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Abstract

Given a set of n vectors in Rd, the goal of the determinant maximization problem
is to pick k vectors with the maximum volume. Determinant maximization is
the MAP-inference task for determinantal point processes (DPP) and has recently
received considerable attention for modeling diversity. As most applications for the
problem use large amounts of data, this problem has been studied in the relevant
composable coreset setting. In particular, [IMGR20] showed that one can get
composable coresets with optimal approximation factor of Õ(k)k for the problem,
and that a local search algorithm achieves an almost optimal approximation guar-
antee of O(k)2k. In this work, we show that the widely-used Greedy algorithm
also provides composable coresets with an almost optimal approximation factor of
O(k)3k, which improves over the previously known guarantee of Ck2

, and supports
the prior experimental results showing the practicality of the greedy algorithm as a
coreset. Our main result follows by showing a local optimality property for Greedy:
swapping a single point from the greedy solution with a vector that was not picked
by the greedy algorithm can increase the volume by a factor of at most (1 +

√
k).

This is tight up to the additive constant 1. Finally, our experiments show that the
local optimality of the greedy algorithm is even lower than the theoretical bound
on real data sets.

1 Introduction

In the determinant maximization problem, we are given a set P of n vectors in Rd, and a parameter
k ≤ d. The objective is to find a subset S = {v1, . . . , vk} ⊆ P consisting of k vectors such that
that the volume squared of the parallelepiped spanned by the points in the subset S is maximized.
Equivalently, the volume squared of a set S, denoted by vol(S), is equal to the determinant of the
Gram matrix of the vectors in S. Determinant maximization is the MAP-inference of determinantal
point processes, and both of these problems as well as their variants have found numerous applications
in data summarization, machine learning, experimental design, and computational geometry. In
particular, the determinant of a subset of points is one way to measure the diversity of the subset,
and thus they have been studied extensively over the last decade in this context [MJK17, GCGS14,
KT+12, CGGS15, KT11, YFZ+16, LCYO16].

The best approximation factor for the problem in this regime is due to the work of [Nik15] who shows
a factor of ek, and it is known that an exponential dependence on k is necessary [CMI13] unless
P = NP. However, the most common algorithm used for this problem in practical applications is a
natural greedy algorithm. In this setting, the algorithm first picks the vector with the largest norm,
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and then greedily picks the vector with largest perpendicular component to the subspace spanned
by the current set of picked vectors, thus maximizing the volume greedily in each iteration. This
algorithm is known to have an approximation factor of (k!)2[ÇMI09].

As in most applications of determinant maximization one needs to work with large amounts of data,
there has been an increasing interest in studying determinant maximization in large data models of
computation [MJK17, WIB14, PJG+14, MKSK13, MKBK15, MZ15, BENW15]. One such model
that we focus on in this work is the composable coreset setting [IMMM14]. Intuitively, composable
coresets are small “summaries” of a data set with the composability property: for the summaries
of multiple datasets, the union of the summaries should make a good summary for the union of
the datasets. More precisely, in this setting, instead of a single set of vectors P , there are m sets
P1, . . . , Pm ⊆ Rd. In this context, a mapping function c that maps a point set to one of its subsets
is called α-composable coreset for determinant maximization, if for any collection of point sets
P1, . . . , Pm,

MAXDETk (∪m
i=1c(Pi)) ≥

1

α
·MAXDETk (∪m

i=1Pi) (1)

where MAXDETk is used to denote the maximum achievable determinant with parameter k. (Sim-
ilarly, MAXVOLk is used to denote the maximum volume, with MAXVOL2k = MAXDETk.) For
clarity, we note that the mapping function c can only view its input data set Pi and has no knowledge
of other data sets while constructing c(Pi). [IMMM14] showed that a composable coreset for a task
automatically gives an efficient distributed and an efficient streaming algorithm for the same task.

