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Abstract

Temporal sequences, even after stationarization,
often exhibit leptokurtic distributions with fat
tails and persistent distribution shifts. These
properties destabilize feature dynamics, amplify
model variance, and hinder model convergence
in time series forecasting. To address this, we
propose Morphing-Flow (MoF), a framework that
combines a spline-based transform layer (Flow)
and a test-time-trained method (Morph), which
adaptively normalizes non-stationary, fat-tailed
distributions while preserving critical extreme fea-
tures. MoF ensures that inputs remain within
a network’s effective activation space—a struc-
tured, normal-like distribution—even under distri-
butional drift. Experiments across eight datasets
show that MoF achieves state-of-the-art perfor-
mance: With a simple linear backbone architec-
ture, it matches the performance of state-of-the-art
models on datasets such as Electricity and ETTh2.
When paired with a patch-based Mamba architec-
ture, MoF outperforms its closest competitor by
6.3% on average and reduces forecasting errors
in fat-tailed datasets such as Exchange by 21.7%.
Moreover, MoF acts as a plug-and-play module,
boosting performance in existing models without
architectural changes.

1. Introduction
Time series forecasting faces inherent challenges from non-
stationary, fat-tailed distributions, phenomena prevalent in
critical domains such as energy grids and financial markets,
where frequent extreme events (e.g., demand surges, market
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Figure 1. Kurtosis Dynamics and Model Efficiency (Top) Sta-
tionarization amplifies tail-heaviness, while MoF restores near-
Gaussian kurtosis and stabilizes variance across channels. (Bottom)
MoF balances simplicity and effectiveness: lightweight variants
remain competitive with the baseline, and the Mamba-based back-
bone achieves a 6.3% performance improvement.

shocks) deviate sharply from Gaussian assumptions. Such
sequences often exhibit power-law dynamics, with fat-tailed
fluctuations disproportionately influencing system behavior
and destabilizing the feature distributions(Wilkinson et al.,
2015). While stationarization techniques (e.g., differenc-
ing, detrending) mitigate non-stationarity, our analysis of
nine benchmark datasets reveals a critical oversight: sta-
tionarization often amplifies leptokurtic behavior (Fig 1),
exacerbating tail risk and inflating prediction variance. Em-
pirical studies further indicate that fat-tailed, leptokurtic
noise (Simsekli et al., 2019; Nguyen et al., 2019) violates
the assumption of bounded variance, complicating optimiza-
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tion (Zhang et al., 2020; Wang et al., 2021). This presents a
fundamental dilemma: aggressive constraints risk erasing
critical extremal values (essential for predicting disasters or
market shifts), while retaining raw distributions introduces
unstable gradients and divergent training dynamics.

Existing approaches have difficulty addressing this ten-
sion. Non-differentiable operations (e.g., clipping), static
parametrizations, and Gaussian-centric frameworks (e.g.,
Box-Cox transformations) often fail to adequately ad-
dress dynamic distribution shifts and fat-tailed phenomena
(Chavez-Demoulin & Davison, 2012). While gradient clip-
ping (Gorbunov et al., 2020; Yang et al., 2022) and decom-
position architectures (RB, 1990; Hamilton, 2020) partially
mitigate non-stationarity, their robustness to pervasive lep-
tokurtic noise remains insufficient. This underscores the
need for architectures that explicitly adapt to fat-tailed dis-
tributions while balancing theoretical rigor with practical
resilience.

We propose Morphing-Flow (MoF), a framework designed
to dynamically map input distributions to a well-structured,
normal-like space within neural activation regions, preserv-
ing extremal features and stabilizing training. MoF inte-
grates two components:

• Flow: A monotonic spline transformation that learns
channel-specific mappings via piecewise polynomial
functions, thereby reducing kurtosis while ensuring
invertibility and differentiability.

• Morph: A lightweight test-time adaptation layer that
iteratively adjusts Flow’s parameters to counteract
instance-level distribution shifts and enhance robust-
ness to temporal drift.

The fully invertible architecture of the MoF enables end-
to-end training without auxiliary losses, while its spline-
based design adaptively balances local trends and global
extremes. With a linear backbone, it matches state-of-the-art
performance despite its simplicity. By mitigating fat-tailed
behavior in the output distribution, MoF implicitly stabilizes
gradient dynamics, a property that becomes increasingly
beneficial in deeper architectures. When integrated with a
patch-based Mamba backbone, MoF outperforms the closest
competitor by 6.3% on average, achieving 21.7% gains
on datasets with pronounced heavy-tailed behavior (e.g.,
Exchange-Rate). The MOF operates as a plug-and-play
module, requiring no architectural modifications to existing
models.

2. Impact of Fat-Tails on Convergence
(How) Do fat-tail impede model convergence? To investi-
gate the impact of fat-tailed distributions on neural network
training, we design a synthetic forecasting task: predicting
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Figure 2. Impact of Fat-Tailed Distributions on Convergence.
Top left: A comparison of the Probability Density Functions
(PDFs) between the Gaussian (Blue, KExcess = 0) and clipped
Cauchy (Red, KExcess ≈ 1.5) distributions. Bottom left: A Q-Q
plot highlights the heavier tails of the Cauchy distribution. Right:
Training convergence results. The Gaussian distribution rapidly
converges to the correct value (indicated by the horizontal dashed
line), while the sequence sampled from the Cauchy distribution
converges to an incorrect value before diverging and exhibiting
oscillations.

the first moment (the mean) of a non-stationary time series.
Consider a time series {xt}n

t=1, where:

xt = µt + ϵt, µt = kµt−1,

with k > 1, a constant growth factor, µt representing the
trend, and ϵt denoting noise drawn from a zero-mean dis-
tribution with variance σ2. We train a linear model fθ to
predict xn+1 from the historical observations x1, . . . , xn,

x̂n+1 = fθ(x1, . . . , xn).

To compare the effects of heavy tails, we sample ϵt from
two distributions: (1) a Gaussian N (0, σ2) and (2) a clipped
Cauchy distribution (bounded within [−6, 6] to satisfy the
finite-moment requirements of stochastic gradient descent),
whose excess kurtosis

Kexcess =
E

[
(X − µ)4]

σ4 − 3 ≈ 1.5.

In addition, we employ a progressively diminishing learning
rate to ensure training stability in the presence of these
fat-tailed distributions.

Visualization of the training process is shown in Figure 2.
The fat-tailed nature of Cauchy distributions (evident in the
Q-Q plots and PDFs of Figure 2) has a significant impact on
the training dynamics. Although Gaussian noise does not
hinder stable convergence, clipped Cauchy noise with mod-
erate excess kurtosis (KExcess = 1.46) causes oscillations,
slow convergence, or divergence. Extreme deviations in
the tails of the Cauchy distribution initially bias models to-
ward incorrect solutions, thereby exacerbating optimization

2



Slimming the Fat-Tail: Morphing-Flow for Adaptive Time Series Modeling

instability. Additional results reveal increased sensitivity
to initialization and learning rates compared to Gaussian
regimes, consistent with observations and theoretical analy-
sis (Appendix B.2).

To learn high-variance features without causing instability,
we propose an adaptive transformation module. It trans-
forms fat-tailed distributions (e.g., clipped Cauchy) into
stable, normally distributed activations, while also reducing
gradient noise. By preserving training-friendly distributions
in transformed spaces, models can leverage fat-tailed pat-
terns while avoiding the high-variance noise associated with
such features.

3. Methodology
In this section, we introduce the proposed MoF framework,
illustrated in Fig. 3. We first define the problem and then
detail the Flow layer for fat-tailed feature distributions and
the Morph layer to address distribution shifts.

Problem Formulation and Notations We address multi-
variate time series forecasting: given X ∈ RC×T where C
denotes the number of channels and T the number of time
steps, the goal is to predict the next F steps Ŷ ∈ RC×F .
The aim is to develop a predictor such that Ŷ closely ap-
proximates the ground-truth observations Y ∈ RC×F .

Overall Framework The MoF framework combines two
synergistic components: the Flow layer F (x | Wflow) that
mitigates fat-tailed feature distributions via learnable reshap-
ing, and the Morph module, a lightweight test-time adapta-
tion mechanism that addresses temporal distribution shifts
through xmod = Morph(F (x)). The Flow layer preserves
the fidelity of training distributions through structured trans-
formations, while the Morph module dynamically adapts to
evolving patterns during deployment, collectively ensuring
robustness to distribution shifts while maintaining opera-
tional stability.

Since both the input and output spaces exhibit fat-tailed
effects, the MoF model is designed to be reversible. To
achieve this, we introduce both MoF and MoF−1 before and
after the backbone, enabling the backbone to operate in a
well-defined environment resilient to end-to-end distribution
shifts.

3.1. Flow: Spline-Based Reversible Transform Layer

The residual component xres often exhibits complex rela-
tionships and elevated variance, characterized by a fat-tailed
distribution that can impede model convergence.

To address this issue, we propose a strictly monotonic and
invertible transformation, denoted as F (x | Wflow), to map
features within the bounded domain [−T, T ] to a new do-
main with the same bounds. Here, T represents the do-

main’s limit, and features outside this range are retained.
To ensure computational efficiency and provide an explicit
closed-form solution for the first-order derivatives in both
the forward and reverse directions, we construct a vector-
ized piecewise-linear spline transformation. Let C denote
the number of channels and B the number of bins per chan-
nel, a hyperparameter that determines the discretization of
the space. For each channel c ∈ {1, . . . , C}, the learnable
parameters {wc,i}B

i=1 and {hc,i}B
i=1, which define the bin

widths and heights respectively, are collectively denoted as
Wflow.

The model computes normalized bin widths Wc,i and
heights Hc,i by applying a softplus activation function, en-
suring that their respective sums each equal 2T . The knot
positions xc,i and yc,i are obtained by taking the cumulative
sums of Wc,i and Hc,i. The slope of each bin is precom-
puted as:

sc,i = yc,i+1 − yc,i

xc,i+1 − xc,i
. (1)

The forward transformation maps an input x ∈ [−T, T ] to
an output y ∈ [−T, T ] using the following linear relation-
ship:

y = yc,i + sc,i · (x − xc,i), (2)

where the appropriate bin i is determined by identifying the
interval containing x.

The inverse transformation involves first locating the corre-
sponding bin for y and applying the inverse linear relation-
ship through the relation:

x = xc,i + 1
sc,i

· (y − yc,i). (3)

One such transformation is defined for each input chan-
nel. This formulation ensures efficient, differentiable, and
vectorized forward and inverse transformations, making it
suitable for applications requiring continuous and invertible
mappings.

3.2. Morph: Test-Time Trained Adaptive Spline
Modification

Real-world time series often exhibit distribution shift, where
the data distribution varies both across training batches
and between the training and testing datasets. Despite
the representational flexibility of the Flow transformation
F (x | Wflow), a fixed Wflow may fail to adapt to the shifting
distributions between training and testing sets.

To address this issue, we propose a Morph module that
modifies Wflow at test time based on the Flow-transformed
sequence F (x | Wflow), enabling the module to handle
distribution shifts effectively. We first apply the vectorized
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Figure 3. MoF Framework. Gaussian Q-Q plots (ETTh2) demonstrate heavy-tailed training/test (red) distributions. Flow transforms
these into a normalized latent space (green), reducing tail effects while preserving critical features. Morph corrects instance/train-test
shifts through adaptation, ensuring consistent distributions resistant to non-stationarity.

piecewise-linear spline (Flow Layer) as follows:

x′ = F
(

x
∣∣∣ Wflow = {wc,i, hc,i}B

i=1

)
, (4)

where wc,i and hc,i denote the original bin widths and
heights, respectively.

Test-Time Trained Temporal Layer. Inspired by (Sun
et al., 2024), we introduce a test-time-trained temporal layer
designed to adapt the parameters of Wflow during inference.

We begin by constructing a self-supervised task to optimize
Wtest during test time. Specifically, we define low-rank
projections and binary masks as follows:

xq = M ⊙ f(θq, x′)W⊤
test,

xk = f(θk, x′),
(5)

where f(θ, x′) represents a learned linear transformation
parameterized by θ, and M ∼ Bernoulli(p) is a binary
mask.

A self-supervised loss function ℓ(Wtest; x′) is computed
over batches during test time to stabilize gradient flow:

ℓ(Wtest; x′) = ∥M ⊙ f(θq, x′) − f(θk, x′)∥2
. (6)

During inference, we iteratively update the test-time weight
matrix Wtest after each forward pass or multiple passes:

Wtest,t+1 = Wtest,t − η ∇Wtest,t ℓ(Wtest,t; x′), (7)

where η is a learnable step size enabling adaptive learning
during test-time updates.

Importantly, only the matrix Wtest is updated during this
process, while all other parameters (θq, θk, θv) remain fixed
from the training phase.

Up-Projection and Morphing. We introduce a scaling
matrix xmod ∈ RB×2 using the updated weight matrix
Wtest,t+1 and an Up-Projection layer, which is formally
defined as:

xv = f(θv, x′) W⊤
test,t+1, (8)

xmod = UpProj (xv) , (9)

where UpProj(·) denotes a learned linear mapping that
maps the low-dimensional embedding into a B × 2 matrix.
This transformation enables adaptation of the feature space
to a higher-dimensional space.

