
Modeling Tissue-Specific Aging from Transcriptomic Data

Advances in molecular biology and machine learning have revealed organ-specific aging patterns. Oh et al. (2023)
[1]used plasma proteomics to predict organ-specific biological ages, introducing age-gaps to quantify deviations
from chronological age and model disease risk. However, plasma measurements capture only proteins released into
circulation. To directly assess tissue-resident aging signatures, we leveraged tissue-specific transcriptomic data from
actual organ samples to predict tissue-specific age.

We used the Adult GTEx v10 dataset [2], which provides transcript per million (TPM) and read count data across 54
tissues from 948 subjects, focusing on 12 tissues with adequate sample-size and strong correlation with mortality.
Metadata include age, sex, and circumstance of death characterized by the Hardy Scale [3]. Since GTEx age data
are binned, we refined labels by shifting bin midpoints toward sample means using exhaustive search. For each
tissue, TPM data were split into 80-20 train-test set via age-stratified sampling, reserving Hardy Scale 1 samples for
test set—representing sudden deaths—as outliers. Gene subsets were selected using three strategies: (1) genes with
Pearson correlation >0.2 with age, (2) tissue-specific differentially expressed genes identified via optimal log2(fold-
change) between age groups, and (3) tissue-enriched genes (expressed ≥4 times higher in one tissue than others).

Linear models using selected genes, age, and sex were trained with 20x bootstrapping. Nonlinear patterns were
captured using a shallow neural network (two fully connected layers with batch normalization and ReLU). Predicted
tissue ages were regressed against chronological ages to yield adjusted estimates ŷ and age-gaps were defined as
(predicted age - ŷ). Given the limited dataset size, we employed leave-p-out cross-validation (p = 5%) to ensure
that the entire dataset was used for evaluation. For each tissue, age-gap distributions were modeled as Gaussian,
and subjects were classified as extreme negative agers (< µgap − σgap

2 ), extreme positive agers (> µgap +
σgap
2 )

or average agers (within ±σgap
5 ). To assess clinical relevance, we compared conditional probabilities of prolonged

disease (dthhrdy ∈ {3,4}) and unnatural deaths (dthhrdy = 1) across aging groups, where dthhrdy denotes a subject’s
Hardy Scale [3]. The overall analysis pipeline is illustrated in Figure 1.
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Figure 1: Overview of the analysis pipeline: dataset preprocessing, feature selection, model training, age-gap computation,
subject classification, and clinical relevance analysis.

Across all feature selection strategies and models, correlation-based gene selection with elastic net achieved the best
performance (RMSE = 6.44, R2 across 1,285 test samples), while PLS regression without cross-validation ran the
fastest. Analysis of age-gap distributions from 657 subjects revealed a low average pairwise correlation across tissues
(Pearson r = 0.20), with extreme aging (> |2σ|) observed in 26% of all subjects—suggesting mostly organ-specific
aging with only 1% showing multi-organ aging (extreme aging in 3+ tissues). Conditional probability analysis of
Hardy Scale ratings indicated that extreme positive agers were nearly twice as likely to die from illness-related
causes (dthhrdy = 3 or 4) compared to extreme negative agers. While extreme negative agers were more likely to
have died from unnatural causes (dthhrdy=1), suggesting that accelerated biological aging aligns with disease-related
mortality.
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