Under review as a conference paper at ICLR 2025

MIND THE GAP:
A SPECTRAL ANALYSIS OF RANK COLLAPSE
AND SIGNAL PROPAGATION IN TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Attention layers are the core component of transformers, the current state-of-the-
art neural network architecture. However, softmax-based attention causes trans-
formers to be more challenging to train. Even at initialisation, the propagation of
signals and gradients through the random network can be pathological, resulting
in known issues such as (i) vanishing/exploding gradients and (ii) rank collapse,
i.e. when all tokens converge to a single representation with depth. This paper
examines signal propagation in attention-only transformers from a random ma-
trix perspective, illuminating the origin of such issues, as well as unveiling a new
phenomenon—(iii) rank collapse in width. Modelling softmax-based attention at
initialisation with Random Markov matrices, our theoretical analysis reveals that a
spectral gap between the two largest singular values of the attention matrix causes
(iii), which, in turn, exacerbates (i) and (ii). Building on this insight, we propose
a novel, yet simple, practical solution to resolve rank collapse in width by remov-
ing the spectral gap. Moreover, we validate our findings and discuss the training
benefits of the proposed fix through experimentsﬂ that also motivate a revision of
some of the default parameter scaling. Our attention model accurately describes
the standard key-query attention in a single-layer transformer, making this work a
significant first step towards a better understanding of the initialisation dynamics
in the multi-layer case.

1 INTRODUCTION

Transformers |Vaswani et al.|(2017) have emerged as the dominant architecture in machine learning,
achieving remarkable success across various domains, particularly in natural language processing
and computer vision, largely due to their defining feature: the self-attention mechanism Bahdanau
et al. (2016). However, despite their empirical success, transformers are often plagued by training
instability and high sensitivity to numerous hyperparameters, which require careful tuning. This
challenge has motivated recent efforts to establish a theoretical framework for understanding trans-
former architectures, even in their most basic forms, to ensure reliable information flow through
deeper layers and facilitate training.

The purpose of this work is to analyse signal propagation in softmax-based attention layers at ini-
tialisation, i.e. with randomly initialised model parameters. While the issues of rank collapse (in
depth) and vanishing/exploding gradients have been previously identified in transformers at initial-
isation |[Dong et al.| (2021)); Noci et al,| (2022)), our work formalises these findings and uncovers an
additional phenomenon—rank collapse in width—due to the use of softmax in the self-attention
mechanism. Rank collapse in width has not been identified in the existing literature nor been recog-
nised as a catalyst for rank collapse along depth. By leveraging spectral properties of the random
matrices formed by the model’s parameters, we reveal the emergence of a spectral gap between the
two largest singular values of the attention matrix, which drives rank collapse in width and further
accelerates rank collapse in depth. Moreover, we propose a provably effective remedy for the spec-
tral gap, a solution that naturally arises when the problem is viewed through a spectral lens. To the
best of our knowledge, a spectral analysis of signal propagation has yet not been undertaken in the
context of transformers.

'Our code is available at https:/shorturl.at/0zk8q_
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Let us consider the eigenvalues of an attention matrix. Since the rows sum to 1, there is an eigenvalue
of 1 corresponding to the all-ones vector. Under certain conditions, the other eigenvalues shrink in
size as the matrix dimension increases, resulting in a widening gap between the largest eigenvalue
(which is 1) and the diminishing bulk of eigenvalues; see Figure [I] The successive multiplication
of such matrices at each layer increasingly favours a specific direction—the one aligned with the
dominant eigenvector of the attention matrix—over the others. This leads to a distortion in the
geometry of the input training data, exemplified by the phenomenon of rank collapse. A natural
solution is then to project out this troublesome direction from all attention matrices to enable a
more balanced signal propagation. This intuitive idea is central to our rigorous analysis of a simple
transformer, from which we draw insights to introduce a slightly modified attention layer that proves
advantageous even when incorporated into more complex architectures.

Spectra of random matrices. Throughout this paper, we consider random matrices (of different
distributions) in the large width limit and describe them through their limiting spectral properties.
In the context of transformers, we mean by “large width” that both the number of tokens and the
embedding dimension(s) are large—an assumption typically satisfied in practice. For certain classes
of random matrices, the overall behaviour of eigenvalues/singular values becomes remarkably pre-
dictable as the matrix size increases, despite the randomness of individual entries. If M,, € R™*"
are random matrices with eigenvalues and singular values denoted by {A;(M,,)} and {s;(M,,)},
respectively, the histograms of the n eigenvalues/singular values
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converge, in many interesting cases, to deterministic distributions p and v, known as the limiting
eigenvalue/singular value distribution of M,,. Additionally, the largest eigenvalue/singular value
of random matrices is often studied in its own right. Our analysis builds on several established
results concerning both the limiting distribution of the eigenvalues/singular values (the “bulk” of the
spectrum) and the behaviour of the largest eigenvalue/singular value (the “edge” of the spectrum).
In particular, we focus on two classes of random matrices: Gaussian and Markov, that respectively
model the value and attention matrices in our transformer model (3) at initialisation.

Free probability. The theory of free probability studies “non-commuting random variables” such
as random matrices (see Mingo & Speicher|(2017) for a textbook introduction). Pioneered by [Pen-
nington et al.| (2017} 2018), the theory has found powerful applications in the analysis of large
random neural networks. Notably, it provides tools to characterise the singular value distribution of
sums or products of random matrices. Loosely speaking, “freeness” plays the same role for random
matrices as independence does for (scalar) random variables. Freeness allows us to compute the
limiting spectral density of a product M,, M/, from the limiting spectral densities of M,, and M/,
just as independence enables the computation, for instance, of the moments of ZZ’, given those of
Z and Z'. Specifically, if vng, — v, vmy, — v/, and M, and M, are asymptotically free, then

n—oo /
UM, M, —— vKv s

where X denotes an operation called free multiplicative convolution.

1.1 ATTENTION AT INITIALISATION

We model the attention mechanism at initialisation by a random matrix A, with non-negative entries
(A¢)i,; > 0 and normalised rows, i.e. > ;(Ar);; = 1, as if it were generated by a row-wise
application of softmax. As we will demonstrate, this model functions as a helpful abstraction that
offers insights into the causes of rank collapse. More specifically, we consider A, to be a Random
Markov matrix, as defined in|/Bordenave et al.| (2011)).

Definition 1.1 (Random Markov matrix). Let Z; ; be ii.d. non-negative random variables with

positive mean m = E(Z1 1) > 0 and variance o := Var(Z;1) > 0 as well as finite fourth
moment B(Z1 1) < co. Let A € R"*T be its row-normalised version, i.e.,
7. .
Aij= (D
> =1 Zi

We call A a Random Markov matrix.
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(a) Random Markov matrix (b) Softmax key-query attention (c) Linear key-query attention

Figure 1: As the size T' of a Random Markov matrix (Definition grows, its eigenvalues form
a circular bulk of radius O(Tﬁl/ 2) in the complex plane, except for the largest eigenvalue which
remains 1 (the black dot in (a)). Proposition [T] demonstrates that applying the conventionalsoftmax
key-query attention mechanism to orthonormal input tokens yields a Random Markov matrix ex-
hibiting an outlier in its spectrum (b), in contrast to linear key-query attention (c). In practice, T'
does not need to be too large for the limiting behaviour to appear, as shown above.