Indeed, composable coresets have been used for determinant maximization. In particular, [IMGR20,
MIGR19], presented a composable coreset of size O(k log k) with approximation factor of Õ(k)k

using spectral spanners, which they showed to be almost tight. In particular, the best approximation
factor one can get is Ω(kk−o(k)) (Theorem 1.4). As the above algorithm is LP-based and does not
provide the best performance in practice, they proposed to use the greedy algorithm followed by a
local search procedure, and showed that this simple algorithm also yields a coreset of size k with an
almost optimal approximation guarantee of O(k)2k. They also proved that the greedy algorithm alone
yields a Ck2

guarantee for composable coresets, which is far larger than the optimal approximation
of Õ(k)k for this problem.

Since the greedy algorithm provides a very good performance in practice [MIGR19, MKSK13], an
improved analysis of the greedy algorithm in the coreset setting is very desirable. Furthermore, both
of these prior work implied that greedy performs well in practice in the context of distributed and
composable coreset settings [MKSK13], and in particular its performance is comparable to that of
the local search algorithm for the problem [MIGR19].

Our contribution. In this paper, we close this theoretical gap: we prove that the greedy algorithm
provides a O(k)3k-composable coreset for the determinant maximization problem (Theorem 4). This
explains the very good performance of this algorithm on real data previously shown in [MIGR19,
MKSK13]. We achieve this by proving an elegant linear algebra result on the local optimality of the
greedy algorithm: swapping a single point from the greedy solution with a vector that was not picked
by the greedy algorithm can increase the volume by a factor of at most (1 +

√
k). We further show

that this is tight up to the additive constant 1. As an application of our result, we give a proof that the
locality property can recover and in fact marginally improve the k! guarantee of the greedy algorithm
of [ÇMI09] for the offline volume maximization problem.

Finally, in Section 4, we run experiments to measure the local optimality of the greedy algorithm
on real data, and show that this number is much smaller in practice than the worst case theoretically
guaranteed bound. In fact, in our experiments this number is always less than 1.5 even for k even as
large as 300. Again this explains the practical efficiency of the greedy algorithm as a coreset shown
in [MIGR19, MKSK13].

1.1 Preliminaries

1.1.1 The Greedy Algorithm

Recall the standard offline setting for determinant maximization, where one is required to pick k
vectors out of the n vectors in P of maximum volume. Here, [ÇMI09] showed that greedily picking
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the vector with the largest perpendicular distance to the subspace spanned by the current solution
(or equivalently, greedily picking the vector that maximizes the volume as in Algorithm 1) outputs
a set of vectors that is within k! of the optimal volume. Formally, if Greedy(P ) is the output of
Algorithm 1, then

vol(Greedy(P )) ≥ MAXVOLk(P )

k!
(2)

1.1.2 Local Search for Composable Coresets

In [MIGR19], the authors show that the greedy algorithm followed by the local search procedure
with parameter ϵ (as described in Algorithm 2) provides a (2k(1 + ϵ))2k-composable coreset for
determinant maximization. A locally optimal solution can thus be naturally defined as follows:
Definition 1 ((1 + ϵ)-Locally Optimal Solution). Given a point set P ⊆ Rd and c(P ) ⊆ P with
|c(P )| = k, we say c(P ) is a (1 + ϵ)-locally optimal solution for volume maximization if for any
v ∈ c(P ) and any w ∈ P \ c(P ),

vol(c(P )− v + w) ≤ (1 + ϵ) vol(c(P )) (3)

Given the output of the greedy algorithm Greedy(P ), one can obtain a locally optimal solution using
a series of swaps: if the volume of the solution can be increased by a factor of (1 + ϵ) by swapping a
vector in the current solution with a vector in the point set P that has not been included, we make the
swap. Since vol(Greedy(P )) is within a factor of k! of the optimal, we will make at most k log k

log(1+ϵ)

swaps. This is precisely the local search algorithm (Algorithm 2). For any point set P , we denote the
output of Algorithm 2 by LS(P ).

In [MIGR19], the authors prove that local search yields a O(k)2k-composable coreset for determinant
maximization. Formally, they prove the following.
Theorem 2. Let P1, . . . , Pm ⊆ Rd. For each i = 1, . . . ,m, let LS(Pi) be the output of the local
search algorithm (Algorithm 2) with parameter ϵ. Then

MAXDETk (∪m
i=1Pi) ≤ (2k(1 + ϵ))2k MAXDETk (∪m

i=1 LS(Pi)) (4)

Remark 3. Even though [MIGR19] treats ϵ as a small constant in [0, 1], the proof for Theorem 2
above holds for any non-negative ϵ.

