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ABSTRACT

Zero Redundancy Optimizer (ZeRO) has been used to train a wide range of large
language models on massive GPU clusters due to its ease of use, efficiency,
and good scalability. However, when training on low-bandwidth clusters, and/or
when small batch size per GPU is used, ZeRO’s effective throughput is limited
by communication overheads. To alleviate this limitation, this paper introduces
ZeRO++ composing of three communication volume reduction techniques (low-
precision all-gather, data remapping, and low-precision gradient averaging) to sig-
nificantly reduce the communication volume up to 4x that enables up to 2.16x
better throughput at 384 GPU scale. Our results also show ZeRO++ can speedup
the RLHF training by 3.3x compared to vanilla ZeRO. To verify the convergence
of ZeRO++, we test up to 13B model for pretraining with 8/6-bits all gather and
up to 30B model for finetuning with 4/2-bits all gather, and demonstrate on-par
accuracy as original ZeRO (aka standard training). As a byproduct, the model
trained with ZeRO++ is naturally weight-quantized, which can be directly used
for inference without post-training quantization or quantization-aware training.

1 INTRODUCTION

The size of deep learning (DL) models has increased from 100 million to over 500+ billion pa-
rameters, ranging from BERT (Devlin et al., 2018) to Megatron-Turing NLG (Smith et al., 2022).
With the increase in model size, the memory and compute requirements for training have increased
significantly beyond the capability of a single accelerator (e.g., a GPU). Training these massive
models requires the efficient aggregation of computing power and memory across hundreds or even
thousands of GPU devices. There are two popular approaches to alleviate this, namely 3D paral-
lelism (Narayanan et al., 2021; Team & Majumder, 2020) and Zero Redundancy Optimizer (ZeRO)
(Rajbhandari et al., 2020).
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Figure 1: Training throughput are constrained by net-
work bandwidth and batch size per GPU.

Compared to 3D parallelism, ZeRO is easier
to use without model code refactoring. ZeRO
is a memory efficient variation of data paral-
lelism (Ben-Nun & Hoefler, 2019; Dean et al.,
2012) where model states are partitioned across
all the GPUs, instead of being replicated, and
reconstructed using gather based communica-
tion collectives on-the-fly during training. This
allows ZeRO to effectively leverage the ag-
gregate GPU memory across machines, at the
expense of minimal communication overhead
(50%) compared to standard data parallel train-
ing (2M vs 3M for model size of M) (Rajbhandari et al., 2020), while still achieving excellent
throughput scalability (Rajbhandari et al., 2021).

However, the communication overhead of ZeRO can limit throughput in two important scenarios
(1) low-bandwidth cluster and (2) low-compute training scenario, e.g., the batch size per GPU is

∗ equal contribution
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small. We demonstrate these two cases in Figure 1. As can be seen, as the bandwidth of the
cluster becomes smaller and/or the training batch size decreases, the training efficiency of ZeRO
significantly reduces.

To overcome the communication overhead of ZeRO, we here present a novel system of communi-
cation optimizations collectively called ZeRO++, for which the contribution can be summarized:

Quantized Weight Communication for ZeRO (qwZ). First, in order to reduce parameter commu-
nication volume during forward all-gather (which is M for ZeRO), we adopt quantization on weights
to shrink down each model parameter from FP16 to lower-precision data type (e.g., 8/6-bits) before
communicating. To preserve decent model training precision, we adopt block-based quantization
(Dettmers et al., 2022; Yao et al., 2022), which conducts independent quantization on each subset of
model parameters. There is no existing implementation for high performance block-based quantiza-
tion. Thus, we implement highly optimized quantization CUDA kernels from scratch. Another great
byproduct of qwZ is that it automatically converts the model weight from half-precision (16-bits) to
lower precision for efficient inference without any inference quantization methods. Particularly, as
compared to the current popular post-training quantization methods (Frantar et al., 2022), qwZ can
push the weight-precision to 2-bits for finetuned model without significant accuracy drop.

Hierarchical Weight Partition for ZeRO (hpZ). Second, to reduce the communication overhead
of all-gather on weights during backward (which is M for ZeRO), we trade GPU memory for com-
munication. More specifically, instead of spreading whole model weights across all the machines,
we maintain a full model copy within each node. At the expense of higher memory overhead, this al-
lows us to replace the expensive cross-machine all-gather on weights with intra-machine all-gather,
which is substantially faster due to much higher intra-machine communication bandwidth. hqZ
reduces the all-gather for backward from volume M to 0.

Quantized Gradient Communication for ZeRO (qgZ). Third, reducing the communication cost
of gradients using reduce-scatter (which is M for ZeRO) is even more challenging. Directly applying
quantization to reduce communication volume is infeasible due to the training accuracy drop. To bet-
ter preserve the accuracy, we propose a novel hierarchical all-to-all based gradient scatter-reduction
schedule, where an intra-node gradient reduction is first applied and then a inter-node quantized
gradient communication (e.g., 8/4-bits) is used resulting in 2/4x communication volume reduction.
To achieve the best outcome, we incorporate pipelining intra-node and inter-node communication
and conducting CUDA kernel fusion.

By incorporating all three components above, we reduce the cross-node communication volume by
4x from 3M down to less than 0.75M (< 0.5M for forward, 0 for backward, and 0.25M for gradient
reduce-scatter). We extensively test ZeRO++’s system performance, and show (i) scalability of GPT-
3 like models on up to 384 GPUs achieving over 45% of sustained peak throughput, (ii) consistent
speedup of up to 2.4x over ZeRO across models ranging from 10-138B parameters, (iii) comparing
with baseline in 4x higher bandwidth cluster, ZeRO++ achieve better throughput in low-bandwidth
setting, (iv) 3.3x better throughput for RLHF training and generation.

To verify the convergence of ZeRO++, we tested it on both pretraining and fine-tuning. Our results
show that ZeRO++ can (1) achieve on-par training loss as ZeRO for up to 13B GPT-3 models on
pretraining with both 8-bits and 6-bits qwZ, and (2) realize similar (slightly worse) model quality
as ZeRO for OPT-30B finetuning with 4-bits (2-bits) qwZ. The 2-bits qwZ trained model can be
directly served for inference, which is significantly better than current post-training quantization
methods (PTQ) (Frantar et al., 2022) while ZeRO++ even saves training cost and PTQ cost.

2 BACKGROUND AND RELATED WORK

This section only describes the core background needed for understanding the techniques discussed
in this paper. A broader discussion of the related work is provided in Appendix A .

2.1 ZERO OPTIMIZER

ZeRO is a memory-optimized solution for data parallel training. ZeRO partitions and distributes all
model states (i.e., parameters, gradients, optimizer states) among GPUs in use and recollects model
states only when the layer needs to be computed. There are three different stages for using ZeRO
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to optimize on-device memory usage. In ZeRO stage 1 (ZeRO-1), only optimizer states are split
and spread across all GPUs in use. ZeRO stage 2 (ZeRO-2) partitions both optimizer states and
gradients, and ZeRO stage 3 (ZeRO-3) splits all three components of model states as parameters,
gradients, and optimizer states. Algorithm 1: ZeRO algorithm

Input : model,worldSize
Output: model

1 while model not converged do
2 all gather Parameters(worldSize);
3 model.forward();
4 partition(worldSize);
5 all gather Parameters(worldSize);
6 model.backward();
7 partition(worldSize);
8 reduce scatter Gradients(worldSize);
9 optimizer.step();

10 end while
11 Return: model

ZeRO-3 is the most memory efficient solution for
model training at large scale, but at the cost of
more collective communications. Algorithm 1 illus-
trates the high-level pseudocode for ZeRO-3. Dur-
ing model training, ZeRO-3 lazily schedules the
fetching of parameters until the computation needs
to happen on a particular layer. Before forward
propagation, ZeRO launches an all-gather to collect
the full model weights and then computes the for-
ward pass (line 2-3) of Algorithm 1. Then ZeRO
empties the all-gather weights buffer after forward
computation completes (line 4). During backward, ZeRO re-collects all model weights again via a
second all-gather (line 5) to calculate gradients (line 6). Once gradients are calculated on each GPU,
ZeRO empties weights buffer again (line 7) and conducts a reduce-scatter operation to do gradient
averaging and re-distribution (line 8). Model states and parameters are updated in the optimizer step
(line 9).

