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Abstract

Federated Learning is an emerging learning paradigm that allows training models from samples
distributed across a large network of clients while respecting privacy and communication
restrictions. Despite its success, federated learning faces several challenges related to its
decentralized nature. In this work, we develop a novel algorithmic procedure with theoretical
speedup guarantees that simultaneously handles two of these hurdles, namely (i) data
heterogeneity, i.e., data distributions can vary substantially across clients, and (ii) system
heterogeneity, i.e., the computational power of the clients could differ significantly. By
leveraging previous works in the realm of representation learning (Collins et al., 2021; Liang
et al., 2020), our method constructs a global common representation utilizing the data from
all clients. Additionally, it learns a user-specific set of parameters, resulting in a personalized
solution for each individual client. Furthermore, it mitigates the effects of stragglers by
adaptively selecting clients based on their computational characteristics, thus achieving for the
first time near-optimal sample complexity and provable logarithmic speedup. Experimental
results support our theoretical findings showing the superiority of our method over alternative
personalized federated schemes in system and data heterogeneous environments.

1 Introduction

Due to growing concerns on data privacy and communication cost, Federated Learning (FL) has become
an emerging learning paradigm as it allows for training machine learning models without collecting local
data from the clients. Due to its decentralized nature, a major challenge in designing efficient solvers for
FL is heterogeneity of local devices which can be categorized into two different types: (i) data heterogeneity
where the underlying data distributions of clients vary substantially, and (ii) system heterogeneity where the
computational and storage capabilities of devices differ significantly. In fact, it has been observed that the
seminal Federated Averaging (FedAvg) method suffers from slow convergence to a high quality solution when
facing highly heterogeneous datasets (McMahan et al., 2017) as well as heterogeneous systems (Li et al., 2020;
Kairouz et al., 2021).

In this paper, we aim to address these two challenges simultaneously by introducing a generic framework that
includes algorithms with robust performance in the presence of those forms of clients’ heterogeneity. Inspired
by prior works in the literature of FL (Collins et al., 2021; Liang et al., 2020) that utilized representation
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learning theory to tackle data heterogeneity, we propose a meta-algorithm that produces personalized
solutions and handles data heterogeneity by leveraging a global representation shared among all clients.
Further, our method circumvents the delays introduced due to the presence of stragglers by carefully selecting
participating nodes based on their computational speeds. In early stages, only a few of the fastest nodes are
chosen to participate and sequentially slower devices are included in the training process until the target
accuracy is achieved. Although the disproportional selection of nodes raises fairness and accuracy concerns,
we highlight that our method achieves speedup without compromising the resulting solution. The most
significant contribution of our work is achieving near-optimal sample complexity in regimes with data and
system heterogeneity, alongside a provable logarithmic speedup guarantee in terms of running time. Next we
summarize our contributions:

1. SRPFL Algorithm. We propose Straggler-Resilient Personalized Federated Learning (SRPFL), an
adaptive node participation meta-algorithm that builds upon subroutines that fall into the repre-
sentation learning framework (Collins et al., 2021; Liang et al., 2020) enhancing their resilience to
stragglers and performance.

2. Logarithmic Speedup. Assuming that clients’ speeds are drawn from the exponential distribution,
we prove that SRPFL guarantees logarithmic speedup in the linear representation setting, outperforming
established, straggler-prone benchmarks while maintaining the state of the art sample complexity
per client m = O((d/N + log(N))), where d and N denote the feature vector size and number of
active nodes. Our results hold for non-convex loss functions, heterogeneous data and dynamically
changing client’s speeds.

3. Numerical Results. Experiments on various datasets (CIFAR10, CIFAR100, EMNIST, FEMNIST,
Sent140) support our theoretical results showing that: (i) SRPFL significantly boosts the performance
of different subroutines designed for personalized FL both in full and partial participation settings
and (ii) SRPFL exhibits superior performance in system and data heterogeneous settings compared to
state-of-the-art baselines.

