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ABSTRACT

Dynamic Time Warping (DTW) is a classical method for measuring similarity be-
tween time series, but its non-differentiability hinders integration into end-to-end
learning frameworks. To address this, soft-DTW replaces the minimum opera-
tor with a smooth soft-min, enabling differentiability and efficient computation.
Motivated by soft-DTW, we propose perturbed-DTW, a differentiable framework
of DTW obtained by adding random perturbations to warping costs and taking
the expected minimum. Under Gumbel noise, perturbed-DTW exactly recov-
ers soft-DTW, providing a natural probabilistic interpretation of soft-DTW. We
further generalize this framework by extending the Gumbel noise to the broader
family of generalized extreme value (GEV) distributions, leading to a new class
of soft-DTW variants. Building on this insight, we introduce nested-soft-DTW
(ns-DTW), which integrates GEV perturbations into the dynamic programming
formulation of perturbed-DTW. This extension induces alignments with tunable
skewness, offering greater flexibility in modeling diverse alignment structures.
We validate ns-DTW on barycenter computation, clustering, and classification,
demonstrating its effectiveness over existing approaches.

1 INTRODUCTION

Dynamic Time Warping (DTW) is a classical measure of similarity between time series that com-
putes the minimum-cost alignment between two sequences (Berndt & Clifford, 1994; Sakoe &
Chiba, 2003). Unlike Euclidean distance, DTW accommodates temporal distortions and unequal
sequence lengths, making it broadly applicable across domains such as object recognition (Belongie
et al., 2002), time-series forecasting (Le Guen & Thome, 2019), and irregular sequence modeling
(Zhang et al., 2023). Despite its effectiveness, DTW is limited by the non-differentiable nature of
its minimum operator, rendering it incompatible with gradient-based optimization methods.

To address non-differentiability, Cuturi & Blondel (2017) introduced soft-DTW, which replaces the
hard minimum with a smooth soft-min operator. Soft-DTW admits efficient dynamic programming
and yields gradients that can be computed recursively. Thereby, it enables gradient-based optimiza-
tion in applications such as music score alignment (Mensch & Blondel, 2018), video segmentation
(Chang et al., 2019) and trajectory clustering (Brankovic et al., 2020).

Motivated by soft-DTW, we extend the differentiable DTW framework through the lens of per-
turbed optimizer (Berthet et al., 2020). We propose perturbed-DTW, a new scheme that introduces
randomness into the alignment costs, computes the minimum perturbed cost, and then averages
over the noise distribution. This formulation naturally yields a differentiable relaxation: the optimal
alignment matrix becomes a distribution over paths rather than a single deterministic solution. Inter-
estingly, when the perturbations are Gumbel distributed, perturbed-DTW recovers soft-DTW. This
provides a new probabilistic interpretation of soft-DTW as the expectation of DTW under Gumbel
perturbations.
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Building on perturbed-DTW, we introduce nested-soft-DTW (ns-DTW), a novel variant obtained
by employing the generalized extreme value (GEV) distribution as the perturbation. By modeling
correlations across groups of variables, ns-DTW captures richer alignment structures. Remarkably,
the resulting alignments of ns-DTW can exhibit tunable skewness beyond what soft-DTW allows.

Our contributions are threefold:

• We introduce perturbed-DTW, a general perturbation-based framework for differentiable
DTW. Within this framework, soft-DTW emerges naturally as the expectation of DTW
when alignment costs are perturbed by Gumbel noise, thereby providing a probabilistic
interpretation of its smoothing behavior.

• By adopting GEV perturbations, we derive ns-DTW, which offers greater modeling flexi-
bility through correlated perturbations and skewed alignment distributions.

• We demonstrate the effectiveness of ns-DTW on diverse time-series tasks, showing that it
captures meaningful alignment structures while remaining computationally tractable.

The remainder of the paper is organized as follows. Section 2 reviews DTW and soft-DTW. Section 3
presents perturbed-DTW and its connection to soft-DTW, and introduces ns-DTW and its properties.
Section 4 provides experimental results across benchmark datasets.

2 PRELIMINARIES

2.1 DYNAMIC TIME WARPING

Consider two p-dimensional time series x = [x1, . . . ,xm] ∈ Rp×m and y = [y1, . . . ,yn] ∈
Rp×n. Denote [m] = {1, . . . ,m} and [n] = {1, . . . , n}. Dynamic time warping (DTW) aims
to find the optimal alignment between two sequences by allowing a point in one sequence to be
matched with one or more points in the other. To formulate the optimal alignment problem, we first
define the alignment cost. A local cost matrix C ∈ Rm×n measures element-wise dissimilarities:
[C(x,y)]i,j = c(xi,yj), where c(·, ·) : Rp × Rp → R+ is a differentiable cost function. A
commonly used cost function adopts the squared Euclidean distance, that is,

[C(x,y)]i,j = c(xi,yj) =
1

2
∥xi − yj∥22, ∀i ∈ [m], j ∈ [n].

Then, an alignment matrix A ∈ {0, 1}m×n encodes an alignment between data points xi and yj :
Ai,j = 1 if xi is aligned with yj , and 0 otherwise. In addition, we call a alignment matrix is valid
if it satisfies: (i) the nonzero entries of A form a path starting from (1, 1) and ending at (m,n);
(ii) the moves in the path can only be one of the directions: {→, ↓,↘}. Denote the set of all valid
alignment matrices as Am,n. Given the local cost matrix C and the alignment matrix A ∈ Am,n,
DTW is defined as

DTW(C) := min
A∈Am,n

⟨A,C⟩, (1)

where ⟨A,C⟩ = Trace(C⊤A) is the sum of elementwise products (Frobenius inner product).
Optimal alignment matrix A∗ is defined as the one that achieves the minimum cost

A∗ = argmin
A∈Am,n

⟨A,C⟩. (2)

However, directly computing DTW via (1) is intractable due to the exponential size of Am,n. In-
stead, DTW can be computed efficiently via dynamic programming (DP). To formulate the DP,
define Di,j as the minimal cost of alignment from time series [x1, . . . ,xi] and [y1, . . . ,yj ]. Then,
Di,j satisfies the Bellman equation (Bellman, 1952),

Di,j = min
{

Di,j−1︸ ︷︷ ︸
Ai,j−1=1

, Di−1,j︸ ︷︷ ︸
Ai−1,j=1

, Di−1,j−1︸ ︷︷ ︸
Ai−1,j−1=1

}
+ Ci,j , ∀1 < i ≤ m, 1 < j ≤ n. (3)

with boundary conditions Di,1 =
∑i

k=1 Ck,1, ∀i ∈ [m], and D1,j =
∑j

k=1 C1,k, ∀j ∈ [n]. Then
DTW distance is then given by Dm,n, i.e., DTW(C) = Dm,n. Therefore, the optimal alignment
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path can be recovered by backtracking from Dm,n to D1,1 from (3). This approach guarantees
that the optimal solution is found by considering all possible alignment paths while avoiding the
exponential complexity of exhaustive enumeration.

Equation (3) enables efficient computation of both the DTW distance and its optimal alignment via
dynamic programming. Yet, the inherent non-differentiability of DTW, stemming from the mini-
mum operator, precludes its use in end-to-end learning pipelines. Introducing differentiability with-
out sacrificing computational efficiency is a central challenge in extending DTW to modern learning
frameworks (Cuturi & Blondel, 2017).

2.2 SOFT-DTW

Cuturi & Blondel (2017) proposed soft-DTW, a differentiable relaxation of DTW that replaces the
minimum operator in Equation (1) with a smooth approximation (Cuturi et al., 2007; Saigo et al.,
2006) . Technically, for a vector x = (x1, . . . , xn), the soft minimum operator is defined as

minγ x = −γ log
n∑

i=1

exp(−xi

γ
) ,

where γ > 0 is the temperature parameter to control the smoothness and bias. In particular, minγ x
approaches minx as γ → 0 while it approaches −γ log n as γ → ∞. Formally, soft-DTW is
defined as

soft-DTWγ(C) := minγ⟨A,C⟩ = −γ log
∑

A∈Am,n

exp

(
−⟨A,C⟩

γ

)
, (4)

where ⟨A,C⟩ :=
(
⟨A,C⟩

)
A∈Am,n

∈ R|Am,n| denotes the vector whose entries are the alignment
costs ⟨A,C⟩ concatenated over all alignments inAm,n. The soft-minimum operator here maps vec-
tor of all possible alignment costs into an “aggregated” cost. Noted that soft-DTW is a differentiable
discrepancy compared to DTW, and it converges to DTW when γ → 0. Conversely, as γ → ∞,
soft-DTW approaches the mean of all possible alignment costs.

The differentiability of soft-DTW with respect to both the time series x, y and the cost matrix C
enables its use in gradient-based learning algorithms. This property makes it particularly valuable
for applications in machine learning and optimization. Notably, the optimal alignment matrix in
soft-DTW is no longer deterministic; instead, it follows a Gibbs distribution over Am,n :

P (A;C) =
exp

(
− ⟨A,C⟩/γ

)∑
A′∈Am,n

exp
(
− ⟨A′,C⟩/γ

) . (5)

The expected alignment matrix is

E =
∑

A∈Am,n

P (A;C) ·A.

Here, Ei,j ∈ (0, 1) represents the marginal probability that xi is aligned with yj . Although soft-
DTW has a succinct form, direct evaluating (4) is computationally challenging, as it requires sum-
ming over all possible alignment matrices. However, Mensch & Blondel (2018) showed that soft-
DTW can be reformulated as entropy-regularized dynamic programming. Specifically, one can ob-
tain the soft accumulated cost matrix S by replacing the hard minimum in the DTW recursion (3)
with the soft minimum:

Si,j = minγ
{
Si−1,j−1, Si−1,j , Si,j−1

}
+ Ci,j .

This recursion yields soft-DTWγ(C) = Sm,n (Cuturi & Blondel, 2017). Additionally, soft-DTW
admits an alternative variational formulation, expressed as the solution to an entropy-regularized
linear program (Blondel et al., 2021). Let

p(C) :=
(
P (A;C)

)
A∈Am,n

∈ ∆|Am,n| and s(C) := ⟨A,C⟩ ∈ R|A(m,n)|.
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denote the vector of alignment matrix probabilities and its corresponding alignment costs, respec-
tively.1 Thus, soft-DTW can be expressed in the variational form:

soft-DTWγ = min
p∈∆|Am,n|

⟨p, s⟩+ γH(p), (6)

where H(p) = ⟨p, logp⟩ denotes the negative Shannon entropy. This variational perspective high-
lights soft-DTW as an entropy-regularized alignment cost (Blondel et al., 2020; Sun et al., 2023), as
illustrated in Figure 1

Figure 1: An illustration of soft-DTW. The right one is the expected alignment of soft-DTW.

3 PERTURBED DYNAMIC TIME WARPING

3.1 PERTURBED-DTW DEFINITION

In this section, we introduce perturbed-DTW, a new scheme that provides an alternative means of
rendering the original DTW differentiable. Let x = (x1, . . . , xn)

⊤ ∈ Rn and let ε = (ε1, . . . , εn)
⊤

denote a perturbation vector drawn from a distribution P. For temperature parameter γ > 0, define
the perturbed minimum as

Eε∼P
[
min{x− γε}

]
= Eε∼P

[
min{x1 − γε1, · · · , xn − γεn}

]
. (7)

Next, we define the perturbed-DTW by replacing the standard minimum operator in the DTW with
this perturbed version.