Note that not all random Markov matrix ensembles satisfy the conditions of Definition[T.I|which we
colloquially refer to as Random Markov matrix. Remarkably, the standard key-query dot product
attention matrix in the first layer of a transformer is a Random Markov matrix, as specified in the
following.

Proposition 1. Let X € RT*4 have orthonormal rows, i.e. XOXJ =1 Let

X WOWKE TxT
A (Xp) = softmax( oW Wi 0 >,
dgk

where WS WK ¢ Ri*dar have i.id. N(0, U?;k) entries. Then A1(Xy) is a Random Markov ma-

trix as in Definition Iﬁl when dgj, is large In particular, under Xavier or He scaling ofW(f?, A\
(Glorot & Bengio|(2010); \He et al.|(2015), or any scaling such that ng — 0 as dgy, increases), the

resulting A1 (Xg) is degenerate, i.e. the “uniform attention” %lTxT.

The latter part of the above proposition was shown in (Noci et al., 2022, Lemma A.7) to justify their
assumption of uniform attention, under which they demonstrate rank collapse in depth. In contrast,
our analysis of the rank collapse is also valid for non-degenerate attention matrices. Based on the
above proposition, much of our analysis is relevant to single-layer transformers using the standard
key-query attention mechanism. However, as we will demonstrate in section [3] the case of multi-
layer real-world transformers presents additional complexities, warranting further investigation.

It is shown in |Bordenave et al.| (2011)) that the “bulk™ of the limiting eigenvalue/singular value
distribution of a Random Markov matrix matches (up to a scaling) that of an i.i.d. Gaussian matrix.

Namely, if A is as in Definition [I.1| with variance 2, then v/T A has the same bulk density as a

Gaussian matrix with i.i.d. A'(0, %) entries. Nonetheless, the “edge” of the spectrum of VTA
behaves quite differently from the i.i.d. case. While the largest eigenvalue/singular value of an
i.i.d. matrix is almost surely right at the boundary of its bulk, for Random Markov matrices there is
a gap between the edge and the bulk given by Theorem[2} Without loss of generality, we formulate

the theorem for Random Markov matrices with mean 1.

Theorem 2 (Spectral gap in Random Markov matrices, Bordenave et al[(2011)). Let A € RT*T
be a Random Markov matrix whose underlying distribution has variance o4. Then, \1(A) = 1 and
almost surely,

lim s1(A)=1 and lim so(VTA) =20, while Jim Mo(VTA)| < 204. (2)
—00 —00

T—o0

*Standard transformer implementations set d,x = d, as detailed in the original paper by [Vaswani et al.
(2017). Therefore, assuming large dg; is not restrictive since we analyse the network in the large d regime.
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1.2  RELATED WORK

Rank collapse in transformers was first explored inDong et al.|(2021]), where the authors show that
the output of an attention-only transformer converges exponentially with depth to a single represen-
tation across tokens. A connection between rank collapse and vanishing gradients is made in [Noci
et al.| (2022). By assuming uniform attention, the work of [Noci et al.| (2022) essentially reduces to
proving rank collapse in depth, based on the assumption that rank collapse in width has already oc-
curred (as opposed to showing why this premise holds). Our spectral analysis builds upon previous
work that analysed the spectra of large random neural networks to better understand and stabilise
initial training dynamics, such as [Pennington et al.| (2018) for fully-connected networks and Xiao
et al.| (2018)) for convolutional networks.

It is also worth mentioning a line of research on possible alternatives to the softmax self-attention
mechanism. [Hron et al.| (2020) speculate the advantage of ReLU and identity over softmax in train-
ing accuracy. He et al.|(2022) proposes an ad hoc initialisation scheme tailored to prevent the token-
wise covariance kernel from losing rank through layers. Besides, several practical works attempt to
replace softmax-based key-query attention with faster options that surpass the so-called quadratic
bottleneck, e.g. |Peng et al.[(2020); Choromanski et al.| (2020); |Katharopoulos et al.|(2020). Further-
more, our provably effective adjustment to softmax by removing the spectral gap (or centering the
output) has been independently suggested in|Ali et al.| (2023)); Noci et al.| (2024); Ye et al.[(2024) as
part of ad hoc solutions to stabilising signal propagation in transformers.

1.3 ORGANISATION OF THE PAPER

In section 2] we first introduce our model and reexamine the phenomena of rank collapse and ex-
ploding gradients, demonstrating that both occur with increasing depth in our transformer model
at initialisation (Props. [3]and {). Importantly, we diagnose for the first time an additional form of
rank-collapse with increasing width, that we call rank collapse in width. We formulate its exact rate
of decay in the context length as well as identify its root cause as being the spectral gap in softmax-
based attention. Next, we introduce a modified attention mechanism that is specifically designed
to have no spectral gap. We prove that this modification simultaneously resolves rank collapse in
width, thus mitigating rank collapse in depth, and exploding gradients (Props. [5] and [6), thereby
confirming the role of the spectral gap in such issues. Lastly, we study the spectra of the covari-
ance kernel and the input-output Jacobian in our modified model (Props.[7] and [§) and discuss the
possibility of further stabilising early training dynamics by tuning the initial distributions.

In section 3] we validate our findings, providing empirical evidence of rank collapse in both width
and depth, as well as exploding gradients. We put to test our “remove the gap” solution across a
range of architectures featuring LayerNorm and skip connections, discussing its possible training
benefits. Finally, we present experiments that challenge the soundness of certain default scaling
choices, such as Xavier initialization for the keys and queries, suggesting that they may require
further revision in practice.

2 THEORETICAL RESULTS

We study as our model a deep attention-only single-head transformer at initialisation, where at each
layer ¢, the signal is transformed as X, = Ang,lwy. The input signal X, € RT*d has T

tokens of embedding dimension d, with a fixed ratio vy = % < 1. For a network of depth L, the
input-output relationship is thus given by

Xr=ALAp 1... A\ XWY .. W) _ WY, (3)

The value matrices W) € R are initialised independently with i.i.d. A’(0, 1) entries and the
attention matrices Ay, € RT*T are independent Random Markov matrices with 0 = 1.

Remark (Scaling of value matrices). The reason we initialise the value matrices with N'(0,1) en-
tries rather than N'(0, 1/d) (i.e. He initialisation) is that the attention matrices have singular values

of magnitude O(1/\/T) except for the leading one s1(A) = 1+ o(1); see Theorem So, in all but
one direction, the attention matrix scales down the signal by a factor of O(1/ VT ), which will be
compensated by WV with singular values of magnitude O(\/g)
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2.1 REVISITING RANK COLLAPSE & EXPLODING GRADIENTS

Rank collapse. As Theorem [2| reveals, for increasing 7', a Random Markov matrix becomes ef-
fectively rank-one. We accurately describe the rate of this decay through the notion of stable rank,
defined for any non-zero M € R™*™ as

, _IME 3 sEM)

D= ngE T o @
Naturally, any definition of “rank collapse” relies on a proxy for discrete rank, as the random ma-
trices in question are almost surely full-rank, making it uninformative to refer to their actual rank.
For example, Dong et al.|(2021)) consider the “one-infinity norm” of the residual (the difference be-
tween a matrix and its best approximation of the form 1x "), defined as +/|[res(M)][1 [[res(M) ]| o
while|Noci et al.[(2022) use > i (MMT)Z j» which is maximised when all rows of M are identical.

