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Abstract: Detecting early plant diseases autonomously poses a significant challenge for self-navigating
robots and automated systems utilizing Artificial Intelligence (AI) imaging. For instance, Botrytis cinerea,
also known as gray mold disease, is a major threat to agriculture, particularly impacting significant crops
in the Cucurbitaceae and Solanaceae families, making early and accurate detection essential for effective
disease management. This study focuses on the improvement of deep learning (DL) segmentation models
capable of early detecting B. cinerea on Cucurbitaceae crops utilizing Vision Transformer (ViT) encoders,
which have shown promising segmentation performance, in systemic use with the Cut-and-Paste method
that further improves accuracy and efficiency addressing dataset imbalance. Furthermore, to enhance
the robustness of AI models for early detection in real-world settings, an advanced imagery dataset was
employed. The dataset consists of healthy and artificially inoculated cucumber plants with B. cinerea and
captures the disease progression through multi-spectral imaging over the course of days, depicting the
full spectrum of symptoms of the infection, ranging from early, non-visible stages to advanced disease
manifestations. Research findings, based on a three-class system, identify the combination of U-Net++
with MobileViTV2-125 as the best-performing model. This model achieved a mean Dice Similarity
Coefficient (mDSC) of 0.792, a mean Intersection over Union (mIoU) of 0.816, and a recall rate of 0.885,
with a high accuracy of 92%. Analyzing the detection capabilities during the initial days post-inoculation
demonstrates the ability to identify invisible B. cinerea infections as early as day 2 and increasing up to day
6, reaching an IoU of 67.1%. This study assesses various infection stages, distinguishing them from abiotic
stress responses or physiological deterioration, which is crucial for accurate disease management as it
separates pathogenic from non-pathogenic stress factors. The findings of this study indicate a significant
advancement in agricultural disease monitoring and control, with the potential for adoption in on-site
digital systems (robots, mobile apps, etc.) operating in real settings, showcasing the effectiveness of
ViT-based DL segmentation models for prompt and precise botrytis detection.

Keywords: botrytis cinerea; deep learning; cucumber; early detection; cut-and-paste; image
segmentation; multi-spectral imaging; precision agriculture; smart farming; vision transformers

1. Introduction

Botrytis cinerea, commonly known as gray mold, is a fungal pathogen that significantly
impacts a wide range of agricultural crops. It is widely recognized that this pathogen can infect
a variety of plant tissues, leading to substantial yield losses [1]. This pathogen affects nearly all
vegetable and fruit crops, resulting in annual losses estimated at between USD 10 billion and
100 billion worldwide [2]. The disease is particularly challenging due to its rapid spread under
favorable conditions, such as high humidity and moderate temperatures [3,4]. Botrytis cinerea
can infect crops both in the field and during post-harvest storage [5], making it a persistent
threat throughout the agricultural supply chain. Moreover, the pathogen’s capacity to develop
resistance to commonly used fungicides has aggravated the challenge [6], necessitating the
exploration of alternative detection and management strategies. Early and accurate detection
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of B. cinerea is essential to implement robust management strategies, reduce crop damage, and
decrease dependence on chemical interventions [6,7]. The traditional methods for detecting
plant pathogens like B. cinerea have primarily relied on visual inspection and laboratory-
based diagnostic tests [8]. However, these approaches are often slow, require significant
manual effort, and are prone to human error. The advent of image-based detection techniques,
leveraging the power of multi-spectral imaging and Deep Learning (DL), has revolutionized
the approach to plant disease management [9].

DL has significantly advanced the domain of plant pathology, facilitating more sophis-
ticated and accurate disease detection methods [10,11]. Utilizing complex algorithms, DL
systems can process and analyze vast amounts of image data, identifying patterns and anoma-
lies indicative of plant diseases [12]. This technology has proven particularly effective in
diagnosing diseases from digital images [13], a method that offers several advantages over
traditional visual inspection. DL models have shown significant potential in improving
diagnostic accuracy and adapting to various tasks, such as object detection and semantic
segmentation, through their ability to automatically learn features from given datasets and
handle transformations [14]. This adaptability is crucial when dealing with the diverse and
evolving nature of plant pathogens. Furthermore, DL applications extend to predicting disease
spread and severity, providing valuable insights for crop management and decision-making
processes [15]. The integration of DL in plant pathology not only enhances disease detection
but also improves the effectiveness and longevity of agricultural practices [16].

Vision Transformers (ViTs) have introduced a novel approach to image analysis, mark-
ing a significant shift from traditional image processing methods [17]. Unlike previous
techniques that rely heavily on local feature extraction, ViTs approach image analysis by
dividing images into a series of patches and applying self-attention mechanisms [18]. This
allows them to capture and process the complex interrelationships between different parts
of an image [19]. In the field of plant pathology, ViTs can offer a more comprehensive
analysis of plant health, identifying disease symptoms that might be missed by other
conventional methods [20]. Their application in agricultural image analysis is still rela-
tively new, but it holds great promise for improving accuracy and efficiency in identifying
diseases, especially within complex and varied datasets [21].

In segmentation, ViTs provide the architecture models, allowing models to not only
detect but also comprehend the context of each segment in an image [22]. This ability is crucial
to accurately identify different stages of plant diseases, differentiating between healthy and
diseased tissue, and offering detailed views of how disease symptoms are distributed across
a plant [21]. The incorporation of ViTs into segmentation models represents a significant
advancement, providing an insightful and context-sensitive method for image analysis.

Data augmentation is a key aspect of many vision systems and imbalanced datasets.
With this aim in mind, a technique called Cut-and-Paste [23] is gaining attention as an
effective method to artificially increase datasets by generating synthetic images [24]. The
usual application of this technique involves cropping objects from the original images and
pasting them to another image, thus creating a whole new image with more objects of the
researchers’ interest. The initial implementations of this approach focused on making the
models able to distinguish between what is real and what is fake in the image.