1.1 Related Work

Data heterogeneity. In data heterogeneous settings, if one aims at minimizing the aggregate loss in
the network using the classic FedAvg method or more advanced algorithms, which utilize control-variate
techniques, such as SCAFFOLD (Karimireddy et al., 2019), FEDGATE (Haddadpour et al., 2021), FedDyn (Acar
et al., 2021) or FEDSHUFFLE (Horváth et al., 2022) the resulting solution could perform poorly for some of the
clients. This is an unavoidable hurdle due to the fact that no single model works well for all clients when their
underlying data distributions are diverse. A common technique that addresses this issue is fine-tuning the
derived global model to each local task by following a few steps of SGD updates (Wang et al., 2019; Yu et al.,
2020). Based on this observation, Fallah et al. (2020b) showed that one might need to train models that work
well after fine-tuning and showed its connections to Model-Agnostic Meta-Learning (MAML). In (Cho et al.,
2022; Balakrishnan et al., 2021) novel client-sampling schemes were explored achieving increased efficiency
in regimes with data heterogeneity. Another line of work for personalized FL is learning additive mixtures
of local and global models (Deng et al., 2020; Mansour et al., 2020; Hanzely and Richtárik, 2020). These
methods learn local models for clients that are close to each other in some norm, an idea closely related to
multi-task FL (Smith et al., 2017; Hu et al., 2021). The works in (Chen et al., 2022; Lee et al., 2022) studied
the interplay of local and global models utilizing Bayesian hierarchical models and partial participation,
respectively. An alternative approach was presented by Collins et al. (2021), where instead of enforcing local
models to be close, the authors assumed that models across clients share a common representation. Using
this perspective, they presented FedRep a method that provably learns this underlying structure in the linear
representation setting. Building upon the idea of a common representation Zhu et al. (2021) and Jiang and
Lin (2022) proposed federated methods that can handle data heterogeneity while exhibiting robustness to
distribution shifts. Recently, a novel framework was proposed allowing the comparison of personalized FL
methods under various metrics (Wu et al., 2022). In all of the aforementioned methods however, a subset
of clients participate regardless of their computational capabilities. Thus, in the presence of stragglers, the
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speed of the training process significantly goes down as the server waits, at every communication round, for
the slowest participating node to complete its local updates.

System heterogeneity. Several works have attempted to address the issue of system heterogeneity.
Specifically, asynchronous methods, which rely on bounded staleness of slow clients, have demonstrated
significant gains in distributed data centers (Xie et al., 2019; Stich, 2019; So et al., 2021). In FL frameworks,
however, stragglers could be arbitrarily slow casting these methods inefficient. In an attempt to manually
control staleness, deadline-based computation has been proposed (Reisizadeh et al., 2019) as well as aggregation
of a fixed number of models per round (Nguyen et al., 2022). However, in the worst case scenario the
performance of these methods is still determined by the slowest client in the network. Active sampling is
another approach where the server aggregates as many local updates as possible within a predefined time
span (Nishio and Yonetani, 2019). In a different line of work the effects of stragglers are mitigated by utilizing
computation/gradient coding schemes (Tandon et al., 2017; Wang et al., 2018; 2020b). In (Cho et al., 2021)
clients use heterogeneous model-architectures to transfer knowledge to nodes with similar data distributions
while Yang et al. (2022) proposed a new framework where clients are free to choose their participation scheme.
More recently, normalized averaging methods were proposed in (Wang et al., 2020a; Horváth et al., 2022)
that rectify the objective inconsistency created by the mismatch in clients’ updates. FedLin (Mitra et al.,
2021) instead utilizes gradient correction and error-feedback mechanisms to circumvent the speed-accuracy
conflict. A novel approach to mitigate the effects of stragglers was proposed by Reisizadeh et al. (2022),
where clients are selected to take part in different stages of the training according to their computational
characteristics. Alas, all of the above methods yield improvement only in data-homogeneous settings and
they are not applicable in regimes with data heterogeneity.

