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Abstract

Gradient-based learning algorithms have an implicit simplicity bias which in effect
can limit the diversity of predictors being sampled by the learning procedure.
This behavior can hinder the transferability of trained models by (i) favoring the
learning of simpler but spurious features — present in the training data but absent
from the test data — and (ii) by only leveraging a small subset of predictive
features. Such an effect is especially magnified when the test distribution does not
exactly match the train distribution—referred to as the Out of Distribution (OOD)
generalization problem. However, given only the training data, it is not always
possible to apriori assess if a given feature is spurious or transferable. Instead,
we advocate for learning an ensemble of models which capture a diverse set of
predictive features. Towards this, we propose a new algorithm D-BAT (Diversity-
By-disAgreement Training), which enforces agreement among the models on the
training data, but disagreement on the OOD data. We show how D-BAT naturally
emerges from the notion of generalized discrepancy, as well as demonstrate in
multiple experiments how the proposed method can mitigate shortcut-learning,
enhance uncertainty and OOD detection, as well as improve transferability. A
more detailed version of our work can be found via the following link: https:
//arxiv.org/abs/2202.04414.

1 Introduction

While gradient-based learning algorithms such as Stochastic Gradient Descent (SGD), are nowadays
ubiquitous in the training of Deep Neural Networks (DNNs), it is well known that the resulting
models are (i) brittle when exposed to small distribution shifts (Beery et al., 2018; Sun et al., 2016;
Amodei et al., 2016), (ii) can easily be fooled by small adversarial perturbations (Szegedy et al.,
2014), (iii) tend to pick up spurious correlations (McCoy et al., 2019; Oakden-Rayner et al., 2020;
Geirhos et al., 2020) — present in the training data but absent from the downstream task — , as well
as (iv) fail to provide adequate uncertainty estimates (Kim et al., 2016; van Amersfoort et al., 2020;
Liu et al., 2021b). Recently those learning algorithms have been investigated for their implicit bias
toward simplicity — known as Simplicity Bias (SB), seen as one of the reasons behind their superior
generalization properties (Arpit et al., 2017; Dziugaite & Roy, 2017). While for deep neural networks,
simpler decision boundaries are often seen as less likely to overfit, Shah et al. (2020); Pezeshki et al.
(2021) demonstrated that the SB can still cause the aforementioned issues. In particular, they show
how the SB can be extreme, compelling predictors to rely only on the simplest feature available,
despite the presence of equally or even more predictive complex features.
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Its effect is greatly increased when we consider the more realistic out of distribution (OOD) setting
(Ben-Tal et al., 2009), in which the source and target distributions are different, known to be a
challenging problem (Sagawa et al., 2020; Krueger et al., 2021). The difference between the two
domains can be categorized into either a distribution shift — e.g. a lack of samples in certain parts of
the data manifold due to limitations of the data collection pipeline —, or as simply having completely
different distributions. In the first case, the SB in its extreme form would increase the chances of
learning to rely on spurious features — shortcuts not generalizing to the target distribution. Classic
manifestations of this in vision applications are when models learn to rely mostly on textures or
backgrounds instead of more complex and likely more generalizable semantic features such as using
shapes (Beery et al., 2018; Ilyas et al., 2019; Geirhos et al., 2020). In the second instance, by
relying only on the simplest feature, and being invariant to more complex ones, the SB would cause
confident predictions (low uncertainty) on completely OOD samples. This even if complex features
are contradicting simpler ones. Which brings us to our goal of deriving a method which can (i) learn
more transferable features, better suited to generalize despite distribution shifts, and (ii) provides
accurate uncertainty estimates also for OOD samples.

We aim to achieve those two objectives through learning an ensemble of diverse predictors
(h1, . . . , hK), with h : X → Y , and K being the ensemble size. Suppose that our training data is
drawn from the distribution D, and Dood is the distribution of OOD data on which we will be tested.
Importantly, D and Dood may have non-overlapping support, and Dood is not known during training.
Our proposed method, D-BAT (Diversity-By-disAgreement Training), relies on the following idea:

Diverse hypotheses should agree on the source distribution D while disagreeing on
the OOD distribution Dood.

