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ABSTRACT

Sketching or doodling is a popular creative activity that people engage in. How-
ever, most existing work in automatic sketch understanding or generation has
focused on sketches that are quite mundane. In this work, we introduce two
datasets of creative sketches – Creative Birds and Creative Creatures – contain-
ing 10k sketches each along with part annotations. We propose DoodlerGAN –
a part-based Generative Adversarial Network (GAN) – to generate unseen com-
positions of novel part appearances. Quantitative evaluations as well as human
studies demonstrate that sketches generated by our approach are more creative
and of higher quality than existing approaches. In fact, in Creative Birds, subjects
prefer sketches generated by DoodlerGAN over those drawn by humans!

1 INTRODUCTION

The true sign of intelligence is not knowledge but imagination. – Albert Einstein

From serving as a communication tool since prehistoric times to its growing prevalence with ubiq-
uitous touch-screen devices – sketches are an indispensable visual modality. Sketching is often used
during brainstorming to help the creative process, and is a popular creative activity in itself.

Sketch-related AI so far has primarily focused on mimicking the human ability to perceive rich
visual information from simple line drawings (Yu et al., 2015; Li et al., 2018) and to generate min-
imal depictions that capture the salient aspects of our visual world (Ha & Eck, 2018; Isola et al.,
2017). Most existing datasets contain sketches drawn by humans to realistically mimic common
objects (Eitz et al., 2012; Sangkloy et al., 2016; Jongejan et al., 2016; Wang et al., 2019).

Figure 1: Cherry-picked example sketches from our proposed datasets: Creative Birds (left) and
Creative Creatures (right). See random examples in Figure 2 and Figures 12 and 13 in the Appendix.

In this work we focus on creative sketches. AI systems that can generate and interpret creative
sketches can inspire, enhance or augment the human creative process or final artifact. Concrete
scenarios include automatically generating an initial sketch that a user can build on, proposing the
next set of strokes or completions based on partial sketches drawn by a user, presenting the user with
possible interpretations of the sketch that may inspire further ideas, etc.

∗The work was done when the first author interned at Facebook AI Research.
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Figure 2: Random sketches from existing datasets (left) and our creative sketches datasets (right).

AI for creative sketches is challenging. They are diverse and complex. They are unusual depictions
of visual concepts while simultaneously being recognizable. They have subjective interpretations
like aesthetics and style, and are semantically rich – often conveying a story or emotions.

To facilitate progress in AI-assisted creative sketching, we collect two datasets – Creative Birds
and Creative Creatures (Figure 1) – containing 10k creative sketches of birds and generic creatures
respectively, along with part annotations (Figure 2 right columns). To engage subjects in a creative
exercise during data collection, we take inspiration from a process doodling artists often follow.
We setup a sketching interface where subjects are asked to draw an eye arbitrarily around a random
initial stroke generated by the interface. Subjects are then asked to imagine a bird or generic creature
that incorporates the eye and initial stroke, and draw it one part at a time. Figure 2 shows example
sketches from our datasets. Notice the larger diversity and creativity of birds in our dataset than
those from existing datasets with more canonical and mundane birds.

We focus on creative sketch generation. Generating novel artifacts is key to creativity. To this end we
propose DoodlerGAN – a part-based Generative Adversarial Network (GAN) that generates novel
part appearances and composes them in previously unseen configurations. During inference, the
model automatically determines the appropriate order of parts to generate. This makes the model
well suited for human-in-the-loop interactive interfaces where it can make suggestions based on user
drawn partial sketches. Quantitative evaluation and human studies show that our approach generates
more creative and higher quality sketches than existing approaches. In fact, subjects prefer sketches
generated by DoodlerGAN over human sketches from the Creative Birds dataset!

Our datasets, code, and a web demo are publicly available 1.

2 RELATED WORK

Sketches have been studied extensively as a visual modality that is expressive yet minimal. The
sparsity of sketches compared to natural images has inspired novel modelling techniques. We dis-
cuss existing sketch datasets and sketch generation approaches. Other related work includes sketch
recognition (Yu et al., 2015; Li et al., 2018), sketch-based image retrieval (Yu et al., 2016; Liu et al.,
2017; Ribeiro et al., 2020) and generation (Gao et al., 2020; Lu et al., 2018; Park et al., 2019). An
overview of deep learning approaches for sketches can be found in this survey (Xu et al., 2020)

Sketch datasets. Existing sketch datasets such as TU-Berlin (Eitz et al., 2012), Sketchy (Sangk-
loy et al., 2016), ImageNet-Sketch (Wang et al., 2019) and QuickDraw (Jongejan et al., 2016) are
typically focused on realistic and canonical depictions of everyday objects. For instance, sketches
in the Sketchy dataset (Sangkloy et al., 2016) were drawn by humans mimicking a natural image.
Sketches in the QuickDraw dataset (Jongejan et al., 2016) were collected in a Pictionary-like game
setting – they were drawn under 20 seconds to be easily recognized as a target object category. This
is in stark contrast with how people engage in doodling as a creative activity, where they take their
time, engage their imagination, and draw previously unseen depictions of visual concepts. These de-
pictions may be quite unrealistic – including exaggerations or combinations of multiple categories.
Our datasets contain such creative sketches of birds and generic creatures. See Figures 1 and 2. Our
data collection protocol was explicitly designed to engage users in a creative process. Also note
that while not the focus of this paper, our datasets are a valuable resource for sketch segmentation
approaches. See Section A in the Appendix for further discussion.

