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Abstract

How do recent vision-language pre-trained
models compare against language-specific pre-
trained models on common linguistic tasks? In
this paper, we assess this in a probing setting.
Our results suggest that different multimodal
pre-training strategies entail distinct strengths.
Although pre-trained language models gener-
ally fare better, pre-trained vision-language
models can obtain higher average scores in cer-
tain scenarios (e.g., CLIP is 2% higher than
BERT on SST2). We also analyze and illus-
trate that the different competences in different
model layers cause such performance differ-
ences. Our work then proposes fine-tuning
techniques to improve the abilities of vision-
language models on linguistic tasks.

1 Introduction

A number of pre-trained multimodal models have
recently come to prominence, e.g. OpenAl’s CLIP
(Radford et al., 2021) and VisualBERT (Li et al.,
2019). The underlying motivation is the intuition
that grounded learning from cross-modal pairs of
data brings unique advantages (Tan and Bansal,
2020). In particular, such grounding may entail a
better acquisition of essential concepts in natural
language, such as colors, shapes, and emotions.
Additionally, similar to the common paradigm of
pre-training large models and then applying them
on related downstream tasks (Qiu et al., 2020), a
future direction could be to pre-train large general-
purpose models on multimodal domains, and then
adopt them to facilitate both multimodal and pure
unimodal applications.

However, thus far, the general linguistic capabil-
ities of current pretrained vision-language models
have not been studied extensively. In this paper,
we consider prominent pre-trained vision-language
models (Radford et al., 2021; Tan and Bansal, 2019;
Li et al., 2019) and shed light on the question of
whether the visual-language grounding helps these

pre-trained models better understand linguistic con-
cepts and contributes to the performance on lan-
guage understanding benchmarks. We are also in-
terested in how and why these pre-trained vision-
language models (PVLMs) may exhibit different
strengths than pre-trained language models (PLMs).
Specifically, we fine-tune PVLMs under few-shot
settings (e.g., ' = 32 data points) for each unique
label over tasks in the GLUE benchmark (Wang
et al., 2018). Our findings suggest that, somewhat
unsurprisingly, current PVLMs still tend to under-
perform in comparison with PLMs, likely due to
noise introduced during the domain transfer pro-
cess. However, we also observe that under certain
conditions, the PVLMs exhibit unique strengths
compared to language models, e.g., CLIP (Rad-
ford et al., 2021) has strong single sentence clas-
sification performance (SST2), and VisualBERT
(Li et al., 2019) is more proficient in solving sen-
tence relationship tasks than BERT (Devlin et al.,
2019) (MRPC, QNLI, QQP), despite both having
the same structure and parameter size.

Through experiments and in-depth analysis, we
confirm that PVLMs pre-trained weights indeed
contribute to their performance on linguistic tasks,
but that with ample training data their performance
ceiling is lower than for pure language models. We
show that the differences between VisualBERT and
BERT can be attributed to a competence discrep-
ancy in particular task-specific layers. Motivated
by this, we investigate a fine-tuning technique that
trains particular task-specific layers, observing an
improvement of 8% on SST2.

2 Related Work

Pre-Trained Models. PLMs have brought sub-
stantial gains across numerous linguistic tasks (De-
vlin et al., 2019; Brown et al., 2020; Radford
and Narasimhan, 2018). Inspired by the strong
results from linguistic pre-training, cross-modal
pre-training has been proposed in the multimodal



realm. PVLMs, such as VisualBERT (Li et al.,
2019), VIIBERT (Lu et al., 2019), and LXMERT
(Tan and Bansal, 2019) that adopt similar pre-
training strategies as language models were pro-
posed, and demonstrated strong capacity over cross-
modality tasks for retrieval and captioning, such as
on MSCOCO (Lin et al., 2014), Flickr30k (Plum-
mer et al., 2015), and VQA (Antol et al., 2015).
Moreover, some multimodal studies in turn demon-
strate that learning grounded language from visual
information is beneficial for a model’s understand-
ing of natural language (Tan and Bansal, 2020;
Tang et al., 2021).