In summary, to minimize the on-device memory footprint using ZeRO-3, at each iteration there
are three collective communication operations: two all-gather on weights and one reduce-scatter on
gradients.

2.2 COMMUNICATION REDUCTION TECHNIQUES

Quantization is often used to reduce memory footprint, and data movement volume by using low
precision to represent data (Dettmers, 2015; Dettmers et al., 2022). However, the loss of information
from representing high precision data with lower precision often comes with accuracy degradation.
Related work aims to enhance quantization accuracy by addressing the challenges associated with
differences in number ranges and granularity between high and low precision data. Some related
work (Zhao et al., 2019) propose to filter the outliers in data to mitigate the gap in numerical ranges.
Yet their accuracy hinges on the quality of outlier filtering and it brings extra filtering overhead.
Dettmers et al. (2022) propose to use block based quantization on optimizer states to improve the
quantization accuracy. However, it requires modifications to the model structure, thereby limiting
its usability.

Gradient Compression techniques, including 1-bit SGD, 1-bit Adam, and 1-bit Lamb, have been
developed to optimize gradient communication in distributed training by utilizing minimal bit repre-
sentation (Seide et al., 2014; Tang et al., 2021; Li et al., 2021). However, direct application of these
methods to ZeRO-3 is infeasible as they assume a full view of optimizer states (OS) across GPUs,
which is not the case in ZeRO-3.

ZeRO Communication Reduction. Recent optimizations on ZeRO-3, like MiCS (Zhang et al.,
2022c) and HSDP (Zhang et al., 2022a), divide the GPU cluster into sub-groups and leverage high
bandwidth intra-node interconnect, or hierarchical communication to minimize communication vol-
ume. hpZ in ZeRO++ adopts a similar approach yet it performs only secondary partitioning on
weights, while keeping all other model states partitioned across all GPUs. This allows hpZ to achieve
significant communication reduction without the massive memory overhead of MiCS.

3 DESIGN

In this section, we elaborate on the design of our three key optimizations in ZeRO++ introduced in
Section 1 for reducing the communication overhead of ZeRO: i) Quantized Weight Communication
for ZeRO (qwZ), ii) Hierarchical Partitioning for ZeRO (hpZ), and iii) Quantized Gradient commu-
nication for ZeRO (qgZ). We further discuss the end-to-end impact of these optimizations to reduce
to total communication volume of ZeRO in Appendix B.4.
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3.1 QUANTIZED WEIGHT COMMUNICATION FOR ZERO (qwZ)

As discussed in Section 2.1, ZeRO partitions the model weights across all the ranks (i.e., GPUs) and
fetches the FP16 weights layer-by-layer right before they are needed in computation via all-gather
for the forward and backward of each training iteration. To reduce the communication overhead
of forward all-gather on weights, qwZ, quantizes FP16 weights to lower precision right during
the all-gather, and dequantizes them back to FP16 on the receiver side, and then conducts layer
computation.

While this reduces the communication volume of the all-gather by more than 2x, doing so naively
results in two major issues: i) the lowering of precision results in significant accuracy degradation
during training as discussed in Section 2.2 , and ii) the quantization and dequantization overhead
negates any throughput gain from communication volume reduction.

To improve quantization accuracy we use blocksize based quantization (Yao et al., 2022; Shen et al.,
2020) (further details in Appendix B.1). To mitigate the quantization and dequantization overhead,
we develop custom optimized implementation of qwZ (further details in Appendix C)

Additional Benefits of qwZ

i) Automatic Quantization qwZ automates parameter quantization during training, allowing higher
compression (to 2 bits) with minimal accuracy loss, thereby obviating the need for post training
quantization (Frantar et al., 2022; Yao et al., 2022) (see Section 4 for more details),

ii) Memory footprint reduction For untrainable/frozen weights (e.g., in LoRA or multimodal train-
ing), qwZ alleviates the necessity of persistent FP16 storage, which reduces memory footprint. This
reduction can allow for a) training with larger batch sizes for better throughput, b) inference or train-
ing with fewer resources without running out of memory, and c) speed up inference by reducing the
amount of parameter data that needs to be read from memory.

In fact, given the automatic quantization and memory footprint reduction, qwZ has a similar effect
for fine-tuning as QLoRA (Dettmers et al., 2023), in terms of weight quantization and memory
requirement reduction, but in addition ZeRO++ with qwZ can support significantly larger model
sizes than QLoRA due to the weight partitioning from ZeRO.

3.2 HIERARCHICAL PARTITIONING FOR ZERO (hpZ)

Figure 2: hpZ removes cross node traffic in backward
all-gather by holding secondary weight partitions in on-
device memory.

With hpZ, we eliminate the inter-node all-
gather during the backward pass by holding
secondary FP16 weights partition within each
node. We do this by creating a hierarchical par-
titioning strategy consisting of two partitions:
first, all model states are partitioned globally
across all devices as in ZeRO-3, which we call
primary partition. Second, a secondary copy
of FP16 parameters is partitioned at the sub-
global level (e.g., compute node, see Figure 2),
which we call secondary partition. This sec-
ondary copy of FP16 parameters is replicated
across multiple secondary partitions.

Consider a 64-node cluster, each node with 8
GPUs. Model weights are partitioned in two
stages: i) across all 512 GPUs that we call primary partition, and ii) the same weights are also
partitioned within a compute node across 8 GPUs, that we call secondary partition. In this example,
for the secondary partition, each compute node in the cluster holds a full replica of FP16 weights
partitioned among the 8 GPUs within the node, and there are 64 of such replicas in total.

A training iteration with hpZ. During the forward pass of a training iteration, we all-gather weights
based on the primary partition across all GPUs. However, once the weights have been used during
the forward pass, these weights are then partitioned based on the secondary partition. Given the
temporal consistency of model parameters between forward and backward passes, when the weights
are needed again during the backward pass, we all-gather weights based on this secondary group.
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When the secondary partitioning is set to be inside a compute node, this avoids any inter-node com-
munication for this all-gather. Finally, at the end of the iteration, during the optimizer step, all the
model states, and the primary copy of the fp16 parameters are updated based on the primary parti-
tion. hpZ makes two changes to baseline ZeRO pseudocode in Algorithm 1: i) in line 4, parameter
partitioning is based on secondary group size, ii) parameter all-gather preceding backward pass in
line 5 is also based on secondary group size.

Our design of hpZ can flexibly support any secondary group size. The group size controls how many
ranks (i.e., GPUs) are in the secondary partition. It is also a measure of the memory-communication
trade-off of hpZ discussed in Appendix B.2.

3.3 QUANTIZED GRADIENTS COMMUNICATION FOR ZERO (qgZ)

qgZ is a novel quantized reduce-scatter algorithm based on all-to-all collectives that enables a 4x
communication volume reduction of gradient reduce-scatter by replacing FP16 with INT4. qgZ has
three components: 1) all-to-all-based quantized gradient reduce-scatter, 2) reducing communication
volume with hierarchical collectives (details in Appendix B.3), 3) tensor slice reordering for correct
gradient placement.