Intuitively, a set of hypotheses should agree on what is known i.e. on D, while formulating different
interpretations of what is not known, i.e. onDood. Even if each individual predictor might be wrongly
confident on OOD samples, while predicting different outcomes — the resulting uncertainty of the
ensemble on those samples will be increased. Disagreement on Dood can itself be enough to promote
learning diverse representations of instances of D. In the context of object detection, if one model
h1 is relying on textures only, this model will generate predictions on Dood based on textures, when
enforcing disagreement on Dood, a second model h2 would be discouraged to use textures in order to
disagree with h1 — and consequently look for a different hypothesis to classify instances of D e.g.
using shapes. Once trained, the ensemble can either be used by forming a weighted average of the
probability distribution from each hypothesis, or by tuning the weights on a downstream task.

Contributions. Our results can be summarized as:
• We introduce the D-BAT method to train ensembles of diverse predictors.
• We show how the induced diversity can help to (i) tackle shortcut learning, and (ii) improve

uncertainty estimation and transferability.

2 Related Work

Simplicity bias. Recently Teney et al. (2021) proposed to evade the simplicity bias by adding gradient
orthogonality constrains, not at the output level, but at an intermediary hidden representation obtained
after a shared and fixed encoder. See App. E.1 for a detailed comparison.

OOD generalization. Generalizing to distributions not seen during training is accomplished by two
approaches: robust training, and invariant learning. In the former, the test distribution is assumed
to be within a set of known plausible distributions (say U). Then, robust training minimizes the
loss over the worst possible distribution in U (Ben-Tal et al., 2009). Numerous approaches exist to
defining the set U - see survey by (Rahimian & Mehrotra, 2019). Most recently, Sagawa et al. (2020)
model the set of plausible domains as the convex hull over predefined subgroups of datapoints and
Krueger et al. (2021) extend this by taking affine combinations beyond the convex hull. A different
line of work defines a set of environments and asks that our outputs be ‘invariant’ among the different
environments (Bengio et al., 2013; Arjovsky et al., 2019; Koyama & Yamaguchi, 2020). Prior work in
OOD generalization are often considering datasets where the spurious feature is not fully predictive
in the training distribution (Zhang et al., 2021; Saito et al., 2017; Nam et al., 2020; Liu et al., 2021a),
and fail in our challenging settings of § 4.1, see App. E for a more detailed comparison.
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Uncertainty estimation. DNNs are notoriously unable to provide reliable confidence estimates,
which is impeding the progress of the field in safety critical domains (Begoli et al., 2019), as well as
hurting models interpretability (Kim et al., 2016). To improve the confidence estimates of DNNs,
Gal & Ghahramani (2016) propose to use dropout at inference time, a method referred to as MC-
Dropout. Other popular methods used for uncertainty estimation are Bayesian Neural Networks
(BNNs) (Hernández-Lobato & Adams, 2015) and Gaussian Processes (Rasmussen & Williams, 2005).
All those methods but gaussian processes, were recently shown to fail to adequately provide high
uncertainty estimates on OOD samples away from the boundary decision (van Amersfoort et al.,
2020; Liu et al., 2021b). D-BAT can help to associate high uncertainty to those samples.

3 Diversity through Disagreement

3.1 Motivating D-BAT

Setup. Let us formally define the OOD problem. X is the input space, Y the output space, we define
a domain as a pair of a distribution over X and a labeling function h : X → Y . Given any distribution
D over X , given two labeling functions h1 and h2, given a loss function L : Y ×Y → R+, we define
the expected loss as the expectation: LD(h1, h2) = Ex∼D[L(h1(x), h2(x))].