1.2 Outline of our approach

In [MIGR19], the authors prove Theorem 2 for local search using a reduction to a related problem
called k-directional height. The authors then use similar ideas to prove that the output of the greedy
algorithm is also a composable coreset for determinant maximization. However, since we do not
know a priori whether greedy is (1 + ϵ)-locally optimal, the guarantee they obtain is significantly
weaker: they only prove that the greedy algorithm yields a ((2k) · 3k)2k = Ck2

-composable coreset
for determinant maximization. This is clearly far from the desired bound of kO(k).

To improve the analysis of the greedy algorithm in the coreset setting, we ask the following natural
question:

Can we prove that the output of the greedy algorithm is already locally optimal?

We answer this question positively. Our main result is Theorem 5, where we show that for any point
set P , Greedy(P ) is a (1+

√
k)-locally optimal solution. In other words, the greedy algorithm has the

same guarantee as local search with the parameter ϵ =
√
k. This circumvents the loose reduction from

greedy to the k-directional height problem and directly implies the following improved guarantee for
the greedy algorithm in the coreset setting:
Theorem 4.

MAXDETk (∪m
i=1Pi) ≤ (2k(1 +

√
k))2k MAXDETk (∪m

i=1 Greedy(Pi)) (5)

Thus, the greedy algorithm also provides a (2k(1 +
√
k))2k = kO(k)-composable coreset for

determinant maximization, which is near the optimal Ω(kk−o(k)).
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Section 2 is dedicated to proving that greedy is (1 +
√
k)-locally optimal (Theorem 5). We also

show that this local optimality result of (1 +
√
k) for the greedy algorithm is tight up to the additive

constant 1. In Section 4 we show that on real and random datasets, the local optimality constant ϵ is
much smaller than the bound of 1 +

√
k, which serves as an empirical explanation for why greedy

performs much better in practice than what the theoretical analysis suggests.

Algorithm 1 Greedy Algorithm
Input: A point set P ⊂ Rd and integer k.
Output: A set C ⊂ P of size k.
Initialize C = ∅.
for i = 1 to k do

Add argmaxp∈P\C vol(C + p) to C.
end for
Return C.

Algorithm 2 Local Search Algorithm
Input: A point set P ⊂ Rd, integer k, and
ϵ > 0.
Output: A set C ⊂ P of size k.
Initialize C = ∅.
for i = 1 to k do

Add argmaxp∈P\C vol(C + p) to C.
end for
repeat

If there are points q ∈ P \ C and p ∈ C such
that

vol(C + q − p) ≥ (1 + ϵ) vol(C)

replace p with q.
until No such pair exists.
Return C.

2 Greedy is Locally Optimal

Theorem 5 (Local Optimality). Let V := Greedy(P ) = {v1, . . . , vk} ⊆ P be the output of the
greedy algorithm. Let vk+1 ∈ P \ V be a vector not chosen by the greedy algorithm. Then for all
i = 1, . . . , k,

vol(V − vi + vk+1) ≤ (1 +
√
k) vol(V ) (6)

Proof. If rank(P ) < k, then the result is trivial. So we may assume rank(P ) ≥ k and V is linearly
independent. Fix any vi ∈ V . Our goal is to show that vol(V − vi + vk+1) ≤ (1+

√
k) vol(V ). This

trivially holds when i = k by the property of the greedy algorithm, so assume 1 ≤ i ≤ k − 1.