The use of multi-spectral imaging in modern agriculture is crucial, offering a non-invasive
and efficient means to oversee crop vitality and identify initial indicators of disease [25]. This
technology captures images at various wavelengths, including beyond the visible spectrum, al-
lowing for the detection of physiological changes in plants that precede visible symptoms [26].
Multi-spectral imaging can identify subtle variations in plant reflectance, which are often
indicative of stress or disease [27]. This capability is valuable in early disease detection, where
timely intervention can prevent widespread crop damage. Multi-spectral imaging provides
multi-dimensional data that are suited for DL model training and optimization, enhancing
their accuracy and effectiveness in disease detection. As such, multi-spectral imaging repre-
sents a critical tool in the transition towards precision agriculture, enabling more targeted and
sustainable crop management strategies [28].
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As proven by recent research, fungal plant diseases may now be detected using Ma-
chine Learning (ML) and DL techniques [29,30]. Giakoumoglou et al. (2023) [31] artificially
inoculated leaves of cucumber plants with B. cinerea and employed multi-spectral imaging
along with DL to detect the fungal response, achieving a mean Average Precision (mAP) of
0.88. Bhujel et al. (2022) [32] employed a DL-based semantic segmentation model to detect
the artificially inoculated gray mold disease in strawberries. The U-Net model outper-
formed traditional image processing techniques in the detection and quantification of gray
mold, demonstrating an Intersection over Union (IoU) of 0.821. Sanchez et al. (2020) [33]
applied ML techniques, including several image processing techniques, segmentation,
feature extraction, and classification, in order to detect and classify B. cinerea infection in
pomegranates. The findings indicated that pomegranate selection may be carried out with
an accuracy of 96%, which can aid in the automated identification and classification of
B. cinerea. Ilyas et al. (2021) [34] proposed a DL-based framework incorporating modules
to manage receptive field dimensions, salient feature transmission, and computational
complexity to identify and classify different classes of strawberry fruits, including diseased
ones. Their approach led to a 3% improvement in mean intersection over union relative to
other state-of-the-art semantic segmentation models and identified infected fruits with a
precision of 92.45%. Sun et al. (2018) [35] utilized multi-spectral imaging to assess early
indicators of B. cinerea in strawberries to predict early gray mold infection. Wang et al.
(2021) [36] introduced a two-stage approach that employs DeepLabV3+ for segmenting
cucumber leaves from intricate backgrounds, followed by U-Net for segmenting the in-
fected leaves. This model achieved a leaf segmentation accuracy of 93.27% and an average
disease severity classification accuracy of 92.85%, demonstrating robustness in complex
environments. Qasrawi et al. (2021) [37] applied ML models to cluster, identify, and classify
diseases of tomato plants, including, among others, B. cinerea, using smartphone images of
five diseases, achieving a clustering accuracy of 70% and prediction accuracies of 70.3%
and 68.9% with neural network and logistic regression models, respectively.

In our previous work, Giakoumoglou et al. (2024) [38], we demonstrated initial efforts
in developing segmentation models for early detection of B. cinerea using ResNet encoders,
which resulted in IoU values of 67.1%, 39.3%, and 53.4% for healthy, B. cinerea-invisible and
B. cinerea-visible classes, respectively. However, the current study goes beyond these initial
efforts by leveraging ViT encoders, which have shown superior performance over the ResNet
family encoders, while also advancing AI modeling perspectives. Our current research in-
volves a comprehensive re-annotation from scratch, incorporating both a 6-class and a 3-class
labeling system. This re-annotation refines our earlier approach, where model predictions
extended to unannotated leaves, leading to misinterpretations and reduced performance.
Moreover, we have introduced and evaluated the performance of two new architectures in
combination with ViTs. The primary objective is to detect fungal infection, prior to symptom
development, enabling timely intervention to reduce pesticide usage, along with the effort
to address dataset imbalance by utilizing the Cut-and-Paste augmentation technique. This
customized augmentation technique, detailed in Section 2.6, was specifically designed to
augment numerically weaker classes and enhance overall results, leading to significant im-
provements in the IoU values for all classes. More specifically, this augmentation method led
to a 14.29% increase for healthy class, a 56.45% increase for the identification of leaves with no
visible botrytis infection, and a 23.27% increase for the detection of leaves with obvious fungal
symptoms. The key motivations of this study are: (i) early diagnosis of B. cinerea disease;
(ii) address dataset imbalance; (iii) early treatment of affected plants; (iv) reducing pesticide
use as a consequence of early diagnosis and treatment; (v) employing optimized AI models to
identify symptoms in plants under real conditions.

To achieve these goals, an approach was developed for the effective detection of
B. cinerea, focusing on identifying the fungus at various stages of its development, espe-
cially during the initial phases. The experiment involved growing cucumber plants under
controlled environmental conditions and introducing the pathogen using two distinct
inoculation methods. The study captured the evolution of the disease through multi-
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spectral imaging, which efficiently recorded both the early, invisible symptoms and the
later, more advanced stages of the infection. The study utilized linear disease progression
models to analyze the disease in individual leaves. The segmentation models were evalu-
ated using a three-class labeling system. Four advanced DL segmentation architectures,
namely U-Net++, PAN, MA-Net, and DeepLabV3+, were evaluated in combination with
two Vision Transformer (ViT) encoders. To address dataset imbalance and improve the
identification and segmentation of all classes, the Cut-and-Paste augmentation technique
was employed. This method enhances image content density by increasing the presence
of underrepresented classes. By copying objects from one image and pasting them onto
another, new images are created, effectively multiplying the training dataset and augment-
ing the overall augmentation process for better model performance. The results of this
study underscore the models’ strength in detecting B. cinerea at various infection stages,
showcasing their potential as effective tools for early and accurate disease management in
farming practices. This approach has the potential to be implemented in automated systems
and self-navigating robots, advancing agricultural disease monitoring and control. The
potential integration into on-site digital systems (such as robots and mobile apps) working
in real-world environments further showcases the value of ViT-based DL segmentation
models for real-time, accurate detection of botrytis disease.

The rest of the paper is structured as follows. Section 2 delineates the materials and
methods employed in this study, including plant and fungal material, the DL segmentation
models, the Cut-and-Paste augmentation technique, and the assessment metrics used to detect
B. cinerea in cucumber plants. Section 3 exhibits the results. The study concludes in Section 4.

2. Materials and Methods

This section describes the methodology of this study, encompassing plant preparation
and artificial inoculation, dataset creation, and the development of DL models. Figure 1
provides a comprehensive overview of the proposed methodology employed to develop
effective semantic segmentation models for early detection of B. cinerea. Initially, the multi-
spectral images along with their masks undergo the Cut-and-Paste augmentation technique
to enhance the representation of key classes. These augmented images are then used as
input for the DL models, which generate the final segmentation outputs.
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Figure 1. Flowchart illustrating the proposed methodology. It begins with multi-spectral images paired
with true annotation masks sourced from the advanced imagery dataset. The images then undergo
Cut-and-Paste augmentation, along with other augmentation techniques as described in Section 2.4.
These augmented images and masks are subsequently inputted into an adjusted U-Net++ segmentation
model (image source: [39]) with a ViT backbone (Section 2.3), customized to process multi-spectral input,
and resized to 1024 × 1024 pixels. The network produces a segmented image as output.
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2.1. Experimental Setup and Inoculation Processes

This study utilized the cucumber cultivar Green Baboo (Cucumis sativus L. cv. Hasan).
Seedlings were grown in controlled environment chambers with specific conditions
(21 ± 1 ◦C, 16 h photoperiod, 352.81 µmol/sec photosynthetic photon flux, 85–90% hu-
midity) until the first true leaf fully developed. They were then transplanted into sterile
compost in plastic pots and maintained under greenhouse-like conditions for about two
months. Botrytis cinerea was extracted from cucumber plants naturally infected and dis-
playing characteristic typical gray mold symptoms. The conidial suspension of the fungal
isolate was stored at −20 ◦C in aqueous glycerol and grown on potato dextrose agar (PDA)
(Merck, Darmstadt, Germany) at 21 ◦C before use [40].