Subsequently, we apply element-wise multiplication of
Wflow with xmod to adaptively morph the Flow parameters
and obtain the MoF-ed feature:

x′ = F
(

x
∣∣∣ Wflow ⊙ xmod

)
. (10)

3.3. Model Backbones

A prediction backbone is constructed using the MoF out-
put, with its predictions fed into MoF−1. The reversible
design of MoF ensures that the backbone operates within
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Algorithm 1 MoF Module Pseudocode

Input: Input sequence x of shape [C, T ]
Output: Transformed sequence x′ of shape [C, T ]
Apply the Flow transformation to the input sequence:

x′ = F (x | Wflow)
Feed xflow into the temporal morph module:

xmod = Morph(xflow)
// xmod has shape B × 2

Transform the sequence using the modified parameters:
x′ = F (x | Wflow ⊙ xmod)

Return: x′

its intended kurtosis range. Importantly, the MoF module
is trained end-to-end without auxiliary losses to constrain
its structure. To effectively demonstrate the performance
of the MoF module, we design two simple and minimal
backbones.

MoF Linear: A remarkably simple linear backbone directly
regresses historical time series to predict future values using
a weighted sum operation (x̂ = Wx+b), as in LTSF-Linear
(Zeng et al., 2023). To demonstrate our module’s capabil-
ity, we omit trend decomposition and apply instance-wise
z-score normalization for stabilization, which standardizes
residuals by removing instance-specific means and vari-
ances.

MoF Mamba Adopting the patching methodology of
PatchTST (Nie et al., 2023), we segment the inputs into
P -length patches with a stride of S, reducing the number of
tokens to ⌈L/S⌉ after padding. The Mamba backbone (Gu
& Dao, 2023) processes these patches without positional
embeddings using state-space dynamics, fully replacing
traditional Transformers. For long-term stability, we de-
compose the inputs using moving-average kernels, linearly
predict the trend component and processing residuals with
Mamba. Predictions are generated through flattening and a
linear head, and combined with the trend predictions.

4. Experiments
We evaluate the proposed model through comprehensive
experiments: Section 4.1 benchmarks MoF Linear and MoF
Mamba against nine state-of-the-art (SOTA) methods across
eight datasets; Section 4.2 reports performance improve-
ments, highlighting robustness against fat-tailed noise and
non-stationarity; Section 4.3 explores module contributions
via ablation studies, isolating the effects of Flow’s normal-
ization and Morph’s adaptation; and Section 4.4 investi-
gates hyperparameter sensitivity, efficiency trade-offs, and
generalization performance when integrated with diverse
backbones.

4.1. Experimental Settings

Datasets: We conduct experiments on eight widely used
multivariate time series forecasting datasets, including Elec-
tricity Transformer Temperature (ETTh1, ETTh2, ETTm1,
and ETTm2) (Zhou et al., 2021), Electricity, Traffic,
Weather (Wu et al., 2021), and Exchange Rate. To en-
sure consistency, we follow the standard protocol (Liu et al.,
2023) and split the datasets into training, validation, and test
sets with a 6:2:2 ratio for ETT datasets and a 7:1:2 ratio for
the remaining datasets. Detailed dataset characteristics are
provided in Appendix C.1.

Evaluation Protocol: Following the standard Autoformer
protocol (Wu et al., 2021), we adopt Mean Squared Er-
ror (MSE) and Mean Absolute Error (MAE) as evaluation
metrics. Due to observed variability in test results, each ex-
periment is repeated five times, and Mann-Whitney U tests
are used to evaluate statistical significance of performance
differences. The historical horizon length is set to T = 336,
with prediction lengths F ∈ {96, 192, 336, 720}. All hy-
perparameters are held constant across datasets to avoid
the confounding effects of dataset-specific tuning, which
might otherwise lead to overly optimistic results that fail
to generalize. This unified setting may result in minor dis-
crepancies from original baseline reports; nevertheless, as
shown in Appendix D.4, our reproduced baselines remain
competitive and consistent across benchmarks. Detailed
hyperparameters for MoF Linear and MoF Mamba are in-
cluded in Appendix D.

Baseline Models: We compare MoF against nine represen-
tative models, spanning both recent state-of-the-art methods
and established baselines. Recent models include GLin-
ear (Rizvi et al., 2025), LiNo (Yu et al., 2024a), TimeMa-
chine (Ahamed & Cheng, 2024), CATS (Kim et al., 2024),
iTransformer (Liu et al., 2024a), and PatchTST (Nie et al.,
2023). Widely acknowledged baselines include DLinear
(Zeng et al., 2023), Informer (Zhou et al., 2021), and Auto-
former (Wu et al., 2021). These methods span Transformer-
based, Linear-based, and Mamba-based architectures, en-
abling a comprehensive evaluation.

4.2. Experimental Results

MoF-based Model Improves Over State-of-the-Art. The
experimental results are summarized in Table 1, with de-
tailed results for different prediction horizons and statis-
tical significance tests (Mann-Whitney U tests) provided
in Appendix E. The MoF-based model consistently outper-
forms all competitors across all 8 datasets. On average, it
surpasses the next best competitor by 6.3% and achieves
substantial improvements over widely used models such
as iTransformer and PatchTST, with gains of 14.9% and
16.9%, respectively. Furthermore, our MoF-Mamba model
outperforms recent models, including TimeMachine and
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Table 1. Performance comparison of our proposed model (MoF) with Mamba and Linear backbones against baseline methods for
multivariate long-term forecasting. Results are averaged across 4 horizons and represent the mean MSE from 5 independent runs using
different random seeds. The best results are highlighted in bold, while the second-best results are underlined. Model names ending with
"former" are omitted for brevity. "TimeM." denotes TimeMachine. Detailed results, including extended comparisons with methods like
IN-Flow and FITS, are provided in Appendix E and Appendix K.

DATASET
MEDIAN
Kexcess

MOF
(MAMBA)

MOF
(LINEAR)

GLINEAR
(2025)

LINO
(2024B)

TIMEM.
(2024)

CATS
(2024)

ITRANS.
(2023)

PATCHTST
(2023)

DLINEAR
(2023)

AUTO.
(2021)

IN.
(2021)

TRANS.
(2017)

ETTH1 5.80 0.501 0.515 0.522 0.528 0.529 0.822 0.538 0.584 0.524 0.771 1.243 0.828
ETTH2 10.9 0.224 0.222 0.240 0.248 0.241 0.263 0.261 0.263 0.228 0.374 0.458 0.431
ETTM1 17.7 0.392 0.401 0.395 0.407 0.403 0.414 0.442 0.416 0.452 0.619 0.745 0.655
ETTM2 19.6 0.165 0.183 0.166 0.166 0.165 0.172 0.182 0.169 0.170 0.199 0.381 0.293
ELECTRICITY 3.42 0.163 0.164 0.167 0.175 0.166 0.221 0.165 0.164 0.167 0.221 0.354 0.291
EXCHANGE 74.2 0.305 0.402 0.394 0.403 0.432 0.397 0.462 0.544 0.390 1.198 1.676 1.224
TRAFFIC 15.6 0.416 0.430 0.428 0.458 0.417 0.937 0.451 0.416 0.435 0.648 0.811 0.691
WEATHER 30.0 0.221 0.222 0.226 0.238 0.227 0.225 0.241 0.234 0.245 0.361 0.529 0.505

1ST. COUNT 43/64 6 0 1 0 0 9 5 0 0 0
2ND. COUNT 27/64 7 3 10 4 1 5 7 0 0 0

AVERAGE MSE 0.298 0.317 0.317 0.328 0.323 0.431 0.343 0.349 0.326 0.549 0.775 0.615
DIFFERENCE 0.0% -6.4% -6.3% -9.9% -8.1% -44.6% -14.9% -16.9% -9.4% -84.0% -160% -106%

LiNo, by 8.1%–9.9%. Notably, on the dataset with the high-
est kurtosis (Exchange), our model outperforms the closest
competitor by a margin of 21.7%.

Additionally, we incorporate IN-Flow and FITS in our ex-
tended analysis (Appendix K) to provide a broader perspec-
tive on normalization-centric approaches. While IN-Flow
also builds on flow-based transformations, it focuses on
using entangled flows to model non-stationarity—a funda-
mentally different objective from our focus on stabilizing
fat-tailed gradients. Despite this distinction, we include IN-
Flow in the comparison due to its similar building blocks.
We observe that IN-Flow performs reasonably on smaller
datasets but struggles with high-dimensional inputs. FITS,
on the other hand, prioritizes parameter efficiency through
adaptive feature reweighting, though it is sensitive to hyper-
parameter settings and exhibits instability under our unified
evaluation protocol.

MoF-based Model Excels in Long-Range Prediction. As
shown in Fig. 4, the MoF-based model achieves superior
long-term forecasting performance, significantly outper-
forming competitors by 16.5% in relative MSE (as defined
by the ratio to the best-performing baseline across all hori-
zons for each dataset). This improvement stems from MoF’s
ability to mitigate fat-tailed distributions and stabilize spo-
radic, high-variance signals: the Flow module aligns residu-
als to a near-Gaussian latent space (evidenced by kurtosis
reduction in Fig. 1), reducing outlier-driven variance while
preserving extremal patterns, and the Morph module dynam-
ically adapts to distributional shifts during inference, ensur-
ing stable convergence under non-stationarity. By jointly
addressing fat-tailed noise and temporal instability, MoF en-
hances the backbone’s capacity to model long-range depen-
dencies—critical for minimizing error compounding over
extended horizons.
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Figure 4. Relative Mean Squared Error (MSE) across varying time
horizons, averaged over eight datasets.The relative MSE is calcu-
lated as the average ratio of the MSE relative to the best-performing
model across all prediction lengths and configurations.
4.3. Modular Analysis

What the Spline (Flow) Learned. Figure 5 illustrates
MoF’s distribution transformation across three phases: (1)
non-stationary raw inputs with fat tails, (2) stationarized fea-
tures that retain excess kurtosis (Kexcess > 29), and (3) out-
puts approaching quasi-normality (Kexcess < 1). MoF sys-
tematically reduces channel-wise excess kurtosis by 18.5%–
93.3% (Appendix F). Its reversible architecture ensures
optimization-friendly distributions at both model inputs (his-
torical data) and outputs (future predictions), thereby provid-
ing the backbone with a stable and well-structured feature
space.

Gradient-level stability. Figure 6 illustrates the evolution
of gradient variance during training on the ETTm1 dataset,
comparing instance-wise z-score, RevIN, and our proposed
MoF. MoF consistently demonstrates lower and more stable
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Figure 5. Transformation process visualization (ETTh2 dataset, single channel): (1) Raw non-stationary data exhibits non-Gaussian
characteristics in the Q-Q plot against a normal distribution, with pronounced deviation from linearity; (2) The stationarized sequence
is centered at the origin but retains fat tails (excess kurtosis Kexcess = +29.66); (3) The learned MoF transformation curve obtained
via end-to-end training, with vertical axis scaling adjusted for spline visualization; (4) The final transformed distribution approximates
normality with excess kurtosis Kexcess = +0.94 after Flow processing.
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Figure 6. Gradient variance across training iterations on ETTm1
under different normalization strategies is shown. MoF exhibits
lower variance and greater stability. Statistics (mean µ, standard
deviation δ) of grad-var are computed over the last 2000 iterations.

gradient variance throughout training. The summary statis-
tics (mean and standard deviation) are computed over the
final 2000 iterations to characterize steady-state behavior.

This trend is more pronounced in deeper models (e.g.,
PatchTST), particularly on heavy-tailed datasets such as
Exchange. In addition to variance, we track gradient norm,
skewness, and (excess) kurtosis—where MoF again shows
improved numerical conditioning and smoother training dy-
namics. These gradient-level benefits correspond to the ob-
served gains in accuracy under fat-tailed noise. Full statistics
and additional visualizations are available in Appendix M.

Cross-Channel Consistency Furthermore, MoF achieves
a 97.27% reduction in inter-channel kurtosis variance (Ap-
pendix F). This variance reduction directly stabilizes train-
ing by aligning the magnitudes of gradients across channels,
a step critical for preventing divergent learning trajectories
in multi-series forecasting. The spline-learned, channel-
consistent normalizing flow retains the expressiveness of

temporal patterns while enabling stable gradient propaga-
tion. Notably, this channel-aligned stabilization is essential
for modern channel-independent (CI) architectures, where
reduced distributional disparities enhance the effectiveness
of shared parameters across individual time series.

Ablation Study of the Test-Time Training Module: While
the experiments above demonstrate the effectiveness of the
proposed modules, further analysis reveals that the impact
of the TTT module is context-dependent. In summary, it
is more beneficial in the short term but comes with minor
drawbacks in the long term. As shown in Figure 7, we con-
ducted an ablation study of the TTT module across various
datasets on an expanded range of prediction lengths. The re-
sults indicate that TTT significantly improves performance
in shorter-term prediction windows (up to a 5% error reduc-
tion). However, for longer-term predictions, the benefits
of TTT are less pronounced, as these tasks are inherently
more challenging due to higher noise levels and reduced
sensitivity to distributional shifts.

Superiority of MoF over other normalization methods

Although our method (MoF) primarily focuses on address-
ing skewness and kurtosis in data distributions, it can struc-
turally and functionally complement existing approaches
targeting non-stationarity. We compared MoF with FAN (Ye
et al., 2024), RevIN (Kim et al., 2021), SAN (Liu et al.,
2024b), and DishTS (Fan et al., 2023) using DLinear as the
backbone, with the input horizon fixed at 336. Evaluations
were conducted on 8 datasets across 4 prediction lengths. To
demonstrate the plug-and-play capability of MoF, all mod-
ules were tested using default parameters without requiring
dataset-specific tuning.

