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ABSTRACT

Self-supervision is often used for pre-training to foster performance on a down-
stream task by constructing meaningful representations of samples. Self-supervised
learning (SSL) generally involves generating different views of the same sample
and thus requires data augmentations that are challenging to construct for tabular
data. This constitutes one of the main challenges of self-supervision for structured
data. In the present work, we propose a novel augmentation-free SSL method
for tabular data. Our approach, T-JEPA, relies on a Joint Embedding Predictive
Architecture (JEPA) and is akin to mask reconstruction in the latent space. It
involves predicting the latent representation of one subset of features from the
latent representation of a different subset within the same sample, thereby learning
rich representations without augmentations. We use our method as a pre-training
technique and train several deep classifiers on the obtained representation. Our
experimental results demonstrate a substantial improvement in both classification
and regression tasks, outperforming models trained directly on samples in their
original data space. Moreover, T-JEPA enables some methods to consistently out-
perform or match the performance of traditional methods likes Gradient Boosted
Decision Trees. To understand why, we extensively characterize the obtained
representations and show that T-JEPA effectively identifies relevant features for
downstream tasks without access to the labels. Additionally, we introduce regular-
ization tokens, a novel regularization method critical for training of JEPA-based
models on structured data.

1 INTRODUCTION

Self-supervised learning has caught increasing attention in recent years due to its significant success in
many applications. Self-supervision is often used for pre-training to improve models’ performance on
downstream tasks. In short, the objective of self-supervision for representation learning is to generate
meaningful representations from unlabeled data by using pseudo-label. By pushing dissimilar samples
farther away while reducing the distance between samples that are alike, self-supervised learning can
facilitate learning for both supervised and unsupervised tasks.

Self-supervision often involves generating different views of the same sample to construct positive
and possibly negative samples. The term positive sample designates samples related to one another,
e.g., two pictures of a dog or the same picture cropped differently. In contrast, negative samples
include unrelated samples, e.g., a picture of a cat and a dog. Given this terminology, two classes
of self-supervised algorithms exist. Contrastive learning methods include negative and positive
samples and non-contrastive learning techniques that rely exclusively on positive samples. Both
approaches have offered promising results by generating meaningful representations of data (Chen
et al., 2020; He et al., 2020; Tian et al., 2019; Assran et al., 2023) that allow the improvement of
several models’ performances on a broad range of tasks. Moreover, apart from improving supervised
and unsupervised models’ performance, (Hendrycks et al., 2019) have shown that self-supervision
also helps improve robustness and uncertainty estimation for anomaly detection tasks.

Most self-supervised approaches include deep models, which have excelled in applications that
include images or text. However, using neural networks for tabular data still remains challenging
(Shwartz-Ziv and Armon, 2021). Indeed, Grinsztajn et al. (2022) discuss how the inherent heterogene-
ity of tabular data makes learning from this data structure using neural networks difficult. Nonetheless,
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Figure 1: T-JEPA training pipeline. In step (a) a sample x ∈ Rd is pre-processed and masked as
detailed in equation 1 and fed to the context encoder to obtain a representation in Rlm×h where lm is
the number of unmasked features for context mask m. In step (b) the unmasked representation of
sample x is fed to the target encoder and the features’ representations are selected according to the
corresponding target masks, as shown in equation 4. In step (c) the output of the context encoder
is fed to the predictor to obtain a prediction for each target mask used in step (b). In step (d) we
compute the ℓ2-distance between the target representations and their predictions.

recent work has investigated finding effective training procedures and novel architectures to learn
from tabular data using neural networks. Recent advancement include improved training procedures
(Kadra et al., 2021; Gorishniy et al., 2021; Hollmann et al., 2023), representation learning for tabular
data (Ye et al., 2024; Bahri et al., 2022; Zhu et al., 2023) or novel architectures (Somepalli et al.,
2021; Kossen et al., 2021). Despite these recent advancements, leveraging self-supervised learning
for tabular data remains strenuous as most methods involve data augmentations to construct multiple
views of the same data sample. While augmentations can be relatively straightforward for images
or text data, constructing meaningful augmentation for tabular data is non-trivial. Augmentations
for image samples often include cropping, rotation, or color alteration, while for text samples, this
can include token masking or token replacement. These corruptions or augmentations of samples are
domain-specific and hard to translate for structured tabular data as they can generate samples outside
the data manifold.

As discussed by Assran et al. (2023), self-supervised learning for representation learning includes
three types of approaches. First, Joint-Embedding Architecture (JEA) usually involves two encoders
that learn to output similar embeddings for similar samples while ensuring distant embeddings for
dissimilar samples. Second, Generative Architecture that aims at reconstructing a sample from
a corrupted version of this sample, e.g., mask reconstruction. Third, Joint-Embedding Predictive
Architecture (JEPA) resembles Generative Architecture as it relies on a similar task but in the latent
space rather than the original data space. JEPA-based method consist in predicting a sample’s
representation in the embedding space from the embedded representation of a corrupted version of
this sample. Recently, Assran et al. (2023) have proposed I-JEPA, a novel self-supervised approach
targeted for images that does not involve augmentations. Their approach used for pre-training offered
significant improvement in classification tasks on images. Following their path, other works have
extended their approach to video (Bardes et al., 2024), audio (Fei et al., 2024), and graphs (Skenderi
et al., 2023). The present work aims to adapt JEPA for tabular data as a pre-training model to foster
performance on classification and regression tasks. Recent work (Kossen et al., 2021; Ucar et al.,
2021; Thimonier et al., 2024) has demonstrated that mask reconstruction can be a relevant pretext
task for representation learning of tabular data. This work extends this mask reconstruction paradigm
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from the data space to the latent space. Adapting such approach to structured data is particularly
relevant as it avoids constructing ad-hoc data augmentations that are challenging to construct for this
data type.

The main contributions of our work are the following:

• We put forward Tabular-Joint-Embedding Predictive Architecture (T-JEPA), a novel
augmentation-free self-supervised method for tabular data.

• T-JEPA offers significant improvement in performance for classification and regression
tasks for tabular data. Moreover, we show that augmented by T-JEPA some deep methods
consistently outperform Gradient Boosted Decision Trees on the tested datasets.

• We extensively characterize the obtained representations and provide explanation as to why
our approach enhances performance on supervised tasks.

• We empirically uncover a novel regularization method, regularization tokens, that is critical
to escape collapsed training regimes.

2 RELATED WORK

Self-Supervised Learning for Representation Learning Representation learning consists in
finding a transformation of the input data into a new feature space where relevant information is
preserved or enhanced while noise and irrelevant details are filtered out or minimized. To that
end, self-supervised approaches have become prevalent in the field. In the field of computer vision,
methods like SwAV (Caron et al., 2020), VICReg (Bardes et al., 2022) or Barlow Twins (Zbontar
et al., 2021) aim at producing two views of the same sample passed through two different networks,
such that the outputs are maximally correlated. SwaV (Caron et al., 2020), for instance, aims
at pushing the embeddings of different samples to belong to different clusters on the unit sphere.
Barlow Twins (Zbontar et al., 2021) involve training two identical neural networks simultaneously
on the same data but with different augmentations. The objective is to minimize the redundancy
between the representations learned by each network while maximizing their agreement on the same
input. VICReg (Bardes et al., 2022) encourages the model to focus on learning invariant features by
explicitly modeling and minimizing the variance of feature embeddings. Other methods like MoCo
(He et al., 2020) or SimCLR (Chen et al., 2020) focus on learning representations by contrasting
positive and negative pairs. Other data structures have also benefited from representation learning
using self-supervised approaches such as video (Jabri et al., 2020; Zhang and Crandall, 2022; Bardes
et al., 2024), audio (Mittal et al., 2022; Niizumi et al., 2021; Korbar et al., 2018; Fei et al., 2024) or
graph (Skenderi et al., 2023; You et al., 2020; Hwang et al., 2020).

Self-supervised methods can be categorized into three types of approaches: joint-embedding archi-
tectures, generative architectures, or joint-embedding predictive architectures. While the former
two have been the most prevalent in the literature, recent work has demonstrated the potential of
joint-embedding predictive architectures. Recently, I-JEPA (Assran et al., 2023) targeted for images
has shown significant performance improvement over several self-supervised methods. Their ap-
proach was adapted to other data types such as video (Bardes et al., 2024), audio (Fei et al., 2024),
and graphs (Skenderi et al., 2023) and proved to offer competitive performance in comparison with
existing methods.