Bioassays were performed in two identical controlled environment chambers, one
for plants inoculated with B. cinerea and another for mock-inoculated plants. Plants were
inoculated with the B. cinerea when they had four fully expanded leaves. For inoculum
preparation, B. cinerea was grown on PDA in petri dishes at 21 ◦C for 10–15 days in darkness.
Spore suspensions were made using sterile distilled water (SDW) with 2% sucrose and
0.01% Tween® 20 (Sigma-Aldrich, St. Louis, MO, USA) [41]. The conidial concentration
was set to 105 conidia mL−1. Two inoculation techniques were employed: (i) mycelial plugs
(5 mm in diameter) were cut from the edges of 10-day-old colonies of the B. cinerea isolate
and placed on the adaxial side of the first true leaf near to the base, termed inoculation
method “A”, and (ii) the adaxial surfaces of the first and second true leaves were sprayed
with the conidial suspension until wet using a low-pressure hand sprayer (about 500 µL
per leaf) [42], termed inoculation method “B”. Mock inoculation followed the same process
but without the pathogen. The study included 20 plants for B. cinerea inoculation (ten each
for both methods) and nine for mock inoculation. After the artificial inoculation, the plants
were placed in darkness for a day, while maintaining other environmental conditions.

Disease severity was assessed over 37 days post-inoculation (dpi), quantifying the
percentage of leaf area showing visible disease symptoms. The data were analyzed using
a logit transformation to linearize disease progression in relation to time [43]. Linear
regression was employed to calculate the rate of disease progression and to estimate the
infection onset time on each leaf [44].

2.2. Multi-Spectral Imaging and Annotation

For multi-spectral imaging, a customized Qcell (https://qcell.tech (accessed on
15 April 2024)) Phenocheck camera was employed, capturing images at wavelengths of 460,
540, 640, 775, and 875 nm. The camera’s resolution was 3096 × 2080 pixels. Imaging began
on the day of B. cinerea inoculation and continued daily for the next five days, followed
by weekly captures until 37 dpi. This approach allowed for a comprehensive collection
of the disease’s progression. In total, the dataset comprised 1061 images. This included
418 images from plants inoculated with B. cinerea and 355 images from mock-inoculated
plants, both sets using mycelial plugs. Additionally, there were 210 images from plants
inoculated with B. cinerea and 78 from mock-inoculated plants, both inoculated using the
spraying technique. Figure 2 illustrates the spectra captured at various wavelengths.

Each leaf in the dataset was annotated, using Roboflow [45] by marking its area with a
polygon and then assigning a class label to it based on the disease’s progress. This annotation
process involved classifying the leaves into different stages, depending on the percentage
of leaf area showing visible symptoms of B. cinerea infection. Leaves from mock-inoculated
plants received the label “control” if they had mock inoculation, while leaves without any
inoculation were categorized as “healthy”. For B. cinerea-inoculated plants, labels were
assigned based on the degree of visible symptoms observed on the leaves. Two different
annotation systems were generated for this dataset, one for six infection stages and another
for three infection stages. For the six-class system, the categories were defined as follows:
leaves with 0.1–2% symptoms were labeled as invisible-early, those with 2–5% as invisible-late,
denoting hardly visible by naked eye symptoms, leaves with 5–10% symptoms as visible-light,
10–20% as visible-moderate, and leaves with 20–100% symptoms as visible-heavy. For the

https://qcell.tech
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simplified three-class system, leaves with 0.1–5% symptoms were categorized as “invisible”
indicating symptoms that are not easily seen, while those with 5–100% affected leaf area were
labeled as “visible”. In the initial annotation phase, leaves were categorized based on clear
symptoms, ensuring precise classification into their respective categories. However, as the
model predictions extended to unannotated leaves, the annotation process was expanded
to encompass all leaves. Consequently, for both class systems, all leaves were annotated,
including those showing minimal (0–0.1%) or no symptoms, which were assigned under
the healthy class, similar to the leaves from mock-inoculated plants. This study focuses on
creating a segmentation model for the three-class system, while the six-class system is used
for a better and more comprehensive visualization of disease progression.
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Figure 2. Spectral images at different wavelengths: (a) 460 nm, (b) 540 nm, (c) 640 nm, (d) 775 nm,
and (e) 875 nm, accompanied by (f) the RGB image.

Of the total 1061 images, 773 resulted from using the inoculation method A, while
288 were from method B. Artificial inoculated plants were numbered 1 to 20, whereas
mock-inoculated plants were numbered 1 to 9. Specifically, plants inoculated with B. cinerea
and designated for training included those numbered 1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 14, 15, 17,
19, and 20, while validation samples consisted of those numbered 8, 10, 13, 16, and 18. For
control plants, training samples included those numbered 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, and 29, while validation samples comprised those
numbered 1, 2, 3, 7, and 18. Following the annotation process, the dataset was divided
into training and validation sets using a 78–22% split. Comprehensive statistics on the
annotated class distribution for both the training and validation datasets for the six-class
and the three-class categories are shown in Tables 1 and 2, respectively.

Table 1. Dataset’s class distribution statistics for the six-class system.

Class Set Count Proportion

0-healthy Train 6405 88.30%
Valid 2045 89.37%

1-invisible-early Train 112 1.54%
Valid 56 2.44%

2-invisible-late
Train 83 1.14%
Valid 18 0.78%

3-visible-light Train 106 1.46%
Valid 20 0.87%

4-visible-moderate
Train 123 1.69%
Valid 39 1.7%

5-visible-heavy Train 424 5.84%
Valid 110 4.8%
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Table 2. Dataset’s class distribution statistics for the three-class system.

Class Set Count Proportion

0-healthy Train 6405 88.30%
Valid 2045 89.37%

1-invisible
Train 195 2.68%
Valid 74 3.23%

2-visible
Train 653 9%
Valid 169 7.38%

Utilizing the six-class system to offer a more thorough visualization, Figures 3 and 4
collectively provide a detailed visual narrative of B. cinerea infection dynamics on a specific
plant. Figure 3 captures the entire temporal span of the experiment, displaying the pro-
gression of infection at various dpi timepoints. This visualization enables a chronological
examination of the plant’s response to B. cinerea, showcasing the transition from the initial
stages of invisibility to the development of visible symptoms.
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shows plant number 2, which was infected with inoculation method B (B_Bc_2).
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erate” infection in a deeper red, and “visible-heavy” infection in the deepest red. This figure shows 

plant number 2, which was infected with inoculation method B (B_Bc_2). 