1songweige.github.io/projects/creative_sketech_generation/home.html
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Sketch generation. Earlier studies generated a sketch from an image via an image-to-image trans-
lation approach (Isola et al., 2017; Song et al., 2018; Li et al., 2019b). Subsequently, fueled by
the release of large-scale free-hand sketch datasets, methods that generate human-like sketches
from scratch have interested many researchers. One of the early works in this direction was
SketchRNN (Ha & Eck, 2018) – a sequence-to-sequence Variational Autoencoder (VAE) that mod-
els the temporal dependence among strokes in a sketch. Later approaches (Chen et al., 2017; Cao
et al., 2019) incorporated a convolutional encoder to capture the spatial layout of sketches. Rein-
forcement learning has also been studied to model the sequential decision making in sketch gen-
eration (Zhou et al., 2018; Huang et al., 2019; Mellor et al., 2019). In contrast with generating
entire sketches, sketch completion approaches generate missing parts given a partial sketch. Sketch-
GAN (Liu et al., 2019) adopted a conditional GAN model as the backbone to generate the missing
part. Inspired by the large-scale language pretraining approaches (Devlin et al., 2019), Sketch-
BERT (Lin et al., 2020) learns representations that capture the “sketch gestalt”. We propose a
part-based approach, DoodlerGAN, for sketch generation. Compared to previous approaches (Ha &
Eck, 2018; Cao et al., 2019) that learn to mimic how humans draw, our goal is to create sketches that
were not seen in human drawings. The idea of generating different components as parts of the overall
sketch can be traced back to compositional models (Chen et al., 2006; Xu et al., 2008). We explore
these ideas in the context of deep generative models for sketches. Also relevant are approaches that
exploit spatial structure when generating natural images – foreground vs. background (Yang et al.,
2017) or objects and their spatial relationships (Johnson et al., 2018). A discussion on creative tools
based on sketch generation can be found in Section B the Appendix.

3 CREATIVE SKETCHES DATASETS

To facilitate progress at the intersection of machine learning and artificial creativity in the context of
sketches, we collected two datasets: Creative Birds and Creative Creatures. The first is focused on
birds, and the second is more diverse and challenging containing a variety of creatures.

3.1 DATASET COLLECTION

Both datasets were collected on Amazon Mechanical Turk using a sketching web interface2. In
order to engage subjects in a creative exercise, and encourage diversity across sketches, the inter-
face generates a random initial stroke formed by connecting K keypoints on the canvas via Bezier
curves. These points were picked via heuristics such that the strokes are smooth with similar lengths
and have limited self occlusion (see Figure 9 in the Appendix). Next, inspired by a process doo-
dling artists (e.g., Michal Levy) use, subjects were told to add an eye to the canvas wherever they
like. They were then asked to step back, and visualize how the initial stroke and the eye can be
incorporated in a creative sketch of a bird or arbitrary creature (depending on the dataset).

Subjects were then asked to draw one part of the bird or creature at a time, indicating via a drop down
menu which part they were drawing. Each part can be drawn using multiple strokes. For Creative
Birds, the options include 7 common parts of birds (head, body, beak, tail, mouth, legs, wings). For
Creative Creatures, the 16 parts (e.g., paws, horn, fins, wings) cover terrestrial, aquatic, and aerial
creatures. In our pilot studies we found that providing subjects this structure of drawing one part at a
time increased the quality of sketches, and giving subjects the option to pick parts themselves made
the exercise more natural and increased the diversity of sketches. As a by product, each stroke has a
corresponding part annotation (see Figure 2), which can be a rich resource for sketch segmentation
and part-based sketch recognition or generation models. Subjects are required to add at least five
parts to the sketch (in addition to the eye and initial stroke) before they can submit the sketch.

Once done with adding parts, subjects were given the option to add additional details to the sketch.
Finally, they were asked to add a free-form natural language phrase to title their sketch to make it
more expressive. In this work we do not use the details and phrases, but they may be useful in the
future for more detailed sketch generation and automatic creative sketch interpretation. Except for
Figure 1, all example sketches shown in the paper are without the details unless noted otherwise.

In addition to contributing to the creativity and diversity of sketches, the initial random strokes
also add constraints, making sketch creation more challenging. Subjects have more constraints

2Our interface can be seen at https://streamable.com/jt4sw1

3

https://streamable.com/jt4sw1


Published as a conference paper at ICLR 2021

Part generator:

Part selector:

Predicted part

True part Cross 
Entropy 

Loss

Encoder StyleGAN2 
generator

Discriminator

GAN
Loss

Input partial sketch

Input partial 
sketch

Classifier

(a) Training Phase

Stroke sampler

Part
selector

Part generator
(eye)

Part
selector

Part generator
(head)

Part
selector

Part generator
(beak)

Part
selector

Completion signal

Random initial 
stroke

Intermediate 
partial sketch 1

Intermediate 
partial sketch 2

Intermediate 
partial sketch N

Final sketch

		𝑧~𝑁(0,1)

		𝑧~𝑁(0,1)

		𝑧~𝑁(0,1)

Eye selected

Head selected

Beak selected

(b) Inference Phase

Figure 3: DoodlerGAN. (a) During training, given an input partial sketch represented as stacked
part channels, a part selector is trained to predict the next part to be generated, and a part generator
is trained for each part to generate that part. (b) During inference, starting from a random initial
stroke, the part selector and part generators work iteratively to complete the sketch.

when asked to draw only birds in Creative Birds, so we give them less starting constraints (K = 3
keypoints in the initial strokes), but for Creative Creatures subjects have more freedom in the animals
they draw so we provide more constraints (K = 6). Example initial strokes for both datasets and
some insights from pilot data collection can be found in Figure 9 and Section C in the Appendix.

3.2 DATA ANALYSIS

We collected 10k sketches for both datasets. Filtering out sketches from workers who did not follow
the instructions well, we have 8067 and 9097 sketches in Creative Birds and Creative Creatures
respectively. See Figure 2 for random examples of sketches from both datasets. For comparison,
we also show birds from other existing datasets. Notice that the sketches in our datasets are more
creative, and sketches from Creative Creatures are more diverse and complex than those in Creative
Birds. We conducted a human study comparing 100 sketches from Creative Birds to 100 from
QuickDraw across 5 subjects each. Our sketches were rated as more creative 67% of the time.
More example sketches from our datasets can be found in Figures 12 and 13 in the Appendix. In
Figure 14 in the Appendix we also show examples where different sketches incorporate similar initial
strokes, suggesting room for creativity and variation that a generative model could learn. Sketches
of individual parts are shown in Figure 10 and 11 in the Appendix. Analysis of the part annotations,
including the order in which parts tend to be drawn, is provided in Section D in the Appendix.

4 DOODLERGAN: A PART-BASED SKETCH GENERATION MODEL

Objects are typically a configuration of parts (e.g., animals have two or four legs, a mouth below two
eyes). Moreover, humans often sketch by drawing one part at a time. We approach creative sketch
generation by generating novel appearances of parts and composing them in previously unseen con-
figurations. Another benefit of parts is that creative sketches exhibit large diversity in appearance,
but this complexity is significantly reduced if the sketches are decomposed into individual parts.

