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Abstract

How do recent vision-language pre-trained001
models compare against language-specific pre-002
trained models on common linguistic tasks? In003
this paper, we assess this in a probing setting.004
Our results suggest that different multimodal005
pre-training strategies entail distinct strengths.006
Although pre-trained language models gener-007
ally fare better, pre-trained vision-language008
models can obtain higher average scores in cer-009
tain scenarios (e.g., CLIP is 2% higher than010
BERT on SST2). We also analyze and illus-011
trate that the different competences in different012
model layers cause such performance differ-013
ences. Our work then proposes fine-tuning014
techniques to improve the abilities of vision-015
language models on linguistic tasks.016

1 Introduction017

A number of pre-trained multimodal models have018

recently come to prominence, e.g. OpenAI’s CLIP019

(Radford et al., 2021) and VisualBERT (Li et al.,020

2019). The underlying motivation is the intuition021

that grounded learning from cross-modal pairs of022

data brings unique advantages (Tan and Bansal,023

2020). In particular, such grounding may entail a024

better acquisition of essential concepts in natural025

language, such as colors, shapes, and emotions.026

Additionally, similar to the common paradigm of027

pre-training large models and then applying them028

on related downstream tasks (Qiu et al., 2020), a029

future direction could be to pre-train large general-030

purpose models on multimodal domains, and then031

adopt them to facilitate both multimodal and pure032

unimodal applications.033

However, thus far, the general linguistic capabil-034

ities of current pretrained vision-language models035

have not been studied extensively. In this paper,036

we consider prominent pre-trained vision-language037

models (Radford et al., 2021; Tan and Bansal, 2019;038

Li et al., 2019) and shed light on the question of039

whether the visual-language grounding helps these040

pre-trained models better understand linguistic con- 041

cepts and contributes to the performance on lan- 042

guage understanding benchmarks. We are also in- 043

terested in how and why these pre-trained vision- 044

language models (PVLMs) may exhibit different 045

strengths than pre-trained language models (PLMs). 046

Specifically, we fine-tune PVLMs under few-shot 047

settings (e.g., K = 32 data points) for each unique 048

label over tasks in the GLUE benchmark (Wang 049

et al., 2018). Our findings suggest that, somewhat 050

unsurprisingly, current PVLMs still tend to under- 051

perform in comparison with PLMs, likely due to 052

noise introduced during the domain transfer pro- 053

cess. However, we also observe that under certain 054

conditions, the PVLMs exhibit unique strengths 055

compared to language models, e.g., CLIP (Rad- 056

ford et al., 2021) has strong single sentence clas- 057

sification performance (SST2), and VisualBERT 058

(Li et al., 2019) is more proficient in solving sen- 059

tence relationship tasks than BERT (Devlin et al., 060

2019) (MRPC, QNLI, QQP), despite both having 061

the same structure and parameter size. 062

Through experiments and in-depth analysis, we 063

confirm that PVLMs pre-trained weights indeed 064

contribute to their performance on linguistic tasks, 065

but that with ample training data their performance 066

ceiling is lower than for pure language models. We 067

show that the differences between VisualBERT and 068

BERT can be attributed to a competence discrep- 069

ancy in particular task-specific layers. Motivated 070

by this, we investigate a fine-tuning technique that 071

trains particular task-specific layers, observing an 072

improvement of 8% on SST2. 073

2 Related Work 074

Pre-Trained Models. PLMs have brought sub- 075

stantial gains across numerous linguistic tasks (De- 076

vlin et al., 2019; Brown et al., 2020; Radford 077

and Narasimhan, 2018). Inspired by the strong 078

results from linguistic pre-training, cross-modal 079

pre-training has been proposed in the multimodal 080
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realm. PVLMs, such as VisualBERT (Li et al.,081