Definition 1. The perturbed-DTW is defined as

perturbed-DTWγ(C) := Eε∼P

[
min

{
⟨A,C⟩ − γε

}]
(8)

where ε is a perturbation vector of dimension |Am,n| distributed according to P, and γ > 0 is the
temperature parameter.

Intuitively, our method first perturbs the cost of each valid alignment with a random noise term γε,
and then takes the minimum over all possible alignment matrices. The final result is the expecta-
tion of this minimum value with respect to the probability distribution of the noise. The expected
alignment under perturbed-DTW can be treated as an aggregated version of DTW alignments under
different realizations of ε, as shown in Figure 2 . This formulation is closely related to random util-
ity theory (Train, 2009) , where choices are made based on utilities perturbed by random shocks.
Unlike soft-DTW, which relies on a heuristic soft-minimum operator, perturbed-DTW achieves dif-
ferentiability through randomization. This approach establishes a deep connection between time
series alignment and random utility models, where an alignment matrix A represents a choice with
a utility of −⟨A,C⟩, and γε acts as a random utility shock.

Example: Gumbel Perturbation. We consider the i.i.d. Gumbel distribution for the perturbation
noise and this choice recovers the soft-DTW. Our result is based on the following lemma.

1For notational simplicity, we omit the explicit dependence on C and write p and s.
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Figure 2: An illustration of perturbed-DTW. The left one is the alignment under the DTW, the middle
one is the alignments under different random noise realizations, and the right one can be treated as
the aggregation of middle ones and it is also the alignment under soft-DTW.

Lemma 1. If ε are i.i.d. Gumbel(−c, 1) distributed, where c ≈ 0.5772 is the Euler-Mascheroni
constant, then

E
[
min{x1 − γε1, . . . , xn − γεn}

]
= −γ log

n∑
i=1

exp(−xi

γ
), (9)

This lemma leverages the property of Gumbel distribution, since the minimum of Gumbel variables
corresponds to the negative maximum of their negations. Based on this lemma, we can obtain the
following result which induces soft-DTW.
Proposition 1. The perturbed-DTW under i.i.d. Gumbel(−c, 1) perturbation is

perturbed-DTWγ(C) := E
[
min

{
⟨A,C⟩ − γε

}]
= −γ log

∑
A∈Am,n

exp

(
−⟨A,C⟩

γ

)
.

In addition, the optimal alignment matrix in perturbed-DTW is

P (A;C) = E
[
argmin

A

{
⟨A,C⟩ − γε

}]
=

exp
(
− ⟨A,C⟩/γ

)∑
A′∈Am,n

exp
(
− ⟨A′,C⟩/γ

) .
Example : Generalized Extreme Value Perturbation. Beyond the Gumbel case, other perturba-
tion families yield new differentiable relaxations. In particular, we extend the perturbation frame-
work by modeling the random noise with the generalized extreme value (GEV) distribution. Before
proceeding, we briefly recall the definition of the GEV distribution.

To formalize this setting, we partition Am,n into J groups, with the j-th group containing Kj ele-
ments, such that

∑J
j=1 Kj = |Am,n|. We index groups by j and denote by k the alignment matrix

associated with the k-th element of group j. Then, the cumulative distribution function (CDF) of
GEV joint distribution is

F (ε11, . . . , εJKJ
) = exp

− J∑
j=1

 Kj∑
k=1

exp

(
−εjk

τj

)τj . (10)

where 0 < τℓ ≤ 1 is the similarity parameter. Intuitively, the GEV distribution can be regarded
as a correlated multivariate generalization of the Gumbel distribution. By adopting the GEV per-
turbation, we obtain the following result and denote the new variant as nested-soft-DTW, dubbed
ns-DTWγ(C).
Theorem 1. If the GEV errors are centered to have mean zero (i.e. ε̃jk = εjk − c), the perturbed-
DTW under ε̃ has the following expression:

ns-DTWγ(C) := E
[
min

{
⟨A,C⟩ − γε̃

}]
= −γ log

(
J∑

ℓ=1

(∑
A∈ℓ

exp

(
−⟨A,C⟩

γτℓ

))τℓ)
(11)

Moreover, if A is the kth one in group j, the corresponding probability is

P (A;C) =

(∑
A′∈j exp

(
− ⟨A′,C⟩

γτj

))τj−1

∑J
ℓ=1

(∑
A′∈ℓ exp

(
− ⟨A′,C⟩

γτℓ

))τℓ · exp(−⟨A,C⟩
γτj

)
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The idea of GEV can also be found in the nest logit model from random utility theory (Train, 2009).
Note that perturbed-DTW under GEV perturbation presents groupwise correlation between different
A when 0 < τℓ < 1 and it reduces to soft-DTW when τℓ = 1,∀ℓ. Additionally, we can also write it
into a variational form.
Proposition 2. The perturbed-DTW under GEV perturbation in Equation (11) can be written into
variational form:

ns-DTWγ(C) = min
p∈∆|A(m,n)|

⟨p, s⟩+ γH(p), (12)

where

H(p) =

J∑
ℓ=1

Kℓ∑
m=1

τℓpℓm log pℓm −
J∑

ℓ=1

(τℓ − 1)

(
Kℓ∑

m=1

pℓm

)
log

(
Kℓ∑

m=1

pℓm

)
. (13)

We call the regularization term (13) as nested Shannon entropy (Fosgerau et al., 2020) and it reduce
to Shannon entropy when τℓ = 1,∀ℓ. The following proposition characterizes some properties of
perturbed-DTW.
Proposition 3 (Properties of perturbed-DTW). The following properties hold for perturbed-DTW:

1. (Scaling) perturbed-DTWγ(C) = γ perturbed-DTW1(C/γ) .

2. (Optimal Alignment matrix distribution) The distribution of the alignment matrix is given
by P (A;C) = E

[
argminA

{
⟨A,C⟩ − γε

}]
.

3. (Gradient) The gradient of perturbed-DTW with respect to C is expected alignment matrix
E =

∑
A∈Am,n

A · P (A;C).

4. (Asymptotic) perturbed-DTWγ(C)→ DTW(C) and E → A∗ as γ → 0 .

3.2 PERTURBED-DTW COMPUTATION

Analogously, perturbed-DTW faces the computational challenge, as evaluating (8) still requires enu-
merating over the exponentially large space Am,n. To address this, we adapt the dynamic program-
ming formulation of DTW by replacing the minimum operator in (3) with the perturbed minimum
operator. Specifically, we define the perturbed accumulated cost matrix V recursively as

Vi,j = E
[
min

{
Vi−1,j−1 − γεi−1,j−1, Vi−1,j − γεi−1,j , Vi,j−1 − γεi,j−1

}]
+ Ci,j .

This recursive form will end at Vm,n. In this way, we just need to compute the expectation over three
variables in one recursion and set perturbed-DTWγ(C) = Vm,n, which makes the computation
tractable. We now examine two specific perturbation distributions: the Gumbel and the GEV.

Example: Gumbel Perturbation. The dynamic programming formula of perturbed-DTW for
Gumbel noise is

Vi,j = E [min{Vi,j−1 − γεi,j−1, Vi−1,j − γεi−1,j , Vi−1,j−1 − γεi−1,j−1}] + Ci,j

= −γ log
(
exp

(
−Vi,j−1

γ

)
+ exp

(
−Vi−1,j

γ

)
+ exp

(
−Vi−1,j−1

γ

))
+ Ci,j . (14)

which is consistent to soft-DTW. This connection casts perturbed-DTW to differentiable dynamic
programming (Mensch & Blondel, 2018) and reveals that soft-DTW is a special case of Gumbel
perturbations.

Proposition 4. Define the (random) perturbed cost matrix C̃γ , where [C̃γ ]i,j = Ci,j − γεi,j and
εi,j is Gumbel(−c, 1) distributed. Then

soft-DTWγ(C) = E
[
DTW(C̃γ)

]
. (15)

This shows that soft-DTW equals the expectation of DTW discrepancy for perturbed local cost
matrix C̃ under Gumbel perturbation.
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Example: Generalized Extreme Value Perturbation. Different from the linear programming
formulation of perturbed-DTW in Section 3.1 , here we no longer enumerate alignments in Am,n.
Instead, we just need to consider three admissible transition directions {→, ↓,↘} at each stage
(i, j). When the perturbation vector ε = (εi−1,j−1, εi−1,j , εi,j−1) follows a GEV distribution,
three distinct schemes of grouping need to be considered: 2

g1 =
{
{→, ↓}, {↘}

}
, g2 =

{
{→,↘}, {↓}

}
, g3 =

{
{↓,↘}, {→}

}
.

To ease the illustration, we just present g1 and a comprehensive discussion of grouping is deferred
to Appendix A.4 . Formally, we divide the directions {→, ↓,↘} of warping paths into two groups:
J1 = {↓ ,→} and J2 = {↘}. The perturbation (εi−1,j−1, εi,j−1, εi−1,j) follows GEV distribution,
then the dynamic programming formula is

Vi,j = E [min{Vi,j−1 − γεi,j−1, Vi−1,j − γεi−1,j , Vi−1,j−1 − γεi−1,j−1}] + Ci,j

= −γ log
((

exp(−Vi,j−1

γτ ) + exp(−Vi−1,j

γτ )
)τ

+ exp
(
−Vi−1,j−1

γ

))
+ Ci,j . (16)

It is important to clarify that the value Vm,n obtained via the dynamic programming recursion (16) is
a tractable algorithmic realization, rather than an exact evaluation, of the theoretical ns-DTW defined
in (11). This distinction can be understood from two perspectives. First, the global definition in (11)
implies a single GEV perturbation of dimension |Am,n| over the entire alignment space, whereas
the DP formulation applies independent, low-dimensional GEV perturbations locally to the three
transition directions at each step. Second, regarding the recursive structure: unlike the standard
Log-Sum-Exp operator, which satisfies the stability property (i.e., the sum of Gumbel variables
follows a Gumbel distribution), the nested application of the generalized operators in (16) does not
strictly preserve the form of the global GEV distribution. Despite this theoretical distinction, we
refer to the efficient DP output Vm,n as ns-DTW throughout this work.

Effect of Grouping. The ns-DTW offers greater flexibility in modeling diverse alignment structures
by allowing different groups of directions. This enables the algorithm to produce alignments that
are skewed towards either the vertical (↓) or horizontal (→) directions, as illustrated in Figure 3.

(a) ns-DTW (g1) (b) ns-DTW (g2) (c) ns-DTW (g3)

Figure 3: Comparison of warping paths with under different groupings of ns-DTW. The yellow path
is depicted as the optimal warping path under DTW.

Effect of τ . The flexibility of ns-DTW is also governed by the parameter τ . Setting τ = 1 recovers
the standard soft-DTW. Conversely, as τ → 0, the model becomes increasingly selective: transitions
with higher accumulated costs receive vanishing weights, while those with lower costs are empha-
sized. This mechanism introduces a structural skew toward the optimal path. As illustrated in Figure
4, decreasing τ progressively enlarges the expected warping path toward the direction of lower cost
(e.g., the vertical direction ↓ ), allowing the model to adaptively prune high-cost deviations.