We choose stable rank as our preferred proxy due to its clear geometrical interpretation and simple
definition in terms of singular values.

Given an isometric input X with 3g = XOXJ = I, we are interested in understanding how the
stable rank of the covariance matrix at layer /,

¥, = XX/,
evolves. Proposition [3|demonstrates how the stable rank collapses as the width 7" increases.
Proposition 3 (Rank collapse in width). Assume 3y = 1. Then, for any £ > 1,

lim sr(X,) =1, 5)
T—o0

with overwhelming probabilil}El Moreover, the convergence happens at a polynomial rate, i.e.
|sr(2g) — 1| = O(T'=*).

Exploding gradients. A well-known issue that can disrupt training across various neural network
architectures is the vanishing or exploding of gradients; see Hanin| (2018]). For attention-only trans-
formers with degenerate attention, Noci et al.| (2022) demonstrate that the gradients with respect to
W}/ vanish. Our model (3)) allows for more general random attention while using a different scaling
that makes the same quantity explode rather than vanish. Proposition [d] provides a lower bound on
the rate at which the gradient grows.

Proposition 4 (Exploding gradients). Forany L > 2 and 1 < ¢ < L, with overwhelming probabil-
ity,

Xy |°

—|| >Cpr_y, 6
oWy ||, = Lt (6)
Sfor some constant C,_y > 0. In particular, for T' large enough, ||0Xy,/ 8WX |% diverges to infinity
as L increases. In the single-layer case { = L = 1, the following improved bound

1
li —_
7o TL1

2

1 X
L
holds almost surely.
2.2  ATTENTION WITHOUT THE GAP
As previously seen, a Random Markov matrix A € RT*7 can be written as
A:EA+(A—EA)=%1TW+A{ (8)
where 177 = (1,---,1)T(1,---,1) is the all-ones matrix and A+ has a limiting spectrum re-

sembling that of a Gaussian matrix. Therefore, A is a rank-one perturbation of A, whose spectral

3An event E,, holds with overwhelming probability if, for every A > 0, P(E,) >1-C 4n~4, for some
constant C'4. As the name suggests, F,, is more likely to hold if it occurs with overwhelming probability than
with high probability, as defined in|Tao|(2012).
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radius is A (A1) = O(T~%/2). Although the rank-one perturbation + 177 cannot disturb the bulk
of the spectrum, it causes the largest eigenvalue to “escape” from the bulk to 1, creating a spectral
gap.

In light of this, we can slightly modify the attention mechanism to eliminate the outlier—and thus
the gap—simply by replacing A with AL at every layer, i.e.

Xt =A7A; ... ATX, W) ... W/ WV, )

where Aj- = Ay — T~ 11p,p. Note that this modification is applied only to the attention matrices
(and not to the signal representation) and Xj- serves as shorthand for the signal at layer / > 1in a
network whose A,’s are replaced with Aj-’s as in equation@ We set Xg = Xj.

Since the modified attention exhibits no spectral gap (see Lemma[3]in section[A.Z)), the stable rank of

the covariance matrix Ej— = Xj- Xj- no longer collapses to 1 in width, as detailed in Proposition
[3] (cf. Proposition3).

Proposition 5 (Resolved rank collapse in width). Let X}- = Aj-XﬁlWX be the signal at layer

¢ in our modified model (@) and 3} = XijT € RT*T pe its covariance matrix. Then, almost
surely, the rank does not collapse, i.e., there exists a constant Cy > 0 such that,
o ZJ‘
im S0 _ ¢, (10)
T—o0

Our modification also mitigates the average growth of the gradients. Proposition [6] establishes a
linear growth rate for |[0X1/OW) ||% in expectation, which should be compared to the rate of
T~ from Proposition 4}
Proposition 6 (Resolved exploding gradients). Let Xj- = A} X} (W be the signal at layer { in
our modified model (9). Then, in expectation, the squared norm of the gradients grow linearly with
d, i.e. there exists a constant C' > 0 such that,
2

=C. (11)

F
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2.3 CAN TRANSFORMERS ACHIEVE DYNAMICAL ISOMETRY?

So far, we have established (i) the existence of an outlier eigenvalue/singular value in the spectrum
of softmax-based attention matrices, and (ii) that removing this outlier helps with rank collapse and
exploding gradients. In the absence of the outlier, we can take a further step to analyse the bulk of
the spectra of the network’s token-wise covariance and input-output Jacobian.

Let us assume that the input tokens are orthonormal, i.e. 3y = XOXJ = 1. As a criterion for
faithful signal propagation, one should require that Ej‘ stay close to the identity matrix. Considering
the spectrum, this means that the limiting singular value distribution of X} should concentrate
around the value 1. A natural approach, as demonstrated in the fully-connected case in [Pennington
et al.|(2017;2018); Murray et al.| (2022), is to adjust the model’s hyperparameters to ensure that the
mean of the limiting distribution is O(1) and the variance is minimised. Proposition[7|describes the
moments of the limiting singular value distribution of Zj.

Proposition 7 (Bulk of covariance kernel’s singular value distribution). Let X = A}F X} WY

. . . T . .
be the signal at layer ¢ in our modified model (El) and Ej- = Xj-Xj- € RT*T be its covari-
ance matrix. Let the underlying Random Markov matrices Ay have variance o2 and W}/ have

i.i.d. N(0, 0‘2,) entries. Let X3 = I and Dy be the limiting singular value distribution of Ej-. Then
the mean and variance of Z ~ Dy are given by

E(Z) = (oa0v/v7)*, (12)
Var(Z) = £(1 +v)(ca0v /7)Y, (13)

where v == L € (0,1].
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The assumption v < 1 is not essential and is made only to ensure that Ej— is full-rank, avoiding
trivial zero singular values. If v > 1, then the limiting singular value distribution is given by
(1 —~y71)dp + v~ 1D, and the mean and variance should be adjusted accordingly.

It is evident from the above proposition that simultaneously controlling both the mean and variance
of Dy is not feasible. Model (9) does not have enough hyperparameters to achieve this balance.
Indeed, to prevent the mean from growing or shrinking exponentially with depth, the product o 4oy
must equal /7. However, this constraint leads to the variance increasing linearly with /.

