82 81.12±1.20 81.85±1.89 91.83±0.25 92.12±0.42 91.25±0.39 91.68±0.45
20 90.49±0.56 90.29±2.90 90.60±0.54 90.38±1.36 72.49±0.30 84.03±1.20 84.41±1.32 91.01±0.36 92.05±0.50 92.16±0.14 92.46±0.29

40 90.11±0.42 90.85±5.67 90.80±0.47 90.99±0.41 74.56±0.64 85.43±1.09 85.91±0.91 91.35±0.28 92.19±0.36 91.72±0.26 92.53±0.31

60 91.70±0.42 90.25±6.22 91.58±0.48 92.13±0.27 73.63±0.42 86.54±0.95 87.09±0.70 91.30±0.25 92.22±0.16 91.80±0.23 92.35±0.13

IMDB

Ma-F1

1 23.26±1.59 28.99±3.21 35.75±1.85 29.87±2.28 31.08±0.96 37.70±2.21 40.22±2.50 28.00±1.65 32.51±3.86 38.29±2.44 40.28±2.83

5 39.79±2.21 35.72±4.29 39.59±1.08 37.17±2.79 37.47±1.13 45.58±3.05 49.63±1.04 35.92±2.60 37.66±2.28 48.82±1.40 51.87±1.69

20 45.76±1.87 48.75±2.56 48.77±0.46 45.85±1.62 44.08±0.53 47.30±5.01 49.56±1.07 42.16±2.17 43.75±1.43 50.87±1.69 52.14±2.27

40 45.58±0.78 47.98±1.57 46.37±0.40 44.40±1.73 42.47±0.71 45.25±3.14 48.77±1.30 45.94±1.74 46.48±1.50 51.18±1.57 52.81±1.36

60 49.51±0.72 51.53±1.06 48.97±0.38 46.60±2.30 44.78±0.89 47.14±7.22 51.14±1.25 48.12±1.27 49.19±1.42 52.17±1.67 53.83±1.36

Mi-F1

1 38.23±0.40 39.33±1.31 40.28±0.96 37.97±1.18 36.16±1.42 37.99±1.85 39.95±2.51 33.02±2.44 35.45±2.11 40.19±1.70 41.99±2.26

5 42.92±1.00 40.25±1.80 44.01±1.08 39.23±2.21 41.54±0.96 45.48±2.99 49.39±0.98 37.77±1.33 38.74±2.16 51.77±1.17 51.36±1.30
20 45.80±1.74 50.29±2.04 48.78±0.42 46.65±1.62 44.85±0.58 48.58±2.99 49.22±1.12 42.61±2.13 44.33±1.57 52.08±1.36 52.72±1.22

40 45.55±0.84 48.68±1.50 46.39±0.35 44.90±1.62 43.36±0.71 46.11±2.65 48.52±1.31 46.31±1.05 47.24±1.63 52.14±1.16 52.71±1.18

60 49.46±0.73 53.05±0.95 49.00±0.41 47.10±2.24 45.52±0.91 49.38±2.90 50.86±1.31 48.53±1.25 49.92±1.43 52.41±1.25 53.72±1.94

learning rate ranging from 1e-4 to 5e-3. We also tune the patience
for early stopping from 20 to 100. The regularization hyperparam-
eter _ is set to 0.01. We experiment with the number of feature
tokens 𝐾 , searching values from { 1, 5, 10, 15, 20 }. Lastly, for our
non-linear activation function 𝜎 (·), we use LeakyReLU.

5.2 Performance on Node Classification (RQ1)
Experiment results for semi-supervised node classification on three
benchmark datasets are detailed in Table 2. Compared to the pre-
trained DMGI, HeCo, and HDMI models, our post-training prompt-
ing framework, HetGPT, exhibits superior performance in 88 out of
the 90 comparison pairs. Specifically, we observe a relative improve-
ment of 3.00% in Macro-F1 and 2.62% in Micro-F1. The standard
deviation of HetGPT aligns closely with that of the original mod-
els, indicating that the improvement achieved is both substantial
and robust. It’s crucial to note that the three HGNNs with “pre-
train, fine-tune” - DMGI, HeCo, and HDMI, are already among the
state-of-the-art methods for semi-supervised node classification.
By integrating them with HetGPT, we push the envelope even fur-
ther, setting a new performance pinnacle. Furthermore, HetGPT’s
edge becomes even more significant in scenarios where labeled
nodes are extremely scarce, achieving an improvement of 6.60%
in Macro-F1 and 6.88% in Micro-F1 under the 1-shot setting. Such

marked improvements in few-shot performance strongly suggest
HetGPT’s efficacy in mitigating the overfitting issue. The strate-
gic design of our prompting function, especially the virtual class
prompt, effectively captures the intricate characteristics of each
class, which can potentially obviate the reliance on costly annotated
data. Additionally, GPPT lags considerably on all datasets, which
further underscores the value of HetGPT’s effort in tackling the
unique challenges inherent to heterogeneous graphs.