Representation Learning for Tabular Data Representation learning for tabular data has caught
increasing attention in recent years. Gorishniy et al. (2021) extensively investigate the benefits of
pre-training models on tabular data to enhance performance. In other works, Somepalli et al. (2021)
and Kossen et al. (2021) propose a pretraining procedure to foster the performance of their novel
transformer-based architectures for tabular data. Parallel to that, some works have focused entirely
on proposing self-supervised methods for representation learning of tabular data. One of the first
approaches, VIME (Yoon et al., 2020), proposes to augment the existing reconstruction task with
estimating mask vectors from corrupted tabular data. Bahri et al. (2022) propose SCARF, a simple
method based on contrastive learning in which different views of a sample are obtained by corrupting
a random subset of features. Recent work has also investigated prototype-based representation
learning for tabular data such as PTaRL (Ye et al., 2024). Other works, such as XTab (Zhu et al.,
2023), TransTab (Wang and Sun, 2022) or UniTabE (Yang et al., 2024), propose self-supervised
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representation learning for cross-table pretraining. Wu et al. (2024) discuss the concepts of salient
and mutual information and emphasize their key role in producing meaningful sample representations.
They propose SwitchTab, which aims to foster the decoupling between the salient and mutual
information contained in a sample to produce its representations. Lee et al. (2024) emphasize the
necessity of correctly handling the heterogeneous features of tabular data. Somewhat close to our
approach, their method consists in binning the values of each feature and proceeds to use as a pretext
task the reconstruction of the bin indices rather than the value in the original feature space. Finally,
most related to our method, Ucar et al. (2021) propose SubTab that divides the input features to
multiple subsets to perform a pretext task close to mask reconstruction. The core difference with
T-JEPA lies in the fact SubTab performs mask reconstruction in the original dataspace while T-JEPA
performs this task in the embedded space. Also, T-JEPA is fully non-contrastive while SubTab
includes a contrastive loss as a regularization method to train their model.

3 METHOD

As displayed in Figure 1, T-JEPA involves three main modules used to learn the final representation:
a context encoder, a target encoder, and a prediction module. In short, we predict from a subset of
features of a sample x the latent representation of another non-overlapping subset of features of
x. The context encoder is used for the prediction, while the target encoder is used to construct the
representations to be predicted.

Formally, let x ∈ X ⊆ Rd be a sample with d features, which can be either numerical or categorical.
Let h designate the hidden dimension of the transformer encoders, fθ the context encoder, fθ̄ the
target encoder and gϕ the predictor.

Embedding Layers and Masking Before being fed to the different modules, data is pre-processed
using embedding layers. We normalize numerical features to obtain 0 mean and unit variance, while
we use one-hot encoding for categorical features. At this point, each feature j for j ∈ {1, ..., d} has an
ej-dimensional representation, E(xj) ∈ Rej , where ej = 1 for numerical features and for categorical
features ej corresponds to their cardinality. Each sample is accompanied by a masking vector m ∈
{0, 1}d in which each entry designates whether a feature is masked: mj = 1{feature j is masked},
where 1{·} is the indicator function. When masked, we drop the corresponding feature, and only keep
the remaining unmasked features. For a mask m with lm unmasked features, i.e. d− ∥m∥1 = lm,
sample x has the following embedded representation

Ẽ(x) = {E(xj) : i ∈ {1, ..., d},mj = 0}. (1)

Each of the d features is equipped with a learned linear layer, Linear(ej , h),∀j ∈ {1, . . . , d},
that embeds the ej-dimensional representation into an h-dimensional space. We pass each of the
lm unmasked features’ encoded representations through their corresponding linear layers. We also
learn h-dimensional index and feature-type embeddings following standard practice when leveraging
transformers for tabular data. Both are added to the embedded representation of sample x. Let
zmx ∈ Rlm×h denote the obtained embedded representation of sample x with mask m.

Regularizing Token We also include a regularizing token [REG] inspired from the register
token first proposed in (Darcet et al., 2024) for ViT’s. We append this token to the obtained Ẽ(x)
representation displayed in equation 1. This token is also equipped with a learned embedding layer.
This token is only used to train T-JEPA and is discarded when training supervised classifiers on the
downstream task. We later discuss the necessity of including such token in section 5.2 and observe
that it acts as a regularizing method to escape training regimes leading to representation collapse. For
simplicity, we do not explicitly include the regularizing token in the rest of the method description
hereafter.

Masking strategy The masking strategy differs between the context and target encoders. We
sample several masks for each sample. Context masks are used to mask the samples before feeding
them to the embedding module and context encoder. On the contrary, the target masks are used
to construct the target representation after passing them through the embedding module and target
encoder. Note that in both context and target masking, the regularizing token is never masked. Hence,
the input of the context encoder is a masked representation of a sample x, zmx . In contrast, the target
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encoder receives as an input the embedded representation z0d
x , where 0d is the d-dimensional null

vector. Then, the target mask is used to mask the corresponding encoded feature representations of
z0d
x as shown in equation 4. For both context and target encoders, we set a minimum and maximum

share of features to be masked simultaneously and randomly sample a share in that interval. Let
Mcontext,Mtarget denote the set of sampled context and target masks, respectively. We construct
Mcontext,Mtarget such that intra-overlaps are permitted (masks from the same set can overlap), but
inter-overlaps are not permitted (a mask from Mcontext cannot overlap with a mask from Mtarget).

Context and Target Encoders The context encoder fθ is a transformer encoder composed of ℓ
layers and k attentions heads. The context encoder relies on multi-head self-attention to produce
meaningful representations for each sample. It receives as input a mask representation zmx ∈
Rlm×h and outputs a representation of similar dimension. The target encoder’s architecture exactly
reproduces the one of the context encoder. Let fθ̄ denote the target encoder which receives as input
z0d
x an unmasked embedded representation of sample x. Like the context encoder, it outputs a

representation of the same dimension as its input.

hm
context = fθ(z

m
x ) ∈ Rlm×h (context) (2)

htarget = fθ̄(z
0d
x ) ∈ Rd×h (target) (3)

Let hmk
target denote the masked target representation for mask mk, obtained by discarding the masked

features’ representations from htarget as done in equation 1,

hmk
target = {h(i)

target : i ∈ {1, ..., d},mi
k = 0}, (4)

where h
(i)
target is the h-dimensional representation of the i-th feature in the target vector htarget. Fol-

lowing previous work (Assran et al., 2023), The parameters of the context encoder, θ, are learned
through gradient-based optimization. In contrast, the parameters of the target encoder θ̄ are updated
via an exponential moving average (EMA) of the context encoder’s parameters.

Predictor The predictor gϕ is also set to be a transformer encoder whose weights are conjointly
learned with the context encoder’s weights through gradient-based optimization. The predictor’s
hidden dimension is downsized from the encoders’ dimension h, using a linear layer. The predictor
takes as input hmj

context, the output of the context encoder for mask mj ∈ Mcontext, and a target mask
mk ∈ Mtarget designating which features to be predicted, gϕ(h

mj

context,mk). We parameterize the
mask tokens in mk by a learnable vector to which is added a positional embedding. Each context
output is passed |Mtarget| times through the predictor module to predict the corresponding feature
representation for each target mask.

Loss The loss function used to optimize the weights θ, ϕ, of the context encoder and predictor
respectively, is the ℓ2-distance between the reconstructed representation, gϕ(hm

context,mk) and the
target representation hmk

target,

L(x;Mcontext,Mtarget) =
1

|Mtarget|
· 1

|Mcontext|
∑

m∈Mcontext

∑
mk∈Mtarget

∥∥gϕ(hm
context,mk)− hmk

target

∥∥2
2
. (5)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Datasets Following previous work (Ye et al., 2024), we experiments on 7 datasets with hetero-
geneous features to test the effectiveness of T-JEPA. We test our approach on several supervised
tabular deep learning tasks such as binary and multi-class classification, as well as regression. We
use as performance metrics Accuracy (↑) and RMSE (↓) for classification and regression respectively.
The datasets we include in our experiments are Adult (AD) (Kohavi et al., 1996), Higgs (HI) (Van-
schoren et al., 2014), Helena (HE) (Guyon et al., 2019), Jannis (JA) (Guyon et al., 2019), ALOI (AL)
(Geusebroek et al., 2005) and California housing (CA) (Pace and Barry, 1997). We also add MNIST
(interpreted as a tabular data) to our benchmark following Yoon et al. (2020). We summarize the
characteristics of all 7 datasets in Table 10 in appendix C.
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Table 1: Performance metrics for different models and T-JEPA across datasets. We report an average
over 20 runs and the corresponding standard deviation (except for SwitchTab and PTaRL on some
datasets, as discussed in appendix F). We report in bold the metric that wins between the raw data
representation and the augmented representations. We report in blue the best performing deep method
(including SSL methods) and underline the overall best metric for a dataset. The last column provides
the average rank (↓) of the different methods.