Now, suppose that the training data is drawn from a source distribution (Ds, hs), but we will be tested
on a different distribution (Dood, hood). While the labelling function hood is unknown, we assume that
we have access to unlabelled samples from Dood. Finally, letH be the set of all labelling functions i.e.
the set of all possible prediction models. And further defineH⋆

s andH⋆
ood to be the optimal labelling

functions on the train and the OOD domains:
H⋆

s := argmin
h∈H

LDs
(h, hs),H⋆

ood := argmin
h∈H

LDood(h, hood).

We assume that there exists an ideal transferable function h⋆ ∈ H⋆
s ∩H⋆

ood. This assumption captures
the reality that the training task and the OOD testing task are closely related to each other. Otherwise,
we would not expect any OOD generalization.

Beyond standard training. Just using the training data, standard training would train a model
hERM ∈ H⋆

s . However, as we discussed in the introduction, if we use gradient descent to find the
ERM solution, then hERM will likely be the simplest model i.e. it will likely pick up spurious
correlations in Ds which are not present in Dood. Thus, the error on OOD data might be very high.
More formally, not knowingH⋆

ood, we do not know how far we are from h⋆:
LDood(hERM, h⋆) ≤ max

h∈H⋆
s

LDood(h, h
⋆) .

We can however upper-bound the quantity on the left in the following way:
LDood(h1, h

⋆) ≤ max
h2∈H⋆

s

LDood(h1, h2)

In the above we used the fact thatH⋆
s∩H⋆

ood is non-empty. Recall thatH⋆
s = argminh∈H LDs(h, hs).

So this means we can use the minimization of the quantity on the right as a proxy to minimize
LDood(h1, h

⋆). This means we want to pick h2 to minimize our training data (i.e. belong toH⋆
s), but

otherwise maximally disagree with h1 on the OOD data. The latter is closely related to the concept
of discrepancy in domain-adaption (Mansour et al., 2009; Cortes et al., 2019). However, the main
difference between the definitions is that we restrict the maximum to the set of H⋆

s , whereas the
standard notions use an unrestricted maximum. Thus, our version is tighter when the train and OOD
tasks are closely related.

3.2 Algorithm description

Binary classification formulation. Concretely given a binary classification task, with Y = {0, 1},
we train two models sequentially. The training of the first model h1 is done in a classical way,
minimizing its empirical classification loss L(h1(x), y) over samples (x, y) from D̂. Once h1

trained, we train the second model h2 adding a term Ax̃(h1, h2) representing the agreement on
samples x̃ of D̂ood, with some weight α ≥ 0:

h⋆
2 ∈ argmin

h2∈H

1
N

( ∑
(x,y)∈D̂

L(h2(x), y) + α
∑

x̃∈D̂ood

Ax̃(h1, h2)
)
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Figure 1: (a): Comparison of test accuracies between D-BAT and ERM. We consider the two
cases in which unlabeled test data is available and can be used as Dood, and the case where Dood is
different from the test distribution. In both cases D-BAT improves the test accuracy. (b): Comparison
of test-accuracies of D-BAT with several other methods on the Camelyon17 dataset, baselines are
taken from Sagawa et al. (2022). (c): Histogram of predicted probabilities on OOD data. For
both deep ensembles and MC-Dropout a large amount of predicted probabilities are larger than 0.9,
which indicate those methods are overly confident on OOD data. In contrast, most of the predicted
probabilities of D-BAT ensembles are smaller than 0.7. The average ensemble accuracies for all those
methods are 92% for deep ensembles, 91.2% for D-BAT ensembles, and 90.4% for MC-Dropout.

Given p
(y)
h,x the probability of class y predicted by h given x, the agreement Ax̃(h1, h2) is defined as:

Ax̃(h1, h2) = − log
(
p
(0)
h1,x̃
· p(1)h2,x̃

+ p
(1)
h1,x̃
· p(0)h2,x̃

)
(AG)

The binary classification formulation of D-BAT is straightforward, a multi-class version is also
straightforward and detailed in App. B.