Pre-Trained Models Probing. Numerous stud-
ies have sought to assess what and how PLMs learn
in their text-driven pre-training process (Rogers
et al., 2020). Beyond reflecting linguistic struc-
tures and semantics (Hewitt and Manning, 2019;
Tenney et al., 2019) as well as world knowledge
(Li et al., 2021), some studies show that PLMs can
generalize to similar tasks (Hendrycks et al., 2020).
Besides probing PLMs for linguistic understanding,
there are works investigating multimodal models
(Cao et al., 2020) on their cross-modal grounding
abilities and probing PLMs about visual knowledge
(Ilharco et al., 2021). The study most similar to
ours is that of Yun et al. (2021), which evaluates
PVLMs with regard to lexical grounding.

Rather than assessing the grounding behavior in
commonsense tasks, our goal is to shed light on and
explain the linguistic understanding capabilities ex-
hibited by PVLMs. We find that differences among
models are due to their competency at different lay-
ers for different tasks, and accordingly propose a
custom fine-tuning technique for PVLMs.

3 Probing Assessment

3.1 Methodology

Our approach to evaluate pre-trained multimodal
models will follow the standard probing methodol-
ogy for language models (Adi et al., 2016; Conneau
et al., 2018; Hewitt and Liang, 2019).

Let h* represents the representation produced
by model for a given input z, and h{, 5, denotes
the class-level representation, typically for the cus-
tom class-level token [CLS]. We apply a linear
classifier W € RN where d is the dimension of
model features and NV is the number of class labels,
with a Softmax activation function, and maximize
the probability of the expected label y by optimiz-

ing model parameter 6:

A1g max p(y | Whicpg)) (1)

Training. We fine-tune and evaluate PVLMs and
PLMs over the GLUE benchmark (Wang et al.,
2018). Table 4 gives an overview of the models
considered in the experiments. To comprehensively
evaluate the models, we adopt different fine-tuning
strategies, such as fine-tuning all parameters, freez-
ing the pre-trained weights and then tuning the
classifier, and adopting BitFit (Ben-Zaken et al.,
2021) in Appendix E. Training details are given in
Appendix B.

3.2 Main Results

3.2.1 Full Parameter Fine-tuning

Table 1 shows the results of fine-tuning the en-
tire models with few-shot data (K = 32 samples).
Such few-shot settings prevent the model from ab-
sorbing extra knowledge from the probe’s training
data and thus requires models to rely extensively on
the knowledge acquired during pre-training. Over-
all, PLMs obtain superior results in comparison
with PVLMs, and among the considered models,
RoBERTa achieves the best results on average.

However, we also observe that VisualBERT
shows small improvements over BERT and Dis-
tilBERT, despite having the same parameter count
and structure as BERT. Specifically, VisualBERT
exhibits lower performance than BERT on SST2
and COLA, and better results on most multi-
sentence corpora. We hypothesize that Visu-
alBERT’s pre-training, which requires inferring
the relationship between images and texts, may
strengthen its reasoning capacity.

CLIP and LXMERT obtain relatively lower
scores, and CLIP performs worse over most sen-
tence pair tasks, but we can observe that CLIP has
more robust performance on SST2 even compared
with PLMs like BERT and DistilBERT. We conjec-
ture that this could be due to CLIP’s pre-training,
as the separate text encoder does not require in-
formation from images. Thus, the learning capac-
ity can easily transfer to sentence classification
tasks, unlike VisualBERT. However, such separate
encoder setting also impedes the model’s cross-
sentence ability because the ability can not be di-
rectly learned from image-text pairs. For LXMERT,
the results suggest that the model faces more pre-
training and fine-tuning mismatch issues, leading
to lower scores.



Models SST2 COLA MNLI MRPC QNLI QQP RTE WNLI STSB AVG
Pre-trained Language Models
BERT 0.771 0.181 0438 0.569 0.574 0.642 0.517 0471 0.729 0.544
RoBERTa 0.848 0.157 0494 0.680 0.702 0.741 0.531 0.448 0.732 0.593
DistilBERT 0.761 0.066 0.418 0.578 0.576 0.650 0.523 0.504 0.697 0.530
Pre-trained Vision-Language Models
CLIP 0.798 0.047 0.345 0592 0.543 0.620 0.514 0471 0437 0485
VisualBERT 0.647 0.078 0.430 0.650 0.623 0.696 0.557 0.526 0.701 0.546
LXMERT 0.569 -0.014 0.348 0.515 0.530 0.534 0495 0491 0.161 0.409

Table 1: Results on GLUE in few-shot scenario, reporting average scores over 3 different runs. Bold denotes the
best results, and underlining emphasizes the second best results.