Proposition 3 reveals that the expected alignment pathes of perturbed-DTW, which is exactly the
expected alignment matrix E under the distribution P (A;C). However, this general alignment ma-
trix distribution is hard to compute for general perturbation ε. Specifically, let transition probability
tensor G ∈ (0, 1]m×n×3. For any given (i, j), Gi,j,: ∈ R3 specifies a stochastic alignment policy
over feasible actions {→, ↓,↘}, so that P (Ai,j−1 = 1) = Gi,j,1, P (Ai−1,j = 1) = Gi,j,2, and
P (Ai−1,j−1 = 1) = Gi,j,3. The transition probability tensor G can be computed as

Gi,j,: = E
[
argmin

{
Vi,j−1 − γεi,j−1, Vi−1,j − γεi−1,j , Vi−1,j−1 − γεi−1,j−1

}]
= −γ∇ log

((
exp(−Vi,j−1

γτ ) + exp(−Vi−1,j

γτ )
)τ

+ exp
(
−Vi−1,j−1

γ

))
. (17)

2It can be revealed that grouping all three directions together—or placing each direction in its own group—
yields the classical soft-DTW recursion.
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(a) ns-DTW (τ = 0.50) (b) ns-DTW (τ = 0.3) (c) ns-DTW (τ = 0.1)

Figure 4: Comparison of warping paths with different temperature parameters τ of ns-DTW.

where the gradient is taken with respect to {Vi,j−1, Vi−1,j , Vi−1,j−1}. Then the expected alignment
matrix is computed as

Ei,j = Gi,j+1,1Ei,j+1 + Gi+1,j,2Ei+1,j + Gi+1,j+1,3Ei+1,j+1.

This recursive formula can be treated as the differentiable dynamic programming with nested Shan-
non entropy. The ns-DTW allows the model to control the intensity (skewness) toward directions
associated with lower accumulated costs, by using τ and grouping schemes to introduce skewness.
By promoting a broader mixture over feasible paths, ns-DTW can approximate the true alignment
cost more effectively than soft-DTW. Algorithm 1 presents the pseudocode-for computing ns-DTW
and its transition probability tensor. A more detailed discussion is provided in the appendix.

Algorithm 1 ns-DTW and transition probability tensor computation

Require: Cost matrix C ∈ Rm×n, γ ≥ 0, 0 < τ ≤ 1
1: Initialize: Vi,0 ←∞ for all i; V0,j ←∞ for all j; V0,0 ← 0
2: for i ∈ [1, . . . ,m] and j ∈ [1, . . . , n] do
3: Compute Vi,j via (16)
4: Compute Gi,j,: via (17)
5: end for
6: Return:
7: ns-DTWγ(C) = Vm,n ∈ R; G ∈ (0, 1]m×n×3

4 APPLICATIONS

In this section, we conduct experiments using the UCR Time Series Classification Archive (Chen
et al., 2015) . We consider a subset of the archive containing 47 datasets for average, classification3

and clustering tasks. We report a summary of our results in the manuscript, with full details provided
in the appendix.

4.1 AVERAGING

We investigate the problem of computing Fréchet mean of time series with respect to ns-DTW. Given
a collection of time series: y1, . . . ,yM , our goal is to compute a barycenter x that minimizes the
total ns-DTW discrepancy:

min
x∈Rp×m

M∑
i=1

ns-DTW(C(x,yi))

We evaluate the quality of the barycenters in terms of DTW discrepancy and compare ns-DTW with
several established baselines, including subgradient method (Schultz & Jain, 2018), DBA (Petitjean
et al., 2011) and soft-DTW (Cuturi & Blondel, 2017) methods.

We evaluate the methods based on three direction grouping schemes: {g1, g2, g3}, parameters
τ ∈ {0.80, 0.85, 0.90, 0.95} and γ ∈ {0.1, 0.01, 0.001, 0.0001}. Table 1 summarizes the barycenter

3As some datasets contain only one class, we use 43 datasets for the classification task.
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averaging results across varying γ. By selecting the optimal grouping scheme gi and parameter τ ,
ns-DTW demonstrates robust performance improvements. Specifically, it achieves a lower objec-
tive value than the Subgradient method on 100% of datasets and DBA on 97.87%. Furthermore,
when compared against the strongest baseline, soft-DTW (both methods tuned for optimal γ), ns-
DTW yields superior results on 74.47% of the datasets. Qualitative results on the Beef dataset are
visualized in Figure 5. Comprehensive dataset-wise results are provided in Appendix B.1.

Table 1: Percentage of the datasets on which the proposed ns-DTW barycenter is achieving lower
DTW loss than competing methods.

subgradient DBA soft-DTW

γ = 0.1 68.09% 46.81% 36.17%
γ = 0.01 80.85% 72.34% 59.57%
γ = 0.001 95.74% 87.23% 80.85%
γ = 0.0001 100.00% 91.49% 91.49%

Figure 5: Comparison of barycenters obtained by ns-DTW, soft-DTW and DBA methods on the
UCR time series Beef dataset, using Euclidean averaging for initialization.

4.2 CLASSIFICATION

Nearest Centroid Classifier. We evaluated time series classification performance using the Nearest
Centroid Classifier (NCC), where class centroids were computed as barycenters using the respective
averaging algorithms. We employed a 50%/25%/25% train-validation-test split, with the smoothing
parameter γ ∈ {0.1, 0.01, 0.001, 0.0001} selected via cross-validation.

Overall, ns-DTW demonstrated superior performance, achieving equal or higher accuracy compared
to Subgradient methods on 93.02% of datasets, DBA on 88.37%, and soft-DTW on 86.05%. Figure
6 presents the pairwise performance comparison between ns-DTW and baselines for NCC classifi-
cation.

(a) Subgradient v.s. ns-DTW (b) DBA v.s. ns-DTW (c) soft-DTW v.s. ns-DTW

Figure 6: Points above the diagonal indicate datasets where the ns-DTW outperforms (a) subgradi-
ent; (b)DBA; (c) soft-DTW in nearest centroid classifier.

1NN Classifier. We also evaluated the 1-Nearest Neighbor (1NN) classifier, where test samples are
assigned to the class of the nearest training example based on the minimized DTW discrepancy. The
data splits and cross-validation for γ remained consistent with the NCC experiments.

Overall, ns-DTW achieved equal or higher accuracy compared to DBA on 88.37% of datasets and
soft-DTW on 86.05%.
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4.3 CLUSTERING

We study the k-means clustering task: the distances between each time series are ns-DTW discrep-
ancy and the centroids of each class are their barycenters. Formally, the objective is to find clusters
C1, . . . , CK that minimize total within-cluster ns-DTW discrepancy:

min
C1,...,CK

K∑
k=1

∑
i,j∈Ck

ns-DTW(C(yi,yj)).

Overall, ns-DTW achieved equal or higher accuracy compared to DBA on 88.37% of datasets and
soft-DTW on 86.05%. Our ns-DTW outperforms DBA on 100.00% and soft-DTW on 76.60%.
Figure 7 presents the clustering results on the CBF dataset and the complete results are shown in
Appendix B.4.

Figure 7: Comparison of clustering results obtained by ns-DTW (first row), soft-DTW (second row)
and DBA (third row) methods on the UCR time series CBF dataset, initialized using Euclidean
averaging.

5 CONCLUSION

We introduced perturbed-DTW, a probabilistic framework that makes DTW differentiable by adding
random perturbations to the warping costs. This perspective recovers soft-DTW under Gumbel
perturbation, providing a natural probabilistic interpretation. Extending to the generalized extreme
value family leads to nested soft-DTW, which enables tunable skewness in alignments and greater
modeling flexibility.

Experiments on barycenter computation and clustering demonstrate competitive performance over
existing methods. Looking forward, extending perturbed-DTW to divergence-based formulations
and to broader classes of perturbed dynamic programming operators offers promising directions for
future work.
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A PROOFS AND COMPUTATIONS

A.1 PROOF OF THEOREM 1

We first show the following result.

Lemma 2. Let
M := max

j∈[J], k∈[Kj ]
{µjk + εjk},

with ε following the GEV joint distribution

F (ε11, . . . , εJKJ
) = exp

− J∑
j=1

[ Kj∑
k=1

exp

(
−εjk

τj

)]τj .

Then

E[M ] =

 J∑
j=1

 Kj∑
k=1

exp

(
µjk

τj

)τj .

Proof. For any t ∈ R,

Pr(M ≤ t) = Pr(εjk ≤ t− µjk ∀j, k)
= F (t− µ11, . . . , t− µJKJ

)

= exp

− J∑
j=1

[ Kj∑
k=1

exp

(
− t− µjk

τj

)]τj
= exp

− J∑
j=1

[
e−t/τj

Kj∑
k=1

eµjk/τj
]τj

= exp

−e−t
J∑

j=1

( Kj∑
k=1

eµjk/τj
)τj .

Define

Ω(µ) = log

 J∑
j=1

( Kj∑
k=1

eµjk/τj
)τj .

Then
Pr(M ≤ t) = exp

(
− exp

(
− (t− Ω(µ))

))
,

so M is Gumbel distributed with location Ω(µ) and scale 1. By property of Gumbel distribution, we
know that

E[M ] = Ω(µ) + c,

where c ≈ 0.5772 is the Euler-Mascheroni constant. If the GEV errors are centered to have mean
zero (i.e. ε̃jk = εjk − c), then

E
[
max
j,k
{µjk + ε̃jk}

]
= Ω(µ).

Next, we give the proof of Theorem 1.
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Proof. If the GEV errors are centered to have mean zero (i.e. ε̃jk = εjk − c),

perturbed-DTWγ(C) := E
[

min
A∈Am,n

{
⟨A,C⟩ − γε̃

}]
= −γE

[
max

A∈Am,n

{
− ⟨A,C⟩

γ
+ ε̃
}]

= −γ log

(
J∑

ℓ=1

(∑
A∈J

exp

(
−⟨A,C⟩

γτℓ

))τℓ)
,

where the last equality comes from Lemma 2. Denote sjk = ⟨A,C⟩ if A is the kth one in group j.
The probability distritution of alignment matrix is

Pjk =
∂

∂sjk

[
−γ log

(
J∑

ℓ=1

(∑
A∈J

exp

(
− sjk
γτℓ

))τℓ)]

=

(∑Kj

m=1 exp
(

sjm
γτj

))τj−1

∑J
ℓ=1

(∑Kℓ

m=1 exp
(

sℓm
γτℓ

))τℓ exp( sjk
γτj

)
,

as desired.

A.2 PROOF OF PROPOSITION 2

Proof. For simplicity, we just show the case γ = 1. The Lagrangian function is defined as

L(p, λ) = ⟨p, s(C)⟩+H(p) + λ(
∑
ℓ

∑
m

pℓm − 1). (18)

The optimality condition gives{
sℓm + τℓ(1 + log pℓm)− (τℓ − 1)(1 +

∑
m pℓm) + λ = 0, ∀ℓ,m∑

ℓ

∑
m pℓm = 1.

(19)

Equation 19 implies

pℓm = exp

(
−sℓm − 1− λ

τℓ
+

τℓ − 1

τℓ
log
∑
m

pℓm

)
. (20)

With a little abuse of notations, we denote pℓ =
∑

m pℓm. Then

pℓ =
∑
m

pℓm =
∑
m

exp

(
−sℓm − 1− λ

τℓ
+

τℓ − 1

τℓ
log
∑
m

pℓm

)
(21)

=
∑
m

exp

(
−sℓm − 1− λ

τℓ
+

τℓ − 1

τℓ
log pℓ

)
(22)

=⇒ 1

τℓ
log pℓ = log

∑
m

exp(
−sℓm − 1− λ

τℓ
). (23)

By leveraging the equality condition, we have

1 =
∑
ℓ

pℓ =
∑
ℓ

(∑
m

exp(
−sℓm − 1− λ

τℓ
)

)τℓ

=
∑
ℓ

(∑
m

exp(
−sℓm
τℓ

)

)τℓ

/ exp(1 + λ) (24)

=⇒ λ = log

(∑
ℓ

(∑
m

exp(
−sℓm
τℓ

)

)τℓ)
− 1. (25)

14



Published as a conference paper at ICLR 2026

By substituting (23) and (25) into (20), we have

pℓm = exp

(
−sℓm
τℓ
− 1

τℓ
− λ

τℓ
+ (τℓ − 1) log

∑
m

exp

(
−sℓm
τℓ

)
− 1 +

1

τℓ
− λ+

λ

τℓ

)

= exp

(
−sℓm
τℓ

+ (τℓ − 1) log
∑
m

exp

(
−sℓm
τℓ

)
− log

(∑
ℓ

(∑
m

exp(
−sℓm
τℓ

)

)τℓ))
.