The experimental results are shown in Fig. 8, with detailed
quantitative results provided in Appendix I. The results
demonstrate that even when using basic instance-wise z-
score normalization, MoF outperforms other models de-
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Figure 7. Ablation study of the Test-Time Training (TTT) module
across different datasets. TTT significantly improves short-term
performance (up to 5% error reduction) while showing less pro-
nounced benefits for longer-term predictions, where distributional
shifts are relatively less impactful.
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Figure 8. Relative MAE comparison of MoF and other normal-
ization methods across all 8 datasets and 4 prediction horizons.
Relative MSE is calculated w.r.t. the best-performing model for
each prediction length.

signed for non-stationary distributions, highlighting the sub-
stantial impact of fat-tailed distributions.

4.4. Model Analysis

Hyperparameter Robustness of MoF Module The MoF
module introduces two hyperparameters: Tail-size (T ) and
Bin Count (B). Our experiments demonstrate that T and B
require no dataset-specific tuning and have limited impact
on performance and convergence. Previous experiments
fixed T = 6.0 and B = 24. Increasing B allows finer
feature representation but linearly increases parameter size,
while a larger T enhances resilience to high-variance noise
at the cost of reduced parameter density in the core feature
space.

Table 2 shows the sensitivity analysis: fixing T = 6.0 and
varying B results in a fluctuation of up to 1.73%, whereas
fixing B = 24 and varying T yields a maximum difference

Table 2. Hyperparameter Sensitivity Analysis of MoF

ETTH1 ETTM1 WEATHER
MSE MAE MSE MAE MSE MAE

BIN TAIL = 6.0

6 0.4688 0.4806 0.3802 0.4165 0.1918 0.2416
12 0.4678 0.4797 0.3780 0.4162 0.1952 0.2441
24 0.4685 0.4795 0.3778 0.4158 0.1932 0.2441
48 0.4689 0.4798 0.3777 0.4136 0.1944 0.2448

DIFF 0.23% 0.67% 1.73% 0.22% 0.71% 1.32%

TAIL BIN COUNT = 24

3.0 0.4688 0.4798 0.3764 0.4112 0.1927 0.2463
6.0 0.4672 0.4793 0.3770 0.4144 0.1927 0.2459
8.0 0.4673 0.4794 0.3787 0.4164 0.1939 0.2435

12.0 0.4622 0.4768 0.3792 0.4182 0.1961 0.2435
18.0 0.4672 0.4801 0.3903 0.4232 0.1917 0.2419
24.0 0.4656 0.4789 0.3855 0.4204 0.1902 0.2402

DIFF 1.40% 3.54% 3.02% 0.69% 2.83% 2.48%

of 3.54%. These findings confirm MoF’s robustness and
plug-and-play flexibility across different datasets.

Model Efficiency MoF achieves parameter-efficient perfor-
mance, as shown in Fig. 1. Linear-MoF attains 8.5% higher
accuracy than iTransformer with 21× fewer parameters.
Against TimeMachine, Linear-MoF improves performance
by 1.7% using 5.28× fewer parameters, while Mamba-MoF
outperforms it by 8.1% at identical parameter scales (Ap-
pendix G).

This efficiency originates from MoF’s adaptive feature trans-
formation, which confines activations to stable operational
ranges while mitigating training instability caused by fat-
tailed, high-variance inputs. The design eliminates redun-
dant parameters typically required to handle distributional
extremes.

Complexity Analysis The computational complexity of the
proposed MoF framework consists of two components: the
Flow layer and the Morph module. The Flow layer operates
with complexity O(C T B), where C is the number of input
channels, T is the sequence length, and B is the number
of spline bins per channel. The Morph module introduces
an additional overhead of O(Niter C T d + d B + C T B),
where d is the internal projection dimension and Niter is the
number of gradient updates performed at test time. The
three terms respectively account for test-time adaptation,
projection to Flow parameters, and a second application of
the Flow transformation. Since d ≪ C T , B is moderate,
and Niter is small (typically 1–5), the overall asymptotic
overhead introduced by Morph remains bounded. Empiri-
cally, Morph contributes only 17.92% of MoF’s inference
time on average, with less than 5% increase in total runtime
over Flow-only baselines. A detailed complexity analysis
and wall-clock profiling across six datasets are provided in
Appendix L.
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Table 3. Comparison of model performance with and without MoF module across various datasets.

MODEL AUTOFORMER INFORMER DLINEAR
RAW +MOF DIFF. RAW +MOF DIFF. RAW +MOF DIFF.

ETT(ALL) 0.491 0.455 -5.64% 0.707 0.508 -28.1% 0.344 0.330 -3.96%
ELECT. 0.220 0.200 -9.05% 0.354 0.235 -33.8% 0.167 0.164 -1.59%
EXCHG. 1.198 0.690 -29.3% 1.676 0.694 -58.6% 0.390 0.402 3.16%
TRAFFIC 0.648 0.677 -5.55% 0.812 0.742 -8.63% 0.435 0.430 -0.96%
WEATHER 0.361 0.313 -18.4% 0.529 0.356 -32.7% 0.245 0.222 -9.15%
AVERAGE 0.584 0.467 -20.0% 0.816 0.507 -37.8% 0.316 0.310 -1.93%
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Figure 9. Input-length sensitivity on ETTH2, showing non-
monotonic trends (e.g., Linear-MoF peaks at 192, iTransformer
peaks at 336). This figure illustrates per-dataset behavior, not
overall ranking.
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Figure 10. Comparison of different normalization modules on the
WEATHER dataset using DLinear. Similar to Fig. 8, this figure
illustrates how input length interacts with normalization on a single
dataset rather than providing an overall ranking.

4.5. MoF Generalization Analysis

Rethinking Input Length Most prior works fix input
lengths at 96 or 336, but our experiments show input length
strongly impacts performance. We evaluated the Weather
and ETTh2 datasets across expanded horizons (48, 96, 192,
336, 720, 960 time steps) with a fixed prediction length of
192. Full results are in Appendix H. We compared Linear-
MoF with other models (Fig. 9) and DLinear-based methods
combined with various normalization modules (Fig. 10). Re-
sults indicate the optimal input length varies across models
and datasets, likely due to the data’s inherent frequency and
structural bias. Notably, Linear-MoF achieves superior ac-
curacy with fewer input steps and consistently outperforms
other models at their respective optimal input lengths.

Generalization of MoF Across Models This section ex-
plores the integration of the MoF module with various back-
bone models, including Autoformer, Informer, and DLinear.
Results indicate that incorporating the MoF module can
reduce error rate by up to 58%, suggesting its potential to
enhance the performance of diverse architectures. These
findings highlight the adaptability of the MoF module as a
promising approach for enhancing various models. Detailed
results and analyses are available in Appendix J.

5. Conclusion
In this work, we demonstrate how fat-tailed distributions,
prevalent in real-world temporal data, undermine forecast-

ing stability even at moderate excess kurtosis levels. The
proposed Morphing-Flow (MoF) framework addresses this
through two components: (1) a spline-based Flow layer
that normalizes extremal values while preserving critical
temporal patterns, and (2) a Morph module mitigating distri-
butional drift via test-time adaptation. Experiments across 8
benchmarks in various settings validate MoF’s effectiveness,
as it surpasses competitors by 6.3% on average, achiev-
ing a 21.7% error reduction on fat-tailed datasets such as
Exchange. Broader analysis confirms that MoF mitigates
distributional skewness and temporal drift, promoting bal-
anced gradient dynamics while maintaining computational
efficiency and hyperparameter robustness. The plug-and-
play design enables seamless integration into diverse archi-
tectures without structural changes, offering a lightweight
deployment solution. These results suggest that adaptive
handling of fat-tailed distributions is critical for reliable time
series forecasting in non-stationary environments.
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A. Related Work
Fat-Tailed Features in Machine Learning. Empirical evidence and theoretical analysis have revealed the presence of
fat-tailed noise and leptokurtic features in modern machine learning systems (Simsekli et al., 2019; Nguyen et al., 2019).
Such distributions challenge the bounded variance assumption in stochastic optimization, significantly impacting gradient
stability and learning dynamics (Zhang et al., 2020; Wang et al., 2021). To address these challenges, methods like gradient
clipping (Gorbunov et al., 2020; Yang et al., 2022) and adaptive normalization techniques for SGD (Hübler et al., 2024) have
been proposed. Recent studies further demonstrate the prevalence of fat-tailed patterns across diverse domains, including
economic indicators (Kiss & Österholm, 2020a), hydrological data (Wang et al., 2023), and epidemic transmission (Wong &
Collins, 2020).

In financial indices, data with pronounced tails are commonly observed due to clustering volatility, a phenomenon linked to
the heteroskedasticity of temporal sequences (Eom et al., 2019; Kiss & Österholm, 2020b). Models like GARCH (Bollerslev,
1986) are traditionally used to capture such behavior. As shown in Fig. 1, the heterogeneity of time series data results in
consistently fat-tailed distributions across a wide range of domains. However, research on understanding and mitigating the
effects of such characteristics in neural time series forecasting remains limited. MoF addresses this by reducing gradient
skewness and kurtosis, particularly benefiting deeper backbones where outliers more severely disrupt training. Our results
demonstrate that MoF yields substantially higher improvements with PatchTST than with shallow architectures like Linear,
aligning with these domain-level insights.

Non-Stationarity in Time Series Forecasting. Time series forecasting typically faces time-variant phenomena and
distribution shifts, often addressed through signal decomposition to separate stationary and non-stationary components
(RB, 1990; Hamilton, 2020; Zeng et al., 2023). Ogasawara et al. (Ogasawara et al., 2010) proposed a local normalization
approach, while RevIN (Kim et al., 2021) introduced reversible instance normalization to better handle distribution shifts
at the sample level. Subsequent models have refined this direction, including Leddam’s learnable convolution for trend
extraction (Yu et al., 2024c), LiNo’s recursive residual decomposition (Yu et al., 2024b), and FAN’s frequency-based
decomposition (Ye et al., 2024). While several models predict future statistical moments to better handle heteroskedasticity,
they often underperform in the presence of fat-tailed noise, especially under limited batch-level statistics.

Backbones and Generalization. Time-slice-based transformers for time series forecasting struggle with weak temporal
dependencies and noisy per-timestep encoding (Zhou et al., 2021; Kitaev et al., 2020). DLinear (Zeng et al., 2023) and
iTransformer (Liu et al., 2023) initiated the shift toward modeling sequences holistically in temporal space. Patch-based
architectures such as Crossformer (Zhang & Yan, 2023), TimesNet (Wu et al., 2022), and Mamba-based designs (Ahamed
& Cheng, 2024; Zeng et al., 2024) further enhance modeling capacity but suffer from exposure to non-stationarity due to
their reliance on localized features. Several studies have noted that existing forecasting benchmarks often fail to expose the
generalization challenges of such models (Han et al., 2024; Ilbert et al., 2024).

Recent works like IN-Flow (Fan et al., 2025) tackle non-stationarity through entangled normalizing flows, but face scalability
issues on high-dimensional datasets. FITS (Xu et al., 2023) offers parameter efficiency via hypernetwork-like reweighting,
though it relies on expensive hyperparameter search. ElasTST (Zhang et al., 2024) proposes a backbone-agnostic design for
multi-horizon generalization, which is orthogonal to our goal of improving normalization. Our experiments (Appendix K)
show that MoF complements these design strategies and remains robust even under fixed hyperparameter settings across
datasets.

B. Synthetic Fat-tail Training Experiment
B.1. Detailed Experiment Setup

Dataset synthesis The dataset consists of samples drawn from either a Gaussian or Cauchy distribution, where the mean
grows at each step by a factor k. At step t, the mean of the distribution is defined as µt = kµt−1, with µ0 = 1.0. Each
sample xt is generated as:

xt = µt + ϵt, µt = kµt−1, t = 0, 1, . . . , n − 1

where ϵt is drawn from the respective distribution (Gaussian or Cauchy), and clipped to the range [−6, 6]. The dataset is
structured such that the first n samples are inputs, and the last one is the output:
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y = xn (output)

Simple Linear Model with Clipping The model is a linear regression defined as:

ŷ = Wx + b

where x ∈ Rn is the input, and the output ŷ is clipped within the range [−20, 20] before being passed through the linear
transformation. The parameters W and b are learned during training.

Training Protocol The model is trained using SGD with a learning rate η = 0.01 and Mean Squared Error (MSE) loss.
A StepLR scheduler is used to reduce the learning rate by a factor of 0.1 every 30 steps. The total number of iterations is
calculated based on the batch size and dataset size, with each iteration consisting of a forward pass, loss computation, and
backpropagation.

The loss function is:

L = 1
B

B∑
i=1

(ŷi − yi)2

where B is the batch size.

Hyperparameters For both the Gaussian and Cauchy distributions, the following hyperparameters were used:

• Mean growth factor (k): 1.1

• Batch size (B): 128

• Learning rate (η): 0.05

• Optimizer: SGD

• Loss function: Mean Squared Error (MSE)

• Learning rate scheduler: StepLR with a step size of 30 steps and decay factor γ = 0.1

• Total iterations: 10,000

B.2. More Results on Synthetic Datasets

Fig 11 are results with identical settings across multiple runs but different random initializations. These experiments reveal
significant disparities in the convergence behavior of the models when trained on sequences from distributions with heavier
tails.