2019), VilBERT (Lu et al., 2019), and LXMERT082

(Tan and Bansal, 2019) that adopt similar pre-083

training strategies as language models were pro-084

posed, and demonstrated strong capacity over cross-085

modality tasks for retrieval and captioning, such as086

on MSCOCO (Lin et al., 2014), Flickr30k (Plum-087

mer et al., 2015), and VQA (Antol et al., 2015).088

Moreover, some multimodal studies in turn demon-089

strate that learning grounded language from visual090

information is beneficial for a model’s understand-091

ing of natural language (Tan and Bansal, 2020;092

Tang et al., 2021).093

Pre-Trained Models Probing. Numerous stud-094

ies have sought to assess what and how PLMs learn095

in their text-driven pre-training process (Rogers096

et al., 2020). Beyond reflecting linguistic struc-097

tures and semantics (Hewitt and Manning, 2019;098

Tenney et al., 2019) as well as world knowledge099

(Li et al., 2021), some studies show that PLMs can100

generalize to similar tasks (Hendrycks et al., 2020).101

Besides probing PLMs for linguistic understanding,102

there are works investigating multimodal models103

(Cao et al., 2020) on their cross-modal grounding104

abilities and probing PLMs about visual knowledge105

(Ilharco et al., 2021). The study most similar to106

ours is that of Yun et al. (2021), which evaluates107

PVLMs with regard to lexical grounding.108

Rather than assessing the grounding behavior in109

commonsense tasks, our goal is to shed light on and110

explain the linguistic understanding capabilities ex-111

hibited by PVLMs. We find that differences among112

models are due to their competency at different lay-113

ers for different tasks, and accordingly propose a114

custom fine-tuning technique for PVLMs.115

3 Probing Assessment116

3.1 Methodology117

Our approach to evaluate pre-trained multimodal118

models will follow the standard probing methodol-119

ogy for language models (Adi et al., 2016; Conneau120

et al., 2018; Hewitt and Liang, 2019).121

Let hx represents the representation produced122

by model for a given input x, and hx
[CLS] denotes123

the class-level representation, typically for the cus-124

tom class-level token [CLS]. We apply a linear125

classifier W ∈ Rd×N , where d is the dimension of126

model features and N is the number of class labels,127

with a Softmax activation function, and maximize128

the probability of the expected label y by optimiz-129

ing model parameter θ: 130

argmax
θ

p(y | Whx
[CLS]) (1) 131

Training. We fine-tune and evaluate PVLMs and 132

PLMs over the GLUE benchmark (Wang et al., 133

2018). Table 4 gives an overview of the models 134

considered in the experiments. To comprehensively 135

evaluate the models, we adopt different fine-tuning 136

strategies, such as fine-tuning all parameters, freez- 137

ing the pre-trained weights and then tuning the 138

classifier, and adopting BitFit (Ben-Zaken et al., 139

2021) in Appendix E. Training details are given in 140

Appendix B. 141

3.2 Main Results 142

3.2.1 Full Parameter Fine-tuning 143

Table 1 shows the results of fine-tuning the en- 144

tire models with few-shot data (K = 32 samples). 145

Such few-shot settings prevent the model from ab- 146

sorbing extra knowledge from the probe’s training 147

data and thus requires models to rely extensively on 148

the knowledge acquired during pre-training. Over- 149

all, PLMs obtain superior results in comparison 150

with PVLMs, and among the considered models, 151

RoBERTa achieves the best results on average. 152

However, we also observe that VisualBERT 153

shows small improvements over BERT and Dis- 154

tilBERT, despite having the same parameter count 155

and structure as BERT. Specifically, VisualBERT 156

exhibits lower performance than BERT on SST2 157

and COLA, and better results on most multi- 158

sentence corpora. We hypothesize that Visu- 159

alBERT’s pre-training, which requires inferring 160

the relationship between images and texts, may 161

strengthen its reasoning capacity. 162

CLIP and LXMERT obtain relatively lower 163

scores, and CLIP performs worse over most sen- 164

tence pair tasks, but we can observe that CLIP has 165

more robust performance on SST2 even compared 166

with PLMs like BERT and DistilBERT. We conjec- 167

ture that this could be due to CLIP’s pre-training, 168

as the separate text encoder does not require in- 169

formation from images. Thus, the learning capac- 170

ity can easily transfer to sentence classification 171

tasks, unlike VisualBERT. However, such separate 172

encoder setting also impedes the model’s cross- 173

sentence ability because the ability can not be di- 174

rectly learned from image-text pairs. For LXMERT, 175

the results suggest that the model faces more pre- 176

training and fine-tuning mismatch issues, leading 177

to lower scores. 178
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Models SST2 COLA MNLI MRPC QNLI QQP RTE WNLI STSB AVG

Pre-trained Language Models

BERT 0.771 0.181 0.438 0.569 0.574 0.642 0.517 0.471 0.729 0.544
RoBERTa 0.848 0.157 0.494 0.680 0.702 0.741 0.531 0.448 0.732 0.593
DistilBERT 0.761 0.066 0.418 0.578 0.576 0.650 0.523 0.504 0.697 0.530

Pre-trained Vision-Language Models

CLIP 0.798 0.047 0.345 0.592 0.543 0.620 0.514 0.471 0.437 0.485
VisualBERT 0.647 0.078 0.430 0.650 0.623 0.696 0.557 0.526 0.701 0.546
LXMERT 0.569 -0.014 0.348 0.515 0.530 0.534 0.495 0.491 0.161 0.409

Table 1: Results on GLUE in few-shot scenario, reporting average scores over 3 different runs. Bold denotes the
best results, and underlining emphasizes the second best results.