Our approach, DoodlerGAN, is a part-based GAN that sequentially generates one part at a time,
while ensuring at each step that the appearance of the parts and partial sketches comes from corre-
sponding distributions observed in human sketches. Humans do not draw parts in the same order
across sketches, but patterns exist. To mimic this, and to adapt well to a (future) human-in-the-loop
setting, DoodlerGAN automatically determines the order of parts. Concretely, DoodlerGAN con-
tains two modules: the part generator and the part selector, as shown in Figure 3. Given a part-based
representation of a partial sketch, the part selector predicts which part category to draw next. Given
a part-based representation of a partial sketch and a part category, the part generator generates a
raster image of the part (which represents both the appearance and location of the part).
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4.1 ARCHITECTURE

We represent sketches as raster images (i.e., grids of pixels) as opposed to vector representations
of strokes. This makes detailed spatial information readily available, which helps the model better
assess where a part connects with the rest of the sketch. A vector representation captures the low-
level sequence, which may not be relevant to the overall quality of the generated sketch (e.g., a
circular head will look the same whether it is drawn clockwise or counter-clockwise). Our part-
based approach models the sequence at an appropriate level of abstraction (parts).

The part generator is a conditional GAN based on the StyleGAN2 architecture (Karras et al., 2019;
2020). We generate sketches at a 64 × 64 resolution. We use a 5-layer StyleGAN2 generator with
[512, 256, 128, 64, 32] output channels and starting from a 4×4×64 constant feature map. To encode
the input partial sketch, we use a 5-layer CNN with [16, 32, 64, 128, 256] output channels. Each
layer contains two convolutional layers with 3× 3 kernels followed by a LeakyRelu activation with
a negative slope of 0.2. Inspired by the design of U-Net (Ronneberger et al., 2015), we downsample
the intermediate feature map after each encoder layer and concatenate it channel-wise with the
corresponding layers in the generator. See dashed lines in Figure 3a. This gives the generator
access to the hierarchical spatial structure in the input sketch.

The input partial sketch is represented by stacking each part as a channel, along with an additional
channel for the entire partial sketch. If a part has not been drawn, the corresponding channel is a zero
image. We find a part-based representation to be crucial for predicting appropriate part locations.
For instance, without the part channels, the generated legs were often not connected to the body.

Following StyleGAN2, we borrow the discriminator architecture from (Karras et al., 2018). We give
the discriminator access to the input partial sketch and the corresponding part channels, so that the
discriminator is able to distinguish fake sketches from real ones not just based on the appearance of
the part, but also based on whether the generated part is placed at an appropriate location relative to
other parts (e.g., heads are often around the eyes). Specifically, similar to the generator, the input
to the discriminator is an image with (number of parts + 1) channels. In Figure 3a, the difference
between the real and fake data fed into the discriminator occurs in the red channel where the fake
data contains the generated part (as opposed to the real one), and the last white channel where the
generated (vs. real) part is combined with the input partial sketch using a max operation.

The generator and discriminator parameters are not shared across parts. In our experiments, a unified
model across parts failed to capture the details in parts such as wings. We also experimented with
fine tuning the model end-to-end but generally observed inferior generation quality.

For the part selector, we use the same architecture as the encoder but with a linear layer added at the
end to produce logits for different parts. The part selector is also expected to decide when the sketch
is complete and no further parts need to be generated. Therefore, the output dimension of the linear
layer is set to (number of parts + 1). We convert the human sketches in our dataset to (partial sketch,
next-part) pairs and use that to train the part selector in a supervised way.

4.2 TRAINING AND INFERENCE

With strong conditional information, the discriminator in the part generator gets easily optimized and
consequently provides zero gradient for the generator. As a result, the generator gets stuck in the
early stages of training and only generates the zero image afterwards. We introduce a sparsity loss as
an additional regularizer, which is the L2 norm between the sum of pixels in the generated and real
parts, encouraging the model to generate parts of similar sizes as the real parts. This helps stabilize
the training and helps the generator learn even when little signal is provided by the discriminator.
During training, we also augment the training sketches by applying small affine transformations to
the vector sketch images before converting them to raster images. During inference, we follow the
same procedure as data collection: we first automatically sample an initial stroke from our interface
(see Figure 9) and then use the part selector and part generators iteratively to complete the sketch.

Conditional GANs have been shown to not be sensitive to noise, generating the same sample for
different noise vectors (Zhu et al., 2017; Donahue et al., 2017). We encountered similar issues,
especially for parts drawn at a later stage when more conditional information is available. This is
expected; the more complete the partial sketch, the fewer ways there are to reasonably complete it.
We found that our model is sensitive to minor perturbations to the input partial sketch. To increase
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(a) Creative Birds (b) Creative Creatures

Figure 4: Random generations from each approach. DoodlerGAN generations are noticeably higher
quality compared to baselines. More DoodlerGAN generations are in Figure 15 in the Appendix.

the diversity in generations, we propose a simple trick we call conditioning perturbation. We apply
random translations sampled from N (0, 2) to the input partial sketch to generate multiple parts and
then translate the generated parts back to align with the original partial sketch.

For further details of training, data augmentation and inference see Section F in the Appendix.

5 RESULTS

We quantitatively and qualitatively (via human studies) evaluate our approach compared to strong
baselines and existing state-of-the-art approaches trained on our creative datasets:

StyleGAN2 Unconditional. We train StyleGAN2 using the same hyperparameters and data aug-
mentation settings used for DoodlerGAN, to generate the entire sketches in one step. To avoid mode
collapse, we add the minibatch discriminator layer (Salimans et al., 2016) in its discriminator. This
represents a state-of-the-art approach in image generation.

StyleGAN2 Conditional. This approach is the same as the one described above, but we condition
the one-step generation on the initial stroke (encoded using the same encoder as in DoodlerGAN).

SketchRNN Unconditional. We use the SketchRNN model (Ha & Eck, 2018) trained on our
datasets. This represents the state-of-the-art in sketch generation. We optimized the architecture
(encoder, decoder and latent space sizes, temperature γ) and used heuristic post processing to elim-
inate obvious failure cases to adapt this approach the best we could to our datasets.

SketchRNN Conditional. This approach is SketchRNN described above, except during inference
we fix the first few points and the pen states based on the random initial stroke. These are fed as
input to continue the sequential generation of the sketch.

Percentage-based. This approach is DoodlerGAN, except instead of using parts, we divide the
sketch into 20% chunks (based on the order in which strokes were drawn) and use them as “parts”.
A comparison to this approach allows us to demonstrate the effectiveness of semantic parts.