2 Problem Formulation

In this section, we introduce our setting and define the data and system heterogeneity model that we
study. Consider the FL framework where M clients interact with a central server. We focus on a supervised,
data-heterogeneous setting where client i draws samples from distribution Di, potentially with Di 6=Dj .
Further, consider the learning model of the i-th client as qi : Rd −→ Y which maps inputs xi ∈ Rd to predicted
labels qi(xi) ∈ Y. The objective function of client i is defined as fi(qi) := E(xi,yi)∼Di [`(qi(xi), yi))], where
the loss ` : Y × Y −→ R penalizes the gap between the predicted label qi(xi) and true label yi. In the most
general setting clients aim to solve

min
(q1,...,qM )∈Q

1
M

M∑
i=1

fi(qi), (1)

with Q the space of feasible tuples of mappings (q1, ..., qM ). Traditionally in FL, methods focus on learning a
single model q=q1 = ...=qM that performs well on average across clients (Li et al., 2020; McMahan et al.,
2017). Although such a solution may be satisfactory in data-homogeneous settings, it leads to undesirable local
models when the data distributions are diverse. Indeed, in the presence of data heterogeneity the loss functions
fi have different forms and their minimizers could be far from each other. This justifies the formulation in (1)
and necessitates the search for personalized solutions that can be learned in federated fashion.

Low Dimensional Common Representation. There have been numerous examples in image classification
and word prediction where tasks with heterogeneous data share a common, low dimensional representation,
despite having different labels (Bengio et al., 2013; LeCun et al., 2015; Pillutla et al., 2022). Based on that,
a reasonable choice for Q is a set in which all qi share a common map, coupled with a personalized map
that fits their local data. To formalize this, suppose the ground-truth map can be written for each client i
as qi=hi◦φ where φ:Rd−→Rk is a shared global representation which maps d-dimensional data points to a
lower dimensional space of size k and hi :Rk−→Y, which maps from the lower dimensional subspace to the
space of labels. Typically k�d and thus given any fixed representation φ, the client specific heads hi :Rk−→Y
are easy to optimize locally. With this common structure into consideration, (1) can be reformulated as
minφ∈Φ

1
M

∑M
i=1 minhi∈H fi(hi ◦φ), where Φ is the class of feasible representation and H is the class of feasible

heads. This formulation leads to good local solutions, if the underlying data generation models for the clients
share a low dimensional common representation, i.e., yi = h∗i ◦ φ∗(xi) + zi, where zi is some additive noise.
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Figure 1: Classic FL schemes for solving (2)
Figure 2: SRPFL for solving (2)

The server and clients collaborate to learn the common representation φ, while locally each client learns
their unique head hi. Since clients often do not have access to their true data distributions, instead of
minimizing their expected loss, they settle for minimizing the empirical loss associated with their local
samples. Specifically, we assume client i has access to Si samples {x1

i ,x2
i , ...,x

Si
i }, and its local empirical loss

is f̂i(hi ◦ φ) = 1
Si

∑Si
s=1 `(hi ◦ φ(xsi ), ysi ). Hence, the global problem becomes

min
φ∈Φ

1
M

M∑
i=1

min
hi∈H

{
f̂i(hi ◦ φ) := 1

Si

Si∑
s=1

`(hi ◦ φ(xsi ), ysi )
}

(2)

System Heterogeneity Model. In most FL settings, thousands of clients participate in the training process,
each with different computational capabilities. Thus, fixed computational tasks such as gradient computations
or local model updates require different processing time, for different clients. Formally, for each client i ∈ [M ],
we denote by Ti the time required to compute a local model update. When a subset of clients participate in
the learning process, the computational time of each round is determined by the slowest participating node.
Naturally, as the number of nodes in the network grows, we expect the number of stragglers to increase. This
phenomenon calls for the development of straggler-resilient methods in system-heterogeneous settings.

3 Straggler-Resilient Personalized FL

In the shared representation setting, we face the challenge of finding an algorithm that coordinates server and
clients in order to learn a common representation and a set of personalized parameters in a federated and
straggler-resilient fashion. To this end, we propose a method that tackles problem (2) with limited sample
access and provably superior performance over naive, straggler-prone methods. Specifically, we propose
the Straggler-Resilient Personalized Federated Learning (SRPFL) meta-algorithm, designed to mitigate the
effects of system heterogeneity in environments with non-convex loss functions and heterogeneous data while
accommodating a variety of methods as subroutines. In a nutshell, SRPFL iteratively solves problem (2), while
adaptively increasing the set of participating nodes based on their computational capabilities. As a result the
process of learning the common representation across clients’ tasks is accelerated, without compromising the
resulting accuracy.