B.3. Stability Condition Analysis

A common way to express the stability condition of SGD with a (possibly non-convex) loss L is through:

E
[
∥θt+1 − θ∗∥2

]
≤

(
1 − 2η λmin(H)

)t

∥θ0 − θ∗∥2 + η2 σ2

λmin(H) ,

where θ∗ is a stationary point, H is the Hessian (or an equivalent notion of curvature), and σ2 is an upper bound on the
variance of the gradient noise. From an empirical standpoint:

• Variance effect: If σ2 is large due to fat-tailed (though bounded) noise, the second term on the right-hand side grows,
leading to poor convergence or large stationary error.
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(d) Fails to converge entirely.

Figure 11. Training results on synthetic datasets with sequences from Gaussian and Cauchy distributions. Models trained on Gaussian
sequences exhibit consistent convergence, while those trained on Cauchy sequences demonstrate significantly varied behaviors, ranging
from incorrect convergence to complete failure. This highlights the sensitivity of models to fat-tailed distributions.

• Starting point: A poor initialization θ0 can exacerbate the challenge, especially when high-variance updates cause
parameters to deviate before eventually converging to θ∗. In real-world scenarios, we observed that replacing the
DLinear model’s "Average Initialization" with random initialization significantly affects model performance.

• Other factors: Learning rate η, local curvature λmin(H), and problem structure (e.g., convex vs. non-convex) all
empirically influence the extent to which fat-tailed noise hinders convergence.
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C. Dataset Overview
C.1. Dataset Introduction

Dataset Granularity Dataset Split Prediction Length Channels Domain

ETTh1 Hourly (8545, 2881, 2881) {96, 192, 336, 720} 7 Electricity
ETTh2 Hourly (8545, 2881, 2881) {96, 192, 336, 720} 7 Electricity
ETTm1 15min (34465, 11521, 11521) {96, 192, 336, 720} 7 Electricity
ETTm2 15min (34465, 11521, 11521) {96, 192, 336, 720} 7 Electricity
Exchange Daily (5120, 665, 1422) {96, 192, 336, 720} 8 Economy
Weather 10min (36792, 5271, 10540) {96, 192, 336, 720} 21 Weather
Electricity Hourly (18317, 2633, 5261) {96, 192, 336, 720} 321 Electricity
Traffic Hourly (12185, 1757, 3509) {96, 192, 336, 720} 862 Transportation
NIL Weekly (580,193,193) {24,36,48,60} 7 Healthcare

• ETT (Electricity Transformer Temperature)1: This dataset includes four subsets: two hourly-level datasets (ETTh)
and two 15-minute-level datasets (ETTm). Each subset consists of seven features related to the oil temperature and
load of electricity transformers, recorded from July 2016 to July 2018.

• Traffic2: This dataset contains hourly road occupancy data collected from sensors on San Francisco freeways during
2015–2016.

• Electricity3: This dataset contains hourly electricity consumption data from 321 clients, recorded between 2012 and
2014.

• Exchange-Rate4: This dataset includes daily exchange rate data for 8 countries, spanning the years 1990 to 2016.

• Weather5: This dataset records 21 weather indicators, such as air temperature and humidity, at 10-minute intervals
throughout 2020 in Germany.

• ILI (Influenza-Like Illness)6: The ILI dataset tracks the ratio of patients diagnosed with influenza-like illness to the
total number of patients, based on weekly data from the Centers for Disease Control.

C.2. Kurtosis Calculation

Kurtosis is a statistical measure used to describe the shape of a probability distribution, particularly its tails. It quantifies the
extent to which the tails of a distribution differ from those of a normal distribution. The excess kurtosis kexcess is calculated
as:

kexcess = E[(X − µ)4]
σ4 − 3

where: - X is a random variable, - µ is the mean of the distribution, - σ is the standard deviation, and - E[·] denotes the
expected value.

A kurtosis value of kexcess = 0 indicates a normal distribution, with heavier tails (leptokurtic) for positive values and lighter
tails (platykurtic) for negative values.

Since each channel or dimension in a time series dataset represents a different feature with potentially different statistical
properties, the distribution of each dimension may vary significantly. Therefore, kurtosis is computed separately for each

1https://arxiv.org/abs/2012.01655
2https://www.kaggle.com/datasets/jessemostipak/traffic
3https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
4https://www.kaggle.com/datasets/loyolacoding/exchange-rate-data
5https://www.kaggle.com/datasets/muthuj7/weather-dataset
6https://www.cdc.gov/flu/weekly/index.htm
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channel to accurately capture the distinct tail behaviors across features. This channel-wise analysis allows us to assess the
presence of fat-tailed distributions or other characteristics specific to individual time-series features.

C.3. Kurtosis Analysis
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Figure 12. Kurtosis distribution across different channels. The red line represents a kurtosis of 3 (Kexcess = 0), indicating a normal
distribution.

We computed the kurtosis for each dimension across the datasets described earlier. The kurtosis distributions for different
channels are illustrated in Fig. 12. Notably, the red line in the plot represents the theoretical kurtosis value of 3, which
corresponds to a normal distribution (i.e., kexcess = 0). Deviations from this baseline indicate the degree of fat-tailedness
present in the data.

The left plot presents the kurtosis distribution of the raw data, which are significant non-stationarity. Since the distribution
appears dispersed across the feature space, the fat-tailed nature is not immediately evident. However, when we applied
differentiation between adjacent time steps, the kurtosis values increased sharply, with most dimensions exhibiting a
pronounced fat-tailed distribution. This observation underscores the pervasive fat-tailed nature of time-series data across
different domains.

Although, the common practice of normalization using instance-wise z-scores tends to balance the feature space more evenly
(in comparison to direct differencing of neighboring time steps). The kurtosis effect remains observable, reflecting the
intrinsic properties of time-series data that persist across various datasets.
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D. Experiment Details
D.1. Model Structure Details

Stationary Method: For preprocessing, we use a stationary method based on instance-wise z-score normalization. This
process centers each instance by subtracting its mean and dividing by its standard deviation, ensuring that each input is
normalized independently.

Decomposition Method: A standard moving average (MOA) kernel is used to decompose the trend and seasonal (residual)
components of the data. The kernel size for the moving average is controlled by the kernel_size hyperparameter, which
defaults to 25.

D.2. Model Hyperparameters

This section provides a detailed overview of the hyperparameters used in various components of the model. Default values
are specified for each parameter where applicable.

MoF Hyperparameters: For MoF modules the number of bins for the spline (spline_num_bins) is set to 24, the tail
length of the spline (spline_tail) is set to 6.0, and the size of the b-matrix for Test Time Training (TT) is set to 92 for
all the dataset. Additionally, the masking ratio p for self-supervised Test Time Training (TTT) is set to 0.5.

Except for experiments involving long-range settings (e.g., prediction lengths of 336 and 720), where the dimension count is
high and the distribution across channels is similar, due to computation power limitation, a same set of MoF parameters is
shared across channels. In all other experiments, each channel utilizes dedicated MoF parameters.

Patch Mamba Backbone Settings: The Patch Mamba backbone is controlled by the following hyperparameters. The
embedding dimension, denoted as d_model, is set to 64. Dropout is applied to the fully connected layers with a rate of 0.2
(fc_dropout), and to the attention heads with a rate of 0.0 (head_dropout). The padding method for patches is set to
end, meaning that padding is applied at the sequence’s end. Each patch has a length of 16 (patch_len), and the stride
for patch extraction is set to 8 (stride).

Linear Backbone Settings: The output sequence is projected to the prediction length using a linear layer. The
Linear_Projection layer projects the input sequence length (seq_len) to the prediction length (pred_len).
The weights of the projection layer are initialized uniformly, with each element set to 1

seq_len , ensuring that all input
elements are given equal importance at the start. This weight initialization method is consistent with previous approaches in
the literature, such as those described in (Zeng et al., 2023). Although we found initialization can have an positive impact on
model performance, as we have analyzed previously, this aspect is not a novel contribution of this work.

D.3. Evaluation Protocol:

Following the protocol established by Autoformer (Wu et al., 2021), we use Mean Squared Error (MSE) and Mean Absolute
Error (MAE) as the primary evaluation metrics. To account for variability in the results, each experiment is repeated five
times. Since we cannot confirm the normality of the results, a non-parametric approach is employed to assess the statistical
significance of performance differences. Specifically, we conduct Mann-Whitney U tests, which do not assume a normal
distribution, to determine whether observed differences in performance are statistically significant .

For the main experiment, the historical horizon length is set to T = 336, with prediction lengths F ∈ {96, 192, 336, 720},
except for the National-Illness dataset, where T = 60 and F ∈ {24, 36, 48, 60}. For other baseline models, the default set
of hyperparameters and evaluation protocol are used across different datasets, ensuring consistent performance comparison.

D.4. Evaluation Protocol and Hyperparameter Settings

Unified Hyperparameter Configuration. Unlike prior works that tune hyperparameters per dataset, our experiments adopt
a single, unified configuration across all datasets and methods—including our MoF variants and baseline models. This
design choice eliminates confounding effects from dataset-specific tuning and ensures that performance differences more
directly reflect model design. While this stricter setup may introduce small deviations from original reported numbers, it
reduces the risk of overfitting to test sets and improves cross-dataset generalization.

Comparison with Prior Works. Previous models such as iTransformer and PatchTST employ different hyperparameter
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choices for different datasets, as detailed in Table 4. These inconsistencies hinder fair comparison and obscure whether
performance gains stem from model design or tuning. For example, the DLinear result reported in the iTransformer paper
uses a short lookback length of 96, resulting in a shallow input (e.g., a 96×192 linear layer), which significantly underfits
and degrades performance. In contrast, our re-implementations use a unified setup with lookback length fixed at 336 across
all datasets and models, eliminating dataset-specific tuning. As shown in Table 4, this fairer and more challenging protocol
improves generalization and yields stronger baselines, outperforming comparable reimplemented baselines by 1.69–4.35%
in average MSE.

Table 4. Comparison of different time series forecasting methods (DLinear, iTransformer, PatchTST) reported in prior works versus our
re-implementations under unified hyperparameter settings (rightmost group).

Model iT PT DL PT DL iT PT DL

From paper: iTransformer Patch TST Ours

lookback length 96 96 96 336 512 336
Patch Len/Stride - 12/* - 16/8 to 24/2 - 16/8
d_model 128-512 * - 16-128 - 512
d_ff 128-2048 * - 128-256 - 512
learning_rate 1e-3 to 5e-5 * * 2.5e-4 to 1e-

4
1e-2 to 1e-4 1E-04

batchsize 16-32 * * 24-128 8-32 4

ETTh1 0.454 0.469 0.456 0.417 0.42 0.538 0.584 0.524
ETTh2 0.383 0.387 0.559 0.331 0.43 0.261 0.263 0.228
ETTm1 0.407 0.387 0.403 0.352 0.36 0.442 0.416 0.452
ETTm2 0.288 0.281 0.350 0.258 0.27 0.182 0.169 0.170
ECL 0.178 0.205 0.212 0.162 0.17 0.165 0.164 0.167
Exchange 0.360 0.367 0.354 - - 0.462 0.544 0.390
Traffic 0.428 0.481 0.625 0.396 0.43 0.451 0.416 0.435
Weather 0.258 0.259 0.265 0.230 0.25 0.241 0.234 0.245

Average 0.345 0.353 0.403 0.307 0.33 0.343
(2.72%)

0.349
(4.35%)

0.326
(1.69%)

*Abbreviations: iT=iTransformer, PT=PatchTST, DL=DLinear, *=not available

Baseline Alignment. To validate our experimental setup, we reproduce results for low-capacity models like DLinear and
compare them with original and recent benchmark papers (Table 5). Our results align well across all datasets.

Table 5. DLinear MSE comparison across papers.

Dataset Ours DLinear (AAAI’23) LIFT (ICLR’24) SAN (NeurIPS’23)

Weather 0.245 0.246 0.246 0.245
Electricity 0.167 0.166 0.166 0.166
Traffic 0.435 0.434 0.434 0.435

Stronger Baselines under Fair Settings. Even under this more stringent unified protocol, our re-implementations of strong
baselines achieve better results than originally reported—e.g., our iTransformer implementation improves over the original
by 1.69% to 19.1% in average MSE. This highlights the influence of consistent experimental conditions.

Table 6. Average MSE performance under unified settings.

Model Ours (MSE) iTransformer Paper PatchTST Paper

iTransformer 0.343 (–2.72%) 0.345 –
PatchTST 0.349 (–4.35%) 0.353 0.307
DLinear 0.326 (–19.1%) 0.403 0.330

MoF Gains Remain Robust. Despite the stronger baselines, our proposed MoF module—especially when used with the
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Mamba backbone—consistently improves over both iTransformer and PatchTST by 14.9% and 16.9% in average MSE,
respectively.
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E. Detailed Comprehensive Experiment Results
E.1. MAE and MSE performances

We compare MoF with Mamba and Linear backbones against 10 state-of-the-art models or widely acknowledged methods.
Each experiment is repeated five times, and the best average results are shown in black, while the second-best results are
highlighted in blue and underlined.

Due to space limitations, the experiment results are presented across two tables.