5.3 Performance under Different Settings (RQ2)
5.3.1 Ablation study. To further demonstrate the effectiveness of
each module in HetGPT, we conduct an ablation study to evaluate
our full framework against the following three variants:

• w/o VCP: the variant of HetGPTwithout the virtual class prompt
from Section 4.2;

• w/o HFP: the variant of HetGPT without the heterogeneous
feature prompt from Section 4.3;

• w/o MNA: the variant of HetGPT without the multi-view neigh-
borhood aggregation from Section 4.4.

Experiment results on ACM and DBLP, shown in Figure 3, high-
light the substantial contributions of each module to the overall
effectiveness of HetGPT. Notably, the virtual class prompt emerges

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Under Review at ACM TheWebConf 2024, , Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

DMGI HeCo HDMI75

80

85

90

95

100

M
ac

ro
-F

1

w/o VCP
w/o HFP

w/o MNA
HetGPT

(a) ACM

DMGI HeCo HDMI20

30

40

50

60

70

M
ac

ro
-F

1

w/o VCP
w/o HFP

w/o MNA
HetGPT

(b) IMDB

Figure 3: Ablation study of HetGPT on ACM and IMDB.

1 5 10 15 20
85

87

89

91

93

95

M
ac

ro
-F

1

ACM DBLP

(a) ACM, DBLP

1 5 10 15 2047

49

51

53

55

57

M
ac

ro
-F

1

IMDB

(b) IMDB

Figure 4: Performance of HetGPT with the different number
of basis feature vectors on ACM, DBLP, and IMDB.

as the most pivotal component, indicated by the significant per-
formance drop when it’s absent. This degradation mainly stems
from the overfitting issue linked to the negative transfer problem,
especially when labeled nodes are sparse. The virtual class prompt
directly addresses this issue by generalizing the intricate character-
istics of each class within the embedding space.

5.3.2 Hyper-parameter sensitivity. We evaluate the sensitivity of
HetGPT to its primary hyperparameter: the number of basis feature
tokens𝐾 in Equation (7). As depicted in Figure 4, even a really small
value of 𝐾 (i.e., 5 for ACM, 20 for DBLP, and 5 for IMDB) can lead
to satisfactory node classification performance. This suggests that
the prompt tuning effectively optimizes performance without the
need to introduce an extensive number of new parameters.

5.4 Prompt Tuning Efficiency Analysis (RQ3)
Our HetGPT, encompassing the virtual class prompt and the hetero-
geneous feature prompt, adds only a few new trainable parameters
(i.e., comparable to a shallow MLP). Concurrently, the parameters
of the pre-trained HGNNs and the contrastive head remain un-
changed during the entire prompt tuning phase. Figure 5 illustrates
that HetGPT converges notably faster than its traditional “pre-train,
fine-tune” counterpart, both recalibrating the parameters of the pre-
trained HGNNs and introducing a new prediction head. This further
demonstrates the efficiency benefits of our proposed framework,
allowing for effective training with minimal tuning iterations.

5.5 Interpretability Analysis (RQ4)
To gain a clear understanding of how the design of the virtual class
prompt facilitates effective node classification without relying on
the traditional classification paradigm, we employ a t-SNE plot to
visualize the node representations and the learned virtual class

0 100 200 300
Epochs

0

1

2

3

Lo
ss

fine-tune
prompt

(a) DBLP

0 100 200 300
Epochs

0

1

2

3

Lo
ss

fine-tune
prompt

(b) IMDB

Figure 5: Comparison of training losses over epochs between
HetGPT and its fine-tuning counterpart on DBLP and IMDB.

(a) ACM (b) DBLP

Figure 6: Visualization of the learned node tokens and class
tokens in virtual class prompt on ACM and DBLP.

prompt on ACM and DBLP, as shown in Figure 6. Within this vi-
sualization, nodes are depicted as colored circles, while the class
tokens from the learned virtual class prompt are denoted by col-
ored stars. Each color represents a unique class label. Notably, the
embeddings of these class tokens are positioned in close vicinity
to clusters of node embeddings sharing the same class label. This
immediate spatial proximity between a node and its respective class
token validates the efficacy of similarity measures inherited from
the contrastive pretext for the downstream node classification task.
This observation further reinforces the rationale behind our node
classification approach using the virtual class prompt, i.e., a node is
labeled as the class that its embedding is most closely aligned with.