Let {v′1, . . . , v′k, v′k+1} be the set of orthogonal vectors constructed by performing the Gram-Schmidt
algorithm on {v1, . . . , vk, vk+1}. Formally, let Gt = span{v1, . . . , vt}. Define v′1 = v1 and v′t =
vt −Π(Gt−1)(vt) for t = 2, . . . , k, k+1, where Π(G)(v) denotes the projection of the vector v onto
the subspace G. Note that

vol(V ) =

k∏
j=1

∥v′j∥2

For each j = i+ 1, . . . , k, k + 1, write

vj = Π(Gi−1)(vj) +

j∑
l=i

αj
l v

′
l

:= Π(Gi−1)(vj) + wj

We must have that |αl
j | ≤ 1 by the greedy algorithm because if |αj

l | > 1, the vector vj would have
been chosen before vl. Further, αj

j = 1 by definition of Gram-Schmidt. The vector wj is what
remains of vj once we subtract its projection onto the first i− 1 vectors.
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We are interested in bounding the following quantity:

vol(V − vi + vk+1) = vol(v1, . . . , vi−1, vi+1, . . . , vk, vk+1)

= vol(v′1, . . . , v
′
i−1, vi+1, . . . , vk, vk+1)

= vol(v′1, . . . , v
′
i−1, wi+1, . . . , wk, wk+1)

= vol(v′1, . . . , v
′
i−1) · vol(wi+1, . . . , wk, wk+1)

=

i−1∏
j=1

∥v′j∥2

 · vol(wi+1, . . . , wk, wk+1)

Therefore, it suffices to prove the following:

vol(wi+1, . . . , wk, wk+1) ≤ (1 +
√
k)

k∏
j=i

∥v′j∥2 (7)

To establish this, we consider two cases. Recall that v′k+1 = vk+1−Π(Gk)(vk). We analyze the cases
where v′k+1 ̸= 0 and v′k+1 = 0 separately, although the ideas are similar. In Claim 7 and Claim 8
below, we establish the desired bound stated in Eq. (7) for v′k+1 ̸= 0 and v′k+1 = 0 respectively.
Theorem 5 then follows immediately.

To prove Claim 7 and Claim 8, the following well-known lemma will be useful. A proof can be found
in [DZ07].
Lemma 6 (Matrix Determinant Lemma). Suppose M is an invertible matrix. Then

det(M + uvT ) = (1 + vTM−1u) det(M) (8)

Claim 7. Suppose v′k+1 ̸= 0. Then

vol(wi+1, . . . , wk, wk+1) ≤
(√

k + 1
) k∏

j=i

∥v′j∥2 (9)

Proof. Define the matrix B = [wi+1| · · · |wk|wk+1]. Note that det(BTB) =
vol(wi+1, . . . , wk, wk+1)

2 is the quantity we are interested in bounding. For clarity,

BT =


αi+1
i v′i + v′i+1

αi+2
i v′i + αi+2

i+1v
′
i+1 + v′i+2

...
αk+1
i v′i + · · ·+ αk+1

k v′k + v′k+1


We define the matrix A by just removing the v′i terms from B as follows:

AT =


v′i+1

αi+2
i+1v

′
i+1 + v′i+2

...
αk+1
i+1 v

′
i+1 + · · ·+ αk+1

k v′k + v′k+1


Since ⟨v′i, v′j⟩ = 0 for all j ̸= i, we have that

BTB = ATA+ uuT

where the column vector u is given by

u = ∥v′i∥ ·
(
αi+1
i αi+2

i · · · αk+1
i

)
Since |αj

i | ≤ 1 for j = i+ 1, . . . , k + 1 by the nature of the greedy algorithm, we have that

∥u∥22 ≤ (k − i+ 1)∥v′i∥22 ≤ k∥v′i∥22 (10)
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We now bound the desired volume quantity. Let M = ATA. M is clearly a positive semi-definite
matrix. In fact, because we assumed that v′k+1 ̸= 0, it will turn out that M is positive definite and
thus invertible. For now, assume that M−1 exists. We will compute the inverse explicitly later.

vol(wi+1, . . . , wk, wk+1)
2 = det(BTB)

= det(ATA+ uuT )

= (1 + uTM−1u) det(M) [by Lemma 6]

≤
(
1 + k∥v′i∥2λmax(M

−1)
)
det(M)

where λmax(M
−1) is the largest eigenvalue of M−1. We will now show that M−1 does in fact exist

and bound λmax(M
−1). Consider the matrix E and W defined as follows:

E =


1 0 · · · 0

αi+2
i+1 1 0 · · · 0
...