AD ↑ HE ↑ JA ↑ AL ↑ CA ↓ HI ↑ MNIST ↑ Avg. Rank

Baseline Neural Networks
MLP 0.827 ±1e−3 0.353 ±1e−3 0.672 ±1e−3 0.916 ±4e−3 0.511 ±3e−3 0.681 ±4e−3 0.978 ±2e−3 15.7

+PTaRL 0.868 ±4e−3 0.396 ± N/A 0.710 ±4e−3 0.964 ± N/A 0.489 ±2e−3 0.723 ± N/A 0.977 ±1e−3 8
+T-JEPA 0.866 ±2e−3 0.400 ±4e−3 0.728 ±3e−3 0.961 ±6e−3 0.468 ±4e−2 0.517 ±8e−2 0.983 ±1e−3 7.1

DCNv2 0.829 ±4e−3 0.347 ±3e−3 0.662 ±3e−3 0.905 ±3e−3 0.504 ±4e−3 0.683 ±3e−3 0.971 ±1e−3 17.6
+PTaRL 0.867 ±3e−3 0.389 ± N/A 0.723 ±3e−3 0.959 ± N/A 0.465 ±3e−2 0.731 ± N/A 0.976 ±1e−3 7

+T-JEPA 0.861 ±2e−3 0.399 ±3e−3 0.723 ±2e−3 0.955 ±2e−3 0.420 ±2.6e−2 0.525 ±8.2e−2 0.981 ±2e−3 7.1

ResNet 0.814 ±7e−3 0.351 ±2e−3 0.666±3e−3 0.919 ±2e−3 0.534 ±2e−3 0.674 ±4e−3 0.979 ±1e−3 15.7
+PTaRL 0.862 ±5e−3 0.399 ± N/A 0.723 ±5e−3 0.964 ± N/A 0.498 ±1e−3 0.729 ± N/A 0.973 ±1e−3 7.4

+T-JEPA 0.865 ±3e−3 0.401 ±2e−3 0.718 ±3e−3 0.964 ±1e−3 0.441 ±8e−2 0.705 ±5e−3 0.983 ±2e−3 5.1

AutoInt 0.823 ±1e−3 0.338 ±3e−3 0.653 ±6e−3 0.894 ±2e−3 0.501 ±3e−3 0.694 ±3e−3 0.901 ±6e−3 18.6
+PTaRL 0.871 ±3e−3 0.396 ± N/A 0.722 ±5e−3 0.955 ± N/A 0.464 ±2e−2 0.738 ± N/A 0.956 ±2e−3 7.6

+T-JEPA 0.866 ±2e−3 0.351 ±3e−3 0.710 ±3e−3 0.938 ±4e−3 0.448 ±2e−2 0.517 ±8e−2 0.978 ±1e−3 12.1

FT-Trans 0.821 ±7e−3 0.363 ±2e−3 0.677 ±2e−3 0.913 ±3e−3 0.473 ±5e−3 0.684±5e−3 0.811 ±5e−2 15.4
+PTaRL 0.871 ±2e−3 0.397 ± N/A 0.738 ±6e−3 0.970± N/A 0.448 ±1e−2 0.738 ± N/A 0.977±1e−3 3.8

+T-JEPA 0.864 ±1e−3 0.384 ±5e−3 0.708 ±5e−3 0.921 ±1e−2 0.444 ±1e−1 0.551 ±6e−2 0.966 ±2e−3 12.6

Other self-supervised methods
SwitchTab 0.867 ±N/A 0.387 ±N/A 0.726 ±N/A 0.942 ±N/A 0.452 ±N/A 0.724 ±N/A N/A 9.1
BinRecon 0.846 ±1e−3 0.365 ±1e−3 0.663 ±1e−3 0.949 ±1e−3 0.619 ±1e−3 0.682 ±1e−3 0.981 ±1e−3 13.4

VIME 0.859 ±3e−3 0.362 ±6e−3 0.695 ±5e−3 0.925 ±5e−3 0.505±4e−2 0.655 ±6e−3 0.941 ±2e−3 13.4
SubTab 0.851 ±8e−2 0.361 ±5e−3 0.662 ±2e−2 0.941 ±6e−3 0.546 ±1e−2 0.625 ±1e−2 0.979 ±1e−3 15.1

Gradient Boosted Decision Trees (GBDT)
XGBoost 0.872 ±4.6e−4 0.375 ±1.2e−3 0.721 ±1e−3 0.951 ±1e−3 0.433 ±1.6e−3 0.729 ±1e−3 0.980 ±1e−3 6.9
CatBoost 0.873 ±1e−3 0.381 ±1e−3 0.721 ±1e−3 0.946 ±9e−4 0.430 ±7e−4 0.726 ±8e−4 0.972 ±3e−3 7.9

Baselines To assess whether our self-supervised approach can foster performance on tabular
applications, we compare the performance of several widely used tabular approaches with and
without our self-supervised pre-training. We test our method on MLP (Taud and Mas, 2018), DCNV2
(Wang et al., 2021a), ResNet (He et al., 2016), AutoInt (Song et al., 2019) and FT-Transformer
(Gorishniy et al., 2021). For completeness, we also compare the performance on the downstream task
to other SSL methods like PTaRL (Ye et al., 2024), SwitchTab (Wu et al., 2024), BinRecon (Lee et al.,
2024), SubTab (Ucar et al., 2021) and VIME (Yoon et al., 2020). Similarly, as often considered as the
go-to methods for supervised tasks on tabular data, we also compare the performance of T-JEPA to
XGBoost (Chen and Guestrin, 2016) and CatBoost (Prokhorenkova et al., 2018). Notably, SwitchTab
(Wu et al., 2024) did not provide the code to reproduce their experiments, we thus report in Table 1 the
metrics obtained from their paper and cannot provide any standard deviations. For other approaches,
we either report the metrics and standard deviations from their paper or ran experiments using the
code made available by the authors. See appendix F for more detail on reported metrics.

T-JEPA Training We split each dataset into training/validation/test sets (80/10/10) which were
used for selecting both the hyperparameters of T-JEPA and of the models used for the downstream
task. More precisely, in a model-agnostic manner, we relied on a systematic approach to train and
evaluate the embedding space generated by T-JEPA. First, following previous work (Assran et al.,
2023; Bardes et al., 2022) T-JEPA was trained on the training set and we conducted a hyperparameter
tuning using a linear probe on the validation set to select the best configuration for each dataset.
Second, we used the trained context encoder to generate data representations on which the subsequent
model were trained. We refer the reader to appendix A.2 for more details on hyperparameter selection.
Every experiment can be reproduced with the code provided in the supplementary material.

Downstream task To adapt the T-JEPA representations to each model’s input dimensions, we
added a projection layer. We experimented with several techniques, including linear flattening, linear
per-feature transformation, convolutional projections, and max and mean pooling. We refer the reader
to appendix A.3 for more details. The projection layer was jointly trained with the downstream
task and tailored to each model. Hyperparameter tuning was performed based on validation set
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Table 2: Key metrics tracking T-JEPA’s representation learning on the Jannis (JA) dataset over
different training epochs.

Metric/Epoch 0 20 40 60 80 100 120

DKL 9.30e−4 3.61e−4 6.62e−2 5.06e−2 6.55e−2 7.66e−2 9.38e−2

∥ · ∥2 5.83 3.93 54.3 50.6 68.1 71.4 70.0
uniformity 3.12 0.94 10.69 11.20 11.23 11.32 11.38

performance, and final evaluations were conducted on the test set, comparing results to models trained
on the original dataset representations. To ensure the robustness and reliability of our findings, we
conducted the experiment 20 times. We report the mean and standard deviation of the performance
metrics. We refer the reader to appendix B for details on the downstream models’ hyperparameters.

4.2 RESULTS

Binary and Multi-Class Classification As displayed in Table 1, for the classification tasks, T-JEPA
pre-training improved the performance of all evaluated models except on the Higgs (HI) dataset where
only the performance of ResNet improves when augmented by T-JEPA. Interestingly, despite their
design advantages for tabular data, recent attention-based models like FT-Transformer and AutoInt,
though improved by T-JEPA, did not surpass architectures like ResNet and MLP, which exhibited
the most significant gains with T-JEPA. This outcome suggests that T-JEPA may complement the
inductive biases of more traditional architectures like ResNet and MLP, which, despite their simpler
design, are better equipped to leverage the feature representations learned through T-JEPA. Overall
we observe that most approaches augmented by T-JEPA either outperform or match the performance
of competing SSL approaches for the classification task.