The Jacobian of the input-to-output function f : Xo — X4, represented by our modified trans-
former model, characterises the network’s sensitivity to input perturbations up to first order, accord-
ing to

0
f(Xo+€U) =~ f(Xo) + e—f U. (14)
oX Xo
Let us consider the matricised version of the Jacobian at layer /, i.e.
dvec(X})
J, = i el 204 RTdXTd- 15
£ Pvec(Xo) © (1%

The goal is to ensure that the spectral energy of the Jacobian concentrates around 1, thereby minimis-
ing distortion of the input space geometry—a property often referred to as the dynamical isometry
in the literature (see [Pennington et al.|(2017)). For our model @]), it is straightforward to show

Jo=(A7 - AD) @ (WY - W) e RTT4, (16)

where ® denotes the Kronecker product. Proposition [§] describes the moments of the limiting
squared singular value distribution of Jy.

Proposition 8 (Bulk of Jacobian’s squared singular value distribution). Let X; = A; X} ‘WY
be the signal at layer ¢ in our modified model (]?]) Let the underlying Random Markov matrices A,
have variance 0% and W) have i.i.d. N'(0, 0%,) entries. Let Dy be the limiting distribution of the
squared singular values of Jp = 8Xj- / GXOE] Then the mean and variance of Z ~ Dy are given by

E(Z) = (ca0v)?%, (17)
Var(Z) = (¢ + 2)(c a0y )*. (18)

Controlling the mean leads to a quadratically growing variance, while minimising the variance is
only achievable if o040y < 1, which, in turn, causes the mean to vanish. Without considering a
more complex model, no choice of (¢ 4,01) can achieve our goal of dynamical isometry.

3 EXPERIMENTS AND FURTHER INSIGHTS

Rank collapse. We highlight the practical relevance of our analysis by showing rank collapse
occurs both in width and depth for famous transformer models like BERT, see Figure 3] As an
input signal propagates through a transformer, we can address both forms of rank collapse—across
width and depth—by eliminating the spectral gap induced by the attention matrix at each layer.
Figures[2]and[]reinforce our findings, showing that our removing the gap consistently mitigates rank
collapse even in multi-layer transformers that include additional components such as LayerNorm,
skip connections, or both. It is crucial to understand that rank collapse in depth is an inherent
consequence of successive matrix multiplications. Therefore, architectural modifications can only
slow the collapse rather than completely prevent it. We demonstrate this by showing that rank
collapse in depth persists even when the attention matrix is set to the identity matrix—an extreme
case with the highest possible stable rank and no spectral gap. Another possible way to slow down
rank collapse in depth (though not eliminate it) is to set the value matrices as orthogonal matrices.

Exploding gradients. After passing an isometric input through the network, we compute the gra-
dient norm as defined in equation [f] While our theory establishes a lower bound on the gradient
norm at layer 1 that scales linearly with width, Figure [5]confirms an overall linear growth, support-
ing the order-optimality of our result. This linear trend persists even in more general settings that

*In a minor abuse of notation, we may write X /98X as a shorthand for d vec(X7 ) /0 vec(Xo).
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(a) Spectral gap implies rank collapse in width. (b) The rank inevitably collapses in depth.
Figure 2: Rank collapse occurs both in width and depth. At layer one, our fix effectively prevents

the rank from collapsing in width. Although rank collapse in depth occurs regardless of the presence
of the spectral gap, our fix consistently slows the collapse—a feat no other module achieves.
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(a) Rank collapse in width. (b) Rank collapse in depth.

Figure 3: Famous transformer encoders suffer from rank collapse at initialisation, both in (a) width
and (b) depth. These untrained models are loaded from Hugging Face and sentences from this
paper’s abstract are tokenised using pre-trained tokenisers.

incorporate additional modules, such as LayerNorm or skip connections. Notably, the removal of the
spectral gap affects only the slope of the gradient norm’s growth, mirroring the behaviour observed
in the lower bound derived in equations ] and [6| for the single-layer case.

When the attention is a Random Markov matrix, gradient norms are effectively controlled with
depth by either applying LayerNorm or removing the spectral gap, as illustrated in Figure[6] where
the derived lower bound of 7%~ is confirmed. Shifting to the more complex case of key-query
attention in a multi-layer network, Figure [6] also demonstrates that our theoretical lower bound,
derived for Random Markov matrices, remains valid. Interestingly, this bound becomes looser as
depth increases, indicating that gradient norm explosion occurs at an even faster rate than predicted
by our analysis; see the complementary Figure |10|in the Appendix. Moreover, in the multi-layer
case, removing the largest singular value alone is no longer sufficient to prevent exploding gradients,
suggesting more complex dynamics around the singular values of the attention matrix. One potential
explanation is that the key-query attention spectrum now includes multiple outliers, whereas our
method only addresses a single one. This hypothesis is explored further in the remainder of this
section; see Figure|[7]

Training. We evaluate our “remove the gap” proposal on a task designed to learn the entrywise
Heaviside function; see section[A.3]for implementation details. While our theoretical analysis does
not address training dynamics, the experiments still offer valuable insights. In Figure[TT] we present
examples of training several architectural variants with and without our “remove the gap” solution.
Further large-scale experiments are necessary to assess potential training benefits since the provided
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first layer across architectures. scales linearly with width.
— A E— — AX) -== A
5014 —— A+ LN —== At + LN — A(X) + LN ——= AX)* 4+ LN ,’
—— A+ skip ~=- Al + skip 801 A(X) + skip — - ADO* + skip 7
—— A+skip+LIN  ___ Al 4 skip+ LN —— A(X) + skip + LN /

L
— leTt-1 s —== A(X)* + skip + LN

60

2
H

2

H

ax,

log|5; I
x,
5w

—= 20

depth L depth L

Figure 6: In multi-layer transformers with Random Markov attention (left), our “remove the gap”
fix is effective, as we can precisely address the single outlier in the spectrum. However, with con-
ventional key-query attention (right), the spectra of the attention matrices become more complex
with depth, often exhibiting multiple outlier eigenvalues. This increased complexity reduces the
effectiveness of our fix in controlling the gradient norm, as it only targets a single outlier, leaving
other gaps untouched.

simulations are inconclusive. Beyond the first layer, key-query attention matrices are not Random
Markov matrices, therefore their spectral properties are not well-known. For instance, we observe
the emergence of additional outliers in the spectrum across layers, as shown in Figure[7] Investi-
gating the configuration of the bulk and outliers in this context could lead to a natural solution for
signal propagation issues by eliminating all outliers—an insight derived from our analysis.

layer 1 layer 3 o layer 5 layer 7 layer 9

0.050

0.0251

0.000 @ L]

—0.025 -

-0.4 — - -104% . . 2 . . o 70050,

Figure 7: Entries (top row) of a T' x T key-query attention matrix (with 7' = 100), along with its
spectrum (bottom row) across layers. We indicate the number of eigenvalues whose magnitudes
exceed a threshold of 0.5 to signify the presence of multiple outliers. The layer-wise evolution of
the spectrum requires further study, however, the matrix consistently tends to uniform attention for
large ¢.
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Scaling discussion. Our analysis provides practitioners with valuable insights into the scaling of
some key quantities in transformer architectures. First, in Figure we plot the training loss of a
single-layer transformer with key-query attention, for which our theory effectively predicts signal
propagation at the initialisation stage. Based on Proposition [I, when the keys W and queries
W are initialised using Xavier’s initialisation scheme, the attention matrix rapidly converges to
degeneracy. Consequently, removing the spectral gap in this case effectively reduces the attention
matrix to 0. This explains the plateau in the training curve during the initial steps for the Xavier-
initialised model combined with the spectral gap removal. On the other hand, our proposed fix
achieves performance similar to that of the original variant. Another scaling that requires refinement
is that of a skip connection. Traditionally, the value matrices are sampled from N(0,d 1), the
attention matrix is softmax-based, and the signal propagates from one layer £ to the next as