4 Experiments

4.1 OOD generalization and Avoiding shortcuts

Experimental setup. We consider two types of datasets: (i) artificial datasets for which we know the
spurious correlations in the style of Teney et al. (2021), and (ii) natural datasets for which spurious
correlations are unknown. We build the M/F-D artifical dataset, resp. M/C-D, by concatenating
MNIST (Lecun & Cortes, 1998) images of 0s and 1s with images of Fashion-MNIST (Xiao et al.,
2017) corresponding to coats and dresses, resp. images of CIFAR10 (Krizhevsky, 2009) correspond-
ing to trucks and cars. For those datasets the spuriousness of the MNIST feature is total, i.e. it
predicts perfectly the label for samples of the training distribution but not for samples of the test
distribution. In the test distributions the MNIST mnist images of 0s and 1s are picked randomly.
Due to the simplicity bias, an ERM model would only learn to use the MNIST feature and do no
better than random on the test distribution. Samples from those datasets can be seen in App. D. As
natural dataset, we use the Camelyon17 (Bandi et al., 2018) dataset, a cancer detection dataset where
images are gathered from different hospitals, each hospital being uniquely associated to the training,
validation or test splits. For both settings we use either unlabeled test data as Dood or data from a
different domain: unlabeled validation data in the case of Camelyon17, and concatenation of MNIST
0s and 1s with random classes from Fashion-MNIST and CIFAR10 not present in the training data.
Results of those experiments can be seen in Fig. 1.a and Fig. 1.b.

4.2 Better Uncertainty & OOD Detection

CIFAR-10 setup. We train ensembles of 4 models and benchmark three different methods in their
ability to identify what they do not know. For this we look at the histograms of the probability of their
predicted classes on OOD samples. As training set we use the CIFAR-10 classes {0, 1, 2, 3, 4}. We
use the CIFAR-100 (Krizhevsky, 2009) test set as OOD samples to compute the histograms. For D-
BAT we use the remaining CIFAR-10 classes, {5, 6, 7, 8, 9}, asDood, and set α to 0.2. Histograms are
averaged over 5 seeds. The three methods considered are simple deep-ensembles (Lakshminarayanan
et al., 2017), MC-Dropout models (Gal & Ghahramani, 2016), and D-BAT ensembles. We use a
modified ResNet-18 (He et al., 2016) with added dropout to accommodate MC-Dropout, we use a
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dropout probability of 0.2 for the three methods. For MC-Dropout, we sample 20 distributions. See
Fig. 1 for results.

5 Discussion
In this work we introduced D-BAT, a novel training method to promote diversity in ensembles of
predictors. By encouraging disagreement on OOD data, while agreeing on the training data, we
effectively (i) give incentives to our predictors to rely on diverse features, (ii) which enhance the
transferability of the ensemble and (iii) improve uncertainty estimation and OOD detection.
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A Source code

Link to the source code to reproduce our experiments: https://github.com/mpagli/
Agree-to-Disagree
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B Algorithms

The D-BAT training algorithm can be applied to both binary and multi-class classification problems.
For our experiments on binary classification — as for the Camelyon17, M/F-D, M/C-D — we
used Alg. 1. This algorithm assumes a first model h1 has already been trained with e.g. empirical
risk minimization, and trains a second model following the algorithm described in § 3.2. For our
multi-class experiments — as for the CIFAR-10 uncertainty experiments (see § 4.2), we used Alg. 2.
This algorithm is training a full ensemble of size M using D-BAT as described in § 3.2.