Regression In regression tasks, T-JEPA induces a consistent decrease of the RMSE on the California
Housing (CA) dataset for all tested models, indicating improved performance. For the MLP model,
the MSE improved by 9.7%, DCNv2 by 16.3%, ResNet by 17.9%, AutoInt by 11.7% and FT-
Transformer by 8.6%. This indicates that T-JEPA pre-training benefits the learning process for
regression tasks. In particular, we observe that augmented by T-JEPA, all models (except the MLP)
outperform competing SSL methods by a significant margin.

Overall, our experiments demonstrate that T-JEPA successfully enhances the representation from
the original dataspace for both classification and regression tasks. Interestingly, when compared to
GBDTs or other SSL methods, we observe that ResNet+T-JEPA obtains the second lowest average
rank (↓) behind the FT-Transformer+PTaRL alternative. Other strong candidates include XGBoost,
Catboost and SwitchTab, as they obtain average ranks close to ResNet+T-JEPA. When augmented
by our self-supervised method, ResNet, MLP and DCNv2 obtain consistent results across datasets
and tasks (binary, multi-class classification or regression). This emphasizes the capacity of T-JEPA
to enhance the performance of supervised models. Finally, T-JEPA requires moderate compute and
training time as displayed in Table 10 in appendix C.

5 DISCUSSION

5.1 REPRESENTATION SPACE EVALUATION

Two critical properties are considered desirable in a representation space: uniformity and alignment
(Wang and Isola, 2020). Uniformity measures how well information contained in the original data
space is preserved. Alignment describes a representation space in which semantically close samples
are close to one another, while different samples should be distant. An edge case where both
uniformity and alignment are not achieved is the one of representation collapse (see section 5.2) that
describes a situation in which all samples are mapped to the same representation in the latent space.

Metrics We propose two complementary metrics to measure whether our representations are
collapsed or satisfy the uniformity and alignment properties. First, to measure distribution consistency
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Figure 2: Visualization of the representation space at various epochs of the T-JEPA pretraining on
the Jannis (JA) dataset. Each plot depicts the density of transformed points in two dimensions, with
darker areas indicating higher density.

and alignment, we rely on the Kullback-Leibler divergence (DKL(↑)): collapsed representations
would imply similar distributions between diverse samples in the embedding space. Thus, lower
values would indicate collapse as different samples have indistinct distributions. In contrast, higher
values show that dissimilar samples tend to be located farther apart. We expect DKL to increase
as training progresses. Second, we rely on the uniformity(↑) metric (Wang and Isola, 2020) to
measure how much of the representation space is utilized. Collapsed representations would imply that
samples are tightly clustered in a small region of the latent space, achieving low uniformity. On
the contrary, desirable representations are more uniformly spread out, effectively using the embedding
space. See Appendix G for more detail on the metrics.

Embedding space characterization To assess whether T-JEPA generates representations uniformly
spanned across the embedding space, we display in Figure 2 the obtained sample representations
for the JA dataset at different training epochs. We randomly sample 50,000 points and rely on the
PaCMAP (Wang et al., 2021b) dimensionality reduction technique to reduce their representations
in the embedding space to two dimensions for visualization purposes. We observe in Figure 2 that
T-JEPA effectively utilizes the representation space, evolving from an initial collapsed distribution
towards a more structured arrangement as the training progresses. This behavior is indicative of the
model’s capacity to learn distinct and meaningful representations, which are crucial for downstream
tasks. We also display in Table 2 how the uniformity score, KL divergence (DKL), and the
euclidean distance (∥ · ∥2) vary during training. At each epoch, we randomly select 50,000 sample
representations from the JA dataset and compute these metrics. For both KL-Divergence and euclidean
distance, we report the average pairwise KL-Divergence and euclidean distance for the 50,000 samples
previously selected. The increasing KL divergence and euclidean distance demonstrate that the model
effectively avoids representation collapse and better satisfies the alignment property as training
progresses. Indeed, T-JEPA’s training objective pushes samples farther from one another which
facilitates discrimination between samples for supervised tasks. Finally, increasing uniformity
across epochs is in line with the representations displayed in Figure 2 and demonstrates that the
training objective preserves information from the original dataspace.

5.2 REPRESENTATION COLLAPSE

As a non-contrastive self-supervised learning method, T-JEPA is prone to representation collapse
as discussed in previous work (Bardes et al., 2024; Assran et al., 2023). EMA combined with a
stop-gradient operation has been considered to be sufficient to prevent JEPA-based methods
from leading to degenerate solutions in which all samples have the same representation. However,
we observed that further regularization of T-JEPA was necessary to avoid such pitfall. Specifically,
appending a regularization token [REG] to both target and context representations appeared critical
to escape the initial representation collapse.

Initial Collapse We observe that JEPA-based models undergo an initial representation collapse due
to the EMA relation between the weights of the context and label encoders. Indeed, we retrained
from scratch I-JEPA (Assran et al., 2023) on ImageNet-1K using their official implementation and
hyperparameters1 and observed a similar training regime as for T-JEPA.

1For computational purposes, we reduced the batch size to 16 and kept unchanged the rest of the hyperpa-
rameters.
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Figure 3: Training regime of Joint-Embedding Predictive Architectures on tabular (JA) and image
(ImageNet-1K) data. We display on the right a randomly selected sample’s representations for each
critical part of the training process. The subfigures (a) to (d) illustrate the evolving outputs of the
context encoder hcontext ∈ Rd×h. In each heat-map, rows correspond to the d features, while columns
represent the h hidden dimensions. (a) describes the initial random initialization, (b) the collapsed
equilibrium, (c) the regularization effect pushing the weights outside of the collapsed equilibrium,
and (d) the convergence.

Figure 4: Regularization token ablation.
Training loss for the JA dataset across differ-
ent numbers of regularization tokens [REG].

Regularization Token First, the loss collapses
close to 0 after a few iterations; then, regulariza-
tion starts pushing the model’s weights toward a non-
trivial equilibrium. We display in Figure 3 the train-
ing regimes of both T-JEPA and I-JEPA.

While other JEPA methods do not appear to require
further regularization, we observe that appending a
regularization token [REG] to the sample’s represen-
tations is instrumental in escaping training collapse
regimes. As displayed in Figure 4, when training
T-JEPA on the Jannis dataset without including any
regularization token, the optimization process does
not manage to escape the initial collapse. On the
contrary, when including one or more tokens, we
can escape this initial collapse and push the weights
towards a non-trivial equilibrium.

5.3 COMPARISON WITH GRADIENT BOOSTED DECISION TREES

Performance Comparison Recent work (Grinsztajn et al., 2022; Gorishniy et al., 2024) discusses
how neural networks tend to struggle with structured tabular data type in comparison with other
non-deep methods based on gradient-boosted decision trees (GBDT). In most scenarios, approaches
such as XGBoost (Chen and Guestrin, 2016) or CatBoost (Prokhorenkova et al., 2018) surpass deep
learning algorithms. We observe in Table 1 that on most datasets, methods trained on raw data are
significantly outperformed by both GBDT methods. However, once augmented by T-JEPA, most
methods consistently outperform GBDT or match their performance.

Feature Importance To try and understand why T-JEPA enabled some approaches to match the
performance of GBDT, we investigated whether high-variance features in the latent space corre-
late with feature importance for downstream tasks. While the d representations do not exactly
correspond to a one-to-one relation with the corresponding feature in the original dataspace, index
embeddings allow the obtained encoded representations to still hold feature-related information.
Including index embeddings does not eliminate token mixing from residual/self-attention modules,
nevertheless it still helps maintain a degree of alignment between features and representations.
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Figure 5: Pairwise comparison of feature
rankings using Kendall’s τ correlation
on the JA dataset. Rankings are derived
from XGBoost feature importance, per-
mutation importance, T-JEPA’s embed-
ding variance (σembed), and a random
baseline.

The embedding variance was computed as the standard
deviation of each feature’s values across hidden dimen-
sions, normalized by the dimension-wise mean. We ranked
features by their average embedding variance across all
samples and compared these rankings to those generated
by traditional supervised methods, including XGBoost and
permutation importance, using Kendall’s τ for rank sim-
ilarity. Overall, our analysis reveals a strong correlation
between high-variance features in the T-JEPA embeddings
and those identified as important by supervised methods,
despite T-JEPA being trained without target labels. Figure
5 provides a detailed comparison. The embedding vari-
ance ranking (σembed) shows significant correlation with
XGBoost (τ = 0.44, with p-value = 1.73e−6). A ran-
dom generated rank is provided for comparison. These
findings suggest that T-JEPA’s self-supervised framework
effectively captures key features relevant to downstream
tasks without supervision. The alignment between embed-
ding variance and traditional feature importance further
highlights the model’s ability to learn meaningful data
representations.