   
(a) (b) (c) 

AI 2024, 5, FOR PEER REVIEW 9 
 

   
(d) (e) (f) 

Figure 4. Evolution of B. cinerea captured in the early dpi for a particular plant during the experi-

ment presented in varied colors on top of the 460 nm wavelength grayscale image adjusted to 1024 

× 1024 and overlaid with the ground truth masks for the six-class label system: (a) dpi 0, (b) dpi 1, 

(c) dpi 2, (d) dpi 3, (e) dpi 5, and (f) dpi 6. Annotations follow the same color-coding scheme as 

Figure 2. This figure shows plant number 2, which was infected with inoculation method B (B_Bc_2). 

In contrast, Figure 4 zooms in on the critical early dpi, presenting a more focused 

view of the plant’s response. The six subfigures offer a close-up look at the initial stages 

of infection. This detailed view provides an understanding of the rapid changes in leaf 

conditions during the first days of the experiment. 

2.3. Deep Learning Segmentation Models 

For this study, four state-of-the-art DL segmentation architectures were employed: 

U-Net++ [46], PAN [47], MA-Net [48], and DeepLabV3+ [49]. U-Net++ stands out as an 

evolved version of the original U-Net [50], tailored for biomedical image segmentation. It 

introduces an encoder–decoder structure with nested and skip pathway enhancements. 

Path Aggregation Network (PAN) leverages advanced techniques to capture precise, 

dense features, enhancing the model’s capacity to catch finer details. Multi-Attention Net-

work (MA-Net) further extends these capabilities by incorporating self-attention mecha-

nisms for adaptive local–global feature integration and segmentation precision. 

DeepLabV3+ extends the capabilities of DeepLabV3 [51], combining atrous convolutions 

with an enhanced encoder–decoder architecture. 

To boost the feature extraction capabilities of these architectures and conduct an in-

depth examination of ViT’s effectiveness, they were paired with diverse encoders, i.e., Mo-

bileViT-S [52], MobileViTv2-1.25 [53]. MobileViT-S combines the strengths of CNNs and 

ViTs, offering an efficient and powerful approach to computer vision tasks. On the other 

hand, MobileViTv2-1.25 further improves efficiency by making self-attention operations 

simpler. 

The models were adjusted to process multi-spectral images by modifying their input 

channels to accept five different spectral channels. This allows the models to fully use each 

spectral band for image segmentation, enhancing the use of multi-spectral data. 

2.4. Model Training 

The DL segmentation models underwent training on the three-class system. Initially, 

each backbone received random initialization. U-Net++ and MA-Net utilized a combina-

tion of Dice loss [54] and Binary Cross-Entropy (BCE) loss, while PAN and DeepLabV3+ 

employed Cross-Entropy (CE). Weighted loss functions were applied, with normalized 

weights derived from the inverse logarithm of class frequencies. The weights were ad-

justed to a range of 0.1 to 1.0, preventing the logarithm of zero by adding one. Different 

Figure 4. Evolution of B. cinerea captured in the early dpi for a particular plant during the experiment
presented in varied colors on top of the 460 nm wavelength grayscale image adjusted to 1024 × 1024
and overlaid with the ground truth masks for the six-class label system: (a) dpi 0, (b) dpi 1, (c) dpi 2,
(d) dpi 3, (e) dpi 5, and (f) dpi 6. Annotations follow the same color-coding scheme as Figure 2. This
figure shows plant number 2, which was infected with inoculation method B (B_Bc_2).

In contrast, Figure 4 zooms in on the critical early dpi, presenting a more focused
view of the plant’s response. The six subfigures offer a close-up look at the initial stages
of infection. This detailed view provides an understanding of the rapid changes in leaf
conditions during the first days of the experiment.

2.3. Deep Learning Segmentation Models

For this study, four state-of-the-art DL segmentation architectures were employed:
U-Net++ [46], PAN [47], MA-Net [48], and DeepLabV3+ [49]. U-Net++ stands out as an
evolved version of the original U-Net [50], tailored for biomedical image segmentation. It
introduces an encoder–decoder structure with nested and skip pathway enhancements.
Path Aggregation Network (PAN) leverages advanced techniques to capture precise, dense
features, enhancing the model’s capacity to catch finer details. Multi-Attention Network
(MA-Net) further extends these capabilities by incorporating self-attention mechanisms for
adaptive local–global feature integration and segmentation precision. DeepLabV3+ extends
the capabilities of DeepLabV3 [51], combining atrous convolutions with an enhanced
encoder–decoder architecture.

To boost the feature extraction capabilities of these architectures and conduct an
in-depth examination of ViT’s effectiveness, they were paired with diverse encoders,
i.e., MobileViT-S [52], MobileViTv2-1.25 [53]. MobileViT-S combines the strengths of CNNs
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and ViTs, offering an efficient and powerful approach to computer vision tasks. On
the other hand, MobileViTv2-1.25 further improves efficiency by making self-attention
operations simpler.

The models were adjusted to process multi-spectral images by modifying their input
channels to accept five different spectral channels. This allows the models to fully use each
spectral band for image segmentation, enhancing the use of multi-spectral data.

2.4. Model Training

The DL segmentation models underwent training on the three-class system. Initially,
each backbone received random initialization. U-Net++ and MA-Net utilized a combina-
tion of Dice loss [54] and Binary Cross-Entropy (BCE) loss, while PAN and DeepLabV3+
employed Cross-Entropy (CE). Weighted loss functions were applied, with normalized
weights derived from the inverse logarithm of class frequencies. The weights were adjusted
to a range of 0.1 to 1.0, preventing the logarithm of zero by adding one. Different optimizers
were assigned to each architecture: AdamW [55] for U-Net++ and DeepLabV3+, Adam [56]
for MA-Net, and SGD for PAN.

U-Net++ was set with a base learning rate of 2 × 10−4, whereas MA-Net, PAN, and
DeepLabV3+ were assigned a higher rate of 2 × 10−3. A warm-up phase spanning 5 epochs
used a learning rate set to ten times the base rate. Following this, a cosine scheduler
gradually decreased the learning rate to one hundredth of the base rate over 100 training
epochs. A consistent weight decay of 10−2 was applied to all models. The batch size varied
between 2 and 8, based on the computational resources.

During training, various geometric data augmentation techniques were employed for
enhancing dataset diversity and equipping the models for different visual contexts [57].
The training images underwent resizing to dimensions of 1024 × 1024 pixels, with an
additional step of resizing them to 11/7 times the original size before applying a random
crop to the desired dimensions. This resizing strategy, coupled with a random crop, aims to
maintain crucial image details while introducing variability in the training data. Following
the resizing, each image had a 50% probability of undergoing a horizontal flip and a
5% probability of a vertical flip. The above augmentation techniques were designed for
bolstering the resilience to typical geometric alterations and prevent overfitting for the
model. Conversely, the validation set was subjected solely to resizing.