6 CONCLUSION
In this paper, we propose HetGPT, a general post-training prompt-
ing framework to improve the node classification performance of
pre-trained heterogeneous graph neural networks. Recognizing the
prevalent issue of misalignment between the objectives of pretext
and downstream tasks, we craft a novel prompting function that in-
tegrates a virtual class prompt and a heterogeneous feature prompt.
Furthermore, our framework incorporates a multi-view neighbor-
hood aggregation mechanism to capture the complex neighborhood
structure in heterogeneous graphs. Extensive experiments on three
benchmark datasets demonstrate the effectiveness of HetGPT. For
future work, we are interested in exploring the potential of prompt-
ing methods in tackling the class-imbalance problem on graphs
or broadening the applicability of our framework to diverse graph
tasks, such as link prediction and graph classification.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

HetGPT: Harnessing the Power of Prompt Tuning in Pre-Trained Heterogeneous Graph Neural Networks Under Review at ACM TheWebConf 2024, ,

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Hyojin Bahng, Ali Jahanian, Swami Sankaranarayanan, and Phillip Isola. 2022.

Exploring visual prompts for adapting large-scale models. arXiv:2203.17274
(2022).

[2] Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. 2016. Neural
photo editing with introspective adversarial networks. arXiv:1609.07093 (2016).

[3] Yuwei Cao, Hao Peng, Jia Wu, Yingtong Dou, Jianxin Li, and Philip S Yu. 2021.
Knowledge-preserving incremental social event detection via heterogeneous
gnns. In TheWebConf.

[4] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
2019. Graph neural networks for social recommendation. In TheWebConf.

[5] Taoran Fang, Yunchao Zhang, Yang Yang, Chunping Wang, and Lei Chen. 2022.
Universal Prompt Tuning for Graph Neural Networks. arXiv:2209.15240 (2022).

[6] Yang Fang, Xiang Zhao, Yifan Chen, Weidong Xiao, and Maarten de Rijke. 2022.
PF-HIN: Pre-Training for Heterogeneous Information Networks. IEEE Transac-
tions on Knowledge and Data Engineering (2022).

[7] Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. 2020. Magnn: Metap-
ath aggregated graph neural network for heterogeneous graph embedding. In
TheWebConf.

[8] Zhichun Guo, Kehan Guo, Bozhao Nan, Yijun Tian, Roshni G Iyer, Yihong Ma,
Olaf Wiest, Xiangliang Zhang, WeiWang, Chuxu Zhang, et al. 2023. Graph-based
molecular representation learning. In IJCAI.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep
into rectifiers: Surpassing human-level performance on imagenet classification.
In ICCV.

[10] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. 2020.
Gpt-gnn: Generative pre-training of graph neural networks. In KDD.

[11] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous
graph transformer. In TheWebConf.

[12] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie,
Bharath Hariharan, and Ser-Nam Lim. 2022. Visual Prompt Tuning.
arXiv:2203.12119 (2022).

[13] Xunqiang Jiang, Tianrui Jia, Yuan Fang, Chuan Shi, Zhe Lin, and Hui Wang. 2021.
Pre-training on large-scale heterogeneous graph. In KDD.

[14] Xunqiang Jiang, Yuanfu Lu, Yuan Fang, and Chuan Shi. 2021. Contrastive pre-
training of GNNs on heterogeneous graphs. In CIKM.

[15] Baoyu Jing, Chanyoung Park, and Hanghang Tong. 2021. Hdmi: High-order
deep multiplex infomax. In WWW.

[16] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. In ICLR.

[17] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2023. Pre-train, prompt, and predict: A systematic survey of
prompting methods in natural language processing. Comput. Surveys (2023).

[18] Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng, Feng Xia, and S Yu Philip.
2022. Graph self-supervised learning: A survey. IEEE Transactions on Knowledge
and Data Engineering (2022).

[19] Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. 2023. GPPT: Graph Pre-
training and Prompt Tuning to Generalize Graph Neural Networks. In WWW.

[20] Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng, Siming
He, Chang Zhou, Jianguo Jiang, Yuxiao Dong, and Jie Tang. 2021. Are we really
making much progress? revisiting, benchmarking and refining heterogeneous
graph neural networks. In KDD.

[21] Yihong Ma, Patrick Gerard, Yijun Tian, Zhichun Guo, and Nitesh V Chawla. 2022.
Hierarchical spatio-temporal graph neural networks for pandemic forecasting.
In CIKM.

[22] Yihong Ma, Yijun Tian, Nuno Moniz, and Nitesh V Chawla. 2023. Class-
Imbalanced Learning on Graphs: A Survey. arXiv:2304.04300 (2023).

[23] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning
with contrastive predictive coding. arXiv:1807.03748 (2018).

[24] Chanyoung Park, Donghyun Kim, Jiawei Han, and Hwanjo Yu. 2020. Unsuper-
vised attributed multiplex network embedding. In AAAI.