Randomly selected generations from each approach are shown in Figure 4. In StyleGAN2 gener-
ations we can see a general bird contour but clean details are lacking. In SketchRNN we can see
the generated eye but later strokes do not form a coherent sketch. The failure to generate complex
sketches with SketchRNN has also been reported in (Ha & Eck, 2018). DoodlerGAN generates no-
ticeably higher quality sketches, with different parts of the sketch clearly discernible. More sketches
generated by DoodlerGAN can be found in Figure 15.

In human evaluation, we also compare bird generations from DoodlerGAN trained on Creative Birds
to the human-drawn bird sketches from QuickDraw to represent the “best” (oracle) generator one can
hope to get by training on QuickDraw. (A natural equivalent for Creative Creatures is unclear.) In
addition to the five generation-based methods, we also compare our method with a strong retrieval-
based method in Section J in the Appendix.

6



Published as a conference paper at ICLR 2021

To evaluate, we generate 10, 000 sketches using all approaches based on a randomly sampled set of
previously unseen initial strokes (for the conditional approaches).

5.1 QUANTITATIVE EVALUATION

For quantitative evaluation, we consider two metrics used in previous studies: Fréchet inception
distances (FID) (Heusel et al., 2017) and generation diversity (GD) (Cao et al., 2019). For this, we
trained an Inception model on the QuickDraw3.8M dataset (Xu et al., 2020). See Section G in the
Appendix for more training details. In Table 1 we see that DoodlerGAN has the best FID score
relative to other approaches, while maintaining similar diversity.

Table 1: Quantitative evaluation of DoodlerGAN against baselines on Fréchet inception distances
(FID), generation diversity (GD), characteristic score (CS) and semantic diversity score (SDS). The
methods with the best scores are in bold.

Methods Creative Birds Creative Creatures

FID(↓) GD(↑) CS(↑) FID(↓) GD(↑) CS(↑) SDS(↑)
Training Data - 19.40 0.45 - 18.06 0.60 1.91

SketchRNN Uncond. 79.57 17.19 0.20 60.56 15.85 0.43 1.22
SketchRNN Cond. 82.17 17.29 0.18 54.12 16.11 0.48 1.34

StyleGAN2 Uncond. 71.05 17.49 0.23 103.24 14.41 0.18 0.72
StyleGAN2 Cond. 130.93 14.45 0.12 56.81 13.96 0.37 1.17
Percentage-based 103.79 15.11 0.20 57.13 13.86 0.41 1.17

DoodlerGAN 39.95 16.33 0.69 43.94 14.57 0.55 1.45

We also introduce two additional metrics. The first is the characteristic score (CS) that checks
how often a generated sketch is classified to be a bird (for Creative Birds) or creature (for Creative
Creatures) by the trained Inception model. The higher the score – the more recognizable a sketch
is as a bird or creature – the better the sketch quality. The second is the semantic diversity score
(SDS) that captures how diverse the sketches are in terms of the different creature categories they
represent (this is more meaningful for the Creative Creatures dataset). Higher is better. Note that GD
captures a more fine-grained notion of diversity. For instance, if all generated sketches are different
dog sketches, GD would still be high but SDS would be low. See Section H in the Appendix for
further details about these two metrics. In Table 1 we see that DoodlerGAN outperforms existing
approaches on both metrics. In fact, DoodlerGAN even outperforms the human sketches on the
Creative Birds dataset! This trend repeats in human evaluation.

5.2 HUMAN EVALUATION

Automatic evaluation of image generation and creative artifacts are open research questions. There-
fore, we ran human studies on Amazon Mechanical Turk (AMT). Specifically, we showed subjects
pairs of sketches – one generated by DoodlerGAN and the other by a competing approach – and ask
which one (1) is more creative? (2) looks more like a bird / creature? (3) they like better? (4) is
more likely to be drawn by a human? For the conditional baselines, we also ask (5) in which sketch
is the initial stroke (displayed in a different color) better integrated with the rest of the sketch? We
evaluated 200 random sketches from each approach. Each pair was annotated by 5 unique subjects.

Figure 5 shows the percentage of times DoodlerGAN is preferred over the competing approach.
We also plot the Bernoulli confidence intervals (p = 0.05). Values outside the band are statistically
significantly different than 50%, rejecting the null hypothesis that both approaches are equally good.
For Creative Birds, DoodlerGAN significantly outperforms the five baselines on all five questions.
It even beats the real human-drawn sketches, not just from QuickDraw, but also from our Creative
Birds dataset on most dimensions! Creative Creatures is a more challenging dataset. DoodlerGAN
outperforms other approaches but not human sketches. DoodlerGAN is not statistically significantly
better (or worse) than SketchRNN Conditional in terms of creativity. Note that creativity in itself
may not be sufficient – an arbitrary pattern of strokes may seem creative but may not be recognized
as a bird or creature. The combination of creativity and looking like a bird or creature is a more
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Figure 5: Human evaluation results on Creative Birds (left) and Creative Creatures (right). Higher
values→ DoodlerGAN is preferred over the approach more often.

holistic view, which we believe is better captured by the overall metric of which sketch subjects like
better. DoodlerGAN statistically significantly outperforms SketchRNN on that metric. Similarly,
subjects can not differentiate between DoodlerGAN and SketchRNN Conditional in terms of being
more likely to be drawn by humans. Note that unlike some other AI tasks (e.g., recognizing image
content), an average human need not be the gold standard for creative tasks such as sketching.

5.3 NOVELTY

Figure 16 in the Appendix shows generated sketches and their nearest neighbor training sketches
using Chamfer distance. We see that the closest training sketches are different, demonstrating that
DoodlerGAN is generating previously unseen creative sketches. In fact, by evaluating a sketch
classification model trained on QuickDraw on our generated Creative Creatures sketches, we identify
several sketches that have a high response (>0.25) to more than one category. We find that our model
has generated hybrids of a penguin and mouse, a panda and a snake, a cow and a parrot (see Figure 6)
– a strong indication of creativity (Boden, 1998; Yu & Nickerson, 2011)!