2.5. Evaluation Metrics

This research evaluated DL segmentation models using various common metrics.
These metrics were selected to highlight different aspects of the model’s accuracy and
effectiveness in detecting and segmenting the progression of B. cinerea infection. Pixel
accuracy was used as a basic measure to quantify the proportion of correctly classified pixels.
The Intersection over Union (IoU) measured the overlap between predicted and actual
labels, providing an understanding of the model’s effectiveness in differentiating classes.
The model’s sensitivity was measured by recall and its specificity by precision. Additionally,
the Dice Similarity Coefficient (DSC) was employed to give a comprehensive view of the
model’s segmentation ability, which combines both precision and recall. Similarly, mean
Intersection over Union (mIoU) and mean Dice Similarity Coefficient (mDSC) are used
when aggregating all classes.

2.6. Cut-and-Paste Augmentation Technique

As evident in Table 2, the class distribution statistics for the three classes are not
distributed equally, which is expected since the dataset and its images are based on the
progression of the fungal pathogen in cucumber plants. More specifically, the healthy leaves
annotated in the dataset far outnumber the corresponding leaves of the classes with invisible
and visible B. cinerea symptoms. This makes the dataset imbalanced and complicates the
process of correct identification of all classes by the models. The initial training contained
only geometric data augmentations, as described in Section 2.4, a method that was not
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sufficient to give satisfactory results. Therefore, to further expand on the augmentation
process and improve the results, a Cut-and-Paste [58–60] implementation was utilized.
Essentially, Cut-and-Paste is a technique where objects are copied from one image and
pasted onto another, forming a new image, thereby virtually multiplying the training
dataset. In this study, separate leaves from classes of interest were extracted from original
images and pasted dynamically to others during the training process to augment the
original dataset. A two-step approach was followed to apply this augmentation technique.

The first step involves the creation of the object dataset. This is a preprocessing step
that needs to be completed before the model training can be conducted. To achieve this,
the original dataset images are used with their corresponding annotation masks to create a
new image and a new mask for each object (leaf) in the images. Each new image contains
the object, surrounded by fully transparent pixels for the rest of the image. Similarly, each
new mask contains the masking information for that object, while the rest of the mask
is set to be background. For this dataset, each leaf annotation was extracted from all the
wavelengths used in this study in order to paste them properly later. Figure 5 shows an
example of the extraction process of a leaf belonging to the class with visible B. cinerea
symptoms. Figure 5a displays the corresponding RGB image of the specific plant, while
Figure 5b–f show the extracted leaf in all available multi-spectral wavelengths.
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Figure 5. Leaf extraction process used for the Cut-and-Paste augmentation method: (a) original RGB
plant image, before being resized to 1024 × 1024, (b) extracted leaf at 460 nm, (c) extracted leaf at
540 nm, (d) extracted leaf at 640 nm, (e) extracted leaf at 775 nm, and (f) extracted leaf at 875 nm.

The second step occurs during the data loading in training, where the images fed into
the model undergo the Cut-and-Paste augmentation. This step determines the number and
class of objects (leaves) to paste into the new image. After experimentation and considering
the relatively large size of the leaves compared to the image, the distribution of pasted
leaves was established: 25% probability to paste one leaf, 40% to paste two leaves, 15% to
paste three leaves, and 20% to leave the original image unchanged. To address the issue of
an imbalanced dataset, the classes with invisible and visible symptoms of B. cinerea were
prioritized with higher weights during the process of pasting new leaves. Initial training
without the Cut-and-Paste augmentation confirmed this approach. The underlined line
of Table A1 shows the model’s performance before implementing the new augmentation,
where the healthy class (with numerous leaf annotations) achieved the highest IoU, while
the invisible and visible classes were significantly lower.
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Based on these IoU values, the probability of selecting which class to paste into a new
image was determined using the following formula:

di =
1

IoUi·∑Nc
i=0

1
IoUi

where di denotes the likelihood of a leaf being assigned to class i, IoUi refers to the IoU
result for class i from the initial experiment that lacked Cut-and-Paste augmentation, and Nc
represents the number of classes. For this study, the IoU values outlined in the underlined
line of Table A1 were utilized. The probability of adding a leaf from the healthy class
(IoUhealthy = 0.658) was 25.8%, from the invisible class (IoUinvisible = 0.429) was 39.5%, and
from the visible class (IoUvisible = 0.490) was 34.6%. Figure 6 demonstrates the operation of
the Cut-and-Paste augmentation technique. Figure 6a,c showcase in different wavelengths
the same plant that initially contained only healthy annotated leaves. Figure 6a contains a
newly pasted leaf from the visible class, while Figure 6c includes both an invisible class leaf
and a visible class leaf. Similarly, Figure 6b,d display the new masks created and provided
to the model as input.
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Figure 6. Demonstration of the Cut-and-Paste technique: (a) augmented image at 540 nm, before
being resized to 1024 × 1024, with an added leaf from the botrytis-visible class, (b) corresponding
mask of (a) with a class legend to differentiate each class, (c) augmented image at 875 nm, before
being resized to 1024 × 1024, with two added leaves, one from the botrytis-invisible class and one
from the botrytis-visible class, (d) corresponding mask of (a) with a class legend to differentiate
each class.

The Cut-and-Paste augmentation method enabled the newly trained model to reach
higher IoU values across all three classes and substantially addressed the imbalanced
dataset issue by dynamically creating new images for each training epoch. Specifically,
as outlined below in the results section, this technique improved IoU values by 14.29%
for the healthy class, 56.45% for the invisible class, and 23.27% for the visible B. cinerea
symptoms class.

3. Results and Discussion
3.1. Assessment of Deep Learning Segmentation Models

Evaluating the performance of DL segmentation models for categorizing B. cinerea
severity indicates varying degrees of efficacy among the models, with a specific focus on
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the mDSC and mIoU metrics, as detailed in Table 3. More specifically, Table 3 contains the
model performances for the three-class system, while Table 4 presents a comprehensive
breakdown of segmentation results for all classes for the best-performing model before and
after applying the Cut-and-Paste augmentation technique.

Table 3. Overall performance of DL segmentation models for three-class system (best-performing
model indicated in bold).