(26)

The proof completes by plugging (26) into (6).

A.3 PROOF OF PROPOSITION 3

The fourth property is straightforward; here, we present only the first three.

Proof. 1. By definition of perturbed-DTW, we have

perturbed-DTWγ(C) = Eε∼P

[
min

{
⟨A,C⟩ − γε

}]
= γEε∼P

[
min

{ 1

γ
⟨A,C⟩ − ε

}]
= γ perturbed-DTW1(C/γ).

2. The optimal alignment matrix A follows

P (A;C) = P
(
⟨A,C⟩ − γε ≤ ⟨A′,C⟩ − γε′, ∀A′, ε′

)
= E

[
argmin

A

{(
⟨A,C⟩

)
− γε

}]
.

3. By the Williams–Daly–Zachary theorem (McFadden, 1981),

∇C perturbed-DTWγ(C) =
〈
E
[
arg min

⟨A,C⟩

{
⟨A,C⟩ − γε

}]
,∇C⟨A,C⟩

〉
=

∑
A∈Am,n

E
[
arg min

A∈Am,n

{
⟨A,C⟩ − γε

}]
·A

=
∑

A∈Am,n

P (A;C) ·A = E.

A.4 GENERAL FORMULATION OF NS-DTW

As discussed earlier, ns-DTW can be viewed as a generalized perturbed variant of soft-DTW ob-
tained by replacing the Gumbel perturbation with a GEV perturbation. Note that the GEV distri-
bution can be regarded as multivariate generalization of the Gumbel distribution with groupwise
correlation. This substitution introduces not only a hyper-parameter τ but also multiple schemes of
direction groupings. The dynamic programming formula for general perturbed-DTW is

Vi,j = E
[
min

{
Vi−1,j−1 − γεi−1,j−1, Vi−1,j − γεi−1,j , Vi,j−1 − γεi,j−1

}]
+ Ci,j .

When the perturbation vector ε = (εi−1,j−1, εi−1,j , εi,j−1) follows a GEV distribution, three dis-
tinct grouping schemes need to be considered: 4

g1 =
{
{→, ↓}, {↘}

}
, g2 =

{
{→,↘}, {↓}

}
, g3 =

{
{↓,↘}, {→}

}
.

4It can be revealed that grouping all three directions together—or placing each direction in its own group—
yields the classical soft-DTW recursion.
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Therefore, the general formulas for dynamic-programming recursions for different grouping
schemes are

g1 : Vi,j = −γ log
[(

e−Vi,j−1/(γτ) + e−Vi−1,j/(γτ)
)τ

+ e−Vi−1,j−1/γ
]
+ Ci,j , (27)

g2 : Vi,j = −γ log
[(

e−Vi,j−1/(γτ) + e−Vi−1,j−1/(γτ)
)τ

+ e−Vi−1,j/γ
]
+ Ci,j , (28)

g3 : Vi,j = −γ log
[(

e−Vi−1,j/(γτ) + e−Vi−1,j−1/(γτ)
)τ

+ e−Vi,j−1/γ
]
+ Ci,j . (29)

A.5 NS-DTW COMPUTATION

To streamline the presentation, we focus on the ns-DTW computation under the first scheme of
grouping g1. The transition probabilities and gradients for the remaining groupings can be derived
analogously. The dynamic programming formula of perturbed-DTW under GEV perturbation in g1
is

Vi,j = E [min{Vi,j−1 + Ci,j − γεi,j−1, Vi−1,j + Ci,j − γεi−1,j , Vi−1,j−1 + Ci,j − γεi−1,j−1}]

= −γ log
((

exp(−Vi,j−1

γτ ) + exp(−Vi−1,j

γτ )
)τ

+ exp
(
−Vi−1,j−1

γ

))
+ Ci,j . (30)

Therefore, the transition probability is

P (Ai,j−1 = 1) = Gi,j,1 =

(
exp(−Vi,j−1

γτ ) + exp(−Vi−1,j

γτ )
)τ−1

(
exp(−Vi,j−1

γτ ) + exp(−Vi−1,j

γτ )
)τ

+ exp
(
−Vi−1,j−1

γ

) · exp(−Vi,j−1

γτ

)
,

P (Ai−1,j = 1) = Gi,j,2 =

(
exp(−Vi,j−1

γτ ) + exp(−Vi−1,j

γτ )
)τ−1

(
exp(−Vi,j−1

γτ ) + exp(−Vi−1,j

γτ )
)τ

+ exp
(
−Vi−1,j−1

γ

) · exp(−Vi−1,j

γτ

)
,

P (Ai−1,j−1 = 1) = Gi,j,3 =
exp

(
−Vi−1,j−1

γ

)
(
exp(−Vi,j−1

γτ ) + exp(−Vi−1,j

γτ )
)τ

+ exp
(
−Vi−1,j−1

γ

) .
Then the expected alignment matrix is computed by

Ei,j = Gi,j+1,1Ei,j+1 + Gi+1,j,2Ei+1,j + Gi+1,j+1,3Ei+1,j+1.

Algorithm 2 presents the pseudocode for computing gradient of ns-DTW.

Algorithm 2 ns-DTW gradient computation

Require: G ∈ (0, 1]m×n×3 (Algorithm 1)
1: Initialize: Em+1,: ← 0, E:,n+1 ← 0, Em+1,n+1 ← 1
2: Initialize: Gm+1,:,: ← (0, 0, 0), G:,n+1,: ← (0, 0, 0), Gm+1,n+1,: ← (0, 1, 0)
3: for i ∈ [m, . . . , 1], j ∈ [n, . . . , 1], do
4: Ei,j ← Gi,j+1,1 · Ei,j+1 + Gi+1,j+1,2 · Ei+1,j+1 + Gi+1,j,3 · Ei+1,j

5: end for
6: Return: ∇Cns-DTWγ(C) = E ∈ (0, 1]m×n

Consider the warping cost C ∈ Rm×n, to compute the value of ns-DTW, Algorithm 1 requires
O(mn) operations and O(mn) storage cost as well. This is as same as the soft-DTW. However, if we
consider different groupings, in other words, dividing directions into two groups , the computational
cost would be three times as soft-DTW. (since soft-DTW can be treated as one special grouping of
ns-DTW).
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A.6 IMPLEMENTATION DETAILS AND EXPERIMENTAL SETUP

Software Environment. All experiments were implemented in Python 3.9. The core logic relies
on tslearn (v0.6.4) for time series operations, numpy (v2.0.2) and pandas (v2.3.3) for data
manipulation, and scikit-learn (v1.6.1) for evaluation metrics.

Hyperparameter Configuration. To ensure reproducibility and fair comparison, we standardized
the search space and initialization protocols across all datasets. We utilized Euclidean averaging
for initialization and set a maximum budget of 30 iterations for the barycenter computation, observ-
ing convergence in most cases within this limit. The specific hyperparameter ranges and grouping
schemes for ns-DTW are detailed in Table 2.

Table 2: Summary of experimental settings and hyperparameter search spaces.

Parameter Value / Definition

Software Python 3.9, tslearn 0.6.4, numpy 2.0.2, sklearn 1.6.1

Parameter (τ ) {0.80, 0.85, 0.90, 0.95}

Smoothing (γ) {0.1, 0.01, 0.001, 0.0001}

Grouping Schemes
g1 = {{→, ↓}, {↘}}
g2 = {{→,↘}, {↓}}
g3 = {{↓,↘}, {→}}

Initialization Euclidean Averaging

Max Iterations 30

We clarify the hyperparameter selection procedure for two types of tasks: averaging and clustering(
unsupervised), and classification (supervisd). Detailed results are presented in Appendix B.

Averaging and Clustering Tasks: For these tasks, we use a grid search to evaluate combinations of
grouping schemes (gi ∈ {g1, g2, g3}), parameter τ ∈ {0.80, 0.85, 0.90, 0.95} and the parameter γ ∈
{0.1, 0.01, 0.001, 0.0001}. In other words, we evaluate all datasets for every possible combination
of (gi, τ, γ).
To examine the effect of gi, we fixed each grouping scheme and then found the best τ and γ
combination within the grid search that yielded the lowest DTW losses. These results are presented
in the last three columns of Tables 3 and 6.
To examine the effect of τ , we collected results for fixed τ and gi, then selected the γ that achieved
the lowest DTW losses. The detailed results for averaging are in Appendix C (Table 7 for g1, Table
8 for g2, and Table 9 for g3). For clustering, results are in Appendix E (Table 13 for g1, Table 14 for
g2, and Table 15 for g3).

Classification Task: For classification, we still perform a grid search over gi ∈ {g1, g2, g3} and
τ ∈ {0.80, 0.85, 0.90, 0.95}. However, for each {gi, τ} pair, γ is selected via cross-validation on
the training set. This approach allows us to specifically evaluate the effects of different grouping
schemes and τ while ensuring γ is optimally tuned for each combination.
To examine the effect of gi, we fixed each grouping scheme and then found the best τ (with γ de-
termined by cross-validation ) within the grid search that yielded the highest classification accuracy.
The results of gi on classification performance are presented in the last three columns of Table 4.
To examine the effect of τ , we collected results for fixed τ and gi, then selected the γ that achieved
the highest classification accuracy. Further results showing the effects of different groupings and τ
with cross-validated γ are provided in Appendix D (Table 10 for g1, Table 11 for g2, and Table 12
for g3) .
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B RESULTS