3.3.1 ALL-TO-ALL BASED IMPLEMENTATION

A naive way to quantized reduce-scatter without precision loss is to apply quantization and dequanti-
zation to a ring-based reduce-scatter directly as shown on the left of Figure 3. We inject quantization
and dequantization on each GPU. Once a GPU receives gradients from its predecessor, we dequan-
tize it to full precision and conduct a local reduction. After that we quantize local reduction output
and pass it to its successor. To complete the whole reduce-scatter, the number of sequential quantiza-
tion and dequantization kernels is equal to the number of GPUs in use. Thus, applying quantization
on existing ring based reduce-scatter collective will lead to high communication latency and low
value precision due to multiple sequential quantization and dequantization steps. Although recent
tree-based collectives like Blink(Wang et al., 2020) could reduce the number of sequential kernels
from n to log(n), the long latency and low precision issue is not completely resolved.

Machine 1

G2 G3

Machine 0

G0 G1

Machine 1

G2 G3

NCCL Ring-based reduce-scatter (ZeRO-3)
# of sequential Q+D == # of GPUs

1-hop all-to-all (qgZ in ZeRO++)
# of sequential Q+D == 1
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Figure 3: Comparison between ZeRO-3 ring-based
reduce-scatter and qgZ 1-hop all-to-all.

To overcome this, we completely abandon ex-
isting ring-based reduce-scatter approach and
incorporate 1-hop all-to-all collective for our
gradient communication. As shown on the
right of Figure 3, we first apply quantization
on a given tensor, then we conduct all-to-
all communication among all the GPUs. Af-
ter all-to-all, we apply another dequantization
to recover the data precision and then reduce
on high-precision values to get the final gra-
dient reduction output. By replacing ring-
based solution with our all-to-all collective,
we reduce the number of sequential quantiza-
tion+dequantization kernels from the number
of GPUs to 1. We further reduce cross node communication volume by incorporating hierarchi-
cal collectives named 2-hop all-to-all, which is detailed in Appendix B.3.

3.3.2 TENSOR SLICE REORDERING FOR CORRECT DATA PLACEMENT

With our 2-hop all-to-all, inter-node communication volume is as expected, however, this introduces
a gradient misplacement issue. We describe this issue using a 2x2 example, where we have 2 ma-
chines and each machine has 2 GPUs. As shown in Figure 4, the correct final gradient placement
is shown as green boxes in the figure, where GPU 0 holds final gradient partition 1, GPU 1 holds
gradient partition 2, so on and so forth.

Our 2-step all-to-all communication works as follows, first we divide all gradients on each GPU
into 4 chunks, then conduct our intra-node all-to-all. After intra-node all-to-all finishes, GPU0 (i.e.,
G0) holds partial aggregated gradient partitions 1,2 whereas G1 holds gradient partitions 3,4. Same
thing happens on G2 and G3. Since G1 does not have gradient partition 2 (which is supposed to be
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Figure 4: Gradient partition misplacement when ap-
plying hierarchical all-to-all in qgZ.
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Figure 5: Tensor slices reordering to correct gradient
misplacement in qgZ.

held by G1) while G2 does not have gradient partition 3, after inter-node all-to-all, there is gradient
misplacement issue on both G1 and G2.

We address this with tensor slice reordering. In Figure 5, before intra-node all-to-all, we first swap
tensor slice order of slice 2 and 3, which is shown as orange arrows. Then after intra-node all-to-all
is completed, G1 now has gradient 2 while G2 has gradient 3. Therefore, after inter-node all-to-all,
all GPUs get the correct gradient placement. Mathematically, given X GPUs per node and Y nodes
in total, each GPU holds X*Y gradient slices initially. Tensor slice reordering works as follows:

before : [0, 1, 2, 3, 4, ...Y X − 3, Y X − 2, Y X − 1] (1)

after : [0, X, 2X, ...(Y − 1)X, 1, X + 1, (Y − 1)X + 1, ...Y X − 1] (2)

Based on Eq. 1 and 2, we can map each original tensor slice position (i.e., Eq. 1) to new tensor slice
position (i.e., Eq. 2) on each GPU to correct final gradient misplacement issue.

3.4 OPTIMIZED IMPLEMENTATION

To optimize ZeRO++, we implemented key optimizations: i) overlapping compute streams and,
ii) optimizing CUDA kernels. Overlapping involves concurrent execution of quantization compu-
tation and communication during weight all-gathering, leveraging asynchronous quantization and
execution order tracking. The CUDA kernels were optimized for quantization, dequantization, and
tensor slice reordering to fully utilize device memory bandwidth and minimize memory traffic by
9x in qgZ. Additionally, a hierarchical approach in gradient communication and a generalized ten-
sor slice reordering scheme are introduced to minimize latency and address the needs of different
pipeline stages. These optimizations allow ZeRO++ to efficiently leverage 4x communication vol-
ume reduction, enhancing its throughput. Please refer to the Appendix C for implementation details
and communication analysis.

4 EVALUATION

This section evaluates ZeRO++ in three areas. First, it shows end-to-end throughput scalability
and speedup over baseline for standard and RLHF training across different models, model sizes,
hardware configurations and cluster settings, demonstrating consistent speedup (up to 3.3x) across
the board. Second, it shows convergence properties of ZeRO++ for both pre-training and fine-
tuning demonstrating its robustness and tolerance to extreme quantization all the way down to 2-bits.
Third, it shows ablation studies demonstrating the impact of each component of ZeRO++ and the
effectiveness of our kernel optimizations.

4.1 METHODOLOGY

Hardware: 24 NVIDIA DGX-2 nodes where each with 16 V100 SXM3 32 GB GPUs. The
nodes are connected by InfiniBand (IB) with NVIDIA SHARP support, achieving total inter-node
bandwidth of over 800 Gbps. To evaluate ZeRO++ in clusters under different network environments,
we show the performance of ZeRO++ running with different cross-node bandwidths by enabling
from 1 to 8 IB connections (i.e., 100 Gbps to 800 Gbps).

Baseline: We use ZeRO-3 as the baseline given its ease-to-use for training giant models at large
scale. To evaluate the performance of our optimized kernels, we also implemented ZeRO++ with Py-
Torch quantization and non-fused kernels as baselines for our ablation study.
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Table 1: End-to-end speedup of ZeRO++ on V100 and
A100 GPUs.

(a) 384 V100 GPUs
1 IB Connection 8 IB Connections

Model
Size

Tokens
per GPU

Baseline
TFLOPs

ZeRO++
TFLOPs Speedup Baseline

TFLOPs
ZeRO++
TFLOPs Speedup

138B 2K 19.96 37.90 90% 47.55 55.30 16%
138B 1K 11.25 21.81 94% 34.19 44.38 30%
91B 2K 19.99 38.06 90% 47.74 56.26 18%
91B 1K 11.27 21.93 95% 34.49 44.36 29%
49B 2K 20.06 38.08 90% 48.05 56.24 17%
49B 1K 11.27 21.95 95% 34.54 44.46 29%
18B 2K 25.98 46.40 79% 47.31 53.65 13%
18B 1K 14.15 30.57 116% 31.27 37.87 21%

(b) 32 A100 GPUs
1 IB Connection 4 IB Connections

Model
Size

Tokens
per GPU

Baseline
TFLOPs

ZeRO++
TFLOPs Speedup Baseline

TFLOPs
ZeRO++
TFLOPs Speedup

18B 2K 64.99 111.66 71.8% 134.65 134.94 0.2%
18B 1K 34.52 65.2 88.8% 85.16 93.12 9.3%

Model Configurations: We use transformer models for evaluation including GPT, OPT, andLLaMA
for various model sizes. Given Megatron-Turing-NLG (Smith et al., 2022) training 530B model on
2K GPUs using 2K tokens per GPU (i.e., micro batch size), we evaluate ZeRO++ with the same 2k
tokens per GPU setting. We also evaluate on 1K tokens per GPU to test ZeRO++ with more extreme
scale scenario. The number of layers and hidden sizes are adjusted to have models of different sizes.
Please refer to the appendix and our open-sourced evaluation scripts for hyperparameters and other
training details.