Table 7. Model Performance Table
Model MoF-Mamba MoF-Linear GLinear LiNo TimeMachine CATS iTransformer

Dataset MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

E
T

T
h1

96 0.441 0.406 0.439 0.416 0.446 0.419 0.446 0.411 0.445 0.417 0.584 0.664 0.465 0.439
192 0.480 0.458 0.479 0.467 0.485 0.472 0.486 0.465 0.485 0.472 0.618 0.722 0.505 0.491
336 0.522 0.513 0.514 0.519 0.521 0.526 0.531 0.531 0.527 0.534 0.669 0.834 0.540 0.547
720 0.595 0.627 0.603 0.658 0.612 0.673 0.638 0.707 0.625 0.695 0.772 1.066 0.618 0.675

Avg. 0.510 0.501 0.509 0.515 0.516 0.522 0.525 0.528 0.520 0.529 0.661 0.822 0.532 0.538

E
T

T
h2

96 0.286 0.173 0.279 0.166 0.288 0.175 0.290 0.175 0.290 0.177 0.315 0.198 0.297 0.189
192 0.314 0.207 0.310 0.204 0.320 0.213 0.324 0.217 0.322 0.216 0.344 0.235 0.333 0.233
336 0.338 0.236 0.337 0.238 0.350 0.250 0.359 0.262 0.348 0.249 0.372 0.273 0.359 0.270
720 0.394 0.281 0.371 0.282 0.400 0.322 0.414 0.340 0.399 0.324 0.420 0.347 0.410 0.353

Avg. 0.333 0.224 0.324 0.222 0.340 0.240 0.347 0.248 0.340 0.241 0.363 0.263 0.350 0.261

E
T

T
m

1

96 0.376 0.324 0.379 0.328 0.368 0.315 0.380 0.327 0.370 0.321 0.393 0.342 0.398 0.361
192 0.402 0.368 0.412 0.377 0.401 0.368 0.413 0.378 0.407 0.376 0.425 0.392 0.432 0.416
336 0.433 0.407 0.441 0.419 0.433 0.415 0.448 0.428 0.438 0.420 0.450 0.430 0.462 0.462
720 0.484 0.468 0.486 0.479 0.479 0.481 0.494 0.495 0.489 0.495 0.495 0.493 0.507 0.529

Avg. 0.424 0.392 0.429 0.401 0.420 0.395 0.434 0.407 0.426 0.403 0.441 0.414 0.450 0.442

E
T

T
m

2

96 0.226 0.113 0.228 0.118 0.229 0.115 0.228 0.114 0.226 0.114 0.235 0.118 0.240 0.127
192 0.256 0.146 0.263 0.165 0.259 0.148 0.260 0.147 0.258 0.148 0.266 0.149 0.271 0.161
336 0.282 0.175 0.292 0.200 0.286 0.179 0.287 0.180 0.284 0.180 0.298 0.186 0.302 0.200
720 0.326 0.227 0.329 0.248 0.319 0.220 0.322 0.224 0.319 0.220 0.335 0.233 0.335 0.242

Avg. 0.273 0.165 0.278 0.183 0.273 0.166 0.274 0.166 0.272 0.165 0.283 0.172 0.287 0.182

E
le

ct
ri

ci
ty

96 0.228 0.132 0.233 0.137 0.232 0.136 0.243 0.143 0.229 0.134 0.280 0.184 0.228 0.132
192 0.242 0.149 0.246 0.151 0.247 0.153 0.259 0.161 0.244 0.152 0.297 0.209 0.249 0.153
336 0.259 0.165 0.262 0.167 0.266 0.171 0.276 0.178 0.262 0.169 0.312 0.225 0.263 0.167
720 0.294 0.205 0.293 0.201 0.298 0.209 0.308 0.217 0.295 0.207 0.342 0.264 0.301 0.209

Avg. 0.256 0.163 0.259 0.164 0.261 0.167 0.272 0.175 0.258 0.166 0.308 0.221 0.260 0.165

E
xc

ha
ng

e

96 0.214 0.088 0.211 0.092 0.214 0.092 0.214 0.092 0.216 0.094 0.212 0.093 0.242 0.113
192 0.315 0.186 0.310 0.194 0.316 0.196 0.317 0.198 0.325 0.208 0.309 0.192 0.356 0.240
336 0.426 0.325 0.434 0.363 0.436 0.362 0.446 0.375 0.447 0.383 0.431 0.354 0.470 0.409
720 0.621 0.621 0.729 0.958 0.717 0.924 0.721 0.949 0.734 1.042 0.737 0.948 0.773 1.084

Avg. 0.394 0.305 0.421 0.402 0.421 0.394 0.424 0.403 0.430 0.432 0.422 0.397 0.460 0.462

Tr
af

fic

96 0.271 0.391 0.279 0.407 0.284 0.400 0.312 0.425 0.273 0.389 0.457 0.691 0.286 0.419
192 0.277 0.407 0.284 0.420 0.293 0.418 0.326 0.450 0.282 0.408 0.485 0.750 0.293 0.439
336 0.284 0.420 0.291 0.432 0.301 0.432 0.332 0.464 0.291 0.422 0.661 1.072 0.302 0.457
720 0.300 0.447 0.313 0.463 0.318 0.461 0.345 0.491 0.309 0.451 0.735 1.235 0.322 0.490

Avg. 0.283 0.416 0.292 0.430 0.299 0.428 0.329 0.458 0.289 0.417 0.585 0.937 0.301 0.451

W
ea

th
er

96 0.196 0.145 0.202 0.149 0.200 0.148 0.199 0.155 0.199 0.148 0.201 0.147 0.214 0.163
192 0.237 0.186 0.245 0.193 0.241 0.191 0.246 0.207 0.241 0.193 0.242 0.191 0.255 0.209
336 0.278 0.238 0.282 0.239 0.281 0.243 0.287 0.258 0.281 0.243 0.282 0.243 0.292 0.260
720 0.332 0.317 0.333 0.308 0.334 0.321 0.340 0.334 0.335 0.326 0.334 0.318 0.342 0.333

Avg. 0.261 0.221 0.266 0.222 0.264 0.226 0.268 0.238 0.264 0.227 0.265 0.225 0.276 0.241
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Table 8. Model Performance Table (cont.)

Model MoF-Mamba MoF-Linear PatchTST DLinear Autoformer Informer Transformer
Dataset MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

E
T

T
h1

96 0.441 0.406 0.439 0.416 0.476 0.459 0.444 0.436 0.596 0.649 0.834 1.226 0.625 0.699
192 0.480 0.458 0.479 0.467 0.524 0.529 0.483 0.486 0.635 0.735 0.867 1.328 0.671 0.815
336 0.522 0.513 0.514 0.519 0.565 0.596 0.518 0.531 0.690 0.843 0.786 1.121 0.686 0.829
720 0.595 0.627 0.603 0.658 0.653 0.751 0.594 0.645 0.705 0.857 0.864 1.295 0.739 0.970

Avg. 0.510 0.501 0.509 0.515 0.554 0.584 0.510 0.524 0.656 0.771 0.838 1.243 0.680 0.828

E
T

T
h2

96 0.286 0.173 0.279 0.166 0.302 0.189 0.285 0.176 0.367 0.248 0.440 0.362 0.421 0.323
192 0.314 0.207 0.310 0.204 0.340 0.235 0.316 0.213 0.407 0.302 0.484 0.439 0.446 0.381
336 0.338 0.236 0.337 0.238 0.372 0.277 0.342 0.236 0.442 0.349 0.478 0.434 0.474 0.399
720 0.394 0.281 0.371 0.282 0.424 0.349 0.386 0.287 0.566 0.598 0.578 0.599 0.607 0.620

Avg. 0.333 0.224 0.324 0.222 0.359 0.263 0.332 0.228 0.446 0.374 0.495 0.458 0.487 0.431

E
T

T
m

1

96 0.376 0.324 0.379 0.328 0.385 0.336 0.386 0.355 0.559 0.617 0.558 0.621 0.508 0.523
192 0.402 0.368 0.412 0.377 0.425 0.394 0.420 0.421 0.556 0.583 0.609 0.703 0.550 0.585
336 0.433 0.407 0.441 0.419 0.457 0.434 0.456 0.485 0.569 0.609 0.658 0.783 0.614 0.698
720 0.484 0.468 0.486 0.479 0.502 0.502 0.502 0.547 0.606 0.668 0.706 0.872 0.668 0.813

Avg. 0.424 0.392 0.429 0.401 0.442 0.416 0.441 0.452 0.573 0.619 0.633 0.745 0.585 0.655

E
T

T
m

2

96 0.226 0.113 0.228 0.118 0.230 0.117 0.234 0.120 0.283 0.163 0.308 0.208 0.288 0.165
192 0.256 0.146 0.263 0.165 0.259 0.147 0.263 0.148 0.298 0.181 0.367 0.292 0.343 0.242
336 0.282 0.175 0.292 0.200 0.290 0.183 0.292 0.181 0.315 0.205 0.404 0.350 0.403 0.308
720 0.326 0.227 0.329 0.248 0.328 0.230 0.333 0.232 0.347 0.247 0.550 0.672 0.481 0.455

Avg. 0.273 0.165 0.278 0.183 0.277 0.169 0.280 0.170 0.311 0.199 0.407 0.381 0.379 0.293

E
le

ct
ri

ci
ty

96 0.228 0.132 0.233 0.137 0.226 0.132 0.238 0.140 0.316 0.203 0.418 0.344 0.373 0.283
192 0.242 0.149 0.246 0.151 0.242 0.149 0.251 0.154 0.329 0.213 0.433 0.364 0.390 0.304
336 0.259 0.165 0.262 0.167 0.260 0.166 0.268 0.169 0.334 0.219 0.433 0.367 0.379 0.292
720 0.294 0.205 0.293 0.201 0.295 0.207 0.301 0.204 0.352 0.247 0.415 0.342 0.374 0.287

Avg. 0.256 0.163 0.259 0.164 0.256 0.164 0.265 0.167 0.333 0.221 0.425 0.354 0.379 0.291

E
xc

ha
ng

e

96 0.214 0.088 0.211 0.092 0.260 0.198 0.209 0.084 0.629 0.660 0.898 1.159 0.835 1.091
192 0.315 0.186 0.310 0.194 0.372 0.321 0.307 0.171 0.900 1.274 0.973 1.356 0.912 1.268
336 0.426 0.325 0.434 0.363 0.512 0.581 0.435 0.332 0.916 1.313 1.049 1.635 0.994 1.505
720 0.621 0.621 0.729 0.958 0.749 1.074 0.743 0.971 0.947 1.547 1.315 2.553 0.812 1.030

Avg. 0.394 0.305 0.421 0.402 0.473 0.544 0.423 0.390 0.848 1.198 1.059 1.676 0.888 1.224

Tr
af

fic

96 0.271 0.391 0.279 0.407 0.268 0.390 0.285 0.411 0.384 0.637 0.445 0.793 0.382 0.702
192 0.277 0.407 0.284 0.420 0.274 0.407 0.290 0.424 0.397 0.660 0.416 0.744 0.382 0.696
336 0.284 0.420 0.291 0.432 0.283 0.419 0.298 0.437 0.377 0.628 0.488 0.894 0.369 0.686
720 0.300 0.447 0.313 0.463 0.299 0.448 0.317 0.467 0.406 0.668 0.450 0.815 0.364 0.681

Avg. 0.283 0.416 0.292 0.430 0.281 0.416 0.297 0.435 0.391 0.648 0.450 0.811 0.374 0.691

W
ea

th
er

96 0.196 0.145 0.202 0.149 0.200 0.151 0.235 0.174 0.365 0.290 0.357 0.290 0.344 0.285
192 0.237 0.186 0.245 0.193 0.245 0.198 0.276 0.217 0.399 0.342 0.400 0.356 0.460 0.445
336 0.278 0.238 0.282 0.239 0.290 0.257 0.316 0.263 0.422 0.376 0.563 0.621 0.545 0.598
720 0.332 0.317 0.333 0.308 0.341 0.330 0.363 0.325 0.445 0.438 0.666 0.850 0.604 0.694

Avg. 0.261 0.221 0.266 0.222 0.269 0.234 0.297 0.245 0.408 0.361 0.496 0.529 0.488 0.505
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E.2. Mann–Whitney U Test

Since each experiment is repeated five times and we cannot assume the normality of the result distributions, we conduct a
one-tailed Mann–Whitney U test for each model against the best-performing model in that configuration across 10 models.
The p-values of the tests are presented in Table 9, where p-values greater than or equal to 0.95 are highlighted in bold, and
p-values greater than 0.05 are highlighted in blue.

Interestingly, when tested on these models, the distribution of p-values across different datasets reveals that the ETTm
datasets has the poorest discriminatory ability, followed by the Exchange dataset, while the ETTh series, Traffic, and Weather
datasets demonstrate better discriminatory ability.

Due to space limitations, the experiment results are presented across two tables.