Squirrel 
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Penguin
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Owl
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Parrot
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Figure 6: DoodlerGAN generates sketches of hybrid creatures

In the Appendix, we include several other evaluation studies to demonstrate (1) DoodlerGAN’s
ability to generate a diverse set of parts in an interpretable fashion where smoothly varying the input
noise to one layer changes the part shape and to another layer changes the position (Section I) (2)
DoodlerGAN’s ability to complete a sketch better than a retrieval-based approach (Section J) (3)
the improvements in sketch quality due to the different design choices made in the part generator
and selector (Section K). Finally, we also briefly discuss a heuristic method to convert the generated
raster images to a vector representation (Section L) that enables rendering sketches at arbitrary
resolutions. This conversion process adds an unintended but delightful aesthetic to the sketches! In
human studies we find that subjects prefer this aesthetic to the raw generated images 96% of the
times. We also ran all our human studies with this aesthetic and find that similar trends hold.
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6 CONCLUSION

In this work we draw attention to creative sketches. We collect two creative sketch datasets that we
hope will encourage future work in creative sketch interpretation, segmentation, and generation. In
this paper we focus on the latter, and propose DoodlerGAN – a part-based GAN model for creative
sketch generation. We compare our approach to existing approaches via quantitative evaluation and
human studies. We find that subjects prefer sketches generated by DoodlerGAN. In fact, for birds,
subjects prefer DoodlerGAN’s sketches over those drawn by humans! There is significant room for
improvement in generating more complex creative sketches (e.g., Creative Creatures). Future work
also involves exploring human-machine collaborative settings for sketching.
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A SKETCH SEGMENTATION DATASETS

Previous sketch segmentation datasets (Schneider & Tuytelaars, 2016; Yang et al., 2020; Li et al.,
2019a; Wu et al., 2018) are too sparsely annotated to effectively train deep models. For example,
the SPG dataset (Li et al., 2019a) contains 800 sketches per category with part annotations. Note
that most approaches train one model per category. The SketchSeg (Wu et al., 2018) dataset con-
tains 100 labeled sketches per category, then further augmented by automatically generating more
sketches with a trained SketchRNN (Ha & Eck, 2018) model. Our proposed datasets are exhaus-
tively annotated – all 10k sketches in both datasets have part annotations.
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B EXISTING CREATIVE TOOLS BASED ON SKETCH GENERATION

The growing availability of sketch generation approaches has spurred a variety of creative ap-
plications and art projects. The book Dreaming of Electric Sheep (Diaz-Aviles, 2018) inspired
by Philip K. Dick’s famous book contains 10,000 sheep sketches generated by DCGAN (Rad-
ford et al., 2015) trained on the QuickDraw dataset (Jongejan et al., 2016). Quick, Draw!
(quickdraw.withgoogle.com) recognizes what a user is drawing as they draw it. Auto-
Draw (Lab, 2017) returns high quality illustrations or sketches created by experts that match a
novice’s sketch. Edges2cats (Hesse, 2017) is an online tool based on pix2pix (Isola et al., 2017)
that converts free-hand drawings to realistic images. Our dataset and approach can be used to boost
more applications related to draw a creative sketch.

C INSIGHTS FROM PILOT DATA COLLECTION PILOT

We found that when using a shorter initial stroke, the generic creatures were often recognizable
as specific animals. But with longer strokes, we more frequently found fictional creatures that are
high quality (look like creatures) but not recognizable as a real animal, indicating higher creativity.
Piloting longer initial strokes with birds indicated that subjects had trouble incorporating the initial
stroke well while maintaining coherence. Shorter strokes led to simpler sketches (still significantly
more complex and creative than QuickDraw, Figure 2), making Creative Birds a more approachable
first dataset for creative sketch generation, and Creative Creatures a notch above in difficulty.

D STROKE- AND PART-LEVEL ANALYSIS

We compare our Creative Birds and Creative Creatures datasets to previous datasets in Table 2. As
a proxy for complexity, we report the average stroke length (normalized by the image size) and
number of strokes across the bird sketches in each dataset. We see that our datasets have the longest
and most number of strokes. The difference is especially stark w.r.t. QuickDraw (twice as long and
three times as many strokes), one of the most commonly used sketch datasets.

Table 2: Stroke statistics

normalized stroke length number of strokes

Sketchy 5.54± 2.02 15.57± 10.54
Tu-Berlin 5.46± 1.75 14.94± 10.18
QuickDraw 4.00± 2.97 6.85± 4.19
Creative Birds (Ours) 7.01± 2.89 20.74± 13.37
Creative Creatures (Ours) 8.40± 3.47 22.65± 14.73

Next we analyze the part annotations in our datasets. Table 3 shows the number of sketches contain-
ing each of the parts. Notice that each part in Creative Creatures has significantly fewer examples (in
the extreme case, only 302 for paws.) than most parts in Creative Birds, making Creative Creatures
additionally challenging. Most parts in Creative Birds are present in more than half the sketches
except for the mouth, which we find is often subsumed in beak. For Creative Creatures, the numbers
of sketches containing different parts has higher variance. Common parts like body and head have
similar occurrence in both datasets. Example parts are shown in Figures 10 and 11. Note that the
initial stroke can be used as any (entire or partial) part, including body but will not be annotated as
such. This means that sketches without an annotated body likely still contain a body.

In Figures 7 and 8 we analyze the order in which parts tend to be drawn in both datasets.

E EXAMPLE SKETCHES, PARTS, AND INITIAL STROKES

See Figures 12 and 13 for example sketches from the Creative Birds and Creative Creatures datasets
respectively. See Figures 10 and 11 for example parts from both datasets. See Figure 9 for examples
of the initial strokes used in the data collection and sketch generation process.
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Table 3: Part statistics

Creative Birds total eye wings legs head body tail beak mouth
8067 8067 7764 5564 7990 8477 5390 7743 1447

Creative Creatures

total eye arms beak mouth body ears feet fin
9097 9097 2862 2163 6143 7490 3009 2431 1274
hands head hair horns legs nose paws tail wings
1771 6362 3029 1738 3873 3428 302 3295 1984

(a) Creative Birds

(b) Creative Creatures

Figure 7: For each dataset, on the left is the probability that the part is the first part drawn (after
the eye, which subjects are asked to draw first). On the right is the probability that conditioned on
the row part being drawn, the column part is drawn next. In Creative Birds, we see that sketches
typically start with either the beak (in case the initial stroke already provides part of the head), or
the head. In both cases, the next part is often the body. From there either the wings or legs tend
to be drawn. The tail tends to follow. The mouth is often drawn last. Similar patterns can be seen
in Creative Creatures, except with larger variety due to the larger number of part options and larger
diversity of creatures that subjects draw.