B.1 AVERAGING

Table 3: UCR Barycenter DTW Losses

Dataset subgradient DBA soft-DTW ns-DTW (g1) ns-DTW (g2) ns-DTW (g3)
Adiac 0.2594 0.2576 0.2552 0.2551 0.2553 0.2552
ArrowHead 1.2413 1.1893 1.1440 1.1646 1.1640 1.1545
Beef 8.4287 4.1666 4.0666 4.1005 4.1025 4.1015
BeetleFly 4.9672 4.5245 4.2886 4.1907 4.1909 4.1905
BirdChicken 4.9910 2.4679 2.3858 2.3930 2.3921 2.3938
CBF 4.3019 3.8861 3.4473 3.7857 3.8222 3.7833
Car 0.6908 0.6703 0.5948 0.5954 0.5964 0.5963
ChlorineConcentration 3.6285 3.4941 3.4297 3.4047 3.4061 3.4091
CinCECGTorso 17.9134 8.8686 8.3582 8.3653 8.3597 8.3599
Coffee 0.6249 0.5950 0.5872 0.5890 0.5892 0.5893
Computers 17.2013 14.8046 14.6065 14.6314 14.6228 14.6203
CricketX 7.9406 5.9852 5.7930 5.6919 5.7399 5.6772
CricketY 6.3425 5.7147 5.5186 5.5646 5.5598 5.5645
CricketZ 6.2965 5.4289 5.3826 5.3563 5.3752 5.3454
DiatomSizeReduction 0.2529 0.2357 0.2282 0.2278 0.2278 0.2278
DistalPhalanxOutlineAgeGroup 0.7220 0.7073 0.7043 0.7036 0.7038 0.7038
DistalPhalanxOutlineCorrect 0.6972 0.6670 0.6658 0.6662 0.6662 0.6662
DistalPhalanxTW 0.3622 0.3478 0.3448 0.3458 0.3458 0.3458
ECG200 2.7862 2.7185 2.6750 2.6470 2.6537 2.6704
ECG5000 2.2571 2.2061 2.2012 2.1968 2.2024 2.2023
ECGFiveDays 2.7898 2.5564 2.5618 2.5275 2.4869 2.5243
Earthquakes 12.2798 10.7766 10.6706 10.7192 10.7052 10.7222
FaceAll 3.2504 2.9970 2.8392 2.8917 2.9055 2.8971
FaceFour 5.6599 5.3963 5.2482 5.3374 5.3145 5.3444
GunPoint 2.2964 1.6673 1.7319 1.6998 1.7036 1.7078
Ham 4.4250 4.1339 4.0861 4.0997 4.0929 4.0984
MedicalImages 2.7714 2.6551 2.6738 2.6693 2.6675 2.6693
MiddlePhalanxOutlineAgeGroup 0.5451 0.5206 0.5138 0.5120 0.5120 0.5143
MiddlePhalanxOutlineCorrect 0.6671 0.6423 0.6343 0.6341 0.6341 0.6334
MiddlePhalanxTW 0.3322 0.3284 0.3190 0.3188 0.3189 0.3187
MoteStrain 4.3593 4.2874 4.2537 4.2381 4.2390 4.2453
ProximalPhalanxTW 0.3773 0.3402 0.3365 0.3383 0.3378 0.3382
RefrigerationDevices 11.5572 8.5680 7.4193 7.9655 7.9086 7.8243
ScreenType 13.8207 12.2042 12.1071 12.0787 12.0857 12.0816
ShapeletSim 12.2430 11.3275 11.0399 11.0316 11.0313 11.0834
ShapesAll 1.2198 1.0711 1.0687 1.0652 1.0653 1.0690
SmallKitchenAppliances 13.0036 10.3012 9.2726 9.3408 9.3408 9.3398
SonyAIBORobotSurface1 1.7197 1.6757 1.6536 1.6075 1.6088 1.6397
SonyAIBORobotSurface2 2.7282 2.6203 2.5849 2.5633 2.5633 2.5633
SyntheticControl 4.5651 4.1545 4.1459 4.1092 4.0827 4.0813
Trace 1.8690 0.9323 0.8951 0.8954 0.8499 0.8699
TwoLeadECG 0.9302 0.8615 0.8463 0.8444 0.8442 0.8473
Wine 0.3271 0.3239 0.3257 0.3245 0.3251 0.3240
Worms 14.1987 10.5608 10.0867 9.9822 9.9110 9.9007
WormsTwoClass 9.8468 8.7107 8.3123 8.4709 8.4173 8.4515

Count 0 3 20 12 6 6
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B.2 NEAREST CENTROID CLASSFICATION

Table 4: UCR nearest centroid classification accuracy

Dataset subgradient DBA soft-DTW ns-DTW (g1) ns-DTW (g2) ns-DTW (g3)
Adiac 0.4490 0.4388 0.6224 0.6327 0.65 0.6327
ArrowHead 0.1111 0.2222 0.33 0.2222 0.33 0.1111
Beef 0.2500 0.2500 0.2500 0.1250 0.38 0.2500
BeetleFly 0.8000 1.00 1.00 1.00 0.8000 0.8000
BirdChicken 0.8000 0.8000 0.8000 1.00 0.8000 1.00
CBF 0.8750 1.00 1.00 1.00 0.8750 0.8750
Car 0.6000 0.5333 0.73 0.6667 0.6667 0.6667
ChlorineConcentration 0.2735 0.3504 0.38 0.3675 0.3162 0.3419
CinCECGTorso 0.3000 0.4000 0.4000 0.3000 0.3000 0.50
Coffee 0.0000 0.0000 0.0000 0.14 0.0000 0.0000
Computers 0.6349 0.75 0.7143 0.6667 0.6825 0.6508
CricketX 0.3878 0.4592 0.4694 0.5204 0.62 0.5918
CricketY 0.3878 0.4490 0.4694 0.4796 0.5102 0.53
CricketZ 0.3980 0.5408 0.5816 0.5612 0.5510 0.65
DistalPhalanxOutlineAgeGroup 0.8700 0.7900 0.7900 0.8100 0.91 0.8200
DistalPhalanxOutlineCorrect 0.1000 0.0867 0.0933 0.1067 0.19 0.1400
DistalPhalanxTW 0.04 0.0000 0.0000 0.0000 0.0100 0.0100
ECG200 0.1200 0.0800 0.0800 0.0800 0.28 0.0000
ECGFiveDays 0.5000 0.5000 0.1667 0.1667 0.67 0.67
Earthquakes 0.0494 0.07 0.07 0.0617 0.0370 0.0617
FaceAll 0.8357 0.8429 0.8714 0.9000 0.93 0.93
FacesUCR 0.90 0.7800 0.8600 0.8600 0.8800 0.90
GunPoint 0.3846 0.77 0.6923 0.6154 0.6923 0.6154
Ham 0.6429 0.6071 0.7143 0.79 0.6429 0.6429
MedicalImages 0.4583 0.4479 0.4479 0.4375 0.4271 0.52
MiddlePhalanxOutlineAgeGroup 0.7600 0.81 0.81 0.81 0.7600 0.7700
MiddlePhalanxOutlineCorrect 0.2467 0.2067 0.2333 0.2800 0.2267 0.39
MiddlePhalanxTW 0.0300 0.0200 0.0300 0.0100 0.0300 0.07
MoteStrain 0.6000 0.8000 0.8000 0.8000 1.00 0.6000
ProximalPhalanxTW 0.07 0.0100 0.0100 0.0000 0.0000 0.0000
RefrigerationDevices 0.61 0.4787 0.4787 0.5000 0.5638 0.5106
ScreenType 0.4255 0.4149 0.4787 0.51 0.3936 0.3936
ShapeletSim 0.2000 0.4000 0.2000 0.4000 0.60 0.2000
ShapesAll 0.5333 0.6600 0.6533 0.67 0.6600 0.6067
SmallKitchenAppliances 0.6277 0.6064 0.6170 0.64 0.6064 0.5957
SonyAIBORobotSurface1 1.00 0.6000 0.6000 0.6000 1.00 0.6000
SonyAIBORobotSurface2 0.8571 1.00 1.00 0.8571 0.7143 0.5714
SyntheticControl 1.00 0.9867 1.00 0.9867 1.00 1.00
Trace 0.8800 0.8800 0.9200 0.9200 1.00 0.9600
TwoLeadECG 0.6667 0.8333 0.8333 1.00 0.8333 0.8333
Wine 0.5333 0.3333 0.3333 0.4667 0.5333 0.67
Worms 0.4565 0.4348 0.4783 0.50 0.3478 0.4783
WormsTwoClass 0.5870 0.6739 0.6739 0.6739 0.6522 0.70
Count 6 7 9 11 14 13
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B.3 1NN CLASSIFICATION

Table 5: UCR 1-nearest neighbor classification accuracy

Dataset DBA soft-DTW ns-DTW (g1) ns-DTW (g2) ns-DTW (g3)
Adiac 0.5204 0.5714 0.62 0.5714 0.5510
ArrowHead 0.89 0.89 0.6667 0.7778 0.89
Beef 0.2500 0.2500 0.62 0.5000 0.2500
BeetleFly 0.8000 0.8000 0.8000 1.00 0.8000
BirdChicken 0.6000 0.6000 1.00 1.00 0.6000
CBF 1.00 1.00 1.00 1.00 1.00
Car 0.3333 0.5333 0.67 0.4667 0.6000
ChlorineConcentration 0.4359 0.4872 0.4701 0.56 0.4957
CinCECGTorso 0.5000 0.5000 0.6000 0.70 0.5000
Coffee 1.00 1.00 1.00 1.00 1.00
Computers 0.76 0.76 0.5556 0.7460 0.76
CricketX 0.7449 0.79 0.7245 0.7449 0.79
CricketY 0.6735 0.6837 0.7041 0.72 0.7041
CricketZ 0.7347 0.7347 0.6735 0.7143 0.74
DistalPhalanxOutlineAgeGroup 0.7700 0.7700 0.81 0.7800 0.7700
DistalPhalanxOutlineCorrect 0.7733 0.7733 0.81 0.8000 0.7667
DistalPhalanxTW 0.7200 0.75 0.6900 0.7300 0.7400
ECG200 0.7600 0.7600 0.7200 0.88 0.7600
ECGFiveDays 0.8333 1.00 0.6667 0.5000 1.00
Earthquakes 0.7654 0.7654 0.78 0.7407 0.7654
FaceAll 0.9214 0.9500 0.9214 0.9357 0.96
FacesUCR 0.7600 0.78 0.6667 0.6667 0.78
GunPoint 0.8462 0.92 0.8600 0.9200 0.92
Ham 0.7500 0.7500 0.92 0.7692 0.8214
MedicalImages 0.7083 0.7604 0.82 0.7857 0.7083
MiddlePhalanxOutlineAgeGroup 0.7000 0.6900 0.6979 0.6979 0.73
MiddlePhalanxOutlineCorrect 0.7267 0.7733 0.85 0.8000 0.7667
MiddlePhalanxTW 0.6200 0.5900 0.7400 0.79 0.6000
MoteStrain 0.80 0.80 0.5900 0.5500 0.80
ProximalPhalanxTW 0.7500 0.7500 0.6000 0.80 0.7600
RefrigerationDevices 0.5957 0.6383 0.7100 0.83 0.6383
ScreenType 0.4574 0.5106 0.70 0.6702 0.4574
ShapeletSim 0.2000 0.2000 0.4787 0.52 0.2000
ShapesAll 0.7067 0.7467 0.6000 0.4000 0.75
SmallKitchenAppliances 0.6596 0.6915 0.7267 0.79 0.6702
SonyAIBORobotSurface1 0.80 0.80 0.5851 0.6383 0.80
SonyAIBORobotSurface2 0.86 0.86 0.8000 0.8000 0.86
SyntheticControl 1.00 1.00 0.8571 0.7143 1.00
Trace 1.00 1.00 1.00 1.00 1.00
TwoLeadECG 1.00 1.00 0.9600 1.00 1.00
Wine 0.87 0.87 0.8333 0.6667 0.87
Worms 0.4565 0.4565 0.6667 0.87 0.4565
WormsTwoClass 0.7391 0.76 0.4348 0.5000 0.7391

Count 11 17 14 16 19
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B.4 CLUSTERING