Xo1 = A1 (X)X W) + X

In this scenario, starting from an isometric input X, the attention mechanism is down-weighted by
a factor of v/d relative to the skip branch, i.e. the signal coming from the previous layer. Therefore,
if the attention mechanism is to be fairly represented in the signal’s propagation through depth, the
values should instead be drawn from N(0, 1). If the value weights are sampled from N (0,d 1),
the skip connection becomes what we refer to as “upscaled”, meaning each layer essentially passes
information from the previous layer without significant transformation. This severely limits the
model’s expressivity, reducing its capacity to learn nonlinear mappings. In Figure we confirm
this observation by comparing the training losses associated with each option. It is not surprising
that the “upscaled skip” variants perform worse, as we are attempting to learn a nonlinear function
using a virtually linear model.

| - AX) + skip
0.50 0.45 ~ A(X) + upscaled skip
A(X)* + skip

0.45 0.40 \ —=- A(X)* + upscaled skip

— AKX
0.35 AX)*

AX)* - Xavier
\ === A(X) - Xavier

training loss
training loss
°
o
8

0 6 12 18 24 30 36 42 48 0 6 12 18 24 30 36 42 48
training step training step

(a) Xavier initialisation over the keys and queries. (b) Scaling of the skip connection.

Figure 8: Studying transformers through a spectral lens raises important questions about the sound-
ness of some default scaling choices.

4 CONCLUSION

We introduced a new mathematical framework for studying the self-attention mechanism at initiali-
sation, leveraging results from random matrix theory and free probability. By analysing the spectral
properties of Random Markov matrices, we diagnosed random softmax-based attention with a spec-
tral gap that leads to rank collapse in width—a phenomenon revealed and demonstrated for the first
time by our analysis—alongside the previously established rank collapse in depth and exploding
gradients.

We proposed a straightforward modification of the attention mechanism, which proved effective in
slowing rank collapse when the spectrum contains a single outlier. Additionally, we observed that
the spectra of standard key-query attention matrices often feature multiple outliers. Our experiments
also pointed to potential issues with some common initialisation schemes for transformers. We hope
our work encourages the community to adopt a spectral perspective in investigating more complex
transformer architectures and attention models.

10
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A APPENDIX

A.1 PROOFS

Proof of Proposition[l] Let us show that the attention matrix A;(Xy) satisfies Definition by
demonstrating that the random variables

T
Z»L‘ j = exp <XOW?W{{ XS_)
qu' %,7

are i.i.d. with a finite fourth moment.

Since the key and query matrices are initialised as Gaussian i.i.d. matrices and the input data Xy is
isometric, W = XOWQ and WK = XoWE follow the same distribution as W? and WE.
Each Z; ; can be written as the exponential of the inner product between the i-th row of WO and
the j-th row of WK, thus Z; ; are i.i.d. and we only need to prove that E|Z11 \4 < 00. Let us define

qu
. W wk
Udye =Y W WE,

r=1

to be the dot product of the first row of W and the first row of WX So, Uy,, is simply the sum of
dgp 1.1.d. copies of Uy, the product of two independent Gaussian random variables, whose density is
known to be

fule) = — ko (L21),

Yixes g
qk qk
where K is the modified Bessel function of the second kind. Therefore, the probability density
function of Uy, is given by the dx-fold convolution

fag (@) = fr(@) *---x fr(z).

dgp times

It is also known that Ko (z) asymptotically behaves like /5-e~ and that the convolution g * h
decays at least as fast as the slower of g and h. Combining these facts, we conclude that f, , decays

at least as fast as e %, i.e.
quk (:L‘) = g(|x|)6_‘w|7

for some polynomially-bounded g. Now we can bound our quantity of interest

E|Z;1|* = E{GXP (%)}
q

- / etV ke g(|])e ™I da
R

< 00,

< 1,ie. dg > 16. O

as long as \/jﬂ
Proof of Proposition[3] Fix ¢ > 1. By definition of stable rank, we have

sr(Xy) = Zioi 52(30) = Yy sHXX]) Ez 157 (Xe)

s1(3) s1(XeX/) s1(X)
:HZT:S?(X” <14@-n2Xd)
— s1(Xe) s1(X)

For T large enough, let us say bigger than some Tj, Theorem [10| provides a deterministic upper
bound, i.e. s2(X;) < K for some constant K. Moreover, Theorem 9| gives the bound 7~ %51 (X,) €

13
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(1 —t,1+ ¢) with (overwhelming) probability P; r for arbitrary ¢ > 0 and 7" bigger than some 7.
Thus, for T > max(Tp, T1),

(T -1)K*

lgsr(xz)él"—m

with probability at least P; 7. Therefore, the event
lim sr(X,) =1

T—o0

holds with overwhelming probability. O

Proof of Propositiond] Note that we will treat the matrix-to-matrix derivatives such as 91X, /OW}

not as a tensor (in R7*4xdxd) byt as its matricised version (in RZ4%4”). We make use of the chain
rule to compute the gradients of interest. Namely, at layer /,

0Xp, 00X 09Xy

OW) 90X, OWY
— (AL Au)® (W W) ) ((Are M XoWY L WY @ 1)
= (AL... A XoWY .. W/ ) (W)/,...W)).

=P, =Py

Then, by properties of Kronecker product, we have

Xy, |7 X1
H oWy .~ Esf(awg) = ;sf(Pl)s?(Pz) > 57(P1)s7(P2). (19)

The largest singular value of a product of i.i.d. Gaussian matrices has been studied extensively, e.g.,
see /Akemann et al.|(2013)); Mtotkowski et al.|(2015)). Nait Saada & Naderi| (2024) show that, almost
surely,

L=+ 1)

On the other hand, by Theorem@ s1(P1) concentrates around T " with overwhelming probability,
i.e., for T' large enough,

53 (Py) =TF

(14 0(1)).

si(Py) € (TH (1 =62, T (1 +1)%),
with probability at least P; 7. Altogether, with an overwhelming probability we have
(L—(+ 1)L—é+1

1

Xy, ||?
A 7 w2 -0

oW ||

One can get a better bound in the single-layer case (¢ = L = 1). Since P, = I;, we can rewrite
equation[T9)as

0X4
OWY ||

= 5 (gay) = S0 Kt 2 d-sien)

while s3(P1) = s7(A1(X()Xo) = O(1) almost surely. Therefore, almost surely, the following
improved bound

, X, |1
— >
s 7 [t >
holds. O

Proof of Proposition|5} The resolved stable rank can be written as,

st(SF) TV sHAS AL XGWY L WY)

T (AL ATX WY .. WY)

14
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By submultiplicativity of the operator norm,
se(B) T S S2(AF . ALX WY L WY)
T 7 si(A7). . sHAD)sHXoWY) ... sH(WY)

Let us call Pr the fraction of squared singular values of Ay ... A XoW/ ... W} above a certain
finite threshold ¢, i.e.