Models SST2 QQP MNLI QNLI AVG

BERT 0.847 0.746 0.458 0.571 0.656
RoBERTa 0.798 0.719 0.407 0.602 0.632
DistilBERT 0.808 0.739 0.437 0.596 0.645

CLIP 0.826 0.705 0.385 0.531 0.612
VisualBERT 0.773 0.756 0.504 0.667 0.675
LXMERT 0.607 0.668 0.324 0.538 0.534

Table 2: Fine-tuning with frozen pre-training weights,
for K = 1000. Bold denotes the best results, and
underlining highlights the second best results.

Models SST2 QQP MNLI AVG

BERT 0.899 0.793 0.707 0.800
RoBERTa 0.924 0.829 0.820 0.858
DistilBERT 0.897 0.781 0.689 0.789

CLIP 0.893 0.745 0.561 0.733
LXMERT 0.793 0.687 0.455 0.645
VisualBERT 0.877 0.780 0.650 0.769

Table 3: Full training (K = 2000). Bold / underlining
denote best / second best results, respectively.

3.2.2 Parameter Frozen Fine-tuning179

Table 2 provides the results of fine-tuning mod-180

els while freezing pre-trained parameters and only181

training a classifier at the top of models with train-182

ing data K = 1000 and learning rate 0.001. In183

this setting, the pre-trained knowledge and layers184

remain unaltered and the training data can only af-185

fect the final classification probe layer. We find186

that VisualBERT achieves the best average results187

among all models, including PLMs, with a sizeable188

gain on SST2 and a noticeable margin on further189

three tasks. The variance of average scores among190

different models shrinks compared with the results191

in Table 1.192

4 Discussion and Analysis193

4.1 Performance Upper Bound194

In previous experiments, we imposed various con-195

straints on the fine-tuning to investigate the pre-196

Figure 1: CLIP (left) and LXMERT (right) with differ-
ent tasks.

trained knowledge. To evaluate the limits of various 197

models, we fine-tune models with a large data size 198

of K = 2000 (5 epochs, batch size 16). The results 199

in Table 3 show that PLMs have stronger learning 200

capacity and attain better results. Although Visual- 201

BERT has better cross-sentence knowledge under 202

few-shot settings, BERT has the capacity to learn 203

more task-specific knowledge when sufficient train- 204

ing data is provisioned. Moreover, the gap between 205

VisualBERT to CLIP and BERT is reduced. Ap- 206

pendix 9 shows that increased data sizes benefit all 207

models. 208

4.2 Pre-trained Weights 209

How much do the pre-trained weights in PVLMs 210

really contribute to the performance? Consider- 211

ing that there is a distribution shift from vision– 212

language data to linguistic tasks, the pre-trained 213

weights may not be sufficiently useful. In the 214

previous experiments, the scores of LXMERT are 215

consistently low, raising the question whether its 216

pre-trained weights provide useful knowledge for 217

linguistic tasks. To answer this question, we com- 218

pare the pre-trained models with their randomly 219

initialized versions. Figure 1 demonstrates that 220

pre-trained weights from vision-language training 221

indeed contributes to linguistic tasks. However, in 222

a few cases, e.g., LXMERT on STSB, RTE, and 223

WNLI, randomly initialized models obtain better 224

results. 225
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Figure 2: Parameter distance across layers in the best
model (left) and across steps in training (right) on SST2.

Figure 3: Cosine similarity over fine-tuned and pre-
trained representations on SST2 (left) and QQP (right).

Figure 4: Results on SST2 (left) and MRPC (right)
when fine-tuning on each intermediate representation.

4.3 Assessing Parameter Distance226

Another scheme we use to compare PVLMs with227

PLMs is (1) the parameter distance between fine-228

tuned weights and pre-trained weights by com-229

puting
∑

i |wi
ft − wi

pt|2, where i is the layer, wft230

denotes fine-tuned weights, wpt are pre-trained231

weights, and (2) the cosine similarity between fine-232

tuned representations and pre-trained representa-233

tions. One might assume bigger distances and234

smaller similarity scores correspond to larger do-235

main gaps, but we find that PVLMs typically have236

bigger distance yet higher similarity scores. Fig-237

ure 2 provides an example plotting the distance of238

each layer in the best model and across steps, while239

comprehensive results are given in Figure 8. Fig-240

ure 3 provides the cosine similarity changes. We241

observe that most parameter changes occur in top242

layers, and the overall distance tends to enlarge as243

training proceeds. In Figure 3, VisualBERT has a244

higher similarity score, then drops drastically af-245

ter 100 steps. BERT and CLIP initially remain246

close in terms of the similarity but soon adapt as247

training continues. VisualBERT experiences more248

parameter changes in Figure 2, both overall and249

in individual layers, yet has higher similarity in250

Figure 3.251

Figure 5: Results of VisualBERT on SST2 when fine-
tuning selected layers. Top: freezing layers < n and
fine-tuning layers ≥ n. Bottom: freezing layers > n
and fine-tuning layers ≤ n.