4.2 E2E SYSTEM EVALUATIONS

We evaluate ZeRO++ end-to-end performance and present an ablation study here. One key metric
we use here is the percentage of peak performance, which is shown as Eq. 3.

peak performance = achieved TFLOPs/max TFLOPs (3)

E.g. when we use V100 GPU, its max TFLOPs is 120 TFLOPs (NVIDIA V100 datasheet) for
mixed precision computation. Thus, our reported peak performance refers to the percentage number
of achieved TFLOPs/120.

Scalability upto 384 GPUs In Figure 6, we present ZeRO++ scalability evaluation from 64 to 384
GPUs with 18B model on both low (1 IB) and high (8 IB) bandwidth clusters. On low bandwidth
cluster, ZeRO++ achieves 30% and 38.3% of peak performance (120 TFLOPs) even at 384 GPUs
for 1K and 2K batch sizes, which is much higher compared to 12.5% and 21.6% as baseline peak
performance. This presents up to 2.4x better throughput. On high bandwidth cluster, despite having
significantly more bandwidth, ZeRO++ still enables up to 1.29x better throughput, and can achieve
up 45% of sustained peak throughput at 384 GPUs. ZeRO++ significantly speed up large scale
training for low bandwidth clusters while archiving decent speedup even on high bandwidth clusters.

Throughput for different model sizes and GPU architectures Table 1(a) compares training
throughput for models of 18B-138B on 384 GPUs between ZeRO++ and baseline on both low and
high bandwidth clusters. On low bandwidth cluster, ZeRO++ consistently achieves over 31.5% and
18.1% peak performance for 2K and 1K batch sizes on all models. Compared with the baseline peak
performance of 16.6% and 9.3%, the speedup is up to 2.16x. On high bandwidth cluster, ZeRO++
peak performances are 44.7% and 31.5%, which is 1.3x over the baseline peak performance of
31.5% and 26.0%.

Table 1(b) illustrates the performance of ZeRO++ on 32 A100 GPUs, demonstrating that ZeRO++
surpasses the baseline even on a smaller scale cluster. Specifically, in low-bandwidth clusters,
ZeRO++ exceeds the baseline by 88.8%, and in high-bandwidth clusters, it achieves a 9.3% im-
provement over the baseline. ZeRO++ exhibits robustness and uniform speedup across varying
model and batch sizes, as well as differing network bandwidths and GPU architectures.

Democratization for large scale training Figure 7 compares the throughput of ZeRO++ on a low
cross-node bandwidth (200 Gbps as 2 IB) cluster with the baseline running on 800 Gbps high-
bandwidth (8 IB) cluster. For a small model of 18B, ZeRO++ achieves a higher peak performance of
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Figure 7: ZeRO++ achieves high bandwidth cluster
performance with much lower bandwidth.
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Figure 8: ZeRO++ achieves up to 3.3x better
throughput for RLHF training.

Table 2: Perplexity after fine-tuning different mod-
els with various quantization bits in ZeRO++.

OPT-1.3B OPT-13B LLaMA-30B
FP16 (Baseline) 1.804 1.698 1.490
ZeRO++ 6-bits 1.809 1.705 1.500
ZeRO++ 4-bits 1.830 1.705 1.494
ZeRO++ 2-bits 2.218 1.809 1.544
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Figure 9: Convergence curves: Pretraining GPT-
350M and GPT-13B on the Pile dataset.

41.6% compared with baseline peak performance of 39.1% despite running with 4x lower cross-node
bandwidth. For large model of 138B, ZeRO++ and baseline achieve the same peak performance of
40%, but baseline runs at 4x higher cross-node bandwidth. This evaluation shows that ZeRO++
makes large scale training more accessible by significantly decreasing the minimum cross-node
bandwidth requirement for efficient training. Furthermore, it demonstrates that optimized ZeRO++
implementation effectively translates the 4x communication reduction of ZeRO++ into real end-to-
end system throughput gain.

Speedup for RLHF Reinforcement Learning from Human Feedback (RLHF) is a unique and com-
monly employed scenario in LLM training. In Figure 8, we present a comparison between ZeRO++
and the baseline for OPT-30B and LLaMA-2-70B, demonstrating that ZeRO++ can achieve up to
3.3x and 2.97x improved throughput forLLaMA-2-70B and OPT-30B respectively. The throughput
is measured at step3 of RLHF training where there are both training and generation. It’s noteworthy
that the results were obtained with 8 InfiniBand connections on V100 GPUs, and we anticipate an
even larger gap in lower bandwidth clusters. These findings underscore the versatility and efficacy
of ZeRO++ across diverse training scenarios and various model families.

4.3 MODEL CONVERGENCE ANALYSIS

This section assesses ZeRO++’s impact on the convergence of large models during both pretraining
and fine-tuning stages.

Pretraining. We analyze the pretraining of GPT-350M and GPT-13B models on the Pile dataset (Bi-
derman et al., 2022), employing ZeRO++ with non-blocked quantization, ZeRO++ (with blocked
quantization), and ZeRO-3 as the baseline. To maintain fairness, all hyperparameters remain con-
sistent between baseline and ZeRO++ trainings. Convergence is measured by the validation LM
loss.

Figure 9 displays the comprehensive pretraining trace. Training with 8-bit non-blocked quantization
diverged initially, rendering no visible data. Conversely, ZeRO++ with 8-bit blocked quantization
aligns closely with the baseline, reinforcing our prior analysis that block-based quantization achieves
superior quantization accuracy. Furthermore, ZeRO++ convergence remains closely aligned with the
baseline even when using 6-bit quantization.

Fine-tuning. We fine-tuned the pre-trained models: OPT-1.3B/-13B (Zhang et al., 2022b) and
LLaMA-30B (Touvron et al., 2023), with ZeRO++ using FP6, INT4, and INT2 precision for qwZ
and INT-4 for qgZ on the high-quality open-source instruction datasets1. We kept all training hyper-
parameters the same across all setups. The evaluation relies on the metric – perplexity (the lower,
the better).

1We include the huggingface datasets: Dahoas/rm-static, Dahoas/full-hh-rlhf, Dahoas/synthetic-instruct-
gptj-pairwise, yitingxie/rlhf-reward-datasets.
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Table 3: End-to-end performance when using
ZeRO++ w.\wo. optimized kernels.

Optimized
Quantization

Kernel

Optimized
Fusion
Kernel

TFLOPs

Baseline N/A N/A 15
ZeRO++ No No 19.73
ZeRO++ No Yes 21.6
ZeRO++ Yes No 31.40
ZeRO++ Yes Yes 36.16
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Figure 10: Throughput of 18B models on128 GPUs
with ZeRO++, qwZ, qgZ, hpZ, and baseline on vari-
ous InfiniBand connections.

Table 2 reveals the robustness of ZeRO++, as well as its ability to create low-precision models during
fine-tuning without requiring post-quantization. Notice, the validation perplexity of ZeRO++ varies
only slightly from the baseline, with a mere 0.27%-0.41% deviation, even when quantized to 4-bits.