Pr= > Lea)  ALXoWY . WY )>er
—

Then, trivially

> P
M s 20
T s7(A7) ... sT(A7)sT(XoWY ) ... s7(W[)
Assuming the asymptotic freeness of all attention matrices A7, ..., A; and weight matrices
W/! = XoWi, Ws. ..., W,, we may write the limiting squared singular value distribution of

X as the free convolution of the corresponding Marchenko-Pastur distributions:

X Xe—1 ow
M = MPE(1,04) B MP(~, W)XMP (ﬁ)'

Then, almost surely,
PT — P = / dM.

The distribution M is compactly supported on the interval [0, s,tge], where sfyrﬂ does not depend

on T'. So, by choosing ¢ < sj; o¢» W€ can make ¢ P anon-zero constant. Moreover, the denominator
of equation 20| converges almost surely to some constant (in 7'), i.e.

SHAF) ... S2(AD)SE(XoWY) .. 2(W)) = (202) 02201 (1 4 471/2)2,

Thus, almost surely,

lim st(E7) cP

> > 0.
Thee T = (caow)2Al1(1+-1/2)2

Proof of Proposition[6] Let us compute the resolved gradients:
0Xy  0X{ 0Xp
OWY X} oW
= (AL ... A X WY .. W) )@ (W), ... W]).

::Pf‘ =P

~ =l (g () )

= E|u(Pt(PH)T) tr(PoPy) .

Therefore,

oX+
owY |,

Assuming P~ and P, are asymptotically free, we have
XL |17
awy |,

For each product matrix, the normalised expectation on the RHS of the above converges to the first
moment of its limiting squared singular value distribution. By scaling them properly, i.e.

=VTA} .. VTAL \I[XOWV \}gwxl =l rpl

WY =a-L=9/2p,,

d1i>oo deE

— lim dE(tr(PL(PL) )) lim dE(tI‘(P2PT))

d—o0 d—o0

1y 1

Py=—W/ , ...—
2 \/g £+1 \/g
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we make sure that those limiting distributions (free convolutions of Marchenko-Pastur distrit)vutions)
are compactly supported on an interval of length O(1) and, hence, both C; = lim E(tr(P{(P{) "))
and Cy := lim E(tr(P4(P2) ")) are constants. Thus, since T’ = ~d,

lim LE Xy |I° _ C (T~ Ed 1) - Cy(d* =) = Ca!
d=oo & ||OWY ||~ ! 2 ’
or 5
OX+
lim LR =C.
5o d Haw,y -
O
Proof of Theorem(7] Since T' = ~d, we can write
X, =A} . ATXWY .. WX
1 11
= VTA} .. VTA} XoWY) ... —(—WY}).

kv ViV

Each of the rescaled matrices above has squared singular values that almost surely follow a
Marchenko-Pastur distribution MP(p, «v), where p is the ratio between the numbers of rows and
columns of each matrix, and « the variance of its entries. Therefore, almost surely, the squared
singular values of X, or equivalently the singular values of 3, follow a distribution M which is
given by the free convolution

M = MP®(1,04) B MP(y,0v //7) B MPE1(1,0v / /7).

The moments of such a distribution are given by Lemma] in the general case. Substituting the
corresponding values from our setting gives the desired result.

O

Proof of Theorem[§} Let A+ == A} ...A{ € RT>*T and WY := WY ... W} € R¥9, Then
JZ _ AJ_ ®WV c RTdXTd
and we can compute the k-th moment of its limiting squared singular value distribution as

lim E[%tr(JﬂZ)k} = hm E[%tr((AlAN@WvaT)k)]

T,d—o0

= lim E[Ttr((AJ‘AJ‘T) )dtr((WVWVT)k)L

T,d—o0

using simple linear algebra. Under the assumption that the matrices A and WV are asymptotically
free, the above limiting moment can be written as the product of individual limiting moments, i.e.

Jim B[z(])] = Jim E[ze(ACAS))] Jim B[S (WY wh )],

where each factor equals the k-th moment of the limiting squared singular value distribution of its
respective matrix. For both AL and WV the limits exist almost surely, and are equal (up to a
variance factor) to the well-known Fuss-Catalan numbers, defined by

1 bk +k

Therefore, almost surely,

lim ]E[—dtr(JgJZ) | = (6%)FFCo(k) x (0F)*FCy(k).

T,d—oc0

Simple calculations in the case k = 1 and k = 2 yield the specified formulae for mean and variance.
O

16



Under review as a conference paper at ICLR 2025

A.2 LEMMAS

Lemma 1. Lert Wy € RT*? gnd W, . .. W, € R¥*? be independent Gaussian matrices with
iid. N(0,1) entries, and u € RT a unit vector. Then,
E[si(uu' W;...W,)] =d, 1)

and the event

’sl(uu—rwl .. W

q)
% —1‘<t

holds with overwhelming probability.

Proof. First of all, note that the distribution of s;(uu” W7 ... W) is independent of the choice of
u, since Wy, ..., W, are rotation-invariant. Let us write u'w; = ozlulT, where u; € R? has

length 1. Similarly, define
-
. T T u Wiy
iv1 = oy Wigall2, uy = ————,
Ajt1

for 1 <4 < q— 1. So, we can write
si(uu' Wi Wy .. W,) = s (u(au] )Wy ... W,)
= s1(u(aaguy )) ... W)
=a1...04- sl(uun)
=0a1...0¢,
where s1(uu, ) = 1 since uu, naturally takes the form of an SVD with a single nonzero singular
value equal to 1. The random variables o, . . ., oy are independent (by independence of W’s) and
identically distributed (by rotation-invariance of W;’s). Without loss of generality, we can substitute
e (the first column of the identity matrix) for u or u; to get
d T
a; = [[eg Wil| = [lw]|

where w € R (the first row of W) has i.i.d. N'(0,1) entries. Thus, E(a?) = E(||w||3) = d, and
by independence of «;’s we have

]E[s%(uu—rwl W] =dl.

Moreover, since each o has a chi-squared distribution with d degrees of freedom, we can write it
as the sum of d independent squared standard Gaussian random variables o = Z;l:1 w} ;- Thus,

q q al
sHuu' W, ... W,) = l_IcuZ-2 = I—I(uzf1 + -+ w?’d) = ZZ?,
i=1 i=1 j=1

where each Z; is the product of ¢ independent N(0,1) random variables, and therefore is sub-
Weibull with parameter 2/q. We shall apply generalised Bernstein’s inequality for the normalised
sum of mean-zero sub-Weibull random variables [Kuchibhotla & Chakrabortty| (2022); Bong &
Kuchibhotla (2023), i.e.