Table 6: UCR Clustering DTW Losses

Dataset DBA soft-DTW ns-DTW (g1) ns-DTW (g2) ns-DTW (g3)
Adiac 0.0921 0.0878 0.0885 0.0882 0.0885
ArrowHead 1.2090 1.0741 1.0624 1.0433 1.0650
Beef 2.8558 2.2851 2.1169 2.1680 2.1365
BeetleFly 20.6455 19.8514 19.0531 18.9430 19.0679
BirdChicken 9.4679 7.9387 8.0163 8.0368 8.0304
CBF 12.0459 11.8482 11.8576 11.7534 11.7463
Car 0.8623 0.6263 0.5699 0.5669 0.5676
ChlorineConcentration 6.5869 6.4396 6.4328 6.4346 6.4263
CinCECGTorso 669.7685 669.7685 669.7685 669.7685 669.7685
Coffee 0.4366 0.4297 0.4305 0.4304 0.4306
Computers 143.5164 141.2816 137.3022 141.0881 139.3186
CricketX 114.1204 114.1204 114.1204 114.1204 114.1204
CricketY 103.0182 103.0182 103.0182 103.0182 103.0182
CricketZ 124.6247 124.6247 124.6247 124.6247 124.6247
DiatomSizeReduction 0.0712 0.0756 0.0628 0.0632 0.0633
DistalPhalanxOutlineAgeGroup 0.3678 0.3633 0.3636 0.3637 0.3637
DistalPhalanxOutlineCorrect 0.8450 0.7544 0.7631 0.7635 0.7645
DistalPhalanxTW 0.3325 0.3319 0.3303 0.3292 0.3305
ECG200 4.5978 4.5201 4.5334 4.5394 4.5334
ECG5000 6.4048 6.6103 6.5432 6.4040 6.5932
ECGFiveDays 5.7908 5.6721 5.5425 5.5447 5.6063
Earthquakes 437.7200 437.7200 437.7200 437.7200 437.7200
FaceAll 34.8896 34.8896 34.8896 34.8896 34.8896
FaceFour 21.2485 20.2836 20.1979 20.1897 20.2069
FacesUCR 27.0649 27.0649 27.0649 27.0649 27.0649
GunPoint 1.1022 1.0099 0.9990 0.9987 0.9989
Ham 17.1259 17.0784 17.0572 17.0463 17.0749
MedicalImages 4.1345 3.5272 3.4652 3.4744 3.4197
MiddlePhalanxOutlineAgeGroup 0.2368 0.2329 0.2338 0.2335 0.2338
MiddlePhalanxOutlineCorrect 0.3350 0.3348 0.3348 0.3348 0.3348
MiddlePhalanxTW 0.2193 0.2134 0.2171 0.2152 0.2172
MoteStrain 18.8957 19.0558 19.0490 19.0497 18.8197
ProximalPhalanxTW 0.1591 0.1584 0.1585 0.1584 0.1585
RefrigerationDevices 122.9185 115.9638 113.0523 116.9189 114.3597
ScreenType 108.5347 104.8087 104.5366 103.5914 104.1625
ShapeletSim 127.3930 122.4791 120.5546 120.9429 120.4151
ShapesAll 25.5056 25.5057 25.5056 25.5056 25.5056
SmallKitchenAppliances 123.9963 123.7793 122.3944 123.1039 123.3957
SonyAIBORobotSurface1 4.9519 4.7078 4.6157 4.6127 4.6157
SonyAIBORobotSurface2 8.9998 8.8919 8.8860 8.8879 8.8808
SyntheticControl 8.7978 8.7625 8.6648 8.6736 8.6778
Trace 3.5626 3.4207 2.9248 2.9365 2.9483
TwoLeadECG 0.9103 0.8642 0.8644 0.8645 0.8644
Wine 0.0697 0.0649 0.0702 0.0691 0.0678
WordSynonyms 27.5408 27.5408 27.5408 27.5408 27.5408
Worms 451.2960 451.2960 451.2960 451.2960 451.2960
WormsTwoClass 81.4757 78.6740 76.7911 78.2881 78.3617

Count 10 20 19 21 16
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C ABLATION STUDY OF AVERAGING

Table 7: Ablation Study of Averaging (Grouping g1): Comparison of UCR Barycenter DTW Losses
across different parameters τ . Bold indicates the lowest loss.

Dataset ns-DTW (g1)
τ = 0.95 τ = 0.90 τ = 0.85 τ = 0.80

Adiac 0.2551 0.2550 0.2549 0.2549
ArrowHead 1.1772 1.1771 1.1772 1.1774
Beef 4.1005 4.1014 4.1068 4.1015
BeetleFly 4.3015 4.3096 4.3031 4.3037
BirdChicken 2.4647 2.4646 2.4649 2.4575
CBF 3.7857 3.7857 3.7857 3.7857
Car 0.6489 0.6493 0.6577 0.6575
ChlorineConcentration 3.4750 3.4750 3.4750 3.4750
CinCECGTorso 8.3677 8.5311 8.3574 8.5775
Coffee 0.5890 0.5890 0.5889 0.5889
Computers 14.6314 14.6176 14.6282 14.6000
CricketX 5.8424 5.8500 5.8272 5.8537
CricketY 5.5948 5.5975 5.5974 5.5950
CricketZ 5.3866 5.3843 5.3875 5.3840
DiatomSizeReduction 0.2278 0.2278 0.2291 0.2289
DistalPhalanxOutlineAgeGroup 0.7059 0.7059 0.7059 0.7059
DistalPhalanxOutlineCorrect 0.6666 0.6666 0.6666 0.6666
DistalPhalanxTW 0.3458 0.3458 0.3458 0.3458
ECG200 2.6704 2.6704 2.6703 2.6703
ECG5000 2.2057 2.2060 2.2063 2.2057
ECGFiveDays 2.5275 2.4832 2.5278 2.5324
Earthquakes 10.8445 10.8446 10.8446 10.8446
FaceAll 3.0059 3.0109 3.0110 3.0104
FaceFour 5.3563 5.3563 5.3563 5.3563
FacesUCR 3.2074 3.2074 3.2074 3.2074
GunPoint 1.7460 1.7440 1.7202 1.7458
Ham 4.0997 4.1004 4.1003 4.1019
MedicalImages 2.6887 2.6888 2.6887 2.6886
MiddlePhalanxOutlineAgeGroup 0.5152 0.5152 0.5152 0.5152
MiddlePhalanxOutlineCorrect 0.6389 0.6389 0.6389 0.6389
MiddlePhalanxTW 0.3282 0.3282 0.3282 0.3282
MoteStrain 4.2600 4.2588 4.2589 4.2589
ProximalPhalanxTW 0.3390 0.3398 0.3396 0.3395
RefrigerationDevices 8.2907 8.2763 8.3036 8.3232
ScreenType 12.0787 12.0795 12.1121 12.0785
ShapeletSim 11.0850 11.0820 11.1077 11.1077
ShapesAll 1.0652 1.0652 1.0638 1.0657
SmallKitchenAppliances 9.9110 9.9131 9.3478 9.3585
SonyAIBORobotSurface1 1.6774 1.6774 1.6774 1.6774
SonyAIBORobotSurface2 2.5914 2.5914 2.5914 2.5914
SyntheticControl 4.1615 4.1615 4.1615 4.1615
Trace 0.8954 0.8949 0.8969 0.8962
TwoLeadECG 0.8555 0.8554 0.8554 0.8553
Wine 0.3245 0.3245 0.3245 0.3245
WordSynonyms 2.1832 2.1731 2.1836 2.1744
Worms 10.2557 10.4207 10.4068 10.4219
WormsTwoClass 8.4709 8.4596 8.4805 8.4603

Count 25 20 17 21
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Table 8: Ablation Study of Averaging (Grouping g2): Comparison of UCR Barycenter DTW Losses
across different parameters τ . Bold indicates the lowest loss.

Dataset ns-DTW (g2)
τ = 0.95 τ = 0.90 τ = 0.85 τ = 0.80

Adiac 0.2553 0.2553 0.2553 0.2552
ArrowHead 1.1663 1.1651 1.1652 1.1846
Beef 4.1025 4.1114 4.1036 4.0924
BeetleFly 4.3052 4.3067 4.3170 4.3045
BirdChicken 2.4589 2.4597 2.4540 2.4633
CBF 3.8330 3.8132 3.8132 3.8140
Car 0.6492 0.6493 0.6571 0.6576
ChlorineConcentration 3.4750 3.4750 3.4749 3.4750
CinCECGTorso 8.3597 8.4085 8.5551 8.4076
Coffee 0.5892 0.5894 0.5906 0.5901
Computers 14.6228 14.6119 14.6227 14.6075
CricketX 5.8423 5.8244 5.8738 5.8396
CricketY 5.5944 5.5968 5.5980 5.5974
CricketZ 5.3852 5.3829 5.3826 5.3826
DiatomSizeReduction 0.2278 0.2275 0.2274 0.2271
DistalPhalanxOutlineAgeGroup 0.7059 0.7058 0.7059 0.7058
DistalPhalanxOutlineCorrect 0.6666 0.6666 0.6666 0.6666
DistalPhalanxTW 0.3458 0.3458 0.3458 0.3459
ECG200 2.6726 2.6718 2.6738 2.6720
ECG5000 2.2080 2.2074 2.2065 2.2011
ECGFiveDays 2.5185 2.5265 2.5293 2.5237
Earthquakes 10.8293 10.8420 10.8365 10.8365
FaceAll 3.0224 3.0080 3.0065 3.0178
FaceFour 5.3563 5.3564 5.3564 5.3565
GunPoint 1.7464 1.7436 1.7441 1.7451
Ham 4.0929 4.0802 4.1005 4.1018
MedicalImages 2.6858 2.6864 2.6860 2.6870
MiddlePhalanxOutlineAgeGroup 0.5145 0.5142 0.5143 0.5143
MiddlePhalanxOutlineCorrect 0.6389 0.6389 0.6388 0.6388
MiddlePhalanxTW 0.3282 0.3282 0.3282 0.3282
MoteStrain 4.2591 4.2565 4.2546 4.2567
ProximalPhalanxTW 0.3399 0.3397 0.3399 0.3399
RefrigerationDevices 8.9489 8.9519 8.9514 8.8522
ScreenType 12.0857 12.0816 12.0815 12.0838
ShapeletSim 11.0833 11.0836 11.1077 11.1078
ShapesAll 1.0653 1.0740 1.0662 1.0680
SmallKitchenAppliances 9.4743 9.4160 9.4293 9.9123
SonyAIBORobotSurface1 1.6774 1.6774 1.6774 1.6774
SonyAIBORobotSurface2 2.5914 2.5914 2.5914 2.5914
SyntheticControl 4.1615 4.1615 4.1615 4.1615
Trace 0.8949 0.9133 0.8964 0.9030
TwoLeadECG 0.8554 0.8549 0.8551 0.8547
Wine 0.3251 0.3253 0.3264 0.3260
Worms 10.4246 10.4022 10.4252 10.4123
WormsTwoClass 8.5204 8.4643 8.4992 8.5186

Count 17 15 10 13
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Table 9: Ablation Study of Averaging (Grouping g3): Comparison of UCR Barycenter DTW Losses
across different parameters τ . Bold indicates the lowest loss.