Architecture Encoder Parameters Accuracy mDSC mIoU Recall Epoch

PAN MobileViT-S 5.09 M 0.875 0.626 0.603 0.733 85
PAN MobileViTV2-1.25 7.16 M 0.828 0.557 0.516 0.620 27

MA-Net MobileViT-S 18.67 M 0.848 0.528 0.490 0.585 8
MA-Net MobileViTV2-1.25 23.21 M 0.847 0.546 0.501 0.613 74

DeepLabV3+ MobileViTV2-1.25 8.13 M 0.899 0.666 0.652 0.767 80
U-Net++ MobileViT-S 8.96 M 0.905 0.653 0.718 0.790 88

U-Net++ 1 MobileViTV2-1.25 17.84 M 0.906 0.771 0.750 0.848 8
U-Net++ 2 MobileViTV2-1.25 17.84 M 0.919 0.792 0.816 0.885 89

1 Underlined row indicates the best-performing model before applying the Cut-and-Paste augmentation technique.
2 Bold row indicates the best-performing model after applying the Cut-and-Paste augmentation technique.

Table 4. Class-specific performance of DL segmentation models for three-class system before and
after applying the Cut-and-Paste augmentation technique.

Architecture Encoder IoU
(Healthy)

IoU
(Invisible)

IoU
(Visible)

Recall
(Healthy)

Recall
(Invisible)

Recall
(Visible)

U-Net++ 3 MobileViTV2-125 0.658 0.429 0.490 0.770 0.503 0.782
U-Net++ 4 MobileViTV2-125 0.752 0.671 0.604 0.865 0.795 0.781

3 Underlined row indicates the best-performing model before applying the Cut-and-Paste augmentation technique.
4 Bold row indicates the best-performing model after applying the Cut-and-Paste augmentation technique.

The underlined row of Table 3 shows that the U-Net++ architecture, when paired with
the MobileViTV2-1.25, reports the highest mDSC score at the three-class system before
applying the Cut-and-Paste augmentation technique. With a parameter count of 17.84 M,
this combination achieves 90.6% accuracy, an mDSC of 0.771, an mIoU of 0.750, and a recall
rate reaching 0.848 by the 8th epoch. MobileViTV2-1.25 features, with a higher parameter
count, achieve an effective balance between complexity and performance, allowing accurate
segmentation by capturing critical information. U-Net++ stands out for its U-shaped design
and skip connections, which help it capture details of B. cinerea symptoms on cucumber
effectively. Other architectures, such as MA-Net, PAN, and DeepLabV3+, despite employ-
ing the MobileViTV2-1.25 encoder, exhibit comparatively lower mDSC values, indicating
potential challenges in extracting critical features for accurate segmentation. PAN’s intro-
duction of a Feature Pyramid Attention module and a Global Attention Upsample module
emphasizes a unique approach to feature extraction, potentially impacting effectiveness in
B. cinerea segmentation. DeepLabV3+ is known for using atrous convolutions and spatial
pyramid pooling to handle object scale and detail. However, these methods might face
challenges when dealing with the complexities of the B. cinerea segmentation task. As for
MA-Net, Table A1 in Appendix A reveals that this architecture struggles significantly to
detect the key invisible class of B. cinerea with either encoder, as evidenced by its low IoU
and recall scores. This may be due to MA-Net’s Multi-scale Attention Net design, which
focuses on rich contextual dependencies through self-attention mechanisms, potentially
offering a broader perspective in feature representation, but may not align well with the
specifics of the invisible class.

Comparing the results of MA-Net and U-Net++ with MobileViT-S versus MobileViTV2-
1.25 emphasizes the relationship between architecture and encoder. Using ViT encoders
with more parameters resulted in an mDSC score increase of 3.41% for MA-Net and 18.07%
for U-Net++. Interestingly, a further increase in parameters for the PAN architecture
using the MobileViTV2-1.25 encoder did not yield further improvements, resulting in
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an 11.02% decrease in mDSC score, demonstrating the complex interaction within this
particular architecture–encoder pairing. This underscores the critical need for choosing the
appropriate combination of architecture and encoder for optimal segmentation outcomes.

The architecture–encoder combination that achieved the highest mDSC score with
only geometric data augmentations was used to develop a refined model utilizing the
Cut-and-Paste method. As indicated by the bold line in Table 3, the improved model
utilizes U-Net++ architecture with the MobileViTV2-1.25 encoder, reaching almost 92%
accuracy, while also increases the mDSC score by 2.72% from 0.771 to 0.792 and mIoU by
8.8% from 0.750 to 0.816, at epoch 89. Table 4 details the class-specific performance of the
two DL segmentation models before and after applying the Cut-and-Paste augmentation
method. The enhancement is substantial across all three classes, as reflected in both the IoU
and recall metrics. The most notable improvement is seen in the invisible class of B. cinerea
symptoms, where IoU increases significantly from 42.9% to 67.1%. Similar positive trends
are observed in the recall metric for this class, as well as for both metrics in the healthy and
visible classes.

The use of the Cut-and-Paste augmentation method significantly improved the seg-
mentation model by effectively expanding the training dataset and addressing the im-
balanced dataset that originally existed. By copying separate leaves from classes with
higher weights from one image and pasting them onto another, the method creates new
images containing more leaves with the classes of interest, thereby virtually multiplying the
available training data. This enriched variety in the training dataset enhances the model’s
capability to learn various contextual environments and complex scenarios.

Appendix A details comprehensive segmentation results per class for three-class
systems, along with IoU and recall metrics. Table A1 presents detailed information for
the three-class system, while Figure A1 provides a clear representation of IoU progression
across epochs. Figure A1a shows the model’s performance with only geometric data
augmentations, while Figure A1b demonstrates the performance boost after incorporating
the Cut-and-Paste augmentation technique. These analyses offer a thorough breakdown of
the segmentation performance, providing a detailed breakdown of accuracy, recall, and
IoU metrics for each disease severity category, thus giving valuable perspectives on the
model’s performance across various classes.

3.2. Early-Stage Evaluation

To evaluate the effectiveness of early detection and track the progression of infection in
the initial week, the model’s performance was assessed using IoU on validation data from
dpi 1 to dpi 6. As shown in Figure 7, the model demonstrated a strong ability to recognize
early-stage invisible symptoms of B. cinerea, while also delivering highly encouraging
results in detecting visible B. cinerea symptoms very early for both inoculation methods.
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Figure 7. IoU for B. cinerea invisible and visible classes from dpi 1 to dpi 6 across the two inoculation
methods. The model’s IoU scores for the B. cinerea invisible class were 0.321 on dpi 1, 0.518 on dpi 2,
0.546 on day 3, 0.58 on dpi 5, and peaked at 0.671 on dpi 6. For B. cinerea visible symptoms, the IoU
values were 0.137 on dpi 3, 0.417 on dpi 5, and 0.44 on dpi 6.
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On dpi 1, the model detected the pathogen with an initial IoU of 0.321, indicating a
developing sensitivity to its presence. This detection progressively intensified over the
following days, with the model reaching an IoU of 0.518 on the 2nd day post-inoculation
and 0.546 on the 3rd day post-inoculation. Identification of early signs of infection improved
steadily, reaching an IoU of 0.58 on dpi 5. By dpi 6, the model had reached its peak
performance, recording a further increase of 15.69% to reach an IoU of 0.671, showcasing
the solid proficiency of the model in identifying the pathogen’s initial stages. For detecting
visible B. cinerea symptoms, the model’s performance improved significantly over the
observation period. On dpi 3, an IoU of 0.137 was recorded for visible symptoms. This
initial IoU value was lower due to misclassification during the early stages, when B. cinerea
was primarily invisible and visible symptoms were minimal. By dpi 5, the IoU showed a
significant increase of 204.38%, rising to 0.417, and then further up to 0.44 on dpi 6. These
results demonstrate the model’s growing capability in detecting visible symptoms as the
disease progresses.