Algorithm 1 D-BAT for binary classification
Input: train data D, OOD data Dood, stopping time T , D-BAT coefficient α, learning rate η,
pre-trained model h1, randomly initialized model h2 with weights ω0, and its loss L.
for t ∈ 0, . . . , T − 1 do

Sample (x, y) ∼ D
Sample x̃ ∼ Dood
ωt+1 = ωt − η∇ω

(
L(h2,x, y) + αA(h1, h2, x̃)

)
end for

Algorithm 2 D-BAT for multi-class classification
Input: ensemble size M , train data D, OOD data Dood, stopping time T , D-BAT coeffi-
cient α, learning rate η, randomly initialized models (h0, . . . , hM−1) with resp. weights
(ω

(0)
0 , . . . ,ω

(M−1)
0 ), and a classification loss L.

for m ∈ 0, . . . ,M − 1 do
for t ∈ 0, . . . , T − 1 do

Sample (x, y) ∼ D
Sample x̃ ∼ Dood
A ← 0
ỹ ← argmaxhm(x̃)
for i ∈ 0, . . . ,m− 1 do
A = A− 1

m−1 log
(
p
(ỹ)
hi,x̃
· p(¬ỹ)

hm,x̃ + p
(¬ỹ)
hi,x̃
· p(ỹ)hm,x̃

)
end for
ω

(m)
t+1 = ω

(m)
t − η∇ω(m)

(
L(hm,x, y) + αA

)
end for

end for

Sequential vs. simultaneous training. Nothing prevents the use of the D-BAT objective while
training all the predictors of the ensemble simultaneously. While we had some successes in doing so,
we advocate against it as this can discard the ERM solution. We found that the training dynamics of
simultaneous training have a tendency to generate more complex solutions than sequential training.
In our experiments on the 2D toy setting, sequential training gives two models which are both simple
and diverse, whereas simultaneous training generates two relatively simple predictors but of higher
complexity, especially it would deprive us from the simplest solution. In general as we do not know
the spuriousness of the features, the simplest predictor is still of importance.

C Omitted details on experiments

C.1 Implementation details for the M/F-D and M/C-D experiments

In the experiments on M/F-D and M/C-D, we used different versions of LeNet (Lecun et al., 1998):

• For the MF-Dominoes datasets, we increase the input dimension of the first fully-connected
layer to 960.
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Figure 2: Test accuracy given α. We compare the best ERM model with the second model trained
using D-BAT, for varying α hyperparameters.

• For the MC-Dominoes dataset, we use 3 input channels, increase the number of output
channels of the first convolution to 32, and of the second one to 56. We modify the fully-
connected layers to be 2016→ 512→ 256→ c with c the number of classes.

We use the AdamW optimizer (Loshchilov & Hutter, 2019) for all our experiments. For all the
datasets in this section, we only train ensembles of 2 models, which we denoteM1 andM2. We
select the model with best validation accuracy. When building the OOD datasets, we make sure the
images used are not shared with the images used to build the training, test and validation sets. Our
results are obtained by averaging over 5 seeds. For further details on the implementation, we invite
the reader to check the source code, see § A.

C.2 Implementation details for the Camelyon17 experiments

The CameLyon17 cancer detection dataset (Bandi et al., 2018) is taken from the WILDS collection
(Koh et al., 2021). The dataset consists of a training, validation, and test sets of images coming from
different hospitals, each hospital being uniquely associated to a given split. The goal is to generalize
to hospitals not necessarily present in the training set.

We use a ResNet-50 (He et al., 2016) as model. We train for 60 epochs with a fixed learning rate of
0.001 with and SGD as optimizer. We an l2 penalty term of 0.0001 and a momentum term β = 0.9.
For D-BAT, we tune α ∈ {10−1, 10−2, 10−3, 10−4, 10−5, 10−6} and found α = 10−6 to be best.
For each set of hyperparameters, we train a deep-ensemble and a D-BAT ensemble of size 2, and
select the parameters associated with the highest averaged validation accuracy over the two predictors
of the ensemble. Our results are obtained by averaging over 3 seeds.

In Fig. 2, we plot the evolution of the test accuracy as a function of α for both setups discussed in
§ 4.1. In the first "ideal" setup we have access to unlabeled target data to use as D̂ood. In the second
setup we do not, instead we use samples from different hospitals. In the case of the Camelyon dataset,
we use the available unlabeled validation data. Despite this data belonging to a different domain, we
still get a significant improvement in test accuracy.