6 CONCLUSION

Overall, we have proposed a novel augmentation-free self-supervised method for representation
learning that has demonstrated strong performance across both classification and regression tasks
on diverse datasets. We have investigated the characteristics of the obtained representations and
demonstrated that our approach is relevant as it identifies pertinent features without access to the
downstream task’s target. Moreover, most methods augmented by T-JEPA outperform or match
the performance of GBDT, which is often considered the go-to method for supervised tasks on
tabular data. In particular, aligned with previous work that demonstrated that ResNet was a solid
alternative to GBDT for tabular data (Gorishniy et al., 2021; Zabërgja et al., 2024), we observe that
ResNet+T-JEPA outperforms all competing methods on most datasets, including GBDT. Finally, we
empirically uncovered a novel regularization method for transformers on tabular data by including a
regularization token that prevents from entering collapsed training regimes.

Limitations and Future Work Our method generates representations best suited for transformer-
like architecture that requires to be adapted to other architectures. Future work may include investi-
gating other approaches to adapting JEPA-like methods for representation learning of tabular data that
would be suited for other architectures than transformers. Other possible extensions of the present
work might include investigating using JEPA-like reconstruction as a pretext task for self-supervised
anomaly detection on tabular data. Finally, our work has emphasized the uncanny training regimes of
JEPA-like methods as non-contrastive self-supervised approaches. Further investigation to provide
better theoretical insight into why non-contrastive self-supervised learning works well might enable
the construction of novel designs and approaches that foster performance.
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A EXPERIMENTAL SETTINGS

This section presents the implementation details of the project.

A.1 PROGRAMMING ENVIRONMENT

The code environment for this project was implemented using Python and several third-party libraries.
Table 3 details the main libraries used along with their respective versions. The training was done on
a single NVIDIA HGX A100 GPU with 40GB of memory.

Table 3: Main libraries used in the project.

Library Description
Python v3.12.2 The programming language used for the project
einops v0.8.0 A flexible and powerful tool for tensor operations
matplotlib v3.8.4 A library for creating static, animated, and interactive plots
numpy v2.1.0 Fundamental package for scientific computing with arrays
pandas v2.2.2 Data manipulation and analysis tool
pytorch_lightning v2.2.1 A PyTorch wrapper for high-performance deep learning research
scikit_learn v1.4.1.post1 Machine learning library for Python
scipy v1.14.1 Library for scientific and technical computing
torch v2.3.0.post301 PyTorch deep learning library
torchinfo v1.8.0 Module to show model summaries in PyTorch
tqdm v4.66.2 Progress bar utility for Python
xgboost v2.1.1 Optimized gradient boosting library

A.2 HYPERPARAMETER SEARCH

We employed Bayesian optimization to tune the hyperparameters of T-JEPA. The batch size was
fixed at 512 for all configurations, while the exponential moving average (EMA) decay rate was
set to vary from 0.996 to 1. Additionally, we used four prediction masks throughout the training
process. For optimization, we selected the AdamW optimizer (Loshchilov and Hutter, 2019) due to
its proven robustness in large-scale models. The learning rate was adaptively adjusted using a cosine
annealing scheduler (Loshchilov and Hutter, 2017), which gradually reduced it from the initial value
to a minimum, ηmin = 0.

Table 4: Hyperparameter Configuration for Bayesian Optimization

Parameter Values
model_num_heads [2, 4, 8]
model_dim_hidden [2, 4, 8, 16, 32, 64, 128]
model_num_layers [1, 2, 3, 4, 5, 6, 7, 8, 16]
model_dim_feedforward [64, 128, 256, 512, 768, 1024]
model_dropout_prob (0.0, 0.01)
exp_lr (0.00001, 0.001)
mask_min_ctx_share (0.07, 0.15)
mask_max_ctx_share (0.2, 0.9)
mask_min_trgt_share (0.05, 0.20)
mask_max_trgt_share (0.2, 0.9)
pred_num_layers [2, 4, 8, 16, 24, 32]
pred_embed_dim [4, 8, 16, 32, 64, 128]
pred_num_heads [2, 4, 8]
pred_p_dropout (0.0, 0.01)

The hyperparameters displayed in table 6 correspond to the following:

• model_num_heads: number of attention heads of the context encoder fθ.
• model_dim_hidden: hidden dimension of the context encoder fθ.
• model_num_layers: number of layers of the context encoder fθ.
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• model_dim_feedforward: dimension of FFN in the context encoder fθ.

• model_dropout_prob: dropout probability of the context encoder fθ.

• exp_lr: learning rate.

• mask_min_ctx_share: Minimum share of masked feature for the context representation
(see (a) in Figure 1).

• mask_max_ctx_share: Maximum share of masked feature for the context representa-
tion (see (a) in Figure 1).

• mask_min_trgt_share: Minimum share of masked feature for the target representation
(see (b) in Figure 1).

• mask_max_trgt_share: Maximum share of masked feature for the target representa-
tion (see (b) in Figure 1).

• pred_num_heads: number of attention heads of the predictor gϕ.

• pred_num_layers: number of layers of the predictor gϕ.

• pred_embed_dim: hidden dimension of the predictor gϕ.

• pred_p_dropout: dropout probability of the predictor gϕ.

A.3 PROJECTION LAYER

The projection layer adapts the T-JEPA representation space h ∈ Rd×h to the input dimensions
required by the downstream models. Several projection techniques were implemented, as described
below:

• Linear Flatten: When using the linear flatten projection, the input is flattened into a single
vector hflatten ∈ Rd·h×1 and transformed through a linear projection, hproj = W·hflatten+b ∈
Rhnew×1, with W ∈ Rhnew×d·h the weight matrix and b ∈ Rhnew×1 the bias.

• Linear Per-Feature: Each feature is transformed independently by applying a linear
projection to each feature vector hi ∈ Rd×1, hi,proj = Wi ·hi+bi ∈ R, where Wi ∈ R1×d

is the weight matrix and bi ∈ R is the bias for each feature i.

• Convolutional Projection: The convolutional encoder applies two stages of convolution
followed by max pooling. For an input representation x ∈ Rd×h, where d is the number
of feature and h is the hidden dimension, the convolution operation is represented as:
x′ = σ (BatchNorm (Conv2D(X,k1))), where k1 is a convolutional kernel, and σ is
the activation function (ReLU). After a second convolution and pooling step, the final
representation is flattened into a vector and projected to the target embedding dimension.

• Max Pooling: The max pooling operation selects the maximum value for each feature
vector hi ∈ Rh: hi,max = max(hi,j | j ∈ [d]).

• Mean Pooling: The mean pooling operation averages values for each feature vector hi ∈ Rh:
hi,mean = 1

h

∑
j∈[h] hi,j .

Each projection layer is trained jointly with the downstream task and is selected based on the structure
of the input data and model requirements.

B DOWNSTREAM MODELS’ ARCHITECTURE

As for T-JEPA, we employed Bayesian optimization to tune the hyperparameters of the downstream
model’s architecture. We give details on each architecture and their corresponding hyperparameters
in the present section.

B.1 MLP

The Multi-Layer Perceptron (MLP) architecture employed in this work is designed to effectively
transform input features. The transformation begins with a linear projection of the input z, which can
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either be the raw input x or an embedding projection, into a hidden representation of dimensionality
h:

h(0) = W1z+ b1.

The model then applies the hidden layers sequentially:

h(l+1) = BatchNorm
(
Dropout

(
ReLU

(
Wl+1h

(l) + bl+1

)))
,

where l = 0, . . . , L− 1. Here is the selected hyper-parameters for each dataset:

Table 5: Hyperparameters of MLP Model for Each Dataset

Dataset Dropout Encoder Type Learning Rate Weight Decay Hidden Layers

HE 0.5478 linear_flatten 8.97× 10−2 4.45× 10−4 4
HI 0.4203 linear_per_feature 1.84× 10−5 7.48× 10−4 9
JA 0.4923 linear_per_feature 7.31× 10−4 2.09× 10−6 13
AD 0.2311 linear_per_feature 1.35× 10−4 6.43× 10−4 13
CA 0.0310 linear_flatten 1.19× 10−5 1.96× 10−5 3
AL 0.2331 linear_flatten 4.87× 10−4 1.38× 10−4 4
MNIST 0.3527 linear_flatten 1.83× 10−5 1.47× 10−4 5

B.2 IMPROVED DEEP CROSS NETWORK

This section presents the enhanced DCN-V2 model architecture, designed to learn both explicit and
implicit feature interactions. The code used in this work was taken from Wang et al. (2021a). The
DCN-V2 model combines a Cross Network with a Deep Network, achieving superior expressiveness
while maintaining computational efficiency. The explicit feature interactions are modeled through the
Cross Network layers, defined as:

xl+1 = x0 ⊙ (Wlxl + bl) + xl, Wl ∈ Rd×d, bl ∈ Rd.