The ability of the model to accurately recognize both invisible and visible classes
from dpi 2 onward, with its accuracy reaching its highest point on dpi 6, reinforces its
effectiveness in early-stage detection. This skill is vital since it detects symptoms before they
become visible, providing an essential opportunity for prompt intervention and effective
management practices in farming.

3.3. Qualitative Results of Disease Severity Levels

Precisely identifying and segmenting disease severity in B. cinerea infections on cucum-
ber is essential for understating plant pathology and implementing effective agricultural
practices. The challenge lies in recognizing the progression of the disease, spanning from
hidden to obvious symptoms. The current section reviews the performance of different
models tested and highlights the top-performing model’s ability to identify and segment
various levels of B. cinerea.

Figure 8 provides a visual comparison of each model’s performance, corresponding to
the metrics presented in Table 3, using the true mask annotation in Figure 8a as a reference.
Figure 8b,c display the predicted segmentation masks from the PAN architecture com-
bined with the MobileViT-S and MobileViTV2-1.25 encoders, respectively, both showing
suboptimal segmentation. Similarly, Figure 8d,e illustrate the results from the MA-Net
architecture with the MobileViT-S and MobileViTV2-1.25 encoders, respectively, also ex-
hibiting poor segmentation. Figure 8f presents the output of the DeepLabV3+ architecture
with the MobileViTV2-1.25 encoder, showing improved performance over the previous
models, while Figure 8g shows the U-Net++ and MobileViT-S combination, demonstrating
similar segmentation performance. Figure 8h represents the U-Net++ architecture with the
MobileViTV2-1.25 encoder prior to applying the Cut-and-Paste augmentation technique.
Finally, the best segmentation results are shown in Figure 8i, where the U-Net++ architec-
ture with the MobileViTV2-1.25 encoder, enhanced by the Cut-and-Paste augmentation
technique, delivers the most accurate segmentation of all the previous models, consistent
with the findings in Table 3.

The comprehensive qualitative evaluation, as depicted in Figure 9, reveals both the
capabilities and weaknesses of the best-performing model. The combination of U-Net++
and MobileViTV2-1.25 demonstrates notable improvements following the application of the
Cut-and-Paste augmentation technique. Figure 9a–c present images with overlaid ground
truth masks, while Figure 9d–f exhibit the model-generated output masks. Figure 9d aligns
accurately with the ground truth mask in Figure 9a, showcasing the adeptness that the
model has in precisely outlining healthy regions and invisible B. cinerea. Figure 9e success-
fully segments most healthy and visible areas of the leaf with B. cinerea, with minor errors
misclassifying some spots of visible symptoms as healthy. Similarly, Figure 9f highlights a
discrepancy, indicating misinterpretation of healthy areas as containing visible symptoms.
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Figure 8. Visual comparison of each model’s performance: (a) true segmentation mask, (b) seg-
mentation output from the PAN—MobileViT-S model; (c) segmentation output from the PAN—
MobileViTV2-1.25 model; (d) segmentation output from the MA-Net—MobileViT-S model; (e) seg-
mentation output from the MA-Net—MobileViT-S model; (f) segmentation output from the
DeepLabV3+—MobileViTV2-1.25 model; (g) segmentation output from the U-Net++—MobileViT-S
model; (h) segmentation output from the U-Net++—MobileViTV2-1.25 model before applying the
Cut-and-Paste augmentation technique; (i) segmentation output from the U-Net++—MobileViTV2-
1.25 model after applying the Cut-and-Paste augmentation method. The above images have been
resized to 1024 × 1024 and displayed with the standard colormap.
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Figure 9. Qualitative evaluation of segmentation performance: (a–c) showcase the original images,
overlaid with ground truth labels, (d–f) display the images overlaid with the output masks generated
by the top-performing segmentation model. Specifically, image (a) is the ground truth for the accurate
prediction in (d). Image (b) corresponds to the ground truth for the prediction in (e), in which most
healthy and visible parts of the leaf affected by B. cinerea are accurately segmented, with a few minor
mistakes classifying certain visible symptom spots as healthy. Image (c) represents the ground truth
for prediction (f), revealing an inconsistency where the model confuses a healthy leaf with visible
B. cinerea symptoms. All of the above images have been resized to 1024 × 1024.

In Figures A4 and A5 (Appendix B), the model encounters challenges in accurately
classifying certain symptoms of B. cinerea infection. The misclassification of leaves with
visible B. cinerea symptoms as invisible (Figure A4) and the misclassification of parts of
healthy leaves as both invisible and visible symptoms (Figure A5) highlight the complexities
associated with the diverse symptoms caused by B. cinerea. The difficulties in distinguishing
between healthy and symptomatic leaves can be attributed to the intricate nature of the
symptoms, especially when the symptomatic areas are relatively minor. Additionally, the
wide range of symptoms induced by B. cinerea across various plant organs and tissues,
coupled with the variability in symptom manifestation at the early stages of infection,
contributes to the inherent difficulty in achieving precise classifications for the model.

3.4. Qualitative Results of Biotic and Abiotic Plant Stress Factors

Abiotic stresses, such as sunburn, often display signs similar to B. cinerea [61]. The
visual resemblance presents a major challenge for distinguishing between plant stressors
with comparable appearances. This section explores the ability to differentiate between
biotic stress factors, specifically B. cinerea infections in inoculated plants, and abiotic stresses
such as sunburn and/or aging in healthy control plants. The assessment emphasizes the
precise differentiation of responses attributed to B. cinerea infection from those influenced
by environmental factors. In a particular instance from the validation dataset, symptoms
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unrelated to gray mold led to a misclassification, as depicted in Figure 10a–c. Specifically,
Figure 10b illustrates a slight misclassification of a region which is erroneously marked
as displaying visible symptoms of B. cinerea, a disparity evident when contrasted with its
ground truth mask in Figure 10a. However, beyond this specific case, the model accurately
segments the leaves. For instance, Figure 10e aligns closely with the ground truth mask in
Figure 10d, showcasing the model’s ability to recognize areas with symptoms arising from
abiotic disorders.
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Figure 10. Qualitative assessment of segmentation performance: (a,d) present the original images
overlaid with ground truth labels; (b,e) depict the images overlaid with the output masks; (c,f) show
the output segmentation mask by the top-performing model along with the standard colormap.
Precisely, image (a) is the ground truth mask of the prediction as seen in (b,c), in which a small region
is incorrectly classified as a visible symptom of B. cinerea with an mDSC of 0.941, while image (d) is
the ground truth mask for the correct output seen in (e,f) with an mDSC of 0.963. All of the above
images have been resized to 1024 × 1024.