To simplify the exposition, henceforth we denote by A some federated algorithm of choice, designed to
solve (2). As depicted in Figure 1, in standard FL frameworks, out of all M clients in the network, the
server often selects uniformly at random a subset of size N . Subsequently, a few iterations of algorithm A
are performed to approximately solve a version of (2) which corresponds to those N selected clients i.e.,
minφ∈Φ

1
N

∑N
i=1 minhi∈H f̂i(hi ◦ φ). In every following stage, a new subset of N nodes is sampled and the

same process is repeated. Although such a procedure eventually learns the global representation across all
tasks, it is susceptible to delays caused by stragglers, as the server has to wait for the slowest client (among
the N selected ones) to complete its updates. Hence, when N is large the training procedure could become
prohibitively slow.
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SRPFL takes a different approach in order to mitigate the effects of straggling clients. An overview of the
selecting scheme is provided in Figure 2. At each stage, N clients are randomly selected, but only a small, fast
subset of them is used to solve their corresponding learning problem. More precisely, suppose that at stage r,
each client i in the sampled subset of size N , is associated with a computational time T ri . For simplicity we
assume that the nodes are re-indexed at every stage so that they maintain a decreasing ordering w.r.t. their
times, i.e. T r1 ≤ T r2 ≤ ... ≤ T rN . Initially, only the n0 fastest clients, {1, 2, ..., n0}, are included in the learning
procedure, with n0 much smaller than N . At every communication round, the set of n0 nodes perform the
model updates indicated by algorithm A, to solve their version of (2), i.e., minφ∈Φ

1
n0

∑n0
i=1 minhi∈H f̂i(hi ◦φ).

We note that during this stage of the algorithm, the server waits only for the slowest client among the
participating ones, i.e., client n0 which is potentially much faster than node N .
Remark 3.1. In practice, the knowledge of clients’ computational power is not required to figure out the n0
fastest nodes. Instead, the server sends the global representation model to all N sampled clients and updates
the common representation once the first n0 new models are received. Indeed, these representations belong
to the fastest n0 nodes.

Once the current stage terminates, a new batch of N clients is sampled and the 2n0 fastest nodes are chosen
to participate in the learning process. Since speeds vary across stages, consecutive sets of participating nodes
could have small or no overlap. However, the representations learned in previous stages still operate as good
starting points for subsequent stages which is possible since nodes are homogeneous w.r.t. their representations
(see Section 2). Thus, utilizing the representation model learned from the previous stage, nodes {1, 2, ..., 2n0}
continue the learning process deriving a model of improved accuracy. The procedure of geometrically increasing
the number of participating nodes continues until the target accuracy is achieved. Hence, SRPFL uses the
data of stragglers only at the latest stages of the algorithm when an accurate approximation is required.
Remark 3.2. For simplicity of exposition we assume that the set of N sampled nodes maintains connectivity
to the server throughout each stage. However, our analysis remains unaffected even if a new set of nodes is
sampled at every round.

We proceed to characterize the class of federated algorithms able to employ SRPFL to enhance their performance
in system heterogeneous environments. Any iterative method that solves an instance of (2) can be combined
with our adaptive node participation scheme, however in this paper, we focus on a broad class of alternating
gradient-based update methods, presented in (Collins et al., 2021). As the name suggests, in each round,
clients update their heads and representation models in an alternative fashion. After a certain number of
gradient updates is completed, all clients send their derived representations to the server where the models
are averaged and broadcasted back to the clients. Next, we rigorously illustrate this procedure.

Alternating Update Scheme. At round t, the server communicates a common representation φt to the
clients and a subset of them It, are selected to participate by performing the following updates.