Models SST2 QQP MNLI QNLI AVG
BERT 0.847 0.746 0.458 0.571 0.656
RoBERTa 0.798 0.719 0.407 0.602 0.632
DistilBERT  0.808 0.739 0437 0.596 0.645
CLIP 0.826 0.705 0.385 0.531 0.612
VisualBERT 0.773 0.756 0.504 0.667 0.675
LXMERT 0.607 0.668 0.324 0.538 0.534

Table 2: Fine-tuning with frozen pre-training weights,
for K = 1000. Bold denotes the best results, and
underlining highlights the second best results.

Models SST2 QQP MNLI AVG
BERT 0.899 0.793 0.707 0.800
RoBERTa  0.924 0.829 0.820 0.858
DistilBERT  0.897 0.781 0.689  0.789
CLIP 0.893 0.745 0.561 0.733
LXMERT 0793 0.687 0455 0.645
VisualBERT 0.877 0.780 0.650 0.769

Table 3: Full training () = 2000). Bold / underlining
denote best / second best results, respectively.

3.2.2 Parameter Frozen Fine-tuning

Table 2 provides the results of fine-tuning mod-
els while freezing pre-trained parameters and only
training a classifier at the top of models with train-
ing data K = 1000 and learning rate 0.001. In
this setting, the pre-trained knowledge and layers
remain unaltered and the training data can only af-
fect the final classification probe layer. We find
that VisualBERT achieves the best average results
among all models, including PLMs, with a sizeable
gain on SST?2 and a noticeable margin on further
three tasks. The variance of average scores among
different models shrinks compared with the results
in Table 1.

4 Discussion and Analysis

4.1 Performance Upper Bound

In previous experiments, we imposed various con-
straints on the fine-tuning to investigate the pre-
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Figure 1: CLIP (left) and LXMERT (right) with differ-
ent tasks.

trained knowledge. To evaluate the limits of various
models, we fine-tune models with a large data size
of K = 2000 (5 epochs, batch size 16). The results
in Table 3 show that PLMs have stronger learning
capacity and attain better results. Although Visual-
BERT has better cross-sentence knowledge under
few-shot settings, BERT has the capacity to learn
more task-specific knowledge when sufficient train-
ing data is provisioned. Moreover, the gap between
VisualBERT to CLIP and BERT is reduced. Ap-
pendix 9 shows that increased data sizes benefit all
models.

4.2 Pre-trained Weights

How much do the pre-trained weights in PVLMs
really contribute to the performance? Consider-
ing that there is a distribution shift from vision—
language data to linguistic tasks, the pre-trained
weights may not be sufficiently useful. In the
previous experiments, the scores of LXMERT are
consistently low, raising the question whether its
pre-trained weights provide useful knowledge for
linguistic tasks. To answer this question, we com-
pare the pre-trained models with their randomly
initialized versions. Figure 1 demonstrates that
pre-trained weights from vision-language training
indeed contributes to linguistic tasks. However, in
a few cases, e.g., LXMERT on STSB, RTE, and
WNLI, randomly initialized models obtain better
results.



Figure 2: Parameter distance across layers in the best
model (left) and across steps in training (right) on SST2.
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Figure 3: Cosine similarity over fine-tuned and pre-
trained representations on SST2 (left) and QQP (right).
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when fine-tuning on each intermediate representation.

4.3 Assessing Parameter Distance

Another scheme we use to compare PVLMs with
PLMs is (1) the parameter distance between fine-
tuned weights and pre-trained weights by com-
puting >, [wi, — wi|?, where i is the layer, w
denotes fine-tuned weights, wy; are pre-trained
weights, and (2) the cosine similarity between fine-
tuned representations and pre-trained representa-
tions. One might assume bigger distances and
smaller similarity scores correspond to larger do-
main gaps, but we find that PVLMs typically have
bigger distance yet higher similarity scores. Fig-
ure 2 provides an example plotting the distance of
each layer in the best model and across steps, while
comprehensive results are given in Figure 8. Fig-
ure 3 provides the cosine similarity changes. We
observe that most parameter changes occur in top
layers, and the overall distance tends to enlarge as
training proceeds. In Figure 3, VisualBERT has a
higher similarity score, then drops drastically af-
ter 100 steps. BERT and CLIP initially remain
close in terms of the similarity but soon adapt as
training continues. VisualBERT experiences more
parameter changes in Figure 2, both overall and
in individual layers, yet has higher similarity in
Figure 3.