4.4 THROUGHPUT BREAKDOWN AND ANALYSIS

Impact of Individual Techniques. In Figure 10, we show the individual and combined impact of
qwZ, hpZ, and qgZ, on the throughput of 18B model on 128 GPUs. On low bandwidth clusters,
each of these techniques enables a speedup ranging from 1.3-1.4x compared with baseline, while
achieving an aggregated speedup of up to 2.26x. Note that our TFLOPs throughput is calculated
from wall-clock time measurement, ZeRO++ aggregated throughput gain is not equivalent to sum
of qgZ, qwZ, hpZ gain. We can validate the theoretical speedup with composition of our techniques
by accumulating the speedup multiplicatively: 1.4 ∗ 1.26 ∗ 1.3 = 2.29, which is very near to what
we achieved as 2.26x.

For high bandwidth clusters, the individual speedup ranges between 1.13-1.16x, for a combined
speedup of up to 1.3x. The figure demonstrates that each of these techniques has a similar impact
towards throughput improvement and they compose effectively with a larger aggregated speedup.

Impact of Kernel Optimizations. We evaluate our optimized kernels on ZeRO++ throughput using
an 18B model running on 64 GPUs.

Quantization Kernel: As shown in Table 3, compared with the baseline that uses PyTorch quanti-
zation, our optimized quantization kernels can achieve up to 1.67x speedup in terms of end-to-end
throughput. Also, the baseline implementation suffers performance degradation as the group number
increases which means the throughput gap will be larger when used with larger models.

Kernel Fusion: As described in Appendix C.2, kernel fusion is one of our key optimizations to
improve memory throughput when executing sequences of CUDA kernels. Our fusion includes 1)
tensor-reorder and quantization fusion 2) intra-node dequant, intra-node reduction and inter-node
quant fusion. As shown in Table 3, we achieve up to 1.15x speedup on the end-to-end throughput.

5 CONCLUSION

This paper presents ZeRO++, an efficient collective communication solution for large model training
using ZeRO stage-3. We optimize both model weights and gradients communication in the forward
and backward pass of each training iteration. To reduce communication volume of model weights
in forward propagation, we adopt block-based quantization and data pre-fetching. To remove cross-
node communication of weights during backward pass, we hold secondary model partition on each
node to trade memory for communication. To minimize gradient communication during backward
propagation, we design and implement a novel all-to-all based gradient quantization and reduction
scheme.

By incorporating all the three optimizations above, we improve system scalability and throughput for
pre-training, fine-tuning and RLHF training with speedup of up to 3.3x. Furthermore, ZeRO++ can
automatically quantize the parameters to ultra-low precision making the resulting model inference
ready without post-training quantization. We envision ZeRO++ as the next generation of easy-to-use
framework for training large models at scale.
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Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. A unified theory of SGD: variance reduction,
sampling, quantization and coordinate descent. In Silvia Chiappa and Roberto Calandra (eds.),
The 23rd International Conference on Artificial Intelligence and Statistics, AISTATS 2020, 26-28
August 2020, Online [Palermo, Sicily, Italy], volume 108 of Proceedings of Machine Learning
Research, pp. 680–690. PMLR, 2020. URL http://proceedings.mlr.press/v108/
gorbunov20a.html.

Yanping Huang, Yonglong Cheng, Dehao Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, and
Zhifeng Chen. Gpipe: Efficient training of giant neural networks using pipeline parallelism.
ArXiv, abs/1811.06965, 2018.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural
networks using pipeline parallelism. Advances in neural information processing systems, 32,
2019.

10

https://proceedings.neurips.cc/paper/2017/hash/6c340f25839e6acdc73414517203f5f0-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/6c340f25839e6acdc73414517203f5f0-Abstract.html
https://openreview.net/forum?id=shpkpVXzo3h
https://openreview.net/forum?id=shpkpVXzo3h
http://proceedings.mlr.press/v108/gorbunov20a.html
http://proceedings.mlr.press/v108/gorbunov20a.html


Published as a conference paper at ICLR 2024

Conglong Li, Ammar Ahmad Awan, Hanlin Tang, Samyam Rajbhandari, and Yuxiong He. 1-bit
LAMB: communication efficient large-scale large-batch training with lamb’s convergence speed.
CoRR, abs/2104.06069, 2021. URL https://arxiv.org/abs/2104.06069.

Ilia Markov, Adrian Vladu, Qi Guo, and Dan Alistarh. Quantized distributed training of large models
with convergence guarantees. arXiv preprint arXiv:2302.02390, 2023.

Microsoft. Turing-nlg: A 17-billion-parameter language model by mi-
crosoft. https://www.microsoft.com/en-us/research/blog/
turing-nlg-a-17-billion-parameter-language-model-by-microsoft/,
2020.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil Devanur, Greg
Granger, Phil Gibbons, and Matei Zaharia. Pipedream: Generalized pipeline parallelism for dnn
training. In ACM Symposium on Operating Systems Principles (SOSP 2019), October 2019.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vi-
jay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, Amar
Phanishayee, and Matei Zaharia. Efficient large-scale language model training on gpu clus-
ters using megatron-lm. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’21, New York, NY, USA, 2021. Associa-
tion for Computing Machinery. ISBN 9781450384421. doi: 10.1145/3458817.3476209. URL
https://doi.org/10.1145/3458817.3476209.

NVIDIA DGX-2. NVIDIA DGX-2. https://www.nvidia.com/en-us/data-center/
dgx-2/, 2018.

NVIDIA SHARP. Nvidia infiniband adaptive routing tech-
nology. https://nvdam.widen.net/s/whmszwfrbt/
infiniband-white-paper-adaptive-routing-1846350, 2021.

NVIDIA V100 datasheet. Nvidia tesla v100 gpu accelerator. https://www.
penguinsolutions.com/computing/wp-content/uploads/2019/03/
penguin-computing-tesla-v100-ds.pdf, 2017.

PyTorch quantization. Quantization - pytorch documentation. https://pytorch.org/docs/
stable/quantization.html, 2023.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong He. Zero-infinity:
Breaking the gpu memory wall for extreme scale deep learning. In Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage and Analysis, SC ’21,
2021.

Ali Ramezani-Kebrya, Fartash Faghri, Ilya Markov, Vitalii Aksenov, Dan Alistarh, and Daniel M.
Roy. NUQSGD: provably communication-efficient data-parallel SGD via nonuniform quanti-
zation. J. Mach. Learn. Res., 22:114:1–114:43, 2021. URL http://jmlr.org/papers/
v22/20-255.html.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and
its application to data-parallel distributed training of speech dnns. In Fifteenth annual conference
of the international speech communication association, 2014.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W. Mahoney,
and Kurt Keutzer. Q-BERT: hessian based ultra low precision quantization of BERT. In The
Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innova-
tive Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12,
2020, pp. 8815–8821. AAAI Press, 2020.

11

https://arxiv.org/abs/2104.06069
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
https://doi.org/10.1145/3458817.3476209
https://www.nvidia.com/en-us/data-center/dgx-2/
https://www.nvidia.com/en-us/data-center/dgx-2/
https://nvdam.widen.net/s/whmszwfrbt/infiniband-white-paper-adaptive-routing-1846350
https://nvdam.widen.net/s/whmszwfrbt/infiniband-white-paper-adaptive-routing-1846350
https://www.penguinsolutions.com/computing/wp-content/uploads/2019/03/penguin-computing-tesla-v100-ds.pdf
https://www.penguinsolutions.com/computing/wp-content/uploads/2019/03/penguin-computing-tesla-v100-ds.pdf
https://www.penguinsolutions.com/computing/wp-content/uploads/2019/03/penguin-computing-tesla-v100-ds.pdf
https://pytorch.org/docs/stable/quantization.html
https://pytorch.org/docs/stable/quantization.html
http://jmlr.org/papers/v22/20-255.html
http://jmlr.org/papers/v22/20-255.html


Published as a conference paper at ICLR 2024

Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari, Jared
Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, et al. Using deep-
speed and megatron to train megatron-turing nlg 530b, a large-scale generative language model.
arXiv preprint arXiv:2201.11990, 2022.