Here, x0 represents the base features, and ⊙ denotes element-wise multiplication. Implicit feature
interactions are captured by a Deep Network, where the l-th layer is defined as:

hl+1 = f(Wlhl + bl), f(·) = ReLU.

Table 6 summarizes the hyperparameters used in experiments.

Table 6: Hyperparameters for DCN-V2 experiments.

Dataset Cross Dropout Embedding Dim. Hidden Dim. Hidden Dropout Learning Rate Weight Decay

HE 0.0808 128 768 0.2926 8.81× 10−5 9.33× 10−4

HI 0.0346 7 488 0.0879 5.53× 10−4 3.64× 10−4

JA 0.0702 70 386 0.0862 8.79× 10−5 1.21× 10−7

AD 0.1393 45 428 0.2976 4.69× 10−5 1.21× 10−4

CA 0.2578 66 704 0.1111 4.91× 10−5 1.11× 10−5

AL 0.1476 25 524 0.0431 1.94× 10−5 1.40× 10−6

MNIST 0.2836 93 755 0.0875 4.22× 10−5 1.77× 10−5

B.3 RESNET

The ResNet model used in this work was specially tailored for tabular data. The model is formalized
as follows:

ResNet(x) = Prediction(ResNetBlock(. . . (ResNetBlock(Linear(x)))))
ResNetBlock(x) = x+ Dropout(Linear(Dropout(ReLU(Linear(BatchNorm(x)))))) (2)

Prediction(x) = Linear(ReLU(BatchNorm(x)))
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Table 7: Hyperparameters for ResNet Variants

Dataset d_block dropout1 dropout2 lr n_blocks

HE 512 0.459 0.461 2.74× 10−4 2
AD 440 0.042 0.137 8.90× 10−4 5
CA 465 0.313 0.002 5.26× 10−5 4
HI 506 0.234 0.031 2.24× 10−5 2
AL 476 0.044 0.049 1.32× 10−5 8
JA 355 0.137 0.005 4.60× 10−5 7
MNIST 497 0.265 0.050 6.25× 10−4 4

B.4 AUTOINT

AutoInt is a neural network leveraging self-attention mechanisms for automatic feature interaction
learning. The input features x ∈ Rn are embedded into vectors ei ∈ Rd that interact through
multi-head attention. These interactions produce interaction-adjusted embeddings ẽi. A residual
connection ensures the retention of low-order information:

eRes
i = ReLU(ẽi +WResei).

The final prediction is computed as:

ŷ = σ(w⊤[eRes
1 ⊕ · · · ⊕ eRes

M ] + b),

where σ(x) represents the sigmoid function.

The hyperparameter configurations for different datasets are summarized in Table 8.

Table 8: Hyperparameter configurations for the AutoInt model across datasets.

Dataset d_token Num. layers Learning rate Residual Dropout Weight Decay

AD 200 1 1.717× 10−3 0.060 1.782× 10−7

CA 238 8 2.141× 10−4 0.071 1.892× 10−6

HI 166 1 6.913× 10−4 0.043 1.385× 10−7

AL 228 3 2.280× 10−3 0.011 4.667× 10−4

JA 32 6 9.680× 10−4 0.090 1.234× 10−4

HE 128 6 5.193× 10−5 0.055 7.590× 10−4

MNIST 252 2 5.831× 10−4 0.091 5.107× 10−5

B.5 FT-TRANSFORMER

The FT-Transformer processes tabular data using three key stages: feature tokenization, sequential
Transformer layers, and a prediction head. Feature tokenization encodes each numerical feature xj

and categorical feature ej as:

T (num)
j = b(num)

j + xjW
(num)
j , T (cat)

j = b(cat)
j + ejW

(cat)
j .

These embeddings are concatenated into a matrix T ∈ Rk×d, where k is the number of features and d
is the embedding dimension.A [CLS] token is prepended to T , and L Transformer layers are applied,
iteratively updating the representation as follows:

Ti = MHSA(LN(Ti−1)) + Ti−1, Ti = FFN(LN(Ti)) + Ti,

where LN is layer normalization. The prediction head computes the final output by processing the
[CLS] token with a normalized and activated linear transformation:

ŷ = W2 · ReLU(W1 · LayerNorm(T
[CLS]
L )).

The following table summarizes the hyperparameters for the FT-Transformer model applied to
various datasets.
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Table 9: Hyperparameter Configuration per Dataset

Dataset Att. Dropout Num. Heads Block Size Hidden Dim Learning Rate

HE 0.0157 16 64 128 1.08× 10−3

HI 0.3334 4 128 64 2.25× 10−4

JA 0.0934 16 64 256 1.33× 10−4

AD 0.3426 16 128 32 1.35× 10−4

CA 0.0745 8 128 512 1.17× 10−3

AL 0.3246 8 256 64 8.27× 10−4

MNIST 0.4259 8 32 256 7.97× 10−5

C COMPUTE AND TRAINING TIME

The training process was executed on a single NVIDIA A100 GPU. Despite the varying dataset sizes,
we aimed to optimize compute efficiency by carefully tuning the batch size and learning rate for
each experiment. As detailed in table 10, the pretraining duration across datasets ranged from 0.34
GPU-hours to 3.64 GPU-hours. These variations largely reflect the complexity of the datasets in
terms of both sample size and feature dimensions. In total, the computational demand remained
within acceptable limits, allowing us to complete multiple runs with reasonable turnaround times,
while also maintaining a balance between model performance and resource usage.

Table 10: Dataset characteristics and pretraining GPU-hours.

AD HI HE JA AL CA MNIST

Samples 48,842 98,050 65,196 83,733 108,000 20,640 67112
Numerical, Categorical 6, 8 28, 0 27, 0 54, 0 128, 0 8, 0 784, 0

Classes 2 2 100 4 1, 000 N/A 10
Metric Accuracy Accuracy Accuracy Accuracy Accuracy RMSE Accuracy

Pretraining GPU-hours 0.84 1.80 1.03 1.27 3.64 0.34 4.80

D ALTERNATIVE STRATEGIES

Other settings have been considered before the one discussed in section 3, and were discarded
because they led to collapsed regimes. We considered two alternatives. First, we considered
a pipeline where only the masking strategy differs, as detailed in section D.1. Second, we also
considered an alternative where the masking strategy is the one detailed in section D.1, and we also
modify the predictor architecture as detailed in section D.2.

D.1 MASKING STRATEGY

Masking Following previous work on feature masking for tabular data, we considered handling
masked features by keeping the sample’s representation’s dimension constant. Features of a samples
are normalized similarly as detailed in section 3 such that E(xj) ∈ Rej , where ej = 1 for numerical
features and for categorical features ej corresponds to their cardinality. Each sample is accompanied
by a masking vector m ∈ {0, 1}d in which each entry designates whether a feature is masked:
mj = 1{feature j is masked}. When masked, we replace the corresponding feature value with 0 and
concatenate each feature representation with the corresponding mask indicator function. Hence, each
feature j has an (ej + 1)-dimensional representation

Ẽ(x) = ((1d −m)⊙E(x),m) ∈ Rd×(ej+1), (6)
where ⊙ designates the Hadamard product and 1d the d-dimensional unit vector.

We pass each of the d features encoded representations of sample x through d learned linear layers
Linear(ej + 1, h). We also learn h-dimensional index and feature-type embeddings. Both are
added to the embedded representation of sample x. Let zmx ∈ Rd×h denote the obtained embedded
representation of sample x with mask m.
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Context and Target Encoders Given this modification, the obtained context representation’s
dimension differ from the one given in equation (2),

hm
context = fθ(z

m
x ) ∈ Rd×h. (context)

The rest of the pipeline is identical to the one given in section 3. We also considered a second
alternative where the above pipeline is chosen but a different predictor architecture (see section D.2)
replaces the transformer as detailed in section 3.

D.2 PREDICTOR

Given this alternative masking strategy, we also considered an MLP-based predictor for target
representation prediction. The predictor consists of d separate MLPs (one for each feature). Each
MLP takes as input a representation of dimension d · h (the flattened representation output by the
context encoder), and produces and output of dimension h. In particular, each MLP corresponds to
one feature in particular and produces an h-dimensional prediction for the corresponding feature
given a flattened context representation of dimension d · h.