[25] Xiaoguang Qi and Brian D Davison. 2009. Web page classification: Features and
algorithms. ACM computing surveys (CSUR) (2009).

[26] Yuxiang Ren, Bo Liu, Chao Huang, Peng Dai, Liefeng Bo, and Jiawei Zhang. 2019.
Heterogeneous deep graph infomax. arXiv:1911.08538 (2019).

[27] Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang. 2022. GPPT:
Graph Pre-training and Prompt Tuning to Generalize Graph Neural Networks.
In KDD.

[28] Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan. 2023. All in One:
Multi-Task Prompting for Graph Neural Networks. In KDD.

[29] Zhen Tan, Ruocheng Guo, Kaize Ding, and Huan Liu. 2023. Virtual Node Tuning
for Few-shot Node Classification. In KDD.

[30] Yijun Tian, Kaiwen Dong, Chunhui Zhang, Chuxu Zhang, and Nitesh V Chawla.
2023. Heterogeneous graph masked autoencoders. In AAAI.

[31] Yijun Tian, Chuxu Zhang, Zhichun Guo, Yihong Ma, Ronald Metoyer, and
Nitesh V Chawla. 2022. Recipe2vec: Multi-modal recipe representation learning
with graph neural networks. In IJCAI.

[32] Daheng Wang, Zhihan Zhang, Yihong Ma, Tong Zhao, Tianwen Jiang, Nitesh
Chawla, and Meng Jiang. 2021. Modeling co-evolution of attributed and struc-
tural information in graph sequence. IEEE Transactions on Knowledge and Data
Engineering (2021).

[33] Daheng Wang, Zhihan Zhang, Yihong Ma, Tong Zhao, Tianwen Jiang, Nitesh V
Chawla, and Meng Jiang. 2020. Learning attribute-structure co-evolutions in
dynamic graphs. In DLG.

[34] Liyuan Wang, Mingtian Zhang, Zhongfan Jia, Qian Li, Chenglong Bao, Kaisheng
Ma, Jun Zhu, and Yi Zhong. 2021. Afec: Active forgetting of negative transfer in
continual learning. In NeurIPS.

[35] Xiao Wang, Deyu Bo, Chuan Shi, Shaohua Fan, Yanfang Ye, and S Yu Philip. 2022.
A survey on heterogeneous graph embedding: methods, techniques, applications
and sources. IEEE Transactions on Big Data (2022).

[36] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S
Yu. 2019. Heterogeneous graph attention network. In TheWebConf.

[37] Xiao Wang, Nian Liu, Hui Han, and Chuan Shi. 2021. Self-supervised heteroge-
neous graph neural network with co-contrastive learning. In KDD.

[38] Zhihao Wen, Yuan Fang, Yihan Liu, Yang Guo, and Shuji Hao. 2023. Voucher
Abuse Detection with Prompt-based Fine-tuning on Graph Neural Networks. In
CIKM.

[39] Yaochen Xie, Zhao Xu, Jingtun Zhang, Zhengyang Wang, and Shuiwang Ji.
2022. Self-supervised learning of graph neural networks: A unified review. IEEE
transactions on pattern analysis and machine intelligence (2022).

[40] Carl Yang, Yuxin Xiao, Yu Zhang, Yizhou Sun, and Jiawei Han. 2020. Heteroge-
neous network representation learning: A unified framework with survey and
benchmark. IEEE Transactions on Knowledge and Data Engineering (2020).

[41] Yaming Yang, Ziyu Guan, Zhe Wang, Wei Zhao, Cai Xu, Weigang Lu, and Jian-
bin Huang. 2022. Self-supervised heterogeneous graph pre-training based on
structural clustering. In NeurIPS.

[42] Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V
Chawla. 2019. Heterogeneous graph neural network. In KDD.

[43] Wen Zhang, Lingfei Deng, Lei Zhang, and Dongrui Wu. 2022. A survey on
negative transfer. IEEE/CAA Journal of Automatica Sinica (2022).

[44] Jianan Zhao, Xiao Wang, Chuan Shi, Zekuan Liu, and Yanfang Ye. 2020. Network
schema preserving heterogeneous information network embedding. In IJCAI.

9

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Method
	4.1 Prompting Function Design (C1)
	4.2 Virtual Class Prompt (C2)
	4.3 Heterogeneous Feature Prompt (C3)
	4.4 Multi-View Neighborhood Aggregation (C4)
	4.5 Prompt-Based Learning and Inference

	5 Experiments
	5.1 Experiment Settings
	5.2 Performance on Node Classification (RQ1)
	5.3 Performance under Different Settings (RQ2)
	5.4 Prompt Tuning Efficiency Analysis (RQ3)
	5.5 Interpretability Analysis (RQ4)

	6 Conclusion
	References