Hanlin Tang, Shaoduo Gan, Ammar Ahmad Awan, Samyam Rajbhandari, Conglong Li, Xiangru
Lian, Ji Liu, Ce Zhang, and Yuxiong He. 1-bit adam: Communication efficient large-scale training
with adam’s convergence speed. In International Conference on Machine Learning, pp. 10118–
10129. PMLR, 2021.

DeepSpeed Team and Rangan Majumder. DeepSpeed: Extreme-scale model train-
ing for everyone. https://www.microsoft.com/en-us/research/blog/
deepspeed-extreme-scale-model-training-for-everyone/, 2020.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Guanhua Wang, Shivaram Venkataraman, Amar Phanishayee, Jorgen Thelin, Nikhil R. Deva-
nur, and Ion Stoica. Blink: Fast and generic collectives for distributed ML. In Inderjit S.
Dhillon, Dimitris S. Papailiopoulos, and Vivienne Sze (eds.), Proceedings of Machine Learn-
ing and Systems 2020, MLSys 2020, Austin, TX, USA, March 2-4, 2020. mlsys.org, 2020. URL
https://proceedings.mlsys.org/book/299.pdf.

Jiaxiang Wu, Weidong Huang, Junzhou Huang, and Tong Zhang. Error compensated quantized
sgd and its applications to large-scale distributed optimization. In International Conference on
Machine Learning, pp. 5325–5333. PMLR, 2018.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong
He. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers.
Advances in Neural Information Processing Systems, 35:27168–27183, 2022.

Buyun Zhang, Liang Luo, Xi Liu, Jay Li, Zeliang Chen, Weilin Zhang, Xiaohan Wei, Yuchen Hao,
Michael Tsang, Wenjun Wang, Yang Liu, Huayu Li, Yasmine Badr, Jongsoo Park, Jiyan Yang,
Dheevatsa Mudigere, and Ellie Wen. DHEN: A deep and hierarchical ensemble network for large-
scale click-through rate prediction. CoRR, abs/2203.11014, 2022a. doi: 10.48550/ARXIV.2203.
11014. URL https://doi.org/10.48550/arXiv.2203.11014.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022b.

Zhen Zhang, Shuai Zheng, Yida Wang, Justin Chiu, George Karypis, Trishul Chilimbi, Mu Li, and
Xin Jin. Mics: Near-linear scaling for training gigantic model on public cloud, 2022c.

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Christopher De Sa, and Zhiru Zhang. Improving neural
network quantization without retraining using outlier channel splitting. In Kamalika Chaudhuri
and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pp. 7543–7552. PMLR, 2019. URL http://proceedings.
mlr.press/v97/zhao19c.html.

APPENDIX

A FURTHER BACKGROUND AND RELATED WORK

A.1 DATA, TENSOR AND 3D PARALLELISM

Data parallelism (DP), pipeline parallelism (PP), and tensor parallelism (TP) are three forms of par-
allelism used to train large models across multi-GPU clusters. (Dean et al., 2012; Narayanan et al.,
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Figure 11: Illustration & example of block based quantization vs. baseline

2021; 2019; Huang et al., 2018) DP is commonly used when model size fits within a single GPU
memory. In DP, each GPU holds a full copy of model weights and trains on separate input data.
MP is orthogonal to DP, and is often used in cases where model size cannot fit into a single GPU’s
memory. Instead of splitting input data, model parallelism partitions a full model into pieces and
assigns each model piece onto a GPU. There are mainly two approaches for model parallelism: i)
pipeline parallelism (PP) and ii) tensor parallelism (TP). PP (Huang et al., 2019; Narayanan et al.,
2019; Huang et al., 2018) splits models vertically, creating sequential stages consisting of a contigu-
ous subset of layers. While there is sequential dependency between stages for an input micro-batch,
the stages can be executed in parallel across micro-batches. In contrast, TP (Narayanan et al., 2021)
splits each layer across multiple GPUs, where each GPU works on a different part of the layer for
the same input.

3D parallelism (Smith et al., 2022; Team & Majumder, 2020) refers to combination of Data Par-
allelism , Pipeline Parallelism , and Tensor Parallelism (Dean et al., 2012; Narayanan et al., 2021;
2019; Huang et al., 2018), and is capable of achieving excellent throughput and scalability, and has
been used to train a wide range of large language models (Microsoft, 2020; Narayanan et al., 2021;
Radford et al., 2019; Black et al., 2022). Despite being highly efficient, 3D parallelism is severely
limited by the fact that it requires complete rewrite of model and training pipeline to make them
compatible with 3D parallelism (Smith et al., 2022).

A.2 OTHER COMMUNICATION REDUCTION TECHNIQUES

Quantization In addition to the quantization approaches discussed in the main text, another line
of research focus on error-feedback techniques to achieve efficient quantization without significant
accuracy loss, such as (Tang et al., 2021; Wu et al., 2018). We view error-feedback as an orthogonal
approach to ZeRO++.

ZeRO Communication Reduction Recent work such as QSDP (Markov et al., 2023) shows promis-
ing results using quantization of weights and gradients. Compared to these approaches, ZeRO++
uses a novel communication design to reduce quantization error, overlapping communication and
quantization to hide quantization overhead, and a optimized weight placement to reduce inter-node
communication, which is reflected in the non-trivial speedup in the evaluation.

B DESIGN DETAILS

B.1 BLOCK-SIZE BASED QUANTIZATION

As illustrated in Figure 11, each weight tensor is divided into smaller chunks, and converted into
INT8 by symmetric quantization, using an independent quantization scaling coefficient. By keeping
the quantization granularity small, we significantly mitigate the gap in number ranges and granular-
ity.
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Figure 12: Per-device memory consumption analysis of standard data parallel (DP), ZeRO stage 3 (ZeRO-
3) and proposed hierarchical partitioning of ZeRO parameters (hpZ). K denotes the memory multiplier of
optimizer states, M represents the number of trainable parameters, P is the data parallel group size or world
size, and α is the number of secondary groups or ratio of world size to the number of ranks in the secondary
group. A typical real world scenario example is provided in the last column. We assume a model size of 100B
trained on 1024 V100 GPU DGX cluster (64 compute nodes, 16 GPUs per node).
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Figure 14: qgZ apply hierarchy all-to-all to reduce
cross node traffic.

We show an example of the quantization error of performing block based quantization vs. the
non-blocked quantization baseline in Figure 11(a). Figure 11(b) shows a case study of weights
quantization on BERT model, where block based quantization reduces the quantization error by 3x.
More in-depth convergence evaluations are shown in Section 4.

B.2 MEMORY USAGE ANALYSIS OF hpZ

By design, hpZ trades memory for communication efficiency. It is important to analyze this tradeoff.
Recall that standard data parallel DNN (DP) replicates model parameters across data parallel ranks,
ZeRO-3 on the other hand partitions parameter across data parallel ranks. A midway approach is
model parameters partitioned across a subset of devices as long as model parameters fit.