Table 9. Mann–Whitney U test

Model MoF-Mamba MoF-Linear GLinear LiNo TimeMachine CATS iTransformer
Dataset MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

E
T

T
h1

96 0.238 1.000 1.000 0.005 0.003 0.001 0.005 0.008 0.003 0.001 0.005 0.001 0.008 0.002
192 0.393 1.000 1.000 0.018 0.029 0.008 0.029 0.016 0.012 0.002 0.018 0.004 0.018 0.004
336 0.200 1.000 1.000 0.114 0.029 0.014 0.018 0.008 0.012 0.005 0.018 0.008 0.018 0.008
720 0.393 1.000 0.018 0.050 0.008 0.029 0.004 0.018 0.002 0.012 0.004 0.018 0.004 0.018

E
T

T
h2

96 0.029 0.029 1.000 1.000 0.003 0.003 0.003 0.003 0.003 0.003 0.005 0.005 0.005 0.005
192 0.029 0.029 1.000 1.000 0.029 0.029 0.029 0.029 0.012 0.012 0.018 0.018 0.012 0.012
336 0.350 1.000 1.000 0.200 0.029 0.029 0.018 0.018 0.012 0.012 0.018 0.018 0.012 0.012
720 0.050 1.000 1.000 0.500 0.029 0.029 0.018 0.018 0.012 0.012 0.018 0.018 0.018 0.018

E
T

T
m

1 96 0.002 0.002 0.005 0.005 1.000 1.000 0.001 0.001 0.011 0.001 0.002 0.002 0.001 0.001
192 0.171 1.000 0.029 0.029 1.000 0.243 0.014 0.014 0.005 0.005 0.008 0.008 0.005 0.005
336 1.000 1.000 0.050 0.050 0.314 0.029 0.018 0.018 0.012 0.012 0.018 0.018 0.012 0.012
720 0.114 1.000 0.114 0.050 1.000 0.029 0.008 0.018 0.019 0.012 0.014 0.029 0.005 0.012

E
T

T
m

2 96 1.000 1.000 0.243 0.029 0.143 0.143 0.129 0.305 0.842 0.324 0.008 0.008 0.005 0.005
192 1.000 1.000 0.018 0.018 0.032 0.056 0.032 0.365 0.214 0.089 0.004 0.016 0.002 0.002
336 1.000 1.000 0.100 0.100 0.067 0.067 0.048 0.048 0.143 0.036 0.048 0.048 0.036 0.036
720 0.067 0.600 0.029 0.029 1.000 1.000 0.032 0.056 0.381 0.381 0.014 0.014 0.005 0.005

E
le

ct
ri

ci
ty 96 0.083 0.083 0.012 0.012 0.005 0.005 0.005 0.005 0.001 0.001 0.002 0.002 0.004 0.242

192 0.571 0.571 0.012 0.012 0.005 0.005 0.036 0.036 0.001 0.001 0.002 0.002 0.001 0.001
336 1.000 1.000 0.100 0.100 0.067 0.067 0.048 0.048 0.036 0.036 0.048 0.048 0.036 0.036
720 0.600 0.100 1.000 1.000 0.050 0.050 0.018 0.018 0.018 0.018 0.029 0.029 0.012 0.012

E
xc

ha
ng

e 96 0.038 0.020 0.152 0.001 0.011 0.000 0.021 0.000 0.005 0.000 0.155 0.001 0.000 0.000
192 0.030 0.011 0.261 0.002 0.011 0.000 0.030 0.000 0.002 0.000 0.168 0.000 0.000 0.000
336 1.000 1.000 0.125 0.018 0.095 0.008 0.028 0.004 0.015 0.002 0.274 0.004 0.002 0.002
720 1.000 1.000 0.029 0.029 0.014 0.014 0.008 0.008 0.005 0.005 0.014 0.014 0.005 0.005

Tr
af

fic

96 0.001 0.002 0.003 0.005 0.001 0.002 0.001 0.002 0.001 1.000 0.001 0.002 0.000 0.000
192 0.005 1.000 0.012 0.029 0.005 0.014 0.012 0.029 0.001 0.129 0.002 0.008 0.001 0.003
336 0.048 0.286 0.018 0.018 0.008 0.008 0.006 0.006 0.002 0.002 0.004 0.004 0.008 0.008
720 0.267 1.000 0.029 0.100 0.014 0.067 0.008 0.048 0.008 0.048 0.014 0.067 0.029 0.100

W
ea

th
er

96 1.000 1.000 0.029 0.029 0.008 0.008 0.012 0.012 0.008 0.008 0.012 0.012 0.018 0.018
192 1.000 1.000 0.050 0.050 0.029 0.029 0.029 0.029 0.012 0.012 0.018 0.018 0.018 0.018
336 1.000 1.000 0.100 0.600 0.067 0.067 0.048 0.048 0.036 0.036 0.048 0.048 0.036 0.036
720 1.000 0.100 0.400 1.000 0.600 0.029 0.048 0.018 0.071 0.012 0.067 0.029 0.036 0.012
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Table 10. Mann–Whitney U test (cont.)

Model MoF-Mamba MoF-Linear PatchTST DLinear Autoformer Informer Transformer
Dataset MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

E
T

T
h1

96 0.238 1.000 1.000 0.005 0.001 0.000 0.008 0.002 0.008 0.002 0.005 0.001 0.005 0.001
192 0.393 1.000 1.000 0.018 0.002 0.000 0.018 0.004 0.018 0.004 0.012 0.002 0.012 0.002
336 0.200 1.000 1.000 0.114 0.002 0.001 0.036 0.008 0.018 0.008 0.012 0.005 0.012 0.005
720 0.393 1.000 0.018 0.050 0.000 0.002 1.000 0.018 0.004 0.018 0.002 0.012 0.002 0.012

E
T

T
h2

96 0.029 0.029 1.000 1.000 0.001 0.001 0.008 0.008 0.014 0.014 0.008 0.008 0.008 0.008
192 0.029 0.029 1.000 1.000 0.003 0.003 0.018 0.018 0.018 0.018 0.018 0.018 0.012 0.012
336 0.350 1.000 1.000 0.200 0.003 0.003 0.018 0.286 0.018 0.018 0.018 0.018 0.012 0.012
720 0.050 1.000 1.000 0.500 0.003 0.003 0.018 0.018 0.018 0.018 0.018 0.018 0.012 0.012

E
T

T
m

1 96 0.002 0.002 0.005 0.005 0.000 0.000 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001
192 0.171 1.000 0.029 0.029 0.002 0.002 0.008 0.008 0.008 0.008 0.005 0.005 0.005 0.005
336 1.000 1.000 0.050 0.050 0.006 0.006 0.018 0.018 0.029 0.029 0.012 0.012 0.018 0.018
720 0.114 1.000 0.114 0.050 0.002 0.006 0.008 0.018 0.014 0.029 0.005 0.012 0.008 0.018

E
T

T
m

2 96 1.000 1.000 0.243 0.029 0.129 0.019 0.008 0.008 0.014 0.014 0.008 0.008 0.008 0.008
192 1.000 1.000 0.018 0.018 0.026 0.214 0.004 0.016 0.008 0.008 0.004 0.004 0.008 0.008
336 1.000 1.000 0.100 0.100 0.036 0.036 0.048 0.048 0.067 0.067 0.048 0.048 0.067 0.067
720 0.067 0.600 0.029 0.029 0.010 0.005 0.008 0.008 0.029 0.029 0.008 0.008 0.014 0.014

E
le

ct
ri

ci
ty 96 0.083 0.083 0.012 0.012 1.000 1.000 0.001 0.001 0.036 0.036 0.002 0.002 0.005 0.005

192 0.571 0.571 0.012 0.012 1.000 1.000 0.001 0.001 0.036 0.036 0.002 0.002 0.005 0.005
336 1.000 1.000 0.100 0.100 0.679 0.679 0.048 0.048 0.167 0.167 0.048 0.048 0.067 0.067
720 0.600 0.100 1.000 1.000 0.886 0.200 0.029 0.029 0.100 0.100 0.018 0.018 0.029 0.029

E
xc

ha
ng

e 96 0.038 0.020 0.152 0.001 0.000 0.000 1.000 1.000 0.001 0.001 0.000 0.000 0.000 0.000
192 0.030 0.011 0.261 0.002 0.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
336 1.000 1.000 0.125 0.018 0.002 0.002 0.255 0.543 0.008 0.008 0.004 0.004 0.004 0.004
720 1.000 1.000 0.029 0.029 0.005 0.005 0.000 0.000 0.014 0.014 0.008 0.008 0.008 0.008

Tr
af

fic

96 0.001 0.002 0.003 0.005 1.000 0.026 0.001 0.001 0.008 0.012 0.001 0.002 0.001 0.002
192 0.005 1.000 0.012 0.029 1.000 0.129 0.001 0.005 0.036 0.067 0.002 0.008 0.002 0.008
336 0.048 0.286 0.018 0.018 1.000 1.000 0.002 0.002 0.018 0.018 0.004 0.004 0.004 0.004
720 0.267 1.000 0.029 0.100 1.000 0.267 0.008 0.048 0.067 0.167 0.008 0.048 0.008 0.048

W
ea

th
er

96 1.000 1.000 0.029 0.029 0.003 0.003 0.002 0.002 0.018 0.018 0.012 0.012 0.012 0.012
192 1.000 1.000 0.050 0.050 0.003 0.003 0.003 0.003 0.018 0.018 0.012 0.012 0.012 0.012
336 1.000 1.000 0.100 0.600 0.013 0.013 0.013 0.013 0.048 0.048 0.036 0.036 0.036 0.036
720 1.000 0.100 0.400 1.000 0.013 0.003 0.028 0.008 0.048 0.018 0.036 0.012 0.036 0.012
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F. MoF Visualization
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Figure 13. Visualization of the transformation process on three seperate dimension of the ETTh1 dataset. After stationarization, the
average Kexcess is 2.34. The MoF transformation reduces the average Kexcess to 0.49, bringing the data distribution 79.1% closer to
normality.
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Figure 14. Visualization of the transformation process on three seperate dimension of the ETTm1 dataset. After stationarization, the
average Kexcess is 2.50. The MoF transformation reduces the average absolute Kexcess to 0.67, bringing the data distribution 73.1%
closer to normality.
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Figure 15. Visualization of the transformation process on three seperate dimension of the ETTh2 dataset. After stationarization, the
average Kexcess is 22.63. The MoF transformation reduces the average absolute Kexcess to 1.50, bringing the data distribution 93.3%
closer to normality.
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Figure 16. Visualization of the transformation process on three seperate dimension of the ETTm2 dataset. After stationarization, the
average Kexcess is 54.12. The MoF transformation reduces the average absolute Kexcess to 1.27, bringing the data distribution 97.6%
closer to normality.
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Figure 17. Visualization of the transformation process on three separate dimension of the Electricity dataset. After stationarization, the
average Kexcess is 3.91. The MoF transformation reduces the average absolute Kexcess to 1.18, bringing the data distribution 69.7%
closer to normality.
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Figure 18. Visualization of the transformation process on three separate dimension of the Weather dataset. After stationarization, the
average Kexcess is 2.49. The MoF transformation reduces the average absolute Kexcess to 0.48, bringing the data distribution 82.3%
closer to normality.
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Figure 19. Visualization of the transformation process on three separate dimension of the NIL dataset. After stationarization, the average
Kexcess is 5.52. The MoF transformation reduces the average absolute Kexcess to 7.58, bringing the data distribution 37.4% further to
normality.Due to limited data size, MoF wasn’t able to train sufficiently in this dataset
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Figure 20. Visualization of the transformation process on three separate dimension of the Exchange dataset. After stationarization, the
average Kexcess is 3.88. The MoF transformation reduces the average absolute Kexcess to 0.57, bringing the data distribution 85.3%
closer to normality.
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Figure 21. Visualization of the transformation process on three separate dimension of the Traffic dataset. After stationarization, the
average Kexcess is 8.21. The MoF transformation reduces the average absolute Kexcess to 6.69, bringing the data distribution 18.5%
closer to normality.
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G. Model Efficiency Comparison
This section provides a detailed explanation of the columns and metrics presented in the table below, comparing our proposed
model, MoF, with two backbones (Mamba-64 and Linear), against several state-of-the-art baselines.

• FLOPs: The number of floating-point operations in billions, measured using the fvcore package. Note that this
value is not entirely exclusive and auxiliary computations may occur.

• Time (ms): The running time per 100 iterations in milliseconds, reflecting the practical efficiency of the models.

• Params: The total number of trainable parameters in millions, also computed with fvcore.

• Rel.(Relative) MSE and MAE: The average mean squared error (MSE) and mean absolute error (MAE), computed as
follows: each experiment is repeated five times, and the average result is recorded. For comparison, the MSE/MAE is
normalized against the best-performing model in each dataset, which typically corresponds to the shortest prediction
length (due to lower error).

• FLOPs Ratio and Param Ratio: These columns show the ratio of FLOPs and parameter counts relative to MoF with
the Linear backbone, serving as a baseline.

• Perf. Boost: The percentage improvement or decline in performance compared to the baseline model, MoF with the
Linear backbone.

Model FLOPs Time
(ms) Params Rel.

MSE
Rel.

MAE
FLOPs
Ratio

Param
Ratio

Perf.
Boost

MoF(Mamba-64) 1.02E+09 1173 1.46E+06 1.563 1.248 10.37 8.74 6.48%
MoF(Linear) 9.86E+07 712 1.66E+05 1.733 1.273 1.00 1.00 0.00%

Autoformer 9.22E+09 1784 6.49E+06 3.403 1.860 93.46 39.02 -75.06%
Transformer 1.10E+10 962 6.29E+06 3.819 2.019 111.25 37.80 -94.20%
Informer 8.62E+09 1269 7.08E+06 4.862 2.263 87.38 42.53 -137.05%
DLinear 1.26E+08 163 3.40E+05 1.752 1.310 1.27 2.04 -1.86%
iTransformer 2.17E+09 497 3.50E+06 1.893 1.337 22.01 21.04 -7.45%
PatchTST 7.99E+10 488 1.04E+07 1.980 1.331 810.17 62.57 -10.14%
GLinear 1.26E+08 185 2.27E+05 1.719 1.279 1.27 1.36 0.24%
CATS 2.38E+10 360 1.53E+06 2.059 1.501 241.57 9.21 -18.45%
LiNo 2.60E+09 486 4.29E+06 1.775 1.315 26.34 25.79 -2.80%
TimeMachine 2.71E+08 823 8.79E+05 1.777 1.281 2.75 5.28 -1.74%

Performance Analysis. The results demonstrate that our proposed model, MoF, achieves competitive or superior perfor-
mance compared to state-of-the-art models across various metrics. Notably, MoF consistently delivers strong results in
Avg. MSE* and Avg. MAE*, despite having significantly smaller parameter counts. However, it is important to note that
the Mamba-64 backbone introduces a binning process that negatively impacts running time, as reflected in the Time (ms)
column.