Client Head Update. Each client i ∈ It performs τh local gradient-based updates optimizing their head
parameter, given the received representation φt. Concretely, for s = 1 , ..., τh client i updates their head
model as follows

ht,si = GRD
(
fi

(
ht,s−1
i , φt

)
, ht,s−1
i , η

)
. (3)

Client Representation Update. Once the updated local heads ht,τhi are obtained, each client i executes τφ
local updates on their representation parameters. That is for s = 1, ..., τφ

φt,si = GRD
(
fi

(
ht,τhi , φt,s−1

i

)
, φt,s−1
i , η

)
. (4)

In the above expressions, GRD(f, h, η) captures the generic notion of an update of variable h using the
gradient of function f with respect to h and step size η. This notation allows the inclusion of a large class of
algorithms such as Gradient Descent with momentum, SGD, etc.

Server Update. Each client i sends their derived representation models φt,τφi to the server, where they are
averaged producing the next representation model φt+1.

Coupling SRPFL with a generic subroutine that falls into the Alternating Update Scheme, gives rise to
Algorithm 1. Every stage r is characterized by a participating set of size 2r · n0, denoted by Ir. At the
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Algorithm 1 SRPFL
1: Input: Initial number of nodes n0; step size η;

number of local updates for head τh; number of local updates for representation τφ.
2: Initialization: n← n0, φ0, h

0,τh
1 , ..., h0,τh

N

3: for r = 0, 1, 2, . . . , log(N/n0) do
4: φ0 ← φr
5: for t = 1, 2, . . . , τr do
6: Server sends representation φt−1 to N clients sampled from [M ].
7: for i ∈ Ir do
8: Client i initializes ht,0i ← ht−1,τh

i and runs τh updates hti = hti − η∇htifi(h
t
i, φ

t−1).
9: Client i initializes φt,0i ← φt−1 and runs τφ updates φti = φti − η∇φtifi(h

t
i, φ

t
i).

10: Client i sends φt,τφi to the server.
11: end for
12: for each client i /∈ Ir do
13: ht,τhi ← ht−1,τh

i

14: end for
15: Server computes φt ← 1

n

∑n
i=1 φ

t,τφ
i .

16: end for
17: Server sets n← min{N, 2n} and φr+1 ← φτr .
18: end for

beginning of each round the server provides a representation model to the participating clients (line 6). The
clients update their models (lines 8 and 9) and sent their representations back to the server where they are
averaged producing a new global model. The numbers of local updates τh, τφ depend on the subroutine
method of choice and the number of rounds per stage is denoted by τr. At the end of every stage the set of
participating nodes is doubling in size until a set of size N is reached (line 17).

Remark 3.3 summarizes the technical novelties of our work and highlights crucial benefits enjoyed by SRPFL.
Remark 3.3. Reisizadeh et al. (2022) proposed a similar participation scheme, however their approach differs
from ours and their results apply to significantly more restrictive regimes. Specifically, in (Reisizadeh et al.,
2022) the analysis heavily relies on deriving a connection between the ERM solutions of consecutive stages. In
order to control the statistical accuracy of the corresponding ERM problems (i) data homogeneity across all
clients is necessary and further (ii) clients who participate in early stages are required to remain active and
connected to the server in all subsequent stages, maintaining fixed computational speeds throughout the whole
training process. (iii) The results of their analysis hold only for strongly convex loss functions and (iv) their
stage termination criterion requires the knowledge of the strong convexity parameter. The above restrictions
are detrimental in the FL regime and severely undermine the applicability of the resulting algorithm.
In our work we follow a different approach controlling -in terms of principal angle distance - a quantity
analogous to statistical accuracy, therefore directly connecting the common representation (and overall
solution) at every stage to the ground truth representation. This novel approach allows our algorithm to
accommodate (i) data heterogeneity, (ii) clients with dynamically changing speeds or equivalently clients that
are replaced by new ones at every round, and (iii) non-convex loss functions. Additionally, a major part of
our technical contribution focuses on (iv) analytically deriving the optimal number of rounds per stage, thus
producing a simple and efficient doubling scheme.