4.4 Layer Representations 252

To fully compare models, especially what com- 253

petencies are required for applications, we adopt 254

approaches to model truncation (Merchant et al., 255

2020). We train classifiers using representations 256

from intermediate layers rather than the final one. 257

Figure 4 shows that models perform similarly 258

when using initial layers, across different tasks such 259

as SST2 or MRPC, and it decreases when consid- 260

ering intermediate layers in the middle. However, 261

the performance diverges when top layers partici- 262

pate, and models may rely on different layers for 263

different tasks. For example, on SST2 the diver- 264

gence between BERT and VisualBERT happens 265

in layers 8-12, and on SST2 it occurs in layers 6- 266

9. Models are known to capture different kinds 267

of downstream knowledge in different layers, and 268

thus there is a knowledge discrepancy in different 269

layers. This discrepancy may explain why Visu- 270

alBERT performs worse on SST2 but better over 271

sentence relationship tasks in Table 1. 272

Inspired by this observation, we conducted addi- 273

tional experiments by fine-tuning only task-specific 274

layers and freezing other layers. The selection of 275

task-specific layers is based on the empirical inves- 276

tigation in Figure 4. We compare it with results 277

when selecting other layers. Figure 5 reveals that 278

VisualBERT achieves the best SST2 results (8% 279

higher than full parameter fine-tuning) when only 280

tuning layers 8–12, which are the task-specific lay- 281

ers in Figure 4. 282

5 Conclusion 283

In this paper, we employ PVLMs on text-only tasks 284

and provide a series of experiments to compare 285

PVLMs with PLMs and analyze their performances. 286

We find that different PVLMs have different perfor- 287

mance patterns. But generally, PVLMs tend to have 288

worse performance and lower performance upper 289

ceiling. We conjecture that this is because of the 290

discrepancy at each layer and propose fine-tuning 291

task-related layers to improve the performance. 292
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A Overview of Compared Models445

Table 4 provides detailed information of the models446

considered in the comparison.447

B Training Details448

Unless stated, the default setting for training is449

K = 32 instances, the validation size is 200, and450

test size is 500. The batch size is 2, learning rate is451

1×10−5, the total number of training steps is 1000,452

and the number of validation steps is 100. We select453

the checkpoint with the highest validation scores454

for testing. We generate fake image representations455

for VisualBERT and LXMERT.456

C Faked Image Features457

In this additional experiment, we alter generated458

image feature settings to evaluate whether these459

irrelevant image features necessarily bring noise460

and distribution shift that hurts models on language461

tasks.462

C.1 To Fake or not to Fake463

In order to fulfill the input requirements of consid-464

ered models, we create image features as needed.465

However, we can use certain settings to avoid in-466

volving image features. For VisualBERT, this en-467

compasses deleting visual position embeddings,468

and for LXMERT, we can take the language en-469

coder outputs as the inputs to the classifier. Hence,470

the models can avoid unnecessary noise and might471

be expected to obtain better results. Our findings in472

Figure 6 show that excluding image features does473

not always bring an improvement. In the left part,474

including image features can bring score increases475

for LXMERT. We believe that this is because the476

models can identify the artificial noise and can477

avoid incorporating these signals into further com-478

putations.479

Figure 6: Performance over different tasks when in-
cluding image features or not. Left: LXMERT, right:
VisualBERT.

C.2 To Randomize or not to Randomize 480

We also wish to know whether randomized image 481

features or constant image features are better for the 482

models to process. In this experiment, we initialize 483

the image presentation with different values and 484

then fine-tune models on SST2 dataset with such 485

image features. The results in Figure 7 show that 486

altering the initialization does not affect the results 487

significantly. 488

Figure 7: Performance over SST2 with different ini-
tialized image feature values. Left: LXMERT, right:
VisualBERT.