Figure 12 provides a concrete memory usage estimate of a typical large language model of size of
100B parameters, with primary group size of 1024 GPUs and secondary group size of 16 GPUs
(e.g., DGX-2 V100 node). As shown in Figure 12, with our proposed method, hpZ consumes 8.9x
more memory than ZeRO-3, our approach is still 114x less memory requirement than standard DP.
This marginal increase in memory usage is compensated for by efficient intra-node communication
schedule. By eliminating or reducing inter-node communication for backward pass, hpZ reduces
the end-to-end communication of ZeRO by 1.5x, while supporting model training with hundreds of
billions of parameters.

B.3 REDUCING INTER-NODE COMMUNICATION VOLUME

Although replacing reduce-scatter with all-to-all achieves single-shot quantization and dequanti-
zation, it introduces a new problem; the inter-node communication volume increases instead of
decreasing despite the quantization of data. We elaborate on this in Figure 13.
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Given that intra-machine often have high bandwidth interconnects (e.g., NVLink, NVSwitch), cross-
machine communication links are often the bottleneck. Given this, we analysis cross node commu-
nication volumes and ignore intra-node communication volumes.

Here we assume model size of M , GPU per node is N , gradient compression ratio as Z. Reduce-
scatter, reduces the data during transmission over the ring, thus the total amount of data for cross-
node communication is M. However, when using our 1-hop all-to-all approach, even though the
data are compressed before communication (i.e., M/Z), each GPU needs to send out M/Z amount
of data to GPUs on the other nodes. Therefore, each machine will generate N ∗M/Z amount of
cross-node communication data, which is much bigger than reduce-scatter communication volume.

To address this, we do a hierarchical 2-hop all-to-all instead of 1-hop: a) first intra-node all-to-all and
b) followed by inter-node all-to-all, which is shown as Figure 14. First, with high-bandwidth links
among GPUs inside a machine, we conduct intra-node all-to-all on quantized data, then dequantize
data and reduce on dequantized data. After intra-node quantization, all-to-all, dequantization, and
reduction, we reduce the data size per GPU from M/Z to M/(Z ∗ N). After intra-node all-to-all
is completed, we conduct the inter-node all-to-all communication, which is similar to 1-hop all-to-
all we described above. Given that now each GPU only needs to send out M/(Z ∗ N) data, the
communication volume per machine is now M/(Z ∗N) ∗N = M/Z. By adopting this hierarchical
all-to-all communication as 2-hop approach, we resolve the communication volume blow-up issue in
our 1-hop scheme perfectly. Note that even though the total communication volume is doubled (one
intra-node, the other inter-node), intra-node communication introduces negligible overhead given
NVLink/NVswitch high bandwidth, and cross-node traffic has been significantly reduced, which is
the major bottleneck in gradient communication.

B.4 ZERO++ COMMUNICATION VOLUME ANALYSIS

Comm. forward backward backward
Volume all-gather all-gather reduce-scatter
ZeRO-3 M M M
ZeRO++ 0.5M 0 0.25M

Table 4: Communication volume comparison between ZeRO-3 and ZeRO++.

Table 4 illustrates theoretical communication volume comparison between ZeRO-3 and ZeRO++.
We assume the model size of M . As described in Section 2, during ZeRO-3 there are 3 collective
calls: all-gather on weights in forward pass, then all-gather on weights in backward pass and last is
reduce-scatter on gradients in the backward. And each collective communicates M volume of data.

With ZeRO-3, in total we need to communicate 3M data per each training iteration. Given that intra-
node communication is fast with NVLink and NVSwitch, we ignore intra-node communication and
focus on cross-node traffic only. For all-gather in the forward pass, by incorporating our quantized
weights communication, we reduce communication volume from M to 0.5M. During the all-gather
in the backward pass, by holding secondary weights partition within each node, we completely
removed cross-node traffic. For reduce-scatter in the backward pass, by replacing reduce-scatter
with our novel quantized gradient communication protocol, we reduce cross-node traffic from M
to 0.25M. Therefore, compared with ZeRO-3, ZeRO++ reduces communication volume from 3M
down to 0.75M for each training iteration.

C OPTIMIZED IMPLEMENTATION

In this section, we discuss two key optimizations that enable ZeRO++ to fully realize the potential
of 4x communication volume reduction to improve throughput without getting limited by imple-
mentation overheads: i) overlapping different communication and compute streams, when doing so
enables better resource utilization, and ii) optimized CUDA kernels for quantization, dequantization,
and tensor slice reordering operators, and kernel fusion across these operators when appropriate to
minimize the memory traffic overhead. Below we discuss the two lines of optimization in detail.
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Figure 15: Pipelining and overlapping intra-node communication with inter-node communication
in qgZ.

C.1 OVERLAP COMPUTE AND COMMUNICATION

To reduce end-to-end communication time, we overlap quantization computation with communica-
tion for all-gathering of weights in both forward and backward passes. For the hierarchical all-to-all
based reduce-scatter implementation of gradients, we overlap the intra-node communication with
inter-node communication.

C.1.1 COMMUNICATION-COMPUTATION OVERLAPPING ON WEIGHTS

For all-gather on weights, we enable communication-computation overlap using two key features
: i) we track the execution order of model layers to get the sequence they will be fetched. ii) we
guarantee asynchronous quantization execution. Specifically, the call to the quantization kernel is
non-blocking and we further avoid operations that involve explicit/implicit CUDA synchronization
(e.g. tensor concatenation), making the quantization a non-blocking operation that can be launched
asynchronously.

With this two features, as ZeRO fetch parameters for each layer, the communication of the current
layer and the quantization of the next layer can be launched at the same time on different CUDA
streams. When the quantized data are needed for the next layer, ZeRO++ synchronizes the quantiza-
tion stream to make sure the quantized data are ready. This approach hides the quantization cost of
the next layer under the communication time span of the current layer which hides the quantization
overhead.

C.1.2 HIERARCHICAL COLLECTIVES FOR GRADIENT COMMUNICATION

As discussed in Section B.3, our all-to-all based gradient communication is broken into two stages:
first intra-node communication followed by inter-node communication. The inter-node communica-
tion depends on the results of the intra-node communication, therefore, with a naive implementation,
inter-nodes links are idle during intra-node communication and vice versa. To reduce latency by
leveraging both inter-node and intra-node links in parallel, we chunk our input gradient tensor and
pipeline transfer between intra-node communication and inter-node communication. As shown in
Figure 15, compared with “no pipeline” case on the top, simply adopting a “2-stage pipeline” trans-
fer achieves the amount of end-to-end latency reduction shown as the red arrow-line in Figure 15.
By overlapping intra-node and inter-node communication, the end-to-end latency of gradient com-
munication is significantly reduced.

Doing this pipeline correctly has implications on our tensor slice reordering process. The more
pipeline stages we have, the more fine-grained tensor slices are needed for reordering. Therefore,
we also propose a generalized tensor slices reordering scheme as algorithm 2, which covers both w/
and w/o pipelining data transfer cases. Here stages refer to the number of pipeline stages we have,
nodeSize is the number of GPUs per node and nodes is the number of nodes.

Next, we discuss how we optimize our CUDA kernels to further reduce all quantization related
overhead.
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Algorithm 2: Generalized tensor slice reordering (qgZ)
Constants: stages, nodeSize, nodes
Input : partitionID
Output : mappedPartitionID

1 totalDevices← nodeSize ∗ nodes;
2 stageID ← partitionID % stages;
3 chunkID ← partitionID

stages ;
4 pipelineOffset← stageID ∗ totalDevices;
5 chunkOffset← chunkID

nodeSize ;
6 chunkBase← (chunkID% nodeSize) ∗ nodes;
7 Return: pipelineOffset+ chunkBase+ chunkOffset;

C.2 CUDA KERNELS

As existing quantization implementations are unable to capture the combination of data mapping
and high throughput necessary to minimize kernel overhead, we implement and optimize custom
CUDA kernels to implement these primitives. In particular, these kernels aim to (1) saturate device
memory bandwidth and (2) minimize the total traffic via fusion.