D Training and OOD distribution samples M/F-D and M/C-D

In Fig. 3, we show some samples from some of the training distribution used in § 4.1. We also
introduce the MM-Dominoes dataset, similar in spirit to the other dominoes dataset but concatenating
MNIST digits of 0s and 1s with MNSIT digits 7 and 9. In Figs. 4,5, we show samples for the OOD
distributions used in § 4.1.
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(a) MF-Dominoes (b) MC-Dominoes

Figure 3: Samples from the training data distribution D for M/F-D, and M/C-D. Those datasets are
used to evaluate D-BAT’s aptitude to evade the simplicity bias. For all the Dominoes datasets, the
simple feature is the top row, while the complex feature is the bottom one. One could indeed separate
0s from 1s by simply looking at the value of the middle pixels (if low value then 0 else 1).

(a) D(1)
ood (b) D(2)

ood

Figure 4: OOD distributions used for the MF-Dominoes experiments. D(1)
ood corresponds to our

experiments when we have access to unlabeled target data. D(2)
ood is very different from the target

distribution as the second row is made only of images from categories not present in the training and
test distributions.

(a) D(1)
ood (b) D(2)

ood

Figure 5: OOD distributions used for the MC-Dominoes experiments. D(1)
ood corresponds to our

experiments when we have access to unlabeled target data. D(2)
ood is very different from the target

distribution as the second row is made only of images from categories not present in the training and
test distributions.

E Additional discussions and experiments

When two features are equally predictive but have different complexities, the more complex feature
will be discarded due to the extreme simplicity bias. This happens despite the uncertainty over the
potential spuriousness of the simpler feature. For this reason it is important to be able to learn both
features if we hope to improve our chances at OOD generalization. Recent methods such as Saito
et al. (2017), Saito et al. (2018), Zhang et al. (2021), Nam et al. (2020) and Liu et al. (2021a) all fail
in this challenging scenario, we explain why in the following subsections E.1 to E.6. In E.7, we add a
comparison between D-BAT and the concurrent work of Lee et al. (2022).

E.1 Comparison with Teney et al. (2021)

In their work, Teney et al. (2021) add a regularisation term δgφ1 ,gφ2
which, given an input x, is

promoting orthogonality of hidden representations h = fθ(x) given by an encoder fθ with parameters
θ, and pairs of classifiers gφ1 and gφ2 of parameters φ1 and φ2 respectively:

δgφ1
,gφ2

= ∇hg
⋆
φ1

(x) · ∇hg
⋆
φ2

(x) (T)

With∇g⋆ the gradient of its top predicted score.

We implemented the objective of Teney et al. (2021) with two different encoders: fθ(x) = x (identity)
and a two-layers CNN. We tested it on our MM-Dominoes dataset (§ 4.1). The classification heads are
trained simultaneously. Considering two classifications heads, we find two sets of hyperparameters,
one that is giving the best compromise between accuracy and randomized-accuracy, and one that is
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keeping the accuracy close to 1. In the first setup in Fig. 6, we observe that none of the pairs of models
trained with (T) as regulariser are particularly good at capturing any of the two features in the data.
In contrast with D-BAT (with D(1)