4. Conclusions

A wide array of biotic and abiotic stressors that exist in the natural environment, like
pests and diseases, are the driving force behind plant symptom manifestation. Since similar
symptoms can be caused by different factors, relying solely on the symptoms’ characteristics
for disease identification is not ideal. On the other hand, rigorous and extensive testing
for precise metrics requires time, labor, and specialized skills and equipment that are often
not available. The integration of DL techniques in agricultural practices holds promise
for enhancing crop quality by assisting farmers in prompt identification and effective
management of diseases, particularly in extensive operations.
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This study focuses on B. cinerea disease and specifically on the early and late detection
of its gray mold symptom. The experiment was conducted on cucumber plants grown in
greenhouse-controlled conditions. The assessment of the U-Net++ model combined with
the MobileViTV2-1.25 encoder and Cut-and-Paste technique yielded an mDSC of 0.792,
an mIoU of 0.816, and a recall rate of 0.885, achieving an accuracy of 91.9%. Additionally,
it successfully identified the early stages of B. cinerea, achieving an IoU of 0.518 at dpi 2,
while it reached its peak at dpi 6 with an IoU of 0.615.

The Cut-and-Paste augmentation technique was crucial in improving the effectiveness
of the DL models by addressing the issue of dataset imbalance. This method involved
extracting leaves from images and dynamically pasting them onto new images during
training, effectively multiplying the training dataset. By prioritizing the underrepresented
classes with invisible and visible symptoms of B. cinerea, the Cut-and-Paste technique
ensured a more balanced dataset. This approach led to substantial improvements in the
model’s capability in correctly segmenting and classifying the various stages of infection,
with substantial increases in IoU by 14.29% for the healthy class, 56.45% for the invisible
class, and 23.27% for the visible B. cinerea symptoms class. The success of this augmentation
method underscores the critical importance of employing advanced data augmentation
techniques to maximize model performance and effectively address dataset imbalance in
developing robust and effective plant disease identification models.

By qualitatively interpreting the study, it is determined that the integration of ViT
capabilities with traditional convolutional architectures provides notable improvements in
plant disease segmentation and classification. This successful method for prompt identifi-
cation of diseases underscores the promise of advanced DL methods in precision farming
and proactive greenhouse health management. Combined with multi-spectral imaging,
this approach provides an effective solution for real-time disease monitoring, allowing
farmers to take faster, well-informed actions for improved plant health management. Such
DL models can be seamlessly integrated with other digital systems, like self-navigating
robots and mobile apps, providing precise measurements and visual insights for farmers.
These technological advancements represent a promising step toward optimizing resources
in smart agriculture, minimizing chemical inputs, and enhancing efficiency across the
farm-to-fork sector.

Future steps should include experiments using the existing six-class annotation system
for this dataset, as well as examining the DL model’s potential for early detection of other
plant diseases.
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Appendix A

This appendix presents a comprehensive breakdown of segmentation results for
various classes, encompassing the three-class annotation system. The detailed IoU and
recall metrics in Table A1 offer a thorough assessment of each model’s performance across
different classes. This class-specific evaluation is crucial for assessing model precision
in distinguishing between disease stages, emphasizing their capabilities, and identifying
potential areas for improvement across different model–encoder combinations. Figure A1
visualizes the IoU progression across epochs for the top-performing architecture–encoder
model on the validation dataset.

Table A1. Performance of all three classes of DL segmentation models (best-performing model
highlighted in bold).

Architecture Encoder IoU
(Healthy)

IoU
(Invisible)

IoU
(Visible)

Recall
(Healthy)

Recall
(Invisible)

Recall
(Visible)

PAN MobileViT-S 0.742 0.247 0.360 0.848 0.435 0.612
PAN MobileViTV2-125 0.600 0.135 0.197 0.710 0.253 0.391

MA-Net MobileViT-S 0.711 9.69 × 10−16 0.146 0.905 9.69 × 10−16 0.310
MA-Net MobileViTV2-125 0.692 9.69 × 10−16 0.213 0.827 9.69 × 10−16 0.504

DeepLabV3+ MobileViT-S 0.790 0.279 0.470 0.883 0.370 0.761
U-Net++ MobileViT-S 0.778 0.293 0.470 0.880 0.303 0.635

U-Net++ 1 MobileViTV2-125 0.658 0.429 0.490 0.770 0.503 0.782
U-Net++ 2 MobileViTV2-125 0.752 0.671 0.604 0.865 0.795 0.781

1 Underlined row indicates the best-performing model before applying the Cut-and-Paste augmentation technique.
2 Bold row indicates the best-performing model after applying the Cut-and-Paste augmentation technique.
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Figure A1. IoU per epoch for the best-performing architecture–encoder model for the validation
dataset: (a) only with geometric data augmentations, (b) after applying the Cut-and-Paste augmenta-
tion technique.

Appendix B

This appendix offers qualitative evaluations of segmentation outputs, demonstrating
the capabilities of the best model, U-Net++ with the MobileViTV2-125 encoder, for the three-
class system. Figure A2 illustrates the accurate detection of healthy areas, highlighting the
precise identification of asymptomatic regions. Similarly, Figure A3 successfully identifies
healthy leaves and perfectly segments the leaf exhibiting invisible gray mold symptoms. In
contrast, Figures A4 and A5 present examples of classification vagueness: Figure A4 depicts
a case in which a very small patch of healthy leaf is erroneously segmented as having
invisible B. cinerea symptoms, while larger areas of visible symptoms are misclassified as
invisible B. cinerea symptoms and healthy tissue. Figure A5 illustrates a misclassification
error, as healthy parts of leaves are identified as invisible and visible gray mold symptoms.
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Figure A2. Healthy leaves correctly segmented: (a) ground truth label, (b) output segmentation mask
of the model. All images are resized to 1024 × 1024 and displayed with standard colormap.
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Figure A3. Healthy and invisible B. cinerea leaves correctly segmented: (a) ground truth segmentation
label, (b) output segmentation mask of the model. All images are resized to 1024 × 1024 and displayed
with standard colormap.
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visible B. cinerea symptoms and healthy: (a) ground truth segmentation label, (b) output segmentation
mask of the model. All images are resized to 1024 × 1024 and displayed with standard colormap.
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