αk+1
i+1 · · · αk+1

k 1

 WT =


v′i+1
v′i+2

...
v′k+1


It is easy to check that EWT = AT . Therefore,

M = ATA = EWTWET = EDET

where D is the diagonal matrix given by

D = diag
(
∥v′i+1∥22, . . . , ∥v′k+1∥22

)
It is easy to see that E has all eigenvalues equal to 1, and so must be invertible with determinant 1.
The same is obviously true for ET , E−1 and (ET )−1 as well. It follows that

det(M) = det(D) = ∥v′i+1∥2 · · · ∥v′k+1∥2

Since v′k+1 ̸= 0, we have that ∥v′j∥2 > 0 for all j, so D−1 clearly exists. It follows that

M−1 = (ATA)−1 = (ET )−1D−1E−1

λmax(M
−1) ≤ λmax(D

−1) =
1

∥v′k+1∥2

Therefore,

vol(wi+1, . . . , wk, wk+1)
2 ≤ (1 + k∥v′i∥2λmax(M

−1)) det(M)

≤
(
1 +

k∥v′i∥2

∥v′k+1∥2

)
det(M)

= det(M) + k

k∏
j=i

∥v′j∥22

≤ (1 + k)

k∏
j=i

∥v′j∥22

Claim 8. Suppose v′k+1 = 0. Then

vol(wi+1, . . . , wk, wk+1) ≤
(
1 +

√
k
) k∏

j=i

∥v′j∥2 (11)

Proof. The idea for this proof is similar to the previous claim. However, the main catch is that
decomposing BTB into ATA+uuT (as defined in the proof of Claim 7) is no longer helpful because
v′k+1 = 0 implies that ATA is not invertible. However, there is a simple workaround.

6



Define the matrix B′ = [wk+1|wi+1| · · · |wk]. Note that det((B′)TB′) = vol(wi+1, . . . , wk, wk+1)
2

is the quantity we are interested in bounding. Recall that v′k+1 = 0 by assumption. For clarity,

(B′)T =


αk+1
i v′i + · · ·+ αk+1

k v′k
αi+1
i v′i + v′i+1

αi+2
i v′i + αi+2

i+1v
′
i+1 + v′i+2

...
αk
i v

′
i + · · ·+ v′k


Note that (B′)T is the same as BT from the proof of Claim 7 except for moving the last row to the
position of the first row. This change is just for convenience in this proof.

Define the following coefficients matrix C ∈ R(k−i+1)×(k−i+1):

C =


αk+1
i · · · αk+1

k

αi+1
i 1 0 0 0

αi+2
i αi+2

i+1 1 0 0
...
αk
i αk

i+1 · · · 1

 =


1 0 0

αi+1
i 1 0 0 0

αi+2
i αi+2

i+1 1 0 0
...
αk
i αk

i+1 · · · 1

+


1
0
...
...
0


[
(αk+1

i − 1) αk+1
i+1 · · · αk+1

k

]

:= C ′ + e1x
T

Define W ′ = [v′i| · · · |v′k]. By construction, (B′)T = C(W ′)T . Therefore

(W ′)TW := D′ = diag
(
∥v′i∥22, . . . , ∥v′k∥22

)
It follows that

det((B′)TB′) = det(C(W ′)TW ′CT )

= det(C)2 det(D′)

= det(C)2
k∏

j=i

∥v′j∥22

It remains to show that |det(C)| ≤ (1 +
√
k). We may assume that αk+1

i ≥ 0 by taking the negative
of the first column if necessary. This does not affect the magnitude of the determinant. Note that all
eigenvalues of C ′ and (C ′)−1 are 1. Further,

∥x∥22 ≤ k − i+ 1 ≤ k (12)

|det(C)| = |(1 + xT (C ′)−1e1)| · | det(C ′)| [by Lemma 6]

= |1 + xT (C ′)−1e1|

≤ 1 +
√
kλmax((C

′)−1)