ood) which is able to learn a second model having both high accuracy
and high randomized-accuracy, hence capturing with the first model the two data modalities. For the
second set of hyperparameters in Fig. 7, we observe that the improvement in randomized accuracy is
only marginal if we do not want to sacrifice accuracy. We believe those results are explained by the
many ways gradients of a neural network can be orthogonal while still encoding identical information.
Better results might require training more classification heads (up to 96 heads are used in Teney et al.
(2021).
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Figure 6: Comparison between D-BAT and Teney et al. (2021) with hyperparameters favoring the
compromise between accuracy (test-acc) and randomized-accuracy (r-acc). We run 5 different seeds
for Teney et al. (2021), each run consisting in two classification heads and a shared encoder chosen
to be the identity (a) or a CNN encoder (b). The acc and r-acc are displayed for the 10 resulting
classification heads. We compared with two models obtained using D-BAT, the first model learning
the simplest feature is in the bottom right corner, and the second model trained with diversity is in
the top right corner. We observe that the method of Teney et al. (2021) is failing to reach a good
r-acc, and is sacrificing accuracy. D-BAT is able to retrieve both data modalities without sacrificing
accuracy.
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Figure 7: Comparison between D-BAT and Teney et al. (2021) with hyperparameters yielding an
accuracy (test-acc) close to 1 while maximizing the randomized-accuracy (r-acc). We run 5 different
seeds for Teney et al. (2021), each run consisting in two classification heads and a shared encoder
chosen to be the identity (a) or a CNN encoder (b). The acc and r-acc are displayed for the 10
resulting classification heads. We compared with two models obtained using D-BAT, the first model
learning the simplest feature is in the bottom right corner, and the second model trained with diversity
is in the top right corner. We observe that the method of Teney et al. (2021) is only marginally
improving the randomized-acc.

E.2 Comparison with Zhang et al. (2021)

In their work, Zhang et al. (2021) argue that while a model can be biased, there exist unbiased func-
tional subnetworks. They introduced Modular Risk Minimization (MRM) to find those subnetworks.
We implemented the MRM method (Alg.1 from their paper) and tested it on our MM-Dominoes
dataset (§ 4.1). We observed that their approach cannot handle the extreme case we consider where
the spurious feature is fully predictive in the train distribution (but not in OOD). They need it to be,
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say, only 90% predictive. On our dataset, in the first phase of Alg.1, the model trained on the source
task learns to completely ignore the bottom row due to the extreme simplicity bias, ensuring there is
no useful sub-network. We found the randomized-accuracy of subnetworks obtained with MRM to
be no better than random. This is because, in extreme cases, the network which the simplicity bias
pushes us to learn may completely ignore the actual feature and instead only focuses on the spurious
feature. In such a case, there is no un-biased subnetwork.

E.3 Comparison with Saito et al. (2017)

Contrary to Saito et al. (2017), we aim to train an ensemble of predictors able to generalize to
unknown target tasks and do not assume access to the target data. In particular, the unlabelled OOD
data we need can be different from the downstream transfer target data. We make this distinction
clear in § 4.1 where D(3)

ood for the dominoes datasets are built using combinations of 1s and 0s with
images from classes not present in the target and source tasks. Despite the lack of target data, the
r-acc improves by resp. 28% and 38% for the MM-Dominoes and MF-Dominoes datasets. Further,
we focus on mitigating extreme simplicity bias as described by Shah et al. (2020), where a spurious
feature can have the same predictive power as a non-spurious one on the source task (but not on
the unknown target task). While (Saito et al., 2017) uses the concept of diversity, their formulation
measures diversity in temrs of the inner-product between the weights. However, since neural networks
are highly non-convex, it is possible for two networks to effectively learn the exact same function
which relies on spurious features, while still having different parameterization. Thus, our method
can be viewed as “functional” extension of the method in (Shah et al., 2020). Further, the encoder F
itself can learn a representation such that F1 and F2 rely on the same information while minimizing
the regularizer.

To see this, we trained the method of Alg.1 from (Saito et al., 2017) on our MM-Dominoes dataset.
Tuning λ ∈ {0.1, 1, 10, 100}, we were unable to learn a model Ft which transfers to the target task.

E.4 Comparison with Saito et al. (2018)

Contrary to Saito et al. (2018), we do not aim at training a domain agnostic representation, but
instead on overcoming simplicity bias to generalize to OOD settings. E.g. in colored MNIST, a
classifier which throws out the shape and simply uses color (or vice-versa) is domain agnostic. But
for overcoming spurious features, models in our ensemble would need to use both color and digit.
Thus a domain agnostic representation is insufficient for OOD generalization.