C.3 To Tune or not to Tune 489

We next study what happens if we allow models to 490

change the image features during training. Could 491

this make the image features more suitable for the 492

models? In Figure 7, we observe that allowing 493

changes to the features does not bring any benefit 494

to a model’s understanding of sentences. 495

Overall, the studies in Sections C.1, C.2, and C.3 496

show that incorporating and changing synthesized 497

image features typically does not affect PVLMs 498

significantly. The experiments thus corroborate the 499

feasibility of applying PVLMs on language tasks 500

without facing vast domain adoption challenges 501

and more generally lends further credence to the 502

idea of applying multimodal models on individual 503

modalities. 504

D Parameter Changes 505

Figure 8 provides comprehensive experiments on 506

parameter changes of VisualBERT and BERT. 507

E BitFit Tuning 508

BitFit (Ben-Zaken et al., 2021) is a sample-efficient 509

fine-tuning approach that only trains bias terms. 510

Hence, only 0.08% of parameters are trained to 511

control the use of the pre-trained knowledge, but 512

the pre-trained knowledge itself remains largely un- 513

changed. We can think of this as a manner of prob- 514

ing whether these models directly learned knowl- 515

edge valuable for downstream tasks. 516
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Category Models Layer Size Heads Parameter Image

PLMs
BERT (Lu et al., 2019) 12 768 12 110M N
RoBERTa (Liu et al., 2019) 12 1024 12 125M N
DistilBERT (Sanh et al., 2019) 6 768 12 66M N

PVLMs
CLIP (Radford et al., 2021) 12 512 8 38M N
LXMERT (Tan and Bansal, 2019) 14 768 12 123M Y
VisualBERT (Li et al., 2019) 12 768 12 110M Y/N

Table 4: Overview of Models used in experiments. Layer: hidden layers, Hidden Size: representation size, Heads:
self-attention heads, Parameter: total parameter, Image: requiring image input or not. N represents no requiring, Y
requires images, and Y/N denotes the model can switch from including image inputs or not.

(a) SST2 (b) QQP (c) MNLI (d) QNLI

(e) SST2 (f) QQP (g) MNLI (h) QNLI

Figure 8: Results for parameter and similarity changes across layer (top) and training steps (bottom).

Models SST2 QQP MNLI QNLI AVG

BERT 0.88 0.766 0.612 0.759 0.754
RoBERTa 0.9 0.794 0.761 0.800 0.814
DistilBERT 0.859 0.778 0.615 0.737 0.747

CLIP 0.894 0.758 0.506 0.682 0.710
LXMERT 0.690 0.678 0.370 0.559 0.574
VisualBERT 0.861 0.785 0.650 0.765 0.765

Table 5: Bitfit tuning with K = 1000. Bold denotes the
best results, and underline emphasizes the second best
results.

Figure 9: Results of models on MNLI (left) and on
SST2 (right) with different K.

In this experiment, we finetuned models with517

Models SST2 QQP MNLI QNLI AVG

BERT 0.858 0.647 0.485 0.547 0.634
RoBERTa 0.852 0.746 0.439 0.578 0.654
DistilBERT 0.818 0.667 0.415 0.560 0.615

CLIP 0.806 0.659 0.329 0.523 0.579
LXMERT 0.578 0.625 0.339 0.525 0.517
VisualBERT 0.729 0.667 0.502 0.633 0.633

Table 6: Bitfit tuning with K = 32. Bold denotes the
best results, and underline emphasizes the second best
results.

two different K values – 1000 and 32, as we want 518

to investigate the influence of the training data size. 519

Results are given in Tables 5 and 6. Similar to the 520

corresponding results in Section 3.2.1, VisualBERT 521

tends to show a strong sentence relationship reason- 522

ing capacity across different K, VisualBERT can 523

always achieve better results over MNLI, QQP, and 524

QNLI in comparison with BERT and DistilBERT. 525

However, RoBERTa can benefits more strongly 526

from large K. CLIP shows strong results on SST2, 527
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but still generally underperforms on other tasks.528

F The Effect of Training Data Size529

In this section, we are interested in what we can530

find if we gradually increase the training data size,531

especially observing that there is a boost for Vi-532

sualBERT on SST2 in Table 1 and Table 3. Thus,533

in these experiments, we gradually consider larger534

training data sizes K ∈ {32, 64, 128, 256, 512}, as535

reported in Figure 9.536

As expected, an increase in the number data537

points benefits all models. Apart from drawing538

the same conclusions as in Section 3.2.1, one in-539

teresting additional observation is that there is a540

jump for VisualBERT on SST2 when the data size541

increases from 64 to 128. This might indicate that542

VisualBERT can learn knowledge for solving SST2543

given sufficient data, but does not capture enough544

about this task during pre-training. Thus, on SST2,545

all models except LXMERT gradually converge,546

while on MNLI, the gap between CLIP and lan-547

guage models remains constant.548

9