Dataset ns-DTW (g3)
τ = 0.95 τ = 0.90 τ = 0.85 τ = 0.80

Adiac 0.2552 0.2553 0.2554 0.2556
ArrowHead 1.1643 1.1774 1.1789 1.1775
Beef 4.1015 4.1018 4.1054 4.1238
BeetleFly 4.3045 4.3085 4.3055 4.3070
BirdChicken 2.4642 2.4654 2.4548 2.4548
CBF 3.8332 3.8331 3.8132 3.8140
Car 0.6489 0.6486 0.6446 0.6485
ChlorineConcentration 3.4751 3.4746 3.4745 3.4746
CinCECGTorso 8.3599 8.5016 8.3633 8.5583
Coffee 0.5893 0.5903 0.5904 0.5905
Computers 14.6203 14.6059 14.6578 14.6558
CricketX 5.8534 5.9529 5.8229 6.0129
CricketY 5.5951 5.5954 5.5947 5.5952
CricketZ 5.3862 5.3891 5.3829 5.3817
DiatomSizeReduction 0.2278 0.2280 0.2285 0.2279
DistalPhalanxOutlineAgeGroup 0.7057 0.7060 0.7055 0.7047
DistalPhalanxOutlineCorrect 0.6666 0.6666 0.6666 0.6666
DistalPhalanxTW 0.3458 0.3459 0.3458 0.3458
ECG200 2.6704 2.6704 2.6704 2.6704
ECG5000 2.2060 2.2061 2.2056 2.2000
ECGFiveDays 2.5252 2.5248 2.5262 2.4842
Earthquakes 10.8283 10.8446 10.8447 10.8446
FaceAll 3.0104 3.0102 3.0108 3.0096
FaceFour 5.3562 5.3562 5.3562 5.3562
FacesUCR 3.2074 3.2074 3.2074 3.2074
GunPoint 1.7408 1.7427 1.7440 1.7423
Ham 4.0984 4.0993 4.0993 4.1070
MedicalImages 2.6887 2.6896 2.6896 2.6886
MiddlePhalanxOutlineAgeGroup 0.5143 0.5141 0.5141 0.5141
MiddlePhalanxOutlineCorrect 0.6389 0.6390 0.6390 0.6390
MiddlePhalanxTW 0.3281 0.3281 0.3281 0.3281
MoteStrain 4.2582 4.2565 4.2572 4.2571
ProximalPhalanxTW 0.3399 0.3400 0.3398 0.3397
RefrigerationDevices 8.8975 8.9557 8.9514 8.9532
ScreenType 12.0816 12.0858 12.0848 12.0858
ShapeletSim 11.0834 11.1077 11.1077 11.1077
ShapesAll 1.0690 1.0688 1.0683 1.0641
SmallKitchenAppliances 9.4851 9.3029 9.7840 9.7895
SonyAIBORobotSurface1 1.6774 1.6773 1.6773 1.6773
SonyAIBORobotSurface2 2.5914 2.5914 2.5914 2.5914
SyntheticControl 4.1615 4.1615 4.1615 4.1615
Trace 0.8970 0.8961 0.9118 0.8960
TwoLeadECG 0.8554 0.8554 0.8553 0.8553
Wine 0.3240 0.3238 0.3242 0.3240
WordSynonyms 2.1858 2.1513 2.1593 2.1863
Worms 10.4158 10.2059 10.4138 10.4293
WormsTwoClass 8.4515 8.4789 8.4532 8.4484
Count 20 11 12 20

24



Published as a conference paper at ICLR 2026

D ABLATION STUDY OF CLASSIFICATION

Table 10: Ablation Study of Classification (Grouping g1): Comparison of nearest centroid classifi-
cation accuracy across different parameters τ . Bold indicates the highest accuracy.

Dataset ns-DTW (g1)
τ = 0.95 τ = 0.90 τ = 0.85 τ = 0.80

Adiac 0.63 0.5306 0.5918 0.5408
ArrowHead 0.2222 0.2222 0.33 0.2222
Beef 0.1250 0.50 0.2500 0.3750
BeetleFly 1.00 0.8000 0.8000 0.8000
BirdChicken 1.00 0.6000 0.6000 0.6000
CBF 1.00 1.00 0.8750 1.00
Car 0.6667 0.7333 0.7333 0.80
ChlorineConcentration 0.37 0.3162 0.2137 0.3504
CinCECGTorso 0.3000 0.5000 0.60 0.3000
Coffee 0.14 0.0000 0.0000 0.14
Computers 0.6667 0.5397 0.68 0.5714
CricketX 0.5204 0.6122 0.5000 0.63
CricketY 0.4796 0.5612 0.4490 0.57
CricketZ 0.5612 0.5816 0.5408 0.59
DistalPhalanxOutlineAgeGroup 0.8100 0.8400 0.8300 0.85
DistalPhalanxOutlineCorrect 0.1067 0.2200 0.23 0.0867
DistalPhalanxTW 0.0000 0.0200 0.0300 0.06
ECG200 0.0800 0.1600 0.1600 0.28
ECGFiveDays 0.1667 0.67 0.5000 0.5000
Earthquakes 0.06 0.0123 0.0123 0.06
FaceAll 0.9000 0.92 0.9143 0.9143
FacesUCR 0.86 0.86 0.86 0.8000
GunPoint 0.6154 0.6154 0.6154 0.85
Ham 0.79 0.6429 0.7500 0.6429
MedicalImages 0.4375 0.4271 0.47 0.47
MiddlePhalanxOutlineAgeGroup 0.81 0.7300 0.7700 0.8000
MiddlePhalanxOutlineCorrect 0.28 0.2533 0.2267 0.2067
MiddlePhalanxTW 0.0100 0.05 0.05 0.05
MoteStrain 0.80 0.80 0.80 0.80
ProximalPhalanxTW 0.00 0.00 0.00 0.00
RefrigerationDevices 0.5000 0.5426 0.60 0.5106
ScreenType 0.51 0.4149 0.4043 0.4574
ShapeletSim 0.40 0.0000 0.2000 0.40
ShapesAll 0.67 0.6133 0.6600 0.6600
SmallKitchenAppliances 0.64 0.5745 0.5745 0.64
SonyAIBORobotSurface1 0.6000 1.00 0.8000 1.00
SonyAIBORobotSurface2 0.8571 0.8571 0.5714 1.00
SyntheticControl 0.9867 1.00 1.00 1.00
Trace 0.9200 1.00 0.8400 1.00
TwoLeadECG 1.00 0.6667 0.6667 0.8333
Wine 0.4667 0.3333 0.73 0.4667
Worms 0.50 0.2826 0.3913 0.4130
WormsTwoClass 0.67 0.5652 0.5435 0.5652

Count 20 11 12 21
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Table 11: Ablation Study of Classification (Grouping g2): Comparison of nearest centroid classifi-
cation accuracy across different parameters τ . Bold indicates the highest accuracy.

Dataset ns-DTW (g2)
τ = 0.95 τ = 0.90 τ = 0.85 τ = 0.80

Adiac 0.65 0.5510 0.6122 0.5714
ArrowHead 0.33 0.1111 0.0000 0.1111
Beef 0.3750 0.50 0.50 0.3750
BeetleFly 0.80 0.80 0.6000 0.6000
BirdChicken 0.8000 1.00 0.8000 0.8000
CBF 0.88 0.88 0.88 0.88
Car 0.67 0.67 0.67 0.67
ChlorineConcentration 0.3162 0.2906 0.3675 0.38
CinCECGTorso 0.3000 0.3000 0.4000 0.50
Coffee 0.00 0.00 0.00 0.00
Computers 0.68 0.6508 0.6508 0.6349
CricketX 0.6224 0.5204 0.5714 0.65
CricketY 0.5102 0.61 0.5612 0.5918
CricketZ 0.5510 0.61 0.4592 0.4796
DistalPhalanxOutlineAgeGroup 0.91 0.8500 0.8800 0.8400
DistalPhalanxOutlineCorrect 0.1867 0.1400 0.1667 0.29
DistalPhalanxTW 0.0100 0.0100 0.0000 0.02
ECG200 0.28 0.2400 0.2000 0.1200
ECGFiveDays 0.6667 0.5000 0.6667 0.83
Earthquakes 0.0370 0.0247 0.05 0.0370
FaceAll 0.93 0.9143 0.8643 0.9000
FacesUCR 0.8800 0.94 0.8200 0.9000
GunPoint 0.69 0.69 0.6154 0.69
Ham 0.6429 0.6071 0.7500 0.86
MedicalImages 0.4271 0.4271 0.3646 0.49
MiddlePhalanxOutlineAgeGroup 0.7600 0.78 0.7500 0.7500
MiddlePhalanxOutlineCorrect 0.2267 0.2600 0.3600 0.41
MiddlePhalanxTW 0.0300 0.0500 0.07 0.0600
MoteStrain 1.00 0.8000 0.8000 0.6000
ProximalPhalanxTW 0.0000 0.01 0.0000 0.0000
RefrigerationDevices 0.5638 0.68 0.5426 0.5426
ScreenType 0.3936 0.48 0.4149 0.4255
ShapeletSim 0.60 0.2000 0.2000 0.4000
ShapesAll 0.6600 0.6533 0.6467 0.68
SmallKitchenAppliances 0.6064 0.73 0.6383 0.5957
SonyAIBORobotSurface1 1.00 0.8000 1.00 1.00
SonyAIBORobotSurface2 0.7143 0.7143 1.00 1.00
SyntheticControl 1.00 0.9867 1.00 0.9867
Trace 1.00 1.00 0.9600 1.00
TwoLeadECG 0.83 0.6667 0.6667 0.6667
Wine 0.53 0.53 0.53 0.2667
Worms 0.3478 0.5000 0.3696 0.52
WormsTwoClass 0.6522 0.5217 0.67 0.6087

Count 18 17 11 18
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Table 12: Ablation Study of Classification (Grouping g3): Comparison of nearest centroid classifi-
cation accuracy across different parameters τ . Bold indicates the highest accuracy.

Dataset ns-DTW (g3)
τ = 0.95 τ = 0.90 τ = 0.85 τ = 0.80

Adiac 0.63 0.6020 0.5918 0.6020
ArrowHead 0.1111 0.33 0.33 0.2222
Beef 0.25 0.1250 0.1250 0.25
BeetleFly 0.80 0.6000 0.6000 0.80
BirdChicken 1.00 0.6000 0.4000 0.8000
CBF 0.8750 1.00 0.8750 0.8750
Car 0.6667 0.80 0.7333 0.80
ChlorineConcentration 0.34 0.2564 0.3077 0.3333
CinCECGTorso 0.50 0.50 0.4000 0.2000
Coffee 0.0000 0.0000 0.0000 0.14
Computers 0.65 0.65 0.5873 0.6190
CricketX 0.59 0.5612 0.5612 0.5510
CricketY 0.5306 0.5102 0.56 0.5408
CricketZ 0.65 0.5306 0.5000 0.5204
DistalPhalanxOutlineAgeGroup 0.8200 0.86 0.8100 0.8500
DistalPhalanxOutlineCorrect 0.1400 0.26 0.0867 0.1933
DistalPhalanxTW 0.0100 0.03 0.0100 0.0200
ECG200 0.0000 0.20 0.1200 0.1200
ECGFiveDays 0.6667 0.5000 1.00 0.6667
Earthquakes 0.06 0.0247 0.0247 0.0247
FaceAll 0.93 0.9143 0.9143 0.8857
FacesUCR 0.9000 0.7600 0.9200 0.94
GunPoint 0.6154 0.77 0.77 0.4615
Ham 0.6429 0.7143 0.75 0.75
MedicalImages 0.52 0.4271 0.3542 0.3542
MiddlePhalanxOutlineAgeGroup 0.7700 0.7500 0.80 0.7900
MiddlePhalanxOutlineCorrect 0.3867 0.3667 0.43 0.2867
MiddlePhalanxTW 0.07 0.0600 0.0400 0.0400
MoteStrain 0.6000 0.80 0.6000 0.80
ProximalPhalanxTW 0.00 0.00 0.00 0.00
RefrigerationDevices 0.5106 0.5426 0.61 0.5319
ScreenType 0.3936 0.44 0.4255 0.4149
ShapeletSim 0.2000 0.40 0.2000 0.40
ShapesAll 0.6067 0.6467 0.72 0.6533
SmallKitchenAppliances 0.5957 0.66 0.6489 0.6277
SonyAIBORobotSurface1 0.6000 0.8000 1.00 0.8000
SonyAIBORobotSurface2 0.5714 1.00 1.00 0.7143
SyntheticControl 1.00 1.00 0.9867 0.9867
Trace 0.96 0.96 0.9200 0.96
TwoLeadECG 0.8333 0.8333 0.3333 1.00
Wine 0.67 0.5333 0.4667 0.4000
Worms 0.48 0.4348 0.4130 0.3696
WormsTwoClass 0.70 0.6522 0.6304 0.5870

Count 19 18 12 11
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E ABLATION STUDY FOR CLUSTERING

Table 13: Ablation Study of Clustering (Grouping g1): Comparison of UCR Clustering DTW Losses
across different parameters τ . Bold indicates the lowest loss.