Let us denote gϕ = {MLPi}di=1, a target mask mtgt and zflatten = flatten(hm
context). Then the

prediction for the target mask mtarget is given by,

ĥ
mtarget

target = {MLPj(zflatten) : m
j
target = 0} (7)

E EMBEDDING FEATURE VARIANCE

The idea behind calculating the variance of embedding features is based on the assumption that
features with high variability across the embedding space are more expressive and likely to capture
the underlying structure of the data. As presented in Figure 6, some features (rows in the heatmap)
present more perturbations across the hidden dimensions (columns in the heatmap).

Figure 6: Embedding Variance

To measure this variance, let us define the embedding variance score. Let x ∈ Rd×h represent a point
the latent space, where d is the number of features and h is the hidden dimension. For each hidden
dimension j, we compute the mean µj across the d features, i.e., µj =

1
d

∑d
i=1 xi,j . For each feature

i, we calculate the embedding variance score, defined as σi,embed = Var(xi − µ), where xi is the
vector representing the i-th-feature, and µ = [µ0, . . . µh]

T . Features with higher embedding variance
are those that stand out more in the representation space, suggesting they may carry more relevant
information.
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F EXPERIMENTS

Table 11: Performance metrics for different models and T-JEPA across datasets. We report an
average over 20 runs and the corresponding standard deviation (except for SwitchTab). We report in
bold the metric that wins between the raw data representation and the augmented representations. We
report in blue the best performing deep method (including SSL methods) and underline the overall
best metric for a dataset. The last column provides the average rank (↓) of the different methods.

AD ↑ HE ↑ JA ↑ AL ↑ CA ↓ HI ↑ MNIST ↑ Avg. Rank

Baseline Neural Networks
MLP 0.827 ±1e−3 0.353 ±1e−3 0.672 ±1e−3 0.916 ±4e−3 0.511 ±3e−3 0.681 ±4e−3 0.978 ±2e−3 15.2

+PTaRL 0.868 ±4e−3 0.383 ±2e−3 0.710 ±4e−3 0.917 ±3e−3 0.489 ±2e−3 0.713 ±2e−3 0.977 ±1e−3 9.6
+T-JEPA 0.866 ±2e−3 0.400 ±4e−3 0.728 ±3e−3 0.961 ±6e−3 0.468 ±4e−2 0.517 ±8e−2 0.983 ±1e−3 6.7

DCNv2 0.829 ±4e−3 0.347 ±3e−3 0.662 ±3e−3 0.905 ±3e−3 0.504 ±4e−3 0.683 ±3e−3 0.971 ±1e−3 17.3
+PTaRL 0.867 ±3e−3 0.351 ±2e−3 0.723 ±3e−3 0.786 ±1e−2 0.465 ±3e−2 0.706 ±2e−3 0.976 ±1e−3 11.3

+T-JEPA 0.861 ±2e−3 0.399 ±3e−3 0.723 ±2e−3 0.955 ±2e−3 0.420 ±2.6e−2 0.525 ±8.2e−2 0.981 ±2e−3 6.6

ResNet 0.814 ±7e−3 0.351 ±2e−3 0.666±3e−3 0.919 ±2e−3 0.534 ±2e−3 0.674 ±4e−3 0.979 ±1e−3 15.2
+PTaRL 0.862 ±5e−3 0.383 ±2e−3 0.723 ±5e−3 0.895 ±1e−3 0.498 ±1e−3 0.713 ±2e−3 0.973 ±1e−3 10.6

+T-JEPA 0.865 ±3e−3 0.401 ±2e−3 0.718 ±3e−3 0.964 ±1e−3 0.441 ±8e−2 0.705 ±5e−3 0.983 ±2e−3 5

AutoInt 0.823 ±1e−3 0.338 ±3e−3 0.653 ±6e−3 0.894 ±2e−3 0.501 ±3e−3 0.694 ±3e−3 0.901 ±6e−3 18.4
+PTaRL 0.871 ±3e−3 0.363 ±2e−3 0.722 ±5e−3 0.939 ±2e−3 0.464 ±2e−2 0.717 ±2e−3 0.956 ±2e−3 9.4

+T-JEPA 0.866 ±2e−3 0.351 ±3e−3 0.710 ±3e−3 0.938 ±4e−3 0.448 ±2e−2 0.517 ±8e−2 0.978 ±1e−3 11.6

FT-Trans 0.821 ±7e−3 0.363 ±2e−3 0.677 ±2e−3 0.913 ±3e−3 0.473 ±5e−3 0.684±5e−3 0.811 ±5e−2 14.9
+PTaRL 0.871 ±2e−3 0.368 ±2e−3 0.738 ±6e−3 0.945±2e−3 0.448 ±1e−2 0.722 ±2e−3 0.977±1e−3 5.6

+T-JEPA 0.864 ±1e−3 0.384 ±5e−3 0.708 ±5e−3 0.921 ±1e−2 0.444 ±1e−1 0.551 ±6e−2 0.966 ±2e−3 11.4

Other self-supervised methods
SwitchTab 0.867 ±N/A 0.387 ±N/A 0.726 ±N/A 0.942 ±N/A 0.452 ±N/A 0.724 ±N/A N/A 7.3
BinRecon 0.846 ±1e−3 0.365 ±1e−3 0.663 ±1e−3 0.949 ±1e−3 0.619 ±1e−3 0.682 ±1e−3 0.981 ±1e−3 12.4

VIME 0.859 ±3e−3 0.362 ±6e−3 0.695 ±5e−3 0.925 ±5e−3 0.505±4e−2 0.655 ±6e−3 0.941 ±2e−3 12.7
SubTab 0.851 ±8e−2 0.361 ±5e−3 0.662 ±2e−2 0.941 ±6e−3 0.546 ±1e−2 0.625 ±1e−2 0.979 ±1e−3 14.4

Gradient Boosted Decision Trees (GBDT)
XGBoost 0.872 ±4.6e−4 0.375 ±1.2e−3 0.721 ±1e−3 0.951 ±1e−3 0.433 ±1.6e−3 0.729 ±1e−3 0.980 ±1e−3 5.3
CatBoost 0.873 ±1e−3 0.381 ±1e−3 0.721 ±1e−3 0.946 ±9e−4 0.430 ±7e−4 0.726 ±8e−4 0.972 ±3e−3 6.1

We report in Table 1 the results of our experiments, except for PTaRL for which we report the
metrics found in their paper. The authors of PTaRL have provided the standard deviations of their
experiments by email for datasets AD, JA and CA, but did not provide them for other datasets
because "The outcomes on the remaining datasets are similar and can be reproduced using our
publicly available code: https://github.com/HangtingYe/PTaRL.". Thus, we followed
their recommendation and used their publicly available code to conduct experiments on HE, AL, HI
and MNIST. We report in Table 11 all the metrics obtained for our experiments. We discuss later in
this section the difference in obtained metrics.

Experimental Setting In Table 1, we present performance metrics for several models, including
neural networks (MLP, DCNv2, ResNet, AutoInt, FT-Trans), self-supervised learning methods
(PTaRL (Ye et al., 2024), SwitchTab (Wu et al., 2024), BinRecon (Lee et al., 2024) and SubTab
(Ucar et al., 2021)), and gradient-boosted decision trees (GBDT). Regarding T-JEPA, we include
standard deviations from 20 independent runs to ensure statistical robustness. Performance metrics
for PTaRL (Ye et al., 2024), SwitchTab (Wu et al., 2024), and BinRecon (Lee et al., 2024) were
primarily extracted from the original papers, ensuring similar experimental setups for consistency.
For VIME (Yoon et al., 2020), we used the official code made available online by the authors to run
the experiments for HE, JA, AL, CA and HI datasets and report the metrics in their paper for AD and
MNIST. Similarly, for SubTab (Ucar et al., 2021), we rely on their official implementation and run
experiments on each of the datasets except for AD which we obtained from their paper. Regarding
PTaRL, the authors shared standard deviations by email for datasets AD, JA and CA and we had to
re-run experiments using their official code for HE, AL, HI and MNIST.