1 N
Py

where X;’s are independent mean-zero sub-Weibull random variables with parameter 5 and K =

u? Ul

o o)) (22)

> u) < 2exp [—C’Nmin(

max; || X;]|y, . Applying equation 22jon
1 1
20T 2
quI(uu Wl...Wq)—lqu E (27 —1),
i1
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where each (Z7 — 1) is centered sub-Weibull with parameter 1/¢, we get

q

1 d
77|z u)

j=1
< 2exp [ — C'd¥ min(u?, u!/)],

where we have absorbed the dependency on K = |[(Z7 — 1)|l, ,, into C’. Combining the above

with the simple fact that |z — 1| > ¢ implies |22 — 1| > max(#, t?), we obtain for any ¢ > 0 that

P

1
< ]P’(‘%s%(uuTwl W) — 1’ > max(t,t2))

P(‘%s%(uuTwl W) — 1‘ > u) = ]P’(

1
Wsl(uu—rwl W) — 1‘ > t)

< 2exp [ — C'd? min(t?, tz/q)],
ie. s;(uu’ Wy ... W,) is sub-Weibull with parameter 2/q and

.
’Sl(uu 1 q)—1‘<t
da/2
holds with probability at least 1 — 2 exp [ — C’d? min(t?, t2/7)], i.e. with overwhelming probability
(Tao, 2012, Definition 1.1.2) O

Lemma 2. Consider p Random Markov matrices A1, ..., A, € RT*T as defined in and let
17«1 be the matrix full of ones. Then, almost surely,

1
Sl(Ap A — T]-TXT) = O(T—p/Q) (23)

Proof. Let us first show s1(A, ... Aq) 224 1, as T grows. Each matrix A; can be written as the
row-normalisation of a table M; of i.i.d. random variables, i.e. A; := D;M;, where D;isaT x T
diagonal matrix containing the inverse row sums of M;. The entries in M; have a finite fourth
moment, and, without loss of generality, mean 1 and variance o2. Thus,

51(TP2A, ... Ay) = 5.(T?*D,M,,... D, M,)
< 51(TD,)s1(T7Y2M,) ... s1(TDy)sy (T7/2My).
Following the argument given in[Bordenave et al.|(2011), s;(TD;) = 1+ o(1) and s, (T~ /2X;) <
VT 4+ O(1), forall 1 < i < p. Therefore,
s1(TP2A, .. A1) < (VT +0(1))’(1 +o(1))
< TP2(1+o(1)),

which yields, almost surely, lim s; (Ap ...A4) < 1. The converse inequality is an immediate con-
sequence of the closure of the set of Random Markov matrices under matrix multiplication, which
gives A1 (A, ... A1) =1, combined with s1(A, ... A1) > |A1(A, ... A1)|. Hence, almost surely,
thl(Ap NN Al) =1.

Let ¢ € R be the unit vector such that +1rxr = o', ie. ¢ = T-12(1,...,1)7. Also, let
A = A,...A; and define A+ := A — pp'. Since the rows of A sum to 1, our construction
ensures that those of A+ sum to zero. We want to show that 51 (A1) = s3(A)(1 + o(1)). To this

end, consider the SVD of the matrix A+. There exist orthogonal matrices U,V and a diagonal
matrix 3 := diag (s1 (A1), ..., s,(A%)) such that

At =Uz=V'.
Note that since A1y = 0, the matrix has rank at most 7 — 1 and thus s,,(A+) = 0. We will now
try to relate the singular values of A+ to those of A, observing that A is a rank-one perturbation of
Al ie.
A=pp" +At
=pp +UTVT,
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The squared singular values of A are exactly the eigenvalues of
AAT =T +UX?UT, (24)

Since eigenvalues are invariant under orthogonal operators, we can multiply on the left and right by,
respectively, U and U to get a diagonal matrix perturbed by a rank-one matrix:

UTAATU=UTpp U+ X% (25)
Taking the trace, we have
ST(A)+ -+ s2(A) =1+s7(AT) +-+s2_ (A1) (26)
On the other hand, we can apply Thompson-Lidskii’s interlacing inequalities [Thompson| (1976)) on
Equation equation [23]to get
st(A) 2 s1(AT) > s5(A) 2 s5(AT) > -+ > 571 (A7) = 57(A) > 0. 27)
Combining Equations equation [26|and equation [27] one obtains
s2(A) + s23(A) > 14 s2(AL).

As established earlier, almost surely, lim s1 (A) = 1. So we conclude that in the limit, almost surely,
s2(A) > s1(A"L). The converse is already given by equation 27| Therefore we have

s1(A*) = s2(A) (1 + (1)),
almost surely. Note that the same reasoning is valid for the case p = 1, and results in 51 (A}) <>
s2(A;) for any i.

Having shown the convergence of the largest singular value of A~ to the second largest singular
value of A, we now show that s3(A) is of order T—?/2 To this end, note that the matrix can be
written as a rank-one perturbation of the product of A;-’s, i.e.

A=A, . A
= (T "rxr +Ay) ... (T 1pur + AY)
=T "pur(I+A +--+ A . AT)+ A, AT,
where some of the terms vanish since A;-p = 0. Given that rank(A — AIJ; ...A{) =1, we can
apply Thompson-Lidskii’s inequality to get
s1(Ay .. A7) > s3(A).
By submutiplicativity of the operator norm, this implies s1(A;) ... s1(A{) > s2(A). Moreover,
we previously established that for each individual matrix A, s1(A;) <25 s5(A;), and it is shown
inBordenave et al.|(2011) that so(A;) 2%y 96T ~1/2. Therefore, we conclude that
s2(A) < (20772 = O(T77/?).
Combined with Equation equation[A.2] we have
1

Sl(A — TlTXT) = Sl(Al) = O(T’_p/2>7

almost surely. O
Theorem 9. Let Ay, ..., A, € RT*T pe independent Random Markov matrices as defined in

and W1 € RT*4 Wy, ..., W, € R¥? be independent Gaussian matrices with i.i.d. N'(0,1)
entries. Then, for large enough T and d with fixed v = T/d € (0, 1], the event

Sl(Ap .. .A1W1 .. Wq)
da/2

—1| <t

holds with overwhelming probability.
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Proof. We write A == A, ... A = oo + At and W = W, .. . W,,. Then, using the triangle
inequality |s1(A) — s1(B)| < s1(A+ B) < 51(A4) + s1(B), we have

|51(pp W) — 51 (AT W)| < 5 (AW) = 51 (pp | W + AL W)
< s1(pp " W) + 51 (AT W),

On the other hand, it is well known that the largest singular value of a Gaussian matrix converges
almost surely to the soft edge of the bulk of the limiting density (Geman|(1980), i.e.

L \ as. 1 + ﬁ, 1= 1,
a7V = {2, i>o.
Therefore, by submultiplicativity of s;, we have
51(W) < 51(W1)...51(Wy) < (2Vd + o(Vd))? = 29d7/? + o(d?/?). (28)
Combining equation 28| with Lemma[2] we get
s1(ATW) < s1(A1)s, (W) = 0(d*="), (29)

and thus, almost surely,

5100 TW) = O(d"7")] < 51(AW) < s1(pp| W) + O(d*7").

Now, using Lemma we can assert that s1 (¢ T W) is close to d?/? with overwhelming probability,
ie.

s1(pp" W)
S e (-1,
with a probability greater than P; 4 := 1 —2exp [ — C’d? min(¢?,¢*9)]. Moreover, by equation
Sl(AJ‘W)
—r — 0,

as d grows. Thus, we can make the above quantity smaller than any given . Altogether, for large
enough 7" and d, the probability that

S1 (AW)
da/2
is at least P, 4. Since ¢ is arbitrary the proof is complete.