= 1 +
√
k

We now provide a simple example where the output of the greedy algorithm is at best
√
k-locally

optimal, thus demonstrating that the locality result for greedy is optimal up to the constant 1.
Theorem 9 (Tightness of Local Optimality). There exists a point set P = {v1, . . . , vk, vk+1} from
which the greedy algorithm picks V = {v1, . . . , vk}, and

vol(V − v1 + vk+1)

vol(V )
=

√
k (13)
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Proof. Let P = {v1, . . . , vk, vk+1} where v1 ∈ Rk is the vector of all ones and vi =
√
kei−1 for

i = 2, . . . , k + 1. Since the magnitude of every vector in P is
√
k, the greedy algorithm could start

by picking v1. The greedy algorithm will then pick any k − 1 of the remaining k vectors. Without
loss in generality, assume that the algorithm picks V = {v1, . . . , vk}. Then vol(V ) = (

√
k)k−1. On

the other hand, vol(V − v1 + vk+1) = (
√
k)k. The result follows.

3 Application to Standard Determinant Maximization

The greedy algorithm for volume maximization was shown to have an approximation factor of k! in
[ÇMI09]. We provide a completely new proof for this result with a slightly improved approximation
factor.

Theorem 10. Let P be a point set, Greedy(P ) = {v1, . . . , vk} the output of the greedy algorithm,
and MAXVOLk(P ) the maximum volume of any subset of k vectors from P . Then

vol(Greedy(P )) ≥ MAXVOLk(P )∏k
i=2(1 +

√
i)

(14)

Proof. Let S ⊆ P be the set of k vectors with maximum volume. Without loss of generality and for
simplicity of exposition, we assume that Greedy(P ) ∩ S = ∅ (the proof still goes through if this is
not the case). We will order S in a convenient manner.

Consider the set W1 = {v1} ∪ S with k + 1 elements. Perform the greedy algorithm on W1 with k
steps. Clearly, greedy will choose v1 first and then some k − 1 of the remaining vectors. Label the
left out vector w1.

Inductively define Wi+1 = {v1, . . . , vi, vi+1} ∪ (S − {w1, . . . , wi}), which has size k+ 1. Perform
greedy on Wi+1 with k steps. The first i + 1 vectors chosen will be v1, . . . , vi, vi+1 by definition.
Call the left out vector wi+1. We now have an ordering for S = {w1, . . . , wk}.

Starting with the greedy solution, we will now perform k swaps to obtain the optimal solution.
Each swap will increase the volume by a factor of at most 1 +

√
k. Initially, our solution starts

with Greedy(P ) = {v1, . . . , vk}. Note that this is also the output of greedy when applied to the set
Greedy(P ) ∪ {wk} = Wk. Swapping in wk in place of vk increases our volume by a factor of at
most 1 +

√
k.

Our current set of vectors is now {v1, . . . , vk−1, wk}. By the ordering on S, this is also the greedy
output on the set Wk−1 = {v1, . . . , vk−1, wk−1, wk}. Therefore, we may swap in wk−1 in place
of vk−1 in our current set of vectors by increasing the volume by at most a factor of (1 +

√
k).

Proceeding in this manner, we can perform k swaps to obtain the optimal solution from the greedy
solution by increasing our volume by a factor of at most (1 +

√
k)k.

To obtain the slightly better approximation factor in the theorem statement, we observe that in the
proof of Theorem 5, swapping out the ith vector from the greedy solution for a vector that was not
chosen increases the volume only by a factor of (1 +

√
k + 1− i) ≤ 1+

√
k (Eq. (10),Eq. (12)), and

that swapping out the kth vector does not increase the volume at all. Therefore, the approximation
factor of greedy is at most

k−1∏
i=1

(1 +
√
k + 1− i) =

k∏
i=2

(1 +
√
i)

Remark 11. Note that
∏k

i=2(1 +
√
i) < 2k

√
k! for k ≥ 7, which is (k!)

1
2+o(1). While the improve-

ment in the approximation factor is quite small, we emphasize that the proof idea is very different
from the k! guarantee obtained in [ÇMI09].