Figure 5: Results of VisualBERT on SST2 when fine-
tuning selected layers. Top: freezing layers < n and
fine-tuning layers > n. Bottom: freezing layers > n
and fine-tuning layers < n.

4.4 Layer Representations

To fully compare models, especially what com-
petencies are required for applications, we adopt
approaches to model truncation (Merchant et al.,
2020). We train classifiers using representations
from intermediate layers rather than the final one.

Figure 4 shows that models perform similarly
when using initial layers, across different tasks such
as SST2 or MRPC, and it decreases when consid-
ering intermediate layers in the middle. However,
the performance diverges when top layers partici-
pate, and models may rely on different layers for
different tasks. For example, on SST2 the diver-
gence between BERT and VisualBERT happens
in layers 8-12, and on SST2 it occurs in layers 6-
9. Models are known to capture different kinds
of downstream knowledge in different layers, and
thus there is a knowledge discrepancy in different
layers. This discrepancy may explain why Visu-
alBERT performs worse on SST2 but better over
sentence relationship tasks in Table 1.

Inspired by this observation, we conducted addi-
tional experiments by fine-tuning only task-specific
layers and freezing other layers. The selection of
task-specific layers is based on the empirical inves-
tigation in Figure 4. We compare it with results
when selecting other layers. Figure 5 reveals that
VisualBERT achieves the best SST2 results (8%
higher than full parameter fine-tuning) when only
tuning layers 8—12, which are the task-specific lay-
ers in Figure 4.

5 Conclusion

In this paper, we employ PVLMs on text-only tasks
and provide a series of experiments to compare
PVLMs with PLMs and analyze their performances.
We find that different PVLMs have different perfor-
mance patterns. But generally, PVLMs tend to have
worse performance and lower performance upper
ceiling. We conjecture that this is because of the
discrepancy at each layer and propose fine-tuning
task-related layers to improve the performance.
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A Overview of Compared Models

Table 4 provides detailed information of the models
considered in the comparison.

B Training Details

Unless stated, the default setting for training is
K = 32 instances, the validation size is 200, and
test size is 500. The batch size is 2, learning rate is
1 x 1075, the total number of training steps is 1000,
and the number of validation steps is 100. We select
the checkpoint with the highest validation scores
for testing. We generate fake image representations
for VisualBERT and LXMERT.

C Faked Image Features

In this additional experiment, we alter generated
image feature settings to evaluate whether these
irrelevant image features necessarily bring noise
and distribution shift that hurts models on language
tasks.

C.1 To Fake or not to Fake

In order to fulfill the input requirements of consid-
ered models, we create image features as needed.
However, we can use certain settings to avoid in-
volving image features. For VisualBERT, this en-
compasses deleting visual position embeddings,
and for LXMERT, we can take the language en-
coder outputs as the inputs to the classifier. Hence,
the models can avoid unnecessary noise and might
be expected to obtain better results. Our findings in
Figure 6 show that excluding image features does
not always bring an improvement. In the left part,
including image features can bring score increases
for LXMERT. We believe that this is because the
models can identify the artificial noise and can
avoid incorporating these signals into further com-
putations.
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Figure 6: Performance over different tasks when in-
cluding image features or not. Left: LXMERT, right:
VisualBERT.

C.2 To Randomize or not to Randomize

We also wish to know whether randomized image
features or constant image features are better for the
models to process. In this experiment, we initialize
the image presentation with different values and
then fine-tune models on SST2 dataset with such
image features. The results in Figure 7 show that
altering the initialization does not affect the results
significantly.
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Figure 7: Performance over SST2 with different ini-
tialized image feature values. Left: LXMERT, right:
VisualBERT.

C.3 To Tune or not to Tune

We next study what happens if we allow models to
change the image features during training. Could
this make the image features more suitable for the
models? In Figure 7, we observe that allowing
changes to the features does not bring any benefit
to a model’s understanding of sentences.