4 SRPFL in the Linear Representation Case

Our theoretical analysis focuses on a specific instance of (1), where clients strive to solve a linear representation
learning problem. Concretely we assume that fi is the quadratic loss, φ is a projection onto a k-dimensional
subspace of Rd, given by matrix B ∈ Rd×k and the i-th client’s head hi, is a vector wi ∈ Rk. We model local
data of client i such that yi = w∗>i B∗>xi + zi, for some ground truth representation B∗ ∈ Rd×k, local heads
w∗i ∈ Rk and zi ∼ N (0, σ2) capturing the noise in the measurements. Hence, all clients’ optimal solutions lie
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Algorithm 2 FedRep-SRPFL (Linear Representation)
1: Input: Step size η; Batch size m; Initial nodes n0;
2: Initialization: Client i∈ [N ] sends to server: Pi := 1

m

∑m
j=1(y0,j

i )2x0,j
i (x0,j

i )>, n← n0.
3: Server finds UDU> ← rank-k SVD( 1

N

∑N
i=1 Pi).

4: for r = 0, 1, 2, . . . , log(N/n0) do
5: Server initializes representation Br,0 ← U.
6: for t = 1, 2, . . . , τr do
7: Server sends Br,t to N clients sampled from [M ].
8: for i ∈ {1, .., n} do
9: Client i samples a fresh batch of m samples.

10: Client i computes wr,t+1
i ← arg minw f̂ ti (w,Br,t).

11: Client i computes Br,t+1
i ← Br,t − η∇Bf̂

t
i (wt+1

i ,Br,t) and sends it back to the server.
12: end for
13: Server computes B̄r,t+1 ← 1

n

∑
i∈It Br,t+1

i .
14: Server computes Br,t+1,Rr,t+1 ← QR(B̄r,t+1).
15: end for
16: Server sets U← B̄r,t+1 and n← min{N, 2n}.
17: end for

in the same k-dimensional subspace. Under these assumptions the global expected risk is

min
B,W

1
2M

M∑
i=1

E(xi,yi)∼Di

[(
yi −w>i B>xi

)2]
, (5)

where W = [w>1 , ...,w>N ] ∈ RN×k is the concatenation of the client-specific heads. Since the true distributions
Di’s are unknown, algorithms strive to minimize the empirical risk instead. The global empirical risk over all
clients is

1
M

M∑
i=1

f̂i(wi,B)= 1
2Mm

M∑
i=1

m∑
j=1

(
yji−wt>

i B>xji
)2
, (6)

where m is the number of samples at each client. The global loss in (6) is nonconvex and has many global
minima, including all pairs of

(
W∗Q−1,B∗Q>

)
, where Q ∈ Rk×k is some invertible matrix. Thus, the server

aims to retrieve the column space of B∗, instead of the ground truth factors (W∗,B∗). To measure closeness
between column spaces, we adopt the metric of principal angle distance (Jain et al., 2013).
Definition 4.1.Let matrices B1,B2 ∈Rd×k and B̂1,⊥,B̂2 orthonormal matrices s.t. span(B̂1,⊥) = span(B1)⊥
and span(B̂2) = span(B2). The principle angle distance between the column spaces of B1 and B2 is defined
to be dist(B1,B2) := ‖B̂>1,⊥B̂2‖2.
Federated Representation Learning (FedRep) is an alternating minimization-descent algorithm, recently
proposed in (Collins et al., 2021) for the Linear Shared Representation framework. SRPFL coupled with
FedRep gives rise to Algorithm 2. Below we highlight the main points of interest.

In the initialization phase (lines 2 and 3) a model of bounded distance from the optimal representation is
obtained, via the Method of Moments (Tripuraneni et al., 2021). Subsequently, at every round t, client i
samples a fresh batch of samples {xt,ji , yt,ji }mj=1 from its local distribution (line 9) and thus the corresponding
loss function becomes f̂i(wi ◦B):= 1

2m
∑m
j=1(yt,ji −w>i B>xt,ji )2. Utilizing the global representation provided

by the server, client i computes the optimal head wi (line 10). Fixing the newly computed head, client i
proceeds to update its global representation model with one step of gradient descent (line 11) and transmits
it back to the server. As depicted in lines 13 and 14 the parameter server averages the models received and
orthogonalizes the resulting matrix before broadcasting it to the clients, a component of crucial importance
required in our analysis.