H. Comprehensive Comparison of MoF with Expanded Input Horizon
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(b) Different backbone method compared on weather dataset
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(c) Different normalization method compared on weather
dataset with prediction length fixed at 192.
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(d) Different backbone method compared on weather dataset
with prediction length fixed at 720.
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(e) Different normalization method compared on ETTh2
dataset with prediction length fixed at 192.
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(f) Different backbone method compared on ETTh2 dataset
with prediction length fixed at 720.
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Figure 22. Comparison of different normalization and backbone methods on ETTh2 and weather datasets with prediction lengths fixed at
192 and 720.
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I. Comprehensive Comparison of MoF and Other Normalization Methods
MoF applies simple instance-wise z-score normalization to address non-stationary distributions. All methods are tested with
the same parameters across datasets and settings, without dataset-specific tuning.

Model MoF RevIN FAN DishTS SAN DLinear

Dataset MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.415 0.438 0.418 0.439 0.414 0.445 0.421 0.444 0.426 0.448 0.435 0.444
192 0.466 0.478 0.468 0.476 0.467 0.483 0.465 0.478 0.477 0.484 0.486 0.483
336 0.518 0.514 0.526 0.516 0.515 0.521 0.526 0.523 0.539 0.524 0.531 0.518
720 0.657 0.602 0.667 0.604 0.634 0.598 0.656 0.608 0.676 0.608 0.644 0.594

Avg. 0.514 0.508 0.520 0.509 0.508 0.512 0.517 0.513 0.529 0.516 0.524 0.510

E
T

T
h2

96 0.165 0.278 0.165 0.277 0.173 0.288 0.165 0.279 0.172 0.285 0.176 0.285
192 0.203 0.310 0.206 0.313 0.211 0.318 0.195 0.304 0.207 0.312 0.212 0.315
336 0.238 0.337 0.240 0.341 0.237 0.341 0.222 0.327 0.232 0.335 0.236 0.342
720 0.281 0.371 0.317 0.394 0.279 0.382 0.261 0.356 0.288 0.386 0.286 0.386

Avg. 0.222 0.324 0.232 0.331 0.225 0.332 0.211 0.316 0.225 0.329 0.228 0.332

E
T

T
m

1 96 0.328 0.379 0.333 0.373 0.319 0.370 0.325 0.368 0.328 0.384 0.355 0.385
192 0.376 0.412 0.385 0.404 0.368 0.404 0.377 0.400 0.373 0.412 0.420 0.419
336 0.418 0.441 0.435 0.436 0.416 0.438 0.422 0.432 0.418 0.447 0.484 0.455
720 0.478 0.485 0.497 0.479 0.467 0.479 0.478 0.473 0.474 0.483 0.547 0.501

Avg. 0.400 0.429 0.412 0.423 0.393 0.423 0.401 0.418 0.398 0.432 0.452 0.440

E
T

T
m

2 96 0.118 0.228 0.113 0.226 0.117 0.230 0.112 0.225 0.114 0.224 0.120 0.234
192 0.164 0.263 0.145 0.256 0.148 0.259 0.140 0.251 0.148 0.256 0.148 0.262
336 0.200 0.292 0.171 0.277 0.181 0.287 0.169 0.277 0.175 0.282 0.180 0.292
720 0.248 0.329 0.219 0.315 0.219 0.321 0.210 0.309 0.215 0.317 0.232 0.333

Avg. 0.182 0.278 0.162 0.268 0.166 0.274 0.158 0.265 0.163 0.270 0.170 0.280

E
le

ct
ri

ci
ty 96 0.137 0.232 0.140 0.236 0.139 0.238 0.138 0.235 0.134 0.231 0.140 0.237

192 0.151 0.245 0.154 0.248 0.156 0.255 0.154 0.250 0.150 0.246 0.153 0.250
336 0.166 0.261 0.171 0.265 0.174 0.274 0.170 0.268 0.166 0.265 0.169 0.268
720 0.201 0.293 0.210 0.297 0.212 0.310 0.207 0.303 0.201 0.298 0.203 0.301

Avg. 0.164 0.258 0.169 0.261 0.170 0.269 0.167 0.264 0.163 0.260 0.166 0.264

E
xc

ha
ng

e 96 0.092 0.211 0.090 0.210 0.136 0.274 0.126 0.278 0.123 0.249 0.084 0.209
192 0.194 0.310 0.188 0.307 0.252 0.374 0.268 0.389 0.193 0.323 0.171 0.306
336 0.363 0.433 0.346 0.425 0.594 0.589 0.445 0.545 0.353 0.440 0.332 0.435
720 0.958 0.728 0.915 0.715 1.306 0.847 1.904 1.084 1.201 0.775 0.970 0.742

Avg. 0.401 0.421 0.385 0.414 0.572 0.521 0.686 0.574 0.467 0.447 0.389 0.423

Tr
af

fic

96 0.407 0.279 0.411 0.281 0.411 0.290 0.423 0.295 0.417 0.283 0.411 0.284
192 0.420 0.283 0.424 0.286 0.428 0.300 0.437 0.302 0.435 0.290 0.423 0.290
336 0.431 0.291 0.437 0.293 0.446 0.312 0.451 0.310 0.451 0.298 0.436 0.297
720 0.462 0.313 0.465 0.309 0.481 0.333 0.482 0.329 0.481 0.314 0.466 0.317

Avg. 0.430 0.291 0.434 0.292 0.441 0.309 0.448 0.309 0.446 0.296 0.434 0.297

W
ea

th
er

96 0.148 0.202 0.173 0.222 0.153 0.210 0.166 0.240 0.146 0.208 0.174 0.234
192 0.193 0.244 0.216 0.258 0.197 0.257 0.207 0.278 0.192 0.254 0.216 0.276
336 0.239 0.281 0.263 0.292 0.246 0.294 0.258 0.323 0.241 0.292 0.263 0.315
720 0.308 0.333 0.331 0.339 0.314 0.344 0.330 0.382 0.318 0.348 0.324 0.363

Avg. 0.222 0.265 0.246 0.278 0.228 0.276 0.240 0.305 0.224 0.275 0.244 0.297

Avg.(ALL) 0.317 0.347 0.320 0.348 0.338 0.365 0.371 0.354 0.327 0.354 0.356 0.326
Diff.(%) 0.00 0.00 -0.94 -0.12 -6.55 -5.15 -6.93 -11.48 -3.15 -1.86 -2.50 -2.81
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J. Module generalization test

Model Autoformer Informer DLinear
w/o MoF w/ MoF w/o MoF w/ MoF w/o MoF w/ MoF

Dataset MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

E
T

T
h1

96 0.596 0.649 0.568 0.631 0.834 1.226 0.606 0.716 0.444 0.436 0.439 0.416
192 0.635 0.735 0.576 0.632 0.867 1.328 0.648 0.782 0.483 0.486 0.479 0.467
336 0.690 0.843 0.623 0.734 0.786 1.121 0.663 0.797 0.518 0.531 0.514 0.519
720 0.705 0.857 0.715 0.875 0.864 1.295 0.763 1.096 0.594 0.645 0.603 0.658
Avg. 0.656 0.771 0.620 0.718 0.838 1.243 0.670 0.848 0.510 0.524 0.509 0.515

E
T

T
h2

96 0.367 0.248 0.357 0.255 0.440 0.362 0.372 0.291 0.285 0.176 0.279 0.166
192 0.407 0.302 0.380 0.275 0.484 0.439 0.400 0.319 0.316 0.213 0.310 0.204
336 0.442 0.349 0.389 0.302 0.478 0.434 0.434 0.382 0.342 0.236 0.337 0.238
720 0.566 0.598 0.410 0.322 0.578 0.599 0.417 0.352 0.386 0.287 0.371 0.282
Avg. 0.446 0.374 0.384 0.289 0.495 0.458 0.406 0.336 0.332 0.228 0.324 0.222

E
T

T
m

1 96 0.559 0.617 0.533 0.570 0.558 0.621 0.493 0.558 0.386 0.355 0.379 0.328
192 0.556 0.583 0.557 0.636 0.609 0.703 0.521 0.608 0.420 0.421 0.412 0.377
336 0.569 0.609 0.550 0.595 0.658 0.783 0.558 0.631 0.456 0.485 0.441 0.419
720 0.606 0.668 0.576 0.631 0.706 0.872 0.577 0.687 0.502 0.547 0.486 0.479
Avg. 0.573 0.619 0.554 0.608 0.633 0.745 0.537 0.621 0.441 0.452 0.429 0.401

E
T

T
m

2 96 0.283 0.163 0.285 0.167 0.308 0.208 0.264 0.153 0.234 0.120 0.228 0.118
192 0.298 0.181 0.304 0.196 0.367 0.292 0.310 0.208 0.263 0.148 0.263 0.165
336 0.315 0.205 0.323 0.219 0.404 0.350 0.336 0.247 0.292 0.181 0.292 0.200
720 0.347 0.247 0.346 0.248 0.550 0.672 0.377 0.306 0.333 0.232 0.329 0.248
Avg. 0.311 0.199 0.315 0.207 0.407 0.381 0.322 0.228 0.280 0.170 0.278 0.183

E
le

ct
ri

ci
ty 96 0.316 0.203 0.293 0.192 0.418 0.344 0.311 0.211 0.238 0.140 0.233 0.137

192 0.329 0.213 0.296 0.192 0.433 0.364 0.323 0.226 0.251 0.154 0.246 0.151
336 0.334 0.219 0.302 0.196 0.433 0.367 0.329 0.231 0.268 0.169 0.262 0.167
720 0.352 0.247 0.319 0.219 0.415 0.342 0.358 0.271 0.301 0.204 0.293 0.201
Avg. 0.333 0.221 0.302 0.200 0.425 0.354 0.330 0.235 0.265 0.167 0.259 0.164

E
xc

ha
ng

e 96 0.629 0.660 0.476 0.424 0.898 1.159 0.403 0.307 0.209 0.084 0.211 0.092
192 0.900 1.274 0.494 0.456 0.973 1.356 0.510 0.523 0.307 0.171 0.310 0.194
336 0.916 1.313 0.599 0.667 1.049 1.635 0.642 0.733 0.435 0.332 0.434 0.363
720 0.947 1.547 0.828 1.213 1.315 2.553 0.789 1.212 0.743 0.971 0.729 0.958
Avg. 0.848 1.198 0.599 0.690 1.059 1.676 0.586 0.694 0.423 0.390 0.421 0.402

N
IL

24 1.338 3.716 1.377 3.646 1.518 4.964 1.166 3.173 1.322 3.554 1.072 2.623
36 1.235 3.273 1.373 3.701 1.495 4.816 1.220 3.584 1.336 3.680 1.053 2.567
48 1.212 3.244 1.322 3.597 1.522 4.875 1.190 3.349 1.356 3.808 1.076 2.660
60 1.200 3.290 1.167 3.003 1.610 5.397 1.252 3.714 1.413 4.206 1.099 2.780
Avg. 1.246 3.381 1.310 3.487 1.536 5.013 1.207 3.455 1.357 3.812 1.075 2.658

Tr
af

fic

96 0.384 0.637 0.367 0.671 0.445 0.793 0.402 0.723 0.285 0.411 0.279 0.407
192 0.397 0.660 0.379 0.692 0.416 0.744 0.382 0.691 0.290 0.424 0.284 0.420
336 0.377 0.628 0.364 0.672 0.488 0.894 0.413 0.747 0.298 0.437 0.291 0.432
720 0.406 0.668 0.369 0.674 0.450 0.815 0.441 0.804 0.317 0.467 0.313 0.463
Avg. 0.391 0.648 0.370 0.677 0.450 0.811 0.410 0.741 0.297 0.435 0.292 0.430

W
ea

th
er

96 0.365 0.290 0.290 0.246 0.357 0.290 0.273 0.224 0.235 0.174 0.202 0.149
192 0.399 0.342 0.331 0.305 0.400 0.356 0.327 0.346 0.276 0.217 0.245 0.193
336 0.422 0.376 0.343 0.321 0.563 0.621 0.360 0.435 0.316 0.263 0.282 0.239
720 0.445 0.438 0.368 0.380 0.666 0.850 0.385 0.420 0.363 0.325 0.333 0.308
Avg. 0.408 0.361 0.333 0.313 0.496 0.529 0.336 0.356 0.297 0.245 0.266 0.222

32



Slimming the Fat-Tail: Morphing-Flow for Adaptive Time Series Modeling

K. Comparison with IN-Flow and FITS

Model MoF-Linear MoF-Mamba INFlow-Linear INFlow-Patch FITS
Len MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

E
T

T
h1

96 0.441 0.406 0.439 0.416 0.440 0.417 0.451 0.421 0.682 0.909
192 0.480 0.458 0.479 0.467 0.477 0.468 0.489 0.482 0.696 0.937
336 0.522 0.513 0.514 0.519 0.518 0.528 0.535 0.550 0.718 0.979
720 0.595 0.627 0.603 0.658 0.607 0.670 0.633 0.709 0.777 1.096
Avg. 0.510 0.501 0.509 0.515 0.510 0.521 0.527 0.540 0.718 0.980