Overall, the studies in Sections C.1, C.2, and C.3
show that incorporating and changing synthesized
image features typically does not affect PVLMs
significantly. The experiments thus corroborate the
feasibility of applying PVLMs on language tasks
without facing vast domain adoption challenges
and more generally lends further credence to the
idea of applying multimodal models on individual
modalities.

D Parameter Changes

Figure 8 provides comprehensive experiments on
parameter changes of VisualBERT and BERT.

E BitFit Tuning

BitFit (Ben-Zaken et al., 2021) is a sample-efficient
fine-tuning approach that only trains bias terms.
Hence, only 0.08% of parameters are trained to
control the use of the pre-trained knowledge, but
the pre-trained knowledge itself remains largely un-
changed. We can think of this as a manner of prob-
ing whether these models directly learned knowl-
edge valuable for downstream tasks.



Category Models Layer Size Heads Parameter Image
BERT (Lu et al., 2019) 12 768 12 110M N

PLMs RoBERTa (Liu et al., 2019) 12 1024 12 125M N
DistilBERT (Sanh et al., 2019) 6 768 12 66M N
CLIP (Radford et al., 2021) 12 512 8 38M N

PVLMs LXMERT (Tan and Bansal, 2019) 14 768 12 123M Y
VisualBERT (Li et al., 2019) 12 768 12 110M  Y/N

Table 4: Overview of Models used in experiments. Layer: hidden layers, Hidden Size: representation size, Heads:
self-attention heads, Parameter: total parameter, Image: requiring image input or not. N represents no requiring, Y
requires images, and Y/N denotes the model can switch from including image inputs or not.
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Figure 8: Results for parameter and similarity changes across layer (top) and training steps (bottom).

Models SST2 QQP MNLI QNLI AVG
BERT 0.88 0.766 0.612 0.759 0.754
RoBERTa 0.9 0.794 0.761 0.800 0.814
DistilBERT  0.859 0.778 0.615 0.737 0.747
CLIP 0.894 0.758 0.506 0.682 0.710
LXMERT 0.690 0.678 0370 0.559 0.574
VisualBERT 0.861 0.785 0.650 0.765 0.765

Table 5: Bitfit tuning with K = 1000. Bold denotes the
best results, and underline emphasizes the second best
results.
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Figure 9: Results of models on MNLI (left) and on
SST2 (right) with different K.

In this experiment, we finetuned models with

Models SST2 QQP MNLI QNLI AVG
BERT 0.858 0.647 0.485 0.547 0.634
RoBERTa 0.852 0.746 0.439 0.578 0.654
DistilBERT 0.818 0.667 0.415 0.560 0.615
CLIP 0.806 0.659 0.329 0.523 0.579
LXMERT 0.578 0.625 0.339 0.525 0.517
VisualBERT 0.729 0.667 0.502 0.633 0.633

Table 6: Bitfit tuning with K = 32. Bold denotes the
best results, and underline emphasizes the second best
results.

two different K values — 1000 and 32, as we want
to investigate the influence of the training data size.
Results are given in Tables 5 and 6. Similar to the
corresponding results in Section 3.2.1, VisualBERT
tends to show a strong sentence relationship reason-
ing capacity across different K, VisualBERT can
always achieve better results over MNLI, QQP, and
QNLI in comparison with BERT and DistilBERT.
However, RoBERTa can benefits more strongly
from large K. CLIP shows strong results on SST?2,



but still generally underperforms on other tasks.

F The Effect of Training Data Size

In this section, we are interested in what we can
find if we gradually increase the training data size,
especially observing that there is a boost for Vi-
sualBERT on SST?2 in Table 1 and Table 3. Thus,
in these experiments, we gradually consider larger
training data sizes K € {32, 64, 128,256,512}, as
reported in Figure 9.

As expected, an increase in the number data
points benefits all models. Apart from drawing
the same conclusions as in Section 3.2.1, one in-
teresting additional observation is that there is a
jump for VisualBERT on SST2 when the data size
increases from 64 to 128. This might indicate that
VisualBERT can learn knowledge for solving SST2
given sufficient data, but does not capture enough
about this task during pre-training. Thus, on SST2,
all models except LXMERT gradually converge,
while on MNLI, the gap between CLIP and lan-
guage models remains constant.