F IMPLEMENTATION DETAILS

Training. We found that the default learning rates used in the StyleGAN papers lead to over-
optimization of the discriminator during the early training phase and prevent effective optimization
of the generator on our datasets. Therefore, we did a grid search on the discriminator and generator
learning rates in {10−3, 5−3, 10−4, 5−4} and batch sizes in {8, 40, 200}, looking for training stabil-
ity and the high generation quality. We picked a learning rate of 10−4 and a batch size of 40 for
both the discriminator and generator. We use the Adam optimizer Kingma & Ba (2014) following
StyleGAN papers (Karras et al., 2019; 2020) with β1 = 0, β2 = 0.99, ε = 10−8. We multiply a
trade-off factor equals to 0.01 to the sparsity loss. As for the part selectors for both datasets, we
train each on 80% of the data with learning rate 2−4 and batch size 128 for 100 epochs when the
training losses are observed to reach the plateau and a reasonable testing accuracy is achieved on the
other 20% data. Specifically, we get 63.58% and 48.86% part selection test accuracy on the Creative
Birds and Creative Creatures datasets respectively. Our training time of each creature and bird part
generator is approximately 4 and 2 days on a single NVIDIA Quadro GV100 Volta GPU.

Data augmentation. As discussed in Section 4, we apply a random affine transformation to the
vector sketches as a data augmentation step in addition to the random horizontal flips during training.

13



Published as a conference paper at ICLR 2021

be
ak

bo
dy

he
ad leg

s
mou

th tai
l

wing
s

beak

body

head

legs

mouth

tail

wings

0.50 0.67 0.33 0.90 0.87 0.87 0.81

0.33 0.50 0.20 0.96 0.72 0.95 0.80

0.67 0.80 0.50 0.94 0.90 0.94 0.88

0.10 0.04 0.06 0.50 0.56 0.46 0.35

0.13 0.28 0.10 0.44 0.50 0.60 0.54

0.13 0.05 0.06 0.54 0.40 0.50 0.35

0.19 0.20 0.12 0.65 0.46 0.65 0.50

(a) Creative Birds

arm
s

be
ak

mou
th

bo
dy ea

rs fee
t fin ha

ir
ha

nd
s

he
ad

ho
rns leg

s
no

se
pa

ws tai
l

wing
s

arms

beak

mouth

body

ears

feet

fin

hair

hands

head

horns

legs

nose

paws

tail

wings

0.50 0.42 0.38 0.26 0.54 0.65 0.74 0.62 0.89 0.15 0.64 0.60 0.43 0.71 0.71 0.68

0.58 0.50 0.77 0.65 0.80 0.84 0.72 0.84 0.83 0.37 0.85 0.86 0.82 0.86 0.84 0.82

0.62 0.23 0.50 0.43 0.60 0.61 0.53 0.66 0.66 0.16 0.63 0.59 0.60 0.80 0.64 0.57

0.74 0.35 0.57 0.50 0.63 0.88 0.79 0.73 0.82 0.21 0.78 0.89 0.55 0.89 0.91 0.84

0.46 0.20 0.40 0.37 0.50 0.61 0.46 0.59 0.65 0.17 0.59 0.54 0.46 0.79 0.61 0.56

0.35 0.16 0.39 0.12 0.39 0.50 0.64 0.60 0.55 0.13 0.55 0.12 0.43 0.76 0.60 0.41

0.26 0.28 0.47 0.21 0.54 0.36 0.50 0.67 0.52 0.19 0.70 0.51 0.64 0.84 0.51 0.61

0.38 0.16 0.34 0.27 0.41 0.40 0.33 0.50 0.53 0.13 0.62 0.41 0.40 0.67 0.54 0.42

0.11 0.17 0.34 0.18 0.35 0.45 0.48 0.47 0.50 0.09 0.54 0.46 0.37 0.63 0.67 0.44

0.85 0.63 0.84 0.79 0.83 0.87 0.81 0.87 0.91 0.50 0.92 0.92 0.80 0.96 0.92 0.88

0.36 0.15 0.37 0.22 0.41 0.45 0.30 0.38 0.46 0.08 0.50 0.51 0.51 0.73 0.59 0.53

0.40 0.14 0.41 0.11 0.46 0.88 0.49 0.59 0.54 0.08 0.49 0.50 0.42 0.76 0.65 0.48

0.57 0.18 0.40 0.45 0.54 0.57 0.36 0.60 0.63 0.20 0.49 0.58 0.50 0.75 0.61 0.54

0.29 0.14 0.20 0.11 0.21 0.24 0.16 0.33 0.37 0.04 0.27 0.24 0.25 0.50 0.44 0.57

0.29 0.16 0.36 0.09 0.39 0.40 0.49 0.46 0.33 0.08 0.41 0.35 0.39 0.56 0.50 0.39

0.32 0.18 0.43 0.16 0.44 0.59 0.39 0.58 0.56 0.12 0.47 0.52 0.46 0.43 0.61 0.50

(b) Creative Creatures

Figure 8: Across all sketches that contain both parts, we show the probability that the part along the
column was drawn (at some point) after the part along the row. In the Creative Birds dataset, the
smaller parts such as the legs and mouth are often drawn after the larger parts including the head and
body. In the Creative Creatures dataset, the head is often drawn before other parts. Hands, paws,
feet, legs tend to be drawn later.

Figure 9: Example short (left) and long (right) random initial strokes used as a prompt in our data
collection and as the first step in our sketch generation approach. The short strokes were used for
Creative Birds and long for Creative Creatures. Thick strokes are shown for visibility.

Specifically, we used two sets of affine transformation parameters: 1) random rotation with angles
θ ∈ U [−15◦, 15◦], random scaling with ratio s ∈ U [0.9, 1.1], random translation with ratio t ∈
U [−0.01, 0.01], and a fixed stroke width l = 2 pixels; 2) θ ∈ U [−45◦, 45◦], s ∈ U [0.75, 1.25],
t ∈ U [−0.05, 0.05], and l ∈ U [0.5, 2.5] pixels. We found that a larger transformation and longer
training time is especially useful when training part generators on the Creative Creatures dataset
which is more challenging and parts often have fewer examples than Creative Birds. We also found
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Figure 10: Random examples of parts from Creative Birds. Thick strokes are displayed for visibility.
Top to bottom, left to right: eye, head, body, beak, mouth, wings, legs, tail, details. The number of
examples in each block is roughly proportional to the percentage of sketches that have that part.