Standard deviations Authors of PTaRL (Ye et al., 2024), SwitchTab (Wu et al., 2024) and BinRecon
(Lee et al., 2024) did not report any standard deviations in their papers. We re-ran the experiments
using the official code released by the authors for PTaRL and BinRecon, while ensuring exact
replication of the provided hyperparameters. As Wu et al. (2024) did not release any code for
SwitchTab, we were unable to provide the standard deviation for their reported metrics.
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Discrepancy between Table 1 and 11 We notice on some occasions significant differences between
the metrics reported in (Ye et al., 2024) and the ones we obtain using their official implementation.
We explicitly relied on their publicly available code and scrupulously replicated the hyperparameters
provided in their paper, but failed to obtain similar metrics. As these discrepancies could originate
from our experiment we chose to include in Table 1 the metrics from their original paper, and provide
in Table 11 the metrics from our experiments. We provide the code to replicate our experiments in
the supplementary material and display in appendix F.1 and F.2 the experimental details.

Results When relying on the metrics in Table 11, we observe that ResNet+T-JEPA obtains the
lowest average rank (↓), while XGBoost ranks second and FT-Transformer+PTaRL obtains the third
lowest average rank. Moreover, when augmented by our self-supervised method, ResNet, MLP
and DCNv2 obtain consistent results across datasets and tasks (binary, multi-class classification
or regression). This emphasizes the capacity of T-JEPA to enhance the performance of supervised
models.

F.1 BASELINE PERFORMANCE

The default hyperparameters for each model were utilized to ensure consistent configurations and
establish baseline performance metrics. To maintain alignment with the experimental framework
presented in Ye et al. (2024), the same hyperparameters were adopted for generating the baseline
results.

Table 12: Default Hyperparameters for MLP

Hyperparameter Value
Number of Layers 4
Hidden Dimension 256
Dropout 0.1
Batch Size 128
Learning Rate 1× 10−4

Early Stopping Patience 16
Maximum Epochs 200
Categorical Embedding Dim 128

Table 13: Default Hyperparameters for
DCNV2

Hyperparameter Value
Hidden Dimension 128
Number of Cross Layers 3
Number of Hidden Layers 7
Cross Dropout 0.1
Hidden Dropout 0.1
Batch Size 128
Learning Rate 1× 10−4

Early Stopping Patience 16
Maximum Epochs 200
Categorical Embedding Dim 128

Table 14: Default Hyperparameters for
ResNet

Hyperparameter Value
Number of Layers 4
Hidden Dimension 256
Hidden Dropout 0.1
Batch Size 128
Learning Rate 1× 10−4

Early Stopping Patience 16
Maximum Epochs 200
Categorical Embedding Dim 128

Table 15: Default Hyperparameters for
AutoInt

Hyperparameter Value
Hidden Dimension 192
Number of Layers 3
Number of Heads 8
Attention Dropout 0.1
Residual Dropout 0.1
Batch Size 128
Learning Rate 1× 10−4

Early Stopping Patience 16
Maximum Epochs 200

F.2 SELF-SUPERVISED METHODS

SwitchTab SwitchTab is a framework for tabular data representation learning that utilizes
anencoder-decoder architecture to decouple features into mutual (shared across samples) and salient
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Table 16: Default Hyperparameters for FT-Transformer

Hyperparameter Value
Hidden Dimension 192
Number of Layers 3
Number of Heads 8
Attention Dropout 0.1
Residual Dropout 0.0
Batch Size 128
Learning Rate 1× 10−4

Early Stopping Patience 16
Maximum Epochs 200

(unique to individual samples) representations. The process begins with feature corruption applied
to input data to enhance robustness. The corrupted data is then encoded by an encoder, producing
feature vectors that are decoupled into mutual and salient components using two projectors. These
components are recombined and reconstructed by a decoder, with both recovered and switched
outputs contributing to the computation of a reconstruction loss.

The results presented are drawn from the original work Wu et al. (2024). Since the code was not
available, results for the MNIST dataset were not included.

BinRecon In the approach presented in (Lee et al., 2024), continuous numerical features are
discretized into a fixed number of bins, where each bin represents a range of values defined by
quantiles of the training dataset. The task is to predict the bin indices instead of reconstructing the
raw values, effectively transforming the problem into a regression or classification task depending
on whether the bins are treated as ordinal or categorical. This encourages the encoder to learn
representations that capture irregularities and nonlinear dependencies characteristic of tabular data.
The loss for BinRecon, when treating bins as ordinal values, is defined as:

LBinRecon =
1

N

N∑
i=1

∥ti − fBinRecon(zi)∥2,

where ti denotes the bin indices of the input features, zi represents the encoder outputs, and fBinRecon

is the decoder network.

The results presented in Table 1 were taken from the original work (Lee et al., 2024).

VIME The VIME framework is a self-supervised learning method for tabular data that leverages
two pretext tasks: feature estimation, which involves reconstructing the original features, and mask
estimation, which focuses on predicting the applied binary mask. A masked sample x̃ is generated as:

x̃ = m⊙ x̄+ (1−m)⊙ x,

where m is a binary mask, and x̄ are values sampled from marginal distributions. An encoder e
maps x̃ to z, which is used to predict the mask (m̂) and reconstruct the input (x̂). The framework
minimizes:

min
e,sm,sr

E [lm(m, m̂) + α · lr(x, x̂)] ,

where lm is binary cross-entropy and lr is reconstruction loss.

The datasets AD and MNIST were sourced from the work presented in Yoon et al. (2020). For the
remaining datasets, the publicly available code repositories were utilized, ensuring reproducibility
and adherence to standardized evaluation protocols.

The hyperparameters presented in Table 17 were obtained following a hyperparameter tuning pro-
cess, designed to optimize performance metrics for each specific dataset. This tuning involved
Bayesian hyper-parameter search across a range of values for parameters such as alpha, beta,
mlp_hidden_dim, and p_m, ensuring that the reported results reflect the best possible configura-
tions for the proposed approach.
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Table 17: Hyperparameter Settings for VIME experiments

Dataset alpha beta mlp_hidden_dim p_m

JA 3.1343 1.5921× 100 32 1.5536× 10−1

AL 1.3867 1.0233× 100 256 2.4229× 10−1

HE 4.7568 8.1190× 10−1 256 1.2751× 10−1

HI 4.7680 1.4418× 100 128 2.4642× 10−1

CA 2.5088 – 256 1.1916× 10−1

SubTab SubTab is a framework for representation learning on tabular data inspired by cropping
in image augmentation. It divides tabular data into subsets of features, processed by a shared
encoder-decoder architecture.

The results in Table 1 were derived using the AD and MNIST datasets, sourced from Ucar et al. (2021).
For the other datasets, publicly available code repositories were employed, ensuring reproducibility.

The hyperparameters listed in Table 18 were determined through a hyperparameter tuning pro-
cess aimed at optimizing performance metrics for each dataset. This process utilized Bayesian
hyperparameter search across a predefined range of parameter values.

Table 18: Hyperparameter Settings for SubTab experiments

Dataset Dropout Rate Hidden Layers Learning Rate Masking Ratio N Subsets

HE 0.1941 [1024, 256] 1.0867× 10−3 0.2 4
JA 0.1383 [1024, 1024, 128] 1.6595× 10−3 0.3 4
AL 0.1542 [1024, 512] 6.1929× 10−4 0.1 6
CA 0.0292 [128, 128] 5.8552× 10−4 0.1 4
HI 0.1310 [512, 512] 1.4141× 10−3 0.2 4
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G REPRESENTATION SPACE CHARACTERIZATION

Kullback-Leibler divergence The Kullback-Leibler (KL) divergence measures the difference
between the probability distributions of random points within the embedding space. Formally, given
two probability distributions P and Q over the same variable x, the KL-divergence from Q to P is
defined as:

DKL(P ∥ Q) =
∑
x

P (x) log
P (x)

Q(x)
. (8)

We consider random points xi = flatten(hi) and xj = flatten(hj) from the embedding space
and estimate their distributions P and Q, where flatten is an operation that converts the high-
dimensional embeddings h ∈ Rd×h into a one-dimensional vector x ∈ Rd·h. A lower KL-divergence
indicates that the embedded space has consistent and similar distributions for different regions. For
completeness we also include the euclidean distance between the flattened representations.

Uniformity We rely on the uniformity score (Wang and Isola, 2020) to evaluate the preservation
of maximal information within the feature distribution. This score leverages the Gaussian potential
kernel Gt : Sd × Sd → R+, defined as Gt(u, v) ≜ e−t∥u−v∥2

2 , t > 0. The uniformity score is
defined as the logarithm of the average pairwise Gaussian potential, formally:

uniformity ≜ − log E
x,y

i.i.d.∼ pdata

[Gt(u, v)] = − log E
x,y

i.i.d.∼ pdata

[e−t∥u−v∥2
2 ], t > 0. (9)

This metric is intricately connected to the notion of uniform distribution on the unit hypersphere.
This uniformity score allows us to obtain a nuanced measure that captures the degree of information
preservation in the feature distribution.
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