8



4 Experiments

In this section, we measure the local optimality parameter for the greedy algorithm empirically. We
use two real world datasets, both of which were used as benchmarks for determinant maximization in
immediately related work ([MIGR19, LJS16]:

• MNIST [LBBH98], which has 60000 elements, each representing a 28-by-28 bitmap image
of a hand-drawn digit;

• GENES [BQK+14], which has 10000 elements, with each representing the feature vector
of a gene. The data set was initially used in identifying a diverse set of genes to predict
breast cancer tumors. After removing the elements with some unknown values, we have
around 8000 points.

We measure the local optimality parameter both as a function of k, and as a function of the data set
size as explained in the next two subsections.

4.1 Local Optimality for Real and Random Datasets as a Function of k

Experiment Setup: For both MNIST and GENES, we consider a collection of m = 10 data
sets, each with n = 3000 points chosen uniformly at random from the full dataset. We ran the
greedy algorithm for k from 1 to 20 and measured the local optimality value (1 + ϵ) as a fucntion
of k = 2, 4, . . . , 20 for each of the 10 data sets in the collection. More precisely, for each such k,
we took the maximum value of (1 + ϵ) over every data set in the collection. The reason we take the
worst value of (1 + ϵ), is that in the context of composable coresets, we require the guarantee to hold
for each individual data set to be (1 + ϵ)-locally optimal. We repeated this process for 5 iterations
and took the average. We plot this value as a function of k.

Further, to compare against a random data set, for both MNIST and GENES, we repeated the above
experiment against a set of random points of the same dimension sampled uniformly at random from
the unit sphere.

Results: As shown in Fig. 1, while the real world data sets have local optimality value (1 + ϵ)
higher than the random data sets, they are both significantly lower than (less than 1.4) the theoretical
bound of (1 +

√
k). This suggests that real world data sets behave much more nicely and are closer

to random than the worst case analysis would suggest, which explains why greedy does so well in
practice.

For the purpose of diversity maximization, the regime of interest is when k ≪ n. However, we
wanted to verify that the local optimality value does not increase much even when k is much larger
and closer to n. Since measuring local optimality is expensive when both k and n are large, we
ran the same experiment again, except with n = 300 points per point set, and measuring the local
optimality at k = 1, 50, 100, . . . , 300 in steps of 50. Again, as seen in Fig. 2, local optimality stays
much below 1 +

√
k (in fact less than 1.5) for larger values of k as well.

Figure 1: Local Optimality (1 + ϵ) against k for GENES and MNIST datasets, and random datasets
of the same dimension. Each stream had 10 point sets of size 3000, with k ranging from 1 to 20.
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Figure 2: Local Optimality (1 + ϵ) against k for GENES and MNIST datasets, and random datasets
of the same dimension. Each stream had 10 point sets of size 300, with k from 1 to 300 in steps of
50. Note that when k ∈ {1, n}, we trivially have that (1 + ϵ) = 1.

4.2 Local Optimality as a Function of the Size of Point Sets

Experiment Setup: Here, we fix the value of k ∈ {5, 10, 15, 20} and compute the local optimality
value (1 + ϵ) while increasing the size of the point sets. The point set size is varied from 500 to
4000 in intervals of 500. For each point set size, we chose a stream of 10 random point sets from
the dataset and took the maximum value over 10 iterations. Once again, we did this on MNIST and
GENES and took the average of 5 iterations.

Results: As shown in Fig. 3, the local optimality parameter remains very low (lower than 1.2)
regardless of the number of points in the data set, which is much smaller than (1 +

√
k).

Figure 3: Local Optimality (1 + ϵ) against Number of Points in the Base Set for k = 5, 10, 15, 20.

5 Conclusion

In this work, we provided an almost tight analysis of the greedy algorithm for determinant maxi-
mization in the composable coreset setting: we improve upon the previous known bound of Ck2

to
O(k)3k, which is optimal upto the factor 3 in the exponent. We do this by proving a result on the local
optimality of the greedy algorithm for volume maximization. We also support our theoretical analysis
by measuring the local optimality of greedy over real world data sets. It remains an interesting
question to tighten the constant in the exponent or otherwise provide a lower bound showing that 3 is
in fact optimal.
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