15



Published as a conference paper at ICLR 2021

Figure 11: Random examples of parts from Creative Creatures. A subset of parts are shown, with
preference for those not in common with Creature Birds. Thick strokes are displayed for visibility.
Top to bottom, left to right: hair, hands, head, horns, arms, body, ears, feet, fin. The number of
examples in each block is roughly proportional to the percentage of sketches that have that part.
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Figure 12: Random example sketches from our Creative Birds dataset. Entire sketches (including
the “details”) are shown.
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Figure 13: Random example sketches from our Creative Creatures dataset. Entire sketches (includ-
ing the “details”) are shown.
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(a) Creative Birds example 1

(b) Creative Birds example 2

(c) Creative Creatures example 1

(d) Creative Creatures example 2

Figure 14: Sketches with similar initial strokes from Creative Birds and Creative Creature datasets.
Similar initial strokes have diverse sketches that incorporate them. Note that it is much easier to
find sketches with similar initial strokes in the Creative Birds dataset because the initial strokes are
shorter. This also indicates that the Creative Creatures dataset is more challenging.
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(a) Creative Birds.

(b) Creative Creatures.

Figure 15: Uncurated creative sketches generated by DoodlerGAN.
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(a) Bird sketches generated by DoodlerGAN. (b) Nearest Neighbors in the training data.

(c) Creature sketches generated by DoodlerGAN. (d) Nearest Neighbors in the training data.

Figure 16: Nearest neighbors of the sketches generated by DoodlerGAN showing that the genera-
tions do not mimic the training data.

that the larger transformation also helps to increase the variation in the generation based on the noise
but the general quality of generated parts suffers on the Creative Birds dataset. Consequently, we
apply the larger augmentation when training the creature part generators and bird eye generator and
smaller augmentation when training the other models. And we train the creature part generators for
60, 000 steps and bird part generators for 30, 000 steps.

Inference. For Creative Birds, we noticed that the quality of the generated sketch was higher when
the generated eye was not too small and not too close to the initial stroke. Motivated by this observa-
tion, we used the following trick: We sample 10 eyes for each initial stroke and rank them based on
the pixel sum and distance to the initial stroke. We combine the ranks using Borda count and pick
the highest ranked eye for the following steps. Using this we see an improvement in the generation
quality for Creative Birds, but not Creative Creatures.

Since humans in our data collection process were asked to add at least five parts to the sketch, we
employ the same rule for our part selector – only after five parts have been added, the selector is
given the option to predict stop. Once a part has been drawn, that part can not be selected again.
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G DETAILS OF MODEL TRAINED TO COMPUTE FID AND DIVERSITY SCORES

FID computes the similarity between two image distributions. It first embeds the images into a
feature space defined by a trained Inception model (Szegedy et al., 2016). It then fits a multivariate
Gaussian to the feature vectors from both sets of images. Finally, it computes the Fréchet distance
between the two Gaussians.

To this end, we trained an Inception model on the QuickDraw3.8M dataset (Xu et al., 2020). Specif-
ically, we preprocess the dataset based on the instructions in the paper (Xu et al., 2020) and render
each vector sketch into a 64 × 64 raster image. The dataset contains 345 classes and each class
contains 9, 000 training samples, 1, 000 validation samples, and 1, 000 test samples. We train the
Inception model with the RMSprop optimizer (Tieleman & Hinton, 2017) for 50 epochs. We use an
initial learning rate of 0.045 with an exponential decay at a rate 0.98 after every epoch. The trained
model achieved a reasonable test accuracy 76.42% ( state-of-the-art accuracy is 80.51% reported in
SketchMate (Xu et al., 2020) using 224× 224 images).

Generation diversity calculates the average pairwise Euclidean distance between the features calcu-
lated for sketches with a trained model to reflect the diversity of the generation. To be consistent,
we use the same Inception model trained on QuickDraw3.8M to calculate these features.

H PROPOSED METRICS

Here we provide more details about the the characteristic score (CS) and semantic diversity score
(SDS) metrics introduced in Section 5.1. We first construct the label sets B and C which include
the labels from the 345 QuickDraw classes that represent a bird or creature. The details of the two
sets can be found below. Then for the Creative Birds and Creative Creatures datasets, we define
the characteristic score as the percentage of the time a generated sketch is classified as a label in B
and C respectively. The characteristic score gives us a basic understanding of the generation quality,
indicating whether they are recognizable as the relevant concepts (birds and creatures) we used to
create the dataset. We define the semantic diversity score as follows:

SDS = pC
∑
l∈C

− pl
pC

log
pl
pC

= −
∑
l∈C

pl log
pl
pC
,

where pl represents the average probability that a sketch in the generation collection is classified as
label l, and pC represents the average probability that a generated sketch is classified as a creature
i.e., pC =

∑
l∈C pl. The intuition is similar to Inception Score (IS) (Salimans et al., 2016). Except

that SDS does not penalize a sketch for receiving a high probability for more than one label. In fact,
a sketch that looks like a combination of two creatures is probably quite creative! Such examples
are shown in Figure 6 in the paper. Thus, in SDS we only look at the sum of the label distribution of
the generation collection to capture two aspects of creativity: Across generations 1) the distribution
should have a high variety across creature categories (measured by the entropy of the marginal
creature distribution) and 2) the distribution should have the most mass on creature categories.

The bird label set B and creature label set C from the QuickDraw categories are as follows:

B = [bird, duck, flamingo, parrot]

C = [ant, bear, bee, bird, butterfly, camel, cat, cow, crab, crocodile, dog, dolphin, duck, elephant,
fish, flamingo, frog, giraffe, hedgehog, horse, kangaroo, lion, lobster, monkey, mosquito, mouse,
octopus, owl, panda, parrot, penguin, pig, rabbit, raccoon, rhinoceros, scorpion, sea turtle, shark,
sheep, snail, snake, spider, squirrel, swan, tiger, whale, zebra]

I MULTIMODAL PART GENERATION

Conditional GANs tend to ignore the input noise and base their generations completely on the condi-
tional information (Isola et al., 2017). We encounter similar challenges in our approach, especially
for the parts later in the order when the conditional information is strong. For the eye generator,
when the conditional signal is weak (just the initial stroke), the model responds to the noise well.
We demonstrate this with the style mixing experiment conducted in the StyleGAN paper (Karras
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Random translation Part generation Reverse translation

Figure 17: Conditioning perturbation trick illustration.