E
T

T
h2

96 0.286 0.173 0.279 0.166 0.278 0.165 0.292 0.181 0.350 0.246
192 0.314 0.207 0.310 0.204 0.311 0.203 0.325 0.217 0.366 0.268
336 0.338 0.236 0.337 0.238 0.343 0.243 0.358 0.263 0.385 0.295
720 0.394 0.281 0.371 0.282 0.394 0.318 0.414 0.337 0.418 0.348
Avg. 0.333 0.224 0.324 0.222 0.332 0.232 0.347 0.249 0.380 0.289

E
T

T
m

1 96 0.376 0.324 0.379 0.328 0.372 0.331 0.383 0.335 0.649 0.852
192 0.402 0.368 0.412 0.377 0.405 0.385 0.419 0.383 0.660 0.871
336 0.433 0.407 0.441 0.419 0.436 0.434 0.447 0.421 0.676 0.898
720 0.484 0.468 0.486 0.479 0.480 0.497 0.494 0.487 0.696 0.936
Avg. 0.424 0.392 0.429 0.401 0.423 0.412 0.436 0.406 0.670 0.889

E
T

T
m

2 96 0.226 0.113 0.228 0.118 0.227 0.114 0.226 0.113 0.296 0.176
192 0.256 0.146 0.263 0.165 0.255 0.144 0.258 0.146 0.309 0.194
336 0.282 0.175 0.292 0.200 0.279 0.173 0.288 0.177 0.326 0.220
720 0.326 0.227 0.329 0.248 0.316 0.220 0.330 0.235 0.352 0.259
Avg. 0.273 0.165 0.278 0.183 0.269 0.163 0.276 0.168 0.321 0.212

E
le

ct
ri

ci
ty 96 0.228 0.132 0.233 0.137 0.248 0.149 0.271 0.172 0.757 0.835

192 0.242 0.149 0.246 0.151 0.262 0.165 0.299 0.200 0.760 0.845
336 0.259 0.165 0.262 0.167 0.275 0.178 0.494 0.454 0.764 0.857
720 0.294 0.205 0.293 0.201 0.305 0.217 0.614 0.652 0.773 0.883
Avg. 0.256 0.163 0.259 0.164 0.273 0.177 0.419 0.370 0.763 0.855

E
xc

ha
ng

e 96 0.214 0.088 0.211 0.092 0.212 0.093 0.211 0.090 0.416 0.307
192 0.315 0.186 0.310 0.194 0.309 0.190 0.328 0.208 0.483 0.413
336 0.426 0.325 0.434 0.363 0.435 0.368 0.431 0.360 0.581 0.577
720 0.621 0.621 0.729 0.958 0.724 0.947 0.745 1.020 0.813 1.143
Avg. 0.394 0.305 0.421 0.402 0.420 0.399 0.429 0.419 0.573 0.610

N
IL

24 1.077 2.508 1.072 2.623 1.128 2.808 1.077 2.597 1.570 4.865
36 1.055 2.439 1.053 2.567 1.109 2.774 1.068 2.570 1.568 4.913
48 1.066 2.529 1.076 2.660 1.119 2.801 1.101 2.714 1.574 5.012
60 1.079 2.615 1.099 2.780 1.123 2.843 1.116 2.729 1.603 5.216
Avg. 1.069 2.523 1.075 2.658 1.120 2.806 1.091 2.652 1.579 5.002

Tr
af

fic

96 0.271 0.391 0.279 0.407 0.301 0.429 0.687 1.508 0.794 1.378
192 0.277 0.407 0.284 0.420 0.308 0.448 0.308 0.445 0.798 1.393
336 0.284 0.420 0.291 0.432 0.315 0.459 0.396 0.566 0.800 1.408
720 0.300 0.447 0.313 0.463 0.332 0.489 0.597 1.780 0.804 1.428
Avg. 0.283 0.416 0.292 0.430 0.314 0.456 0.497 1.075 0.799 1.402

W
ea

th
er

96 0.196 0.145 0.202 0.149 0.218 0.166 0.201 0.153 0.311 0.256
192 0.237 0.186 0.245 0.193 0.254 0.209 0.244 0.198 0.328 0.284
336 0.278 0.238 0.282 0.239 0.291 0.256 0.284 0.251 0.347 0.317
720 0.332 0.317 0.333 0.308 0.340 0.327 0.338 0.324 0.380 0.368
Avg. 0.261 0.221 0.266 0.222 0.276 0.239 0.267 0.231 0.342 0.306

Table 11. Comparison with IN-Flow and FITS(Best in bold). IN-Flow focuses on nonstationarity (not fat-tail), showing decent performance
on smaller ETT sets but struggling with large-channel data (Electricity, Traffic). FITS is parameter-efficient but relies on extensive
hyperparameter tuning and is unstable under a unified setting.
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L. Temporal Complexity Analysis
In this section, we analyze the time (temporal) complexity of the two core components of our proposed MoF framework:
the Flow layer (Section 3.1) and the Morph module (Section 3.2). We focus on the key (hyper)parameters and how they
affect runtime with respect to the sequence length T , the number of channels C, and the number of bins B used in our
piecewise-linear spline models.

L.1. Flow Layer Complexity

Recall that the Flow layer (cf. Section 3.1) applies a piecewise-linear spline transform to each input channel. Each channel
c ∈ {1, . . . , C} has B bins, and each bin is defined by a width {wc,i} and a height {hc,i}, where i ∈ {1, . . . , B}.

Forward pass. In the forward direction, every input element xc,t for channel c and time step t ∈ {1, . . . , T} is mapped to
some output yc,t. To find the appropriate bin for xc,t, one can:

1. Perform a (potentially) linear scan or prefix-sum-based search among the B bins.

2. Compute the output via one linear operation within the chosen bin.

A direct (linear) scan to select a bin requires O(B) time, and this is repeated for each channel (C) and time step (T ). Thus,
the worst-case complexity for the forward pass across all elements is:

O
(
C × T × B

)
.

If a more efficient bin-search strategy is employed (e.g., binary search), the factor B could be reduced to log B. However,
we assume the simpler linear approach here, yielding the O(C T B) cost.

Inverse pass. The inverse transformation proceeds analogously: one locates the bin for each output element yc,t in O(B)
and then applies a linear mapping to recover xc,t. As above, this yields:

O
(
C × T × B

)
time complexity for the inverse pass. Since both forward and inverse passes are required for training end-to-end (and for any
invertible steps within the backbone), the overall complexity for the Flow layer remains O(C T B).

L.2. Morph Module Complexity

The Morph module (cf. Section 3.2) consists of two main parts:

1. The test-time-trained temporal layer, which optimizes a low-rank weight matrix Wtest using a self-supervised loss.

2. The Up-Projection step that uses the updated Wtest to generate the scaling factor xmod, then re-applies the Flow
transformation with modified parameters.

Test-time training. During inference, each incoming batch (or sequence) of length T and channel dimension C is first
transformed by the Flow layer into x′. The Morph module then:

• Projects x′ into query and key embeddings , incurring O(C T d) costs if these linear projections map x′ into an internal
dimension d.

• Computes a self-supervised loss ℓ(Wtest; x′) in O(C T ) time (since it involves elementwise differences under a binary
mask M).

• Performs one or more gradient steps to update Wtest. Each gradient step requires backpropagation through the above
projections, adding another O(C T d) factor per update.

If we denote by Niter the number of gradient steps performed per test batch, the test-time training complexity scales as:

O
(
Niter × (C T d)

)
.

In practice, Niter is typically small (often 1 to 5) to maintain real-time inference speed.
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Up-Projection and final Flow morph. After updating Wtest, the Morph module uses an Up-Projection to map the
low-rank embedding xv to a B × 2 matrix (xmod), incurring O(d B) cost. Finally, the Flow layer is applied again with the
morphed parameters Wflow ⊙ xmod. This second Flow transformation has the same O(C T B) complexity discussed in
Section L.1.

Overall cost of Morph. Hence, for a single batch of length T and channels C, test-time training plus the final Flow morph
yields:

O(Niter × C T d)︸ ︷︷ ︸
self-supervised updates

+ O(d B)︸ ︷︷ ︸
up-projection

+ O(C T B)︸ ︷︷ ︸
Flow morph

.

Since B and d are typically much smaller than C T (and since Niter is kept small), the overall additional time cost of Morph
remains reasonable in practical settings.

L.3. Morph vs. Flow-Only Computation

Flow-Only Baseline. Recall that applying the Flow layer to a single batch of length T and C channels costs O(C T B) in
each forward (or inverse) pass, where B is the number of bins per channel. In a typical forward-only inference setting, if no
further transformations are applied, the runtime per batch is dominated by O(C T B).

Added Steps from Morph. By contrast, when the Morph module is enabled, each batch must go through:

1. The initial Flow pass (as in Flow-only): O(C T B).

2. Test-time-trained temporal layer:

• Projection to internal dimension d (query/key/value), computed in O(C T d).
• Self-supervised loss and gradient-based updates on Wtest, repeated Niter times for each batch. Each update

backpropagates through the projections, adding another O(C T d) per iteration.
• In total, this yields O(Niter C T d).

3. Up-Projection from dimension d to the bin-height shape (B × 2), costing O(d B).

4. Final Flow pass with morphed parameters, which again is O(C T B).

Hence, compared to a Flow-only system, the new steps due to Morph amount to:

O(Niter C T d)︸ ︷︷ ︸
test-time updates

+ O(d B)︸ ︷︷ ︸
up-projection

+ O(C T B)︸ ︷︷ ︸
re-applied Flow pass

,

in addition to the baseline Flow cost.

L.4. Relative Hyper-Parameters Influencing Overhead

• Bins per channel, B. In Flow-only, the cost scales as O(C T B). Morph re-applies the Flow transform once more,
increasing the effective factor on O(C T B). For small B, the overhead from Morph is more pronounced in the
self-supervised step; for large B, the additional Flow pass also becomes non-trivial.

• Hidden dimension, d. The internal dimension used in the Morph module’s query/key/value projections directly affects
the O(C T d) cost. A modest d keeps the test-time updates relatively cheap, while a large d can dominate the overall
overhead, potentially exceeding the Flow cost if d ≫ B.

• Number of iterations, Niter. Each additional gradient update at test time scales linearly. Even if d is small, large Niter
can inflate the Morph overhead. Balancing between adaptation accuracy and runtime is key.

Empirically, one typically chooses B to be moderate (e.g., B = 8 to 16) and d to be significantly smaller than C · T , keeping
the Morph overhead at a fraction of the total runtime. Furthermore, a small Niter (often 1–5) can be sufficient to stabilize
inference under mild distribution shifts, ensuring that Morph’s overhead remains practical compared to Flow-only.
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L.5. Wall-Clock Runtime Comparison

We report average per-batch inference times (in milliseconds per iteration) across six datasets in Table 12. All experiments
were conducted using a single NVIDIA Titan RTX GPU paired with an Intel i9-10900KB CPU. Each runtime is measured
with input length T = 96, batch size B = 24, and model dimension d = 92.

Table 12. Average inference time (ms/iter) for different configurations. The final column reports Morph’s share of total MoF runtime.

Dataset (C) w/ RevIN w/ Flow w/ MoF Morph in MoF (%)

Traffic (C=862) 107.1 115.5 122.2 44.37%
Weather (C=21) 21.7 30.3 32.5 20.37%
ETTh1 (C=7) 22.1 32.5 32.9 3.70%
ETTm1 (C=7) 23.7 32.7 33.0 3.23%
Electricity (C=321) 42.9 48.5 51.5 34.88%
Exchange (C=8) 22.2 32.2 32.3 0.99%

Average – – – 17.92%

Summary. On average, Morph contributes only 17.92% of MoF’s inference time, and incurs less than 5% overhead on
total runtime compared to Flow-based baselines. A detailed computational complexity analysis is included in the revised
version.

Combining both Flow and Morph, each inference batch involves:

• An initial Flow pass: O(C T B).

• Morph test-time update and re-transformation: O(Niter C T d + d B + C T B).

While the precise constants depend on implementation details (e.g., bin-search optimization or parallel GPU vectorization),
the asymptotic behavior is governed by the linear dependence on C, T , and B, plus the modest overhead of test-time
adaptation steps.

M. Gradient-statistics analysis
For each training step s we collect the gradient tensor gs of the model parameters and compute:

Norm(s) = ∥gs∥2,

Var(s) = 1
n

n∑
i=1

(
gs,i − ḡs

)2
,

Skew(s) =
1
n

∑n
i=1(gs,i − ḡs)3(
Var(s)

)3/2 ,

Kurt(s) =
1
n

∑n
i=1(gs,i − ḡs)4(

Var(s)
)2 − 3,

where n is the number of gradient elements and ḡs their mean. The kurtosis is reported in its excess form (zero for a
Gaussian).

The first column of Fig. 23 shows only minor differences among Instance-wise z-score, RevIN, and MoF when a shallow
Linear backbone is used. In contrast, the second column (PatchTST on ETTh1) reveals visibly smaller gradient norm
and variance for MoF, with skewness and kurtosis converging more rapidly. The third column (PatchTST on Exchange)
highlights the strongest effect: gradients under MoF remain well-behaved throughout training, reflecting the heavier tails of
the dataset and explaining the larger performance improvements.
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Figure 23. Gradient statistics over training. Columns: (i) Linear backbone on Exchange, (ii) PatchTST on ETTh1, (iii) PatchTST on
Exchange. Rows: gradient norm, variance, skewness, and kurtosis. MoF (green) yields lower norms/variances and markedly smaller
higher-order moments—especially on the heavy-tailed Exchange dataset—while differences are modest for the shallow Linear model.
Shaded areas denote one standard deviation over five runs.
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