Maximizing Bandwidth Utilization: A core quantization and dequantization library of compos-
able operators was developed as the foundation for ZeRO++. The core primitives leverage efficient
vectorized memory accesses at the maximum granularity a given GPU architecture supports. In
order to satisfy the alignment requirements these instructions have, model state is partitioned such
that quantization granularities will be 16B aligned. Additionally, we leverage instruction level par-
allelism to overlap multiple memory transactions with each other. In practice, the combination of
vectorized accesses and instruction level parallelism enables the quantization library to achieve full
GPU memory bandwidth utilization.

Minimizing Total Traffic: Multiple techniques are used to reduce the total memory traffic for
quantization kernels. First, the size of each quantization block is tuned so as to express sufficient
parallelism to schedule across a GPU’s streaming multiprocessors and cache values not quantized
yet in the register file while calculating the quantization scale and offset for the block. Second,
we fuse tensor reshaping and quantization into the same kernel to avoid redundantly loading data
from global memory. For example, the tensor slice reordering (i.e., orange arrow-lines in Figure 5)
is realized within a fused quantization and remapping kernel.This fused kernel achieves the same
level of performance as a single quantization kernel working with contiguous data. Finally, we fuse
sequential dequantization, reduction, and quantization operations into single kernel implementation,
which reduces total memory traffic by 9x in qgZ.

D ADDITIONAL EVALUATION & DISCUSSION

D.1 EXTENDED CONVERGENCE DISCUSSION

In this section, we present the raw data of our convergence evaluation for both pretraining and fine-
tuning in Table 5 and 6. Please note the quantization bits shown here refer to the weight quantization.
For the gradient, we use INT4 for all the experiments.

For theoretical convergence analysis, one thing to note is the unique design of ZeRO. In ZeRO
paradigm, there are two kinds of weights: the temporary weights, which are all-gathered from all
GPUs in order to do forward/backward on a particular model layer and then discarded; and the local
weight shard, which is used to populate the temporary weights, are permanent and will be updated at
each optimizer step. The ZeRO++ quantization only happens when we communicate the temporary
weights. Thus, the local shard of the weights will be free of the quantization error. For the gradients
that are computed from the quantized temporary weights, there will be minor errors for 8-bits and
even 4 bits.
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Table 5: Convergence in terms of validation lm loss
when pre-training with different quantization bits.

Model: GPT 350M
Iteration FP16 INT8

2400 2.891633 2.89641
4800 2.595669 2.600295
7100 2.50512 2.509532
9500 2.409789 2.417458
11800 2.355472 2.366978
14100 2.331281 2.345854
16500 2.286052 2.303065
18800 2.279778 2.301165
21200 2.244547 2.26685
23400 2.220746 2.246421

Model: GPT 13B
Iteration FP16 INT8 FP6

2400 3.346583 3.340124 3.327485
4800 2.794749 2.787855 2.789709
7100 2.56617 2.561561 2.562001
9500 2.398518 2.399067 2.39818
11800 2.370753 2.358937 2.357589
14100 2.310235 2.33077 2.329953
16500 2.275294 2.277154 2.275939
18800 2.180487 2.239978 2.238353
21200 2.181295 2.194993 2.193342
23400 2.181079 2.184269 2.183024

Table 6: Convergence in terms of evaluation per-
plexity when fine-tuning with different quantization
bits.

Model: OPT-1.3b
Epoch FP16 FP6 INT4-bit INT2

1 2.018 2.021 2.034 2.430
2 1.972 1.975 1.989 2.355
3 1.934 1.938 1.953 2.320
4 1.906 1.910 1.924 2.291
5 1.882 1.888 1.905 2.273
6 1.863 1.868 1.887 2.267
7 1.850 1.856 1.871 2.248
8 1.842 1.841 1.861 2.241
9 1.832 1.830 1.850 2.228
10 1.822 1.833 1.844 2.226
11 1.818 1.821 1.838 2.224
12 1.809 1.817 1.833 2.223
13 1.805 1.811 1.832 2.218
14 1.804 1.809 1.835 2.221
15 1.807 1.809 1.832 2.222
16 1.809 1.812 1.829 2.216

Model: OPT-13b
Epoch FP16 FP6 INT4-bit INT2

1 1.813 1.821 1.821 1.842
2 1.698 1.705 1.705 1.705
3 1.724 1.717 1.736 1.734

Model: LLaMA-30b
Epoch FP16 FP6 INT4-bit INT2

1 1.57 1.58 1.580 2.524
2 1.49 1.50 1.494 1.664
3 1.64 1.63 1.601 1.544
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Model Size Token Size ZeRO
TFLOPs

hpZ
TFLOPs

MiCS
TFLOPs

7.5B 1K 36.99 38.39 38.96
7.5B 2K 53.3 54.4 52.72
18B 1K 51.47 52.42 OOM
18B 2K 60.94 61.44 OOM

Table 7: hpZ vs MiCS evaluation on a 4 node cluster (16 V100 GPUs per node)

64 V100 GPUs
Ethernet 10Gbps

Model
Size

Tokens
per GPU

Baseline
TFLOPs

ZeRO++
TFLOPs Speedup

18B 2K 9.72 31.94 229%
18B 1K 4.98 19.16 284%
18B 512 2.51 10.03 299%
7.5B 2K 10.07 24.51 143%
7.5B 1K 4.81 15.90 231%
7.5B 512 2.48 7.32 195%

Table 8: Evaluation of ZeRO++ pretraining throughput on Ethernet with 10Gbps bandwidth

In terms of the theoretical convergence with gradient noise/error, existing research such as (Gor-
bunov et al., 2020; Ramezani-Kebrya et al., 2021; Alistarh et al., 2017) prove minor disturbance
on gradients will not impact the overall convergence (the convergence rate follows O(1/sqrtT) for T
iterations), which we have empirically show.

We also see error-feedback as a kind of orthogonal approach with ZeRO++ and we believe adding
error-feedback technique such as (Tang et al., 2021; Wu et al., 2018) could help especially for 1-
bit/2-bit training or for a smaller model, which is a part of our future work.

D.2 COMPARING HPZ WITH MICS

As previously discussed in Appendix 2, closely related to hierarchical weight partition for ZeRO
(hpZ) is MiCS(Zhang et al., 2022c). The key difference between the two methods is what data
are replicated in the secondary group; only model weights are replicated in hpZ, while entire model
states are replicated in MiCS. Table 7 shows the per-GPU throughput of both methods for different
model and token size configurations. The table also shows that given a secondary partition size of a
single node (16 V100 GPUs), hpZ can support 18 billion parameter model whereas MiCS reports
out-of-memory (OOM) at this scale.

D.3 ETHERNET CLUSTER EVALUATION

In the main text, we present low-bandwidth evaluation with 100Gbps bandwidth. Here we fur-
ther extend our evaluation to 10Gbps Ethernet scenario to show how inter-node bandwidth affects
ZeRO++ performance in a more comprehensive manner. The pretraining setting is the same, where
weights are quantized into INT8 and gradients are quantized into INT4. As Table 8 shows, ZeRO++
can outperform baseline by up to 4x in terms of throughput on 10Gbps Ethernet, and the perfor-
mance pattern is consistent with previous evaluation with InfiniBand. This aligns with our evalua-
tion analysis in the main text that the performance boost of ZeRO++ increases as network bandwidth
decreases, making ZeRO++ a valuable tool for training in low-bandwidth clusters.
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