Furthermore, the training procedure of (Saito et al., 2018) consists in first training a shared feature
extractor G and two classification heads F1 and F2 to minimize the cross-entropy on the source
task. In a second step the classification heads F1 and F2 are trained to increase the discrepancy on
samples from the target distribution while fixing the feature extractor G. However, in the case where
a spurious feature is as predictive as the non-spurious one — as in our experiments of § 4.1 — the
extreme simplicity bias would force the feature extractor to become invariant to the complex feature.
The second and third steps of the algorithm would fail from there.

E.5 Comparison with Nam et al. (2020)

In this work, two models are trained simultaneously, one being the biased model while the other
is the debiased model. During training, the first model gives higher weights to training samples
agreeing with the current bias of the model. On the other hand, the second model learns by giving
higher weights to training samples conflicting with the biased model. In order to work, the algorithm
considers that the ratio of bias-aligned samples is smaller than 100%, which is not the case for our
datasets in § 4.1). In these challenging datasets, where the biased feature is as predictive as the not
biased feature, the second model fails to find bias-conflicting samples, hence would fail to de-biased
itself. For this reason, the work of Nam et al. (2020) fails to counter extreme simplicity bias.

E.6 Comparison with Liu et al. (2021a)

The work of Liu et al. (2021a) is similar to the work of Nam et al. (2020) and shares the same
limitation. A first model is trained through ERM before a second model trained by upweighting the
samples misclassified in by the first model. This method, as for Nam et al. (2020), is failing to induce
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diversity when all the samples are correctly classify by the first model, as this is the case for our
datasets in § 4.1.

E.7 Comparison with Lee et al. (2022)

The concurrent work of Lee et al. (2022) proposes to measure diversity between two models using the
mutual information (MI) between their predictions on the entire OOD distribution, whereas our loss
is defined on the per datapoint difference in the predictions. This means that our loss decomposes
as a sum over the data-points and is well defined on small mini-batches. Computing the mutual
information (MI) needs processing the entirety(or at least a very large part) of the data. Besides
such practical advantages, our notion of diversity naturally arises out of discrepancy based domain
adaptation theory, whereas the choice of using MI is ad-hoc and in fact may not give the expected
results. Consider the toy-problem in Fig.3 of Lee et al. (2022) - the predictions of the two models
actually have maximum mutual information since they predict the exact opposite on all the unlabelled
perturbation data. Thus, MI would say that the two models actually have zero diversity, whereas
discrepancy would say they have very high diversity. Hence, MI is theoretically the wrong measure to
use. We confirmed this intuition by running experiments on the same setup as in Lee et al. (2022), we
compared for the two notions of diversity (MI and discrepancy) which pairs of predictor are optimal.
Results can be seen in Fig. 8.
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Figure 8: Disagreement and mutual information of potential second models h2. In (a) we summarize
the experimental setup which is similar to Fig.3 of Lee et al. (2022). The training data consists of
the diagonal regions of [0, 1]× [−1, 0] as class 1 (positive), and [−1, 0]× [0, 1] as class 2 (negative).
OOD datapoints X̃ are sampled randomly in the off-diagonal [−1, 0]2 and [0, 1]2 regions. The set of
hyperplanes hθ with θ ∈ [0, π/2] all achieve a perfect train accuracy. We fix the first classifier to be
the horizontal h1 = hθ=0 classifier. Then, we measure the disagreement between h1 and different
choices of h2 = hθ (in b), as well as their mutual information (in c) using the code provided in (Lee
et al., 2022). Maximizing the disagreement yields the correct vertical classifier h2 = h

θ=
π
2

, whereas
minimizing mutual information would yield the wrong diagonal classifier. The disagreement scores
match intuitive definitions of diversity, whereas mutual information does not.
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