Mapping this method back to Algorithm 1 we note that the number of representation model updates τφ is
set to 1, whereas the number of head updates τh is sufficiently large to derive (approximately) the optimal
solutions. This imbalance is designed to take advantage of the inherent structure of our problem where the
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size of wi’s is significantly smaller than d. Finally, we point out that the number of the communication
rounds per stage τr is a small and a priori known to the algorithm constant, specified by our analysis.
Remark 4.2. Although our proposed method utilizes FedRep as a backbone, our analysis and framework
differ substantially from the ones in (Collins et al., 2021). Specifically, Collins et al. (2021) assume access to
(i) infinite samples, (ii) without the presence of noise. Additionally, (iii) the number of participating nodes
remains fixed throughout the training and (iv) the focus lies solely on handling heterogeneous data with system
heterogeneity being an orthogonal direction to their work. In contrast, our analysis requires only (i) finite
and (ii) noisy samples, and our theoretical results (Theorems 4.7 and 4.9) revolve around (iii) participating
subsets of different sizes and (iv) regimes where both data and system heterogeneity is prevalent.

4.1 Theoretical Results

In this subsection, we provide rigorous analysis of FedRep-SRPFL in the linear representation setting. First,
we present the notion of Wall Clock Time (WCT) which is the measure of the performance for our algorithm.
Subsequently, we illustrate the contraction inequality that determines the rate at which the distance to the
optimal representation diminishes. We conclude showing that FedRep-SRPFL outperforms its straggler-prone
variant by a factor of O(logN), under the standard assumption that clients’ computational times follow the
exponential distribution. Before we proceed, we introduce the necessary notation and the assumptions.

E0 : = 1− dist2
(
B0,B∗

)
, (7)

σ̄max,∗ := max
I∈[N ],|I|=n,n0≤n≤N

σmax

(
1√
n

W∗
I

)
, (8)

σ̄min,∗ := min
I∈[N ],|I|=n,n0≤n≤N

σmin

(
1√
n

W∗
I

)
(9)

Assumption 4.3. (Sub-gaussian design). The local samples xi ∈ Rd are i.i.d. with mean 0, covariance Id
and are Id-sub-gaussian, i.e. E[ev>xi ] ≤ e‖v‖2

2/2 for all v ∈ Rd.
Assumption 4.4. (Client diversity). Let σ̄min,∗ defined in (9), be the minimum singular value of any matrix
that can be obtained by taking n rows of 1√

n
W∗. Then σ̄min,∗>0.

Specifically, our theoretical analysis requires Assumption 4.4 to be satisfied for every n ≥ n0. Assumption 4.4
implies that the optimal heads, of the participating clients, span Rk. This is true in many FL regimes as the
number of clients is usually much larger than the dimension of the shared representation.
Remark 4.5. In this work we consider client speeds being independent of the local data available to them.
This is a natural assumption since the computational power of each client crucially depends on their device
characteristics (battery, CPU, etc.), whereas any connection to their local data is unclear. However, in the
presence of strong correlation between data and system heterogeneity, Assumption 4.4 may not hold, which
can be seen as a potential limitation of our work and an interesting future direction to explore.
Assumption 4.6. (Client normalization). The ground-truth client specific parameters satisfy ‖w∗i ‖2 =

√
k

for all i ∈ [n] and B∗ has orthonormal columns.
Assumption 4.6 ensures the ground-truth matrix W∗B∗> is row-wise incoherent, i.e. its row norms have
similar magnitudes. This is of vital importance since our measurement matrices are row-wise sparse and
incoherence is a common requirement in sensing problems with sparse measurements.