-1l <t+e

O

Theorem 10. Let Ay,..., A, € RTXT be Random Markov matrices as defined inand W, €
RTxd W, ... W, € R2%d pe independent Gaussian matrices with i.i.d. N'(0,1) entries. Then,
for T and d large enough,

s2(Ap ... ATW, ... W,) = 0(d"7"). (30)

Proof. To exhibit a spectral gap in AW, it suffices to bound its second largest singular value by
a quantity significantly lower than where the largest singular value is concentrated. To this end,
observe that AW is a rank-one perturbation of A--W:

AW = (AL + 0o )W = A*W + oo W.
Thus, using Weyl’s inequality, we can write
52(AW) < 51(ATW) + s2(pp " W) = 51 (AT W).
Next, by submultiplicativity of the operator norm combined with upper bounds in Lemma [2] ande-

quation [28]

51 (ATW) < 51(A1)s (W) = O(TP/2)0(d??).
Therefore,

9—p

s3(AW) = O(d*7").
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Lemma 3 (Bulk distribution of A+). Let A € RT*T be a Random Markov matrix, and let A+ =
A — T~ "1y q. Then, almost surely, the empirical singular value distribution of T'/2 A+ weakly
converges to the quartercircular law as T' — o0, i.e.

T
VAL = ;gasi(ﬁ“) 9, 31)
where Q,, is the quartercircular law on the real interval [0, 20] with Lebesgue density
T %\/ 402 — 2219 207
Moreover, almost surely, A+ does not exhibit any spectral gap.

Proof. Thompson-Lidskii’s interlacing result for finite rank perturbation Thompson| (1976) states
that for any n x n matrices M and M’ with rank(IM — M’) < k, we have

si—k(M) < 5;(M') < 5441(M).
This in turn yields the following bulk inequality,

RV
1Ev — Fave oo < mnk(l\i—lvl),

where Fyp and Fypr denote the cumulative distribution functions of vyy and vy, respectively. Since
rank(A — A1) = 1, then

1
1z = Fyrasloe < 75 752 0.

Combining the above limit with the fact that v JTA C—b> Q, almost surely (see Bordenave et al.
(2011)), we deduce that

c
v VTAL _b> QO’
almost surely. The almost sure absence of outliers in the singular value distribution of A can be
immediately inferred from Lemma 2] when p = 1. O

Lemmad. Let 0 < 0; < ccand 0 < v < 1forl < i < n. Let M be the free multiplicative
convolution of MP(~;, 0;) distributions, i.e.

M = MP(v1,01) RMP(y2,02) K- - K MP (Y, 00).

Then the mean and variance of Z ~ M are given by

E(Z)=]] o7, (32)
i=1
Var(Z) = ( Ji) (m+mr2+-+mn72 M) (33)
=1

i=

Proof. The distribution in question M is the limiting squared singular value distribution of a product
of rectangular independent Gaussian matrices, whose general moments are worked out in (Akemann
et al.,|2013} equation 58). Simple algebraic manipulations lead to our result. [

A.3 SUPPLEMENTARY DATA
A.3.1 IMPLEMENTATION DETAILS

Architecture. The default model consists of a stack of single-head attention layers, with an op-
tional LayerNorm inserted between them (denoted by “+ LN” in the legend) after receiving an
optional skip connection from the previous layer (denoted by “+ skip” in the legend). When both
options are enabled simultaneously, the configuration is referred to as “+ skip + LN”. By single-head,
we mean that only one attention mechanism is computed, applied to the values and then multiplied
by a matrix W, which is initialised as the identity matrix and optimised during training.
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Attention design. At initialisation, when the attention is labelled as “A”, the matrix is sampled
from the set of Random Markov matrices, as defined in Definition 1.1} with a variance of o4 = 1.
To achieve this, we sample a random matrix B with i.i.d. lognormal entries and apply softmax row-
wise such that A := softmax(B). The moments of B are adjusted precisely so that o4 = 1. During
training, the entries of B are optimised. If “Identity A” is chosen, the attention matrix is a constant
equal to the identity only at initialisation and then optimised at training time. When the attention
is labelled as “A(X)”, the key/query matrices are sampled from i.i.d. Gaussian matrices A (0, 1)
and the standard key-query attention matrix is formed. If a mention to “Xavier” appears in the
legend, it means the key-query matrices are sampled from a rescaled Gaussian A (0, dq_kl). Updates

are performed on W and WX If the label indicates a “L”, the forward pass of the attention
mechanism is systematically (at initialisation and for all following training steps) adjusted so that
the spectral gap is removed, as in our modified model (9).

Training. Given some isometric X input data, the goal is to learn the entrywise Heaviside func-
tion, a non-trivial task due to the function’s nonlinearity. To achieve this, we train a series of
attention-only transformer encoders on a mean squared error (MSE) loss, optimised with Adam.
We conduct an extensive grid search over the learning rate A € {1,3,5} x 10~ {12345} Bach
experiment is run 5 times, and the learning rate that results in the best average training performance
for each configuration, as shown in the plots, is selected. The figures display the training loss with
respect to training steps, i.e. the number of gradient descent updates. A “no training” label is shown
when no training progress is made after 50 training epochs, despite tuning the learning rate. We
train on a set of 50 data points, each of size T x d, with T" = d = 500 to ensure we are in the large
width regime that our theoretical framework presupposes.

A.3.2 ADDITIONAL EXPERIMENTS

e T=200 e T=200
0101 T=400 0-201 T=400
o T=800 o T=800

—0.051

-0.101

2
T T £ T T
0.0 0.1 0.2 0.4 0.6

(a) Sigmoid attention

-0.051

-0.101

’
T T £ T
0.0 0.1 0.2 0.4

(b) ReLLU attention

Figure 9: Some variants of the attention mechanism proposed in the literature apply different activa-
tion functions such as (a) sigmoid or (b) ReLU on the key-query dot products; see Wortsman et al.
(2023)). Similar to the softmax-based attention (Figure , the spectra of these alternative attention
matrices also display an outlier. Interestingly, the technical framework developed in our paper can
be applied to analyse the signal propagation on sigmoid- or ReLU-based transformers.
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Figure 10: In a transformer with key-query attention, the gradient norm explodes in width at a rate
that worsens with increasing depth L, exceeding the growth of 77~ predicted by our analysis.

gzn

Figure 11: Examples of training loss curves with and without removing the gap for single-layer (top
row) and two-layer (bottom row) transformers.
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Figure 12: An example of how rank collapse can inhibit the training of a 5-layer transformer. Our

fix is proposed to eliminate the main cause of rank collapse, effectively reducing the possibility of a
“no training” scenario in this situation; see section@for implementation details.
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