(a) Bird eye generations with mixed
styles.

(b) Bird tail generation without
conditioning perturbation.

(c) Bird tail generation with condi-
tioning perturbation.

Figure 18: We show various parts generated by our model when conditioned on different noise
vectors. The eye generator naturally responds to the noise – we see intuitive style mixing results
in (a). For the other parts, we show that diverse parts can be generated (different appearances and
positions) using our conditioning perturbation trick. See text for details.

et al., 2019). Specifically, given the same initial strokes, we sample two random noise vectors and
feed them into different layers of the generator. In Figure 18a, each row has the same input noise for
the lower generator layers and each column has the input same noise for the higher generator layers.
We see that the lower-layer noise controls the position of the generated eyes while the higher-layer
controls the size and shape of the eyes.

However, for generators of later parts, the generation tends to have little variation given different
noise vectors as illustrated by the tail generation results in Figure 18b. Although the generator does
not respond to the noise, we find that it is very sensitive to the conditional information. Specifically,
if we slightly translate the input partial sketch, the generator generates a part with different appear-
ance and positions. As shown in the Figure 17, we randomly translate the input partial sketch, feed
them to the generator, and then translate the generated parts back to the correct positions. Figure 18c
shows different generations for the tail given the same input partial sketch. We call this trick condi-
tioning perturbation. This trick is motivated by the formulation in SketchRNN (Ha & Eck, 2018)
where GMM parameters instead of deterministic points are used as the RNN output as a mechanism
to introduce variation.

J GENERATIVE V.S. RETRIEVAL

In addition to the generation-based methods (StyleGAN2, SketchRNN), that we compared to in the
main paper, we now consider a strong retrieval-based baseline. Specifically, we hold 5% of the
sketches in our datasets to use as query sketches. We extract the first N parts from these sketches
and use them to match against partial sketches containing N parts from the remaining 95% of the
dataset using the average Chamfer distance across parts. The rest of the matched sketch is returned
to complete the query partial sketch.
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A limitation of this approach is that the quality of the match will deteriorate if the application re-
quires multiple completions of the same query partial sketch (e.g., to present as options to a human-
in-the-loop). A retrieval approach will have to retrieve farther neighbors to find more completions.
A generative approach can simply generate multiple samples as completions, with no systematic
degradation in quality across samples as shown in Figure 18c.

We evaluate this via human studies, we hypothesize a scenario where 32 candidate completions
are desired. We compare the 32nd retrieved completion with a “32nd” sample from DoodlerGAN
(in our approach there is no natural ordering to the generations), and ask human subjects in which
sketch the query is better integrated. We experiment with 200 queries containing 2 and 3 parts each.
DoodlerGAN is statistically significantly better than the retrieval approach, preferred 54% and 55%
of the times with 2- and 3-part queries respectively.

Recall that the retrieval approach, by definition, reproduces human sketches as completions. On
the other hand, we saw in Figure 16 that DoodlerGAN generates sketches that are different from
training data, making it conceptually a more creative approach.

K ABLATION STUDY

These ablation studies demonstrate the effectiveness of different design choices in DoodlerGAN.

Part generator: Figure 19a shows sketches generated if the entire partial sketch is used as the
conditioning information without the part-wise channel representation. We see that it is difficult for
the part generator to learn the spatial relationships between different parts. Notice that the head (red
part) often does not include the eye inside it. Out of a sample of 512 head generations, we find
that 57.4% of the time the generated head does not surround the eye when not using part channels,
compared to 88.7% of the time with part channels. Figure 19b shows generations without the U-Net
architecture, directly concatenating the encoder output with the noise vector instead. We see that
the quality of the part composition is much worse than when using the U-Net (Figure 19c) which
encodes the spatial information of the conditioning sketch in the feature map.

(a) Without part channels. (b) Without U-Net connections. (c) Full model.

Figure 19: Ablation studies on the part generator.

Part selector: Figure 20 shows sketches generated if instead of using a part selector, we generate
parts in a fixed order (the most common order in the dataset). We find that the use of a part selector
allows the model to use the initial stroke much more effectively. Consider the two sketches with red
boundaries shown in Figure 20a. They have the same initial strokes. When using a part selector,
a head is not generated and the initial stroke is used as the head. Whereas the generation with a
fixed order still generates the head and this error propagates to subsequent part generations. Similar
observation can be made for beak generation in the two sketches with blue boundaries shown in
Figure 20a. Furthermore, Part selector plays an important role in choosing appropriate part lists and
stopping the generation in an appropriate step. For instance, it is not reasonable to generate all 16
part in every creature sketch, which greatly undermines the quality as shown in Figure 20b. A part
selector is also important if one wants to implement our method in a human-in-the-loop scenario
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where the model would need to identify what the human has already drawn, and then decide what
to draw next.

(a) Creative Birds. (b) Creative Creatures.

Figure 20: Ablation study on the part selector.

L CONVERTING GENERATED SKETCHES TO VECTOR IMAGES

DoodlerGAN generates sketches in raster image format. One disadvantage of raster images is that
their resolution can not be easily increased without introducing artifacts. The benefit of vector
images is that they can be rendered at arbitrary resolutions. We convert raster images of sketches to
vector representations (SVGs) using the open source tool mkbitmap, which relies on the potrace
program ((Selinger, 2003)) based on a polygon tracing algorithm. The parameters used are shown
in Table 4. Examples conversions are shown in Figure 21. Notice that in addition to the change in
format, the conversion also introduces a different aesthetic to the sketch.

We conduct a human study to evaluate this aesthetic. We found that subjects prefer the new aesthetic
96% of the times! Note that this is while keeping the resolution of the two aesthetics the same. We
hypothesize that this may be because the converted images do not have any blurry artifacts and the
strokes are smoother. For completeness, in Figure 21 we also show a couple of these converted
sketches at a higher resolution.

Table 4: mkbitmap & potrace parameters

Parameters threshold grey value bandpass filter radius scale interpolation backend path type

values 0.2 4 2 cubic svg group
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(a) Raster images (top) and corresponding converted vector images (bottom) on Creative Birds dataset.

(b) Raster images (top) and corresponding converted vector images (bottom) on Creative Creatures dataset.

(c) Cherry-picked generations from DoodlerGAN converted to a vectorized representation and displayed at
higher resolution.

Figure 21: Converting DoodlerGAN’s sketches from raster images to vector representations
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