Dataset ns-DTW (g1)
τ = 0.95 τ = 0.90 τ = 0.85 τ = 0.80

Adiac 0.0933 0.0887 0.0887 0.0885
ArrowHead 1.0624 1.0781 1.0750 1.0723
Beef 2.6543 2.3194 2.1169 2.6488
BeetleFly 19.0531 19.0865 19.0850 19.1989
BirdChicken 8.0163 8.1141 8.0221 8.0705
CBF 11.9793 11.8627 11.8576 11.8919
Car 0.5828 0.6079 0.5699 0.5820
ChlorineConcentration 6.4328 6.4504 6.4373 6.4452
CinCECGTorso 669.7685 669.7685 669.7685 669.7685
Coffee 0.4340 0.4313 0.4305 0.4305
Computers 141.2125 142.1296 142.4221 137.3022
CricketX 114.1204 114.1204 114.1204 114.1204
CricketY 103.0182 103.0182 103.0182 103.0182
CricketZ 124.6247 124.6247 124.6247 124.6247
DiatomSizeReduction 0.1008 0.0634 0.0631 0.0628
DistalPhalanxOutlineAgeGroup 0.3636 0.3646 0.3639 0.3639
DistalPhalanxOutlineCorrect 0.7662 0.7631 0.7662 0.7644
DistalPhalanxTW 0.3305 0.3318 0.3305 0.3303
ECG200 4.5388 4.5473 4.5334 4.5376
ECG5000 6.7068 6.6826 6.5888 6.5432
ECGFiveDays 5.7248 5.5425 5.5456 5.6963
Earthquakes 437.7200 437.7200 437.7200 437.7200
FaceAll 34.8896 34.8896 34.8896 34.8896
FaceFour 20.2089 20.2031 20.1979 20.3103
FacesUCR 27.0649 27.0649 27.0649 27.0649
GunPoint 1.0274 0.9990 1.0012 1.0023
Ham 17.0643 17.0764 17.0641 17.0572
MedicalImages 3.4652 3.5714 3.5776 3.6044
MiddlePhalanxOutlineAgeGroup 0.2338 0.2349 0.2342 0.2340
MiddlePhalanxOutlineCorrect 0.3353 0.3349 0.3349 0.3348
MiddlePhalanxTW 0.2171 0.2180 0.2171 0.2178
MoteStrain 19.0490 19.0853 19.0503 19.0503
ProximalPhalanxTW 0.1595 0.1585 0.1585 0.1585
RefrigerationDevices 113.0523 114.4612 114.9686 117.9007
ScreenType 104.5366 105.8296 105.6790 104.8913
ShapeletSim 121.8188 120.5682 120.5546 120.7565
ShapesAll 25.5065 25.5056 25.5056 25.5056
SmallKitchenAppliances 124.1084 122.3944 123.6107 123.2592
SonyAIBORobotSurface1 4.6157 4.6442 4.6401 4.6435
SonyAIBORobotSurface2 8.8879 8.8915 8.8879 8.8860
SyntheticControl 8.6648 8.6900 8.6810 8.6787
Trace 2.9443 2.9413 2.9340 2.9248
TwoLeadECG 0.8646 0.8769 0.8648 0.8644
Wine 0.0704 0.0702 0.0702 0.0702
WordSynonyms 27.5408 27.5408 27.5408 27.5408
Worms 451.2960 451.2960 451.2960 451.2960
WormsTwoClass 78.2919 78.5687 76.7911 78.7067

Count 21 14 19 21
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Table 14: Ablation Study of Clustering (Grouping g2): Comparison of UCR Clustering DTW Losses
across different parameters τ . Bold indicates the lowest loss.

Dataset ns-DTW (g2)
τ = 0.95 τ = 0.90 τ = 0.85 τ = 0.80

Adiac 0.0889 0.0886 0.0882 0.0887
ArrowHead 1.0626 1.0754 1.0447 1.0433
Beef 2.6517 2.6512 2.2552 2.1680
BeetleFly 19.1110 19.1173 18.9430 19.0810
BirdChicken 8.0838 8.0368 8.0901 8.0716
CBF 11.8548 11.8228 11.7534 11.8266
Car 0.5669 0.5728 0.5735 0.5785
ChlorineConcentration 6.4346 6.4438 6.4461 6.4400
CinCECGTorso 669.7685 669.7685 669.7685 669.7685
Coffee 0.4305 0.4304 0.4307 0.4314
Computers 143.9456 141.0881 142.3675 141.7750
CricketX 114.1204 114.1204 114.1204 114.1204
CricketY 103.0182 103.0182 103.0182 103.0182
CricketZ 124.6247 124.6247 124.6247 124.6247
DiatomSizeReduction 0.0632 0.0635 0.0633 0.0636
DistalPhalanxOutlineAgeGroup 0.3641 0.3640 0.3637 0.3639
DistalPhalanxOutlineCorrect 0.7654 0.7648 0.7641 0.7635
DistalPhalanxTW 0.3305 0.3305 0.3307 0.3292
ECG200 4.5394 4.5605 4.5595 4.5452
ECG5000 6.7502 6.5538 6.4040 6.5952
ECGFiveDays 5.6538 5.6400 5.5714 5.5447
Earthquakes 437.7200 437.7200 437.7200 437.7200
FaceAll 34.8896 34.8896 34.8896 34.8896
FaceFour 20.2089 20.2024 20.1946 20.1897
FacesUCR 27.0649 27.0649 27.0649 27.0649
GunPoint 0.9987 1.0007 1.0040 1.0036
Ham 17.0729 17.0593 17.0463 17.1152
MedicalImages 3.4744 3.5939 3.5652 3.5336
MiddlePhalanxOutlineAgeGroup 0.2336 0.2335 0.2337 0.2336
MiddlePhalanxOutlineCorrect 0.3349 0.3348 0.3348 0.3349
MiddlePhalanxTW 0.2152 0.2169 0.2169 0.2173
MoteStrain 19.0497 19.0506 19.0507 19.0507
ProximalPhalanxTW 0.1584 0.1584 0.1585 0.1586
RefrigerationDevices 119.7300 116.9189 119.4748 119.4159
ScreenType 104.6065 104.5283 103.5914 104.3206
ShapeletSim 121.4127 121.6850 122.1467 120.9429
ShapesAll 25.5056 25.5056 25.5056 25.5056
SmallKitchenAppliances 123.1039 123.6502 123.9712 124.0442
SonyAIBORobotSurface1 4.6127 4.6506 4.6475 4.6339
SonyAIBORobotSurface2 8.8879 8.8879 8.8879 8.8879
SyntheticControl 8.6874 8.6919 8.6829 8.6736
Trace 2.9486 2.9450 2.9467 2.9365
TwoLeadECG 0.8646 0.8645 0.8646 0.8652
Wine 0.0699 0.0694 0.0694 0.0691
WordSynonyms 27.5408 27.5408 27.5408 27.5408
Worms 451.2960 451.2960 451.2960 451.2960
WormsTwoClass 78.6962 78.2881 78.6430 78.4662

Count 22 17 18 20
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Table 15: Ablation Study of Clustering (Grouping g3): Comparison of UCR Clustering DTW Losses
across different parameters τ . Bold indicates the lowest loss.

Dataset ns-DTW (g3)
τ = 0.95 τ = 0.90 τ = 0.85 τ = 0.80

Adiac 0.0885 0.0888 0.0888 0.0885
ArrowHead 1.0650 1.0663 1.0664 1.0665
Beef 2.2629 2.2551 2.2545 2.1365
BeetleFly 19.0952 19.0988 19.0856 19.0679
BirdChicken 8.0704 8.0366 8.0304 8.1060
CBF 11.7832 11.7463 11.8067 11.8216
Car 0.5676 0.5790 0.5970 0.5846
ChlorineConcentration 6.4263 6.4330 6.4319 6.4301
CinCECGTorso 669.7685 669.7685 669.7685 669.7685
Coffee 0.4306 0.4306 0.4307 0.4318
Computers 139.4716 140.3803 139.3186 142.6158
CricketX 114.1204 114.1204 114.1204 114.1204
CricketY 103.0182 103.0182 103.0182 103.0182
CricketZ 124.6247 124.6247 124.6247 124.6247
DiatomSizeReduction 0.0634 0.0634 0.0633 0.0635
DistalPhalanxOutlineAgeGroup 0.3640 0.3638 0.3640 0.3637
DistalPhalanxOutlineCorrect 0.7659 0.7645 0.7688 0.7692
DistalPhalanxTW 0.3305 0.3306 0.3318 0.3317
ECG200 4.5356 4.5382 4.5334 4.5380
ECG5000 6.6823 6.5932 6.7333 6.6061
ECGFiveDays 5.6063 5.6822 5.6325 5.7113
Earthquakes 437.7200 437.7200 437.7200 437.7200
FaceAll 34.8896 34.8896 34.8896 34.8896
FaceFour 20.2126 20.2069 20.2224 20.3481
FacesUCR 27.0649 27.0649 27.0649 27.0649
GunPoint 1.0012 0.9989 1.0012 0.9996
Ham 17.0756 17.1056 17.0749 17.1139
MedicalImages 3.4197 3.6215 3.5611 3.4369
MiddlePhalanxOutlineAgeGroup 0.2339 0.2338 0.2339 0.2339
MiddlePhalanxOutlineCorrect 0.3349 0.3348 0.3348 0.3348
MiddlePhalanxTW 0.2172 0.2174 0.2173 0.2173
MoteStrain 18.8197 19.0501 19.0500 19.0499
ProximalPhalanxTW 0.1585 0.1585 0.1586 0.1586
RefrigerationDevices 120.0953 114.3597 118.9731 115.0863
ScreenType 104.6496 104.7925 105.0297 104.1625
ShapeletSim 121.2170 120.8727 120.6381 120.4151
ShapesAll 25.5056 25.5056 25.5056 25.5056
SmallKitchenAppliances 123.8676 123.7506 123.3957 123.5583
SonyAIBORobotSurface1 4.6162 4.6157 4.6566 4.6330
SonyAIBORobotSurface2 8.8879 8.8856 8.8813 8.8808
SyntheticControl 8.6781 8.7188 8.6778 8.6984
Trace 2.9488 2.9490 2.9518 2.9483
TwoLeadECG 0.8646 0.8646 0.8646 0.8644
Wine 0.0686 0.0682 0.0680 0.0678
WordSynonyms 27.5408 27.5408 27.5408 27.5408
Worms 451.2960 451.2960 451.2960 451.2960
WormsTwoClass 78.5920 78.4135 78.7172 78.3617
Count 20 19 17 21
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THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were employed for proofreading and typographical error correction
in this study.
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