Wall Clock Time. To measure the speedup that our meta-algorithm enjoys we use the concept of real time
or WCT as described below. FedRep-SRPFL runs in communication rounds grouped into stages. Consider such
a round t at stage r, with nodes {1, 2, ..., nr} participating in the learning process. Here nr denotes the slowest
participating node. The expected amount of time that the server has to wait for the updates to take place
is E

[
T rnr
]
. Put simply, the expected computational time of the slowest node acts as the bottleneck for the

round. Further, at the beginning and at the end of every round, models are exchanged between the server and
the clients. This incurs an additional, fixed communication cost C. If τr communication rounds take place at
every stage r, then the overall expected WCT for FedRep-SRPFL is E [TSRPFL] =

∑log(N/n0)
r=0 τr ·

(
E
[
T rnr
]

+ C
)
.

Similarly, the total expected runtime for FedRep can be expressed in terms of the total number of rounds, TFR,
as E [TFedRep]=TFR(E [T rN ]+C).Taking the ratio of these quantities derives the desired speedup guarantee.
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Figure 3: Numerical results on CIFAR10, CIFAR100, EMNIST, FEMNIST with full participation (M = N)
in the fixed computation speeds setting. ‘Shard’ denotes the number of classes per client. ‘C.T.’ denotes the
communication cost per round.

Contraction Inequality. Theorem 4.7 captures the progress made between two consecutive rounds of
FedRep-SRPFL. It follows that the rate of convergence to the optimal representation is exponentially fast,
provided that the number of participating nodes and the batch size are sufficiently large.
Theorem 4.7. Let Assumptions 4.3-4.6 hold. Further, let the following inequalities hold for the number of
participating nodes and the batch size respectively, n ≥ n0 and m ≥ c0

(1+σ2)k3κ4

E2
0

max {log(N), d/n0}, for
some absolute constant c0. Then FedRep-SRPFL with stepsize η ≤ 1

8σ̄2
max,∗

, satisfies the following contraction
inequality:

dist
(
Bt+1,B∗

)
≤ dist

(
Bt,B∗

)√
1− a+ a√

n
n0

(1− a)
, (10)

w.p. at least 1− T · exp
(
−90 min

{
d, k2 log(N)

})
, where a = 1

2ηE0σ̄
2
min,∗ ≤ 1

4 .

Here T denotes the total number of communication rounds which is logarithmic w.r.t. the target error ε. The
initial representation computed by the Method of Moments satisfies dist

(
B0,B∗

)
≤1−CM , for some constant

CM . Since E0 is strictly greater than zero inequality (10) ensures contraction.
Remark 4.8. Theorem 4.7 suggests that the server can learn the ground-truth representation before some of the
clients update their local heads or participate in the learning process. This might raise concerns about fairness
or accuracy, however it is important to highlight that such concerns are unfounded. This is because, after
obtaining it the server shares the ground-truth representation with all the clients in the system. Thus, even if
a client i was not selected in the representation learning process, it can still optimize its low-dimensional head
wi ∈ Rk using its local samples through a few local updates (given that k is a small constant). Consequently,
the derivation of the ground-truth model benefits both the clients that already participated in the learning
procedure as well as new clients who opt to join the federated system at a later time.

Logarithmic Speedup. Algorithm 2 sets off with n0 participating clients and follows a doubling scheme so
that at stage r only the fastest 2rn0 nodes contribute to the learning process. Thus at stage r, inequality (10)
can be written as:

dist+ ≤ dist ·
√

1− α+ α√
2r (1− α)

(11)
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Figure 4: Numerical results on CIFAR10, CIFAR100, EMNIST, FEMNIST with partial participation
(N = M/5) in the fixed computational speeds setting. ‘Shard’ denotes the number of classes per client.
‘C.T.’ denotes the communication cost per round.

We note that the second term on the r.h.s. is an artifact of the noisy measurements. Utilizing geometric series
properties we can deduce that in the limit, contraction (11) converges to α/

√
2r(1−α)(1−

√
1−α). This implies

that the achievable error of our algorithm is lower bounded by α/
√

N
n0

(1−α)(1−
√

1−α), since the total number
of stages is at most r = log (N/n0).

To illustrate the theoretical benefits of SRPFL we compare Algorithm 2 to FedRep. One can distill FedRep
from Algorithm 2 by disregarding the doubling scheme and instead at each round, randomly sampling N
nodes to participate. For fair comparison between the two methods we set the target error small enough so
that the contribution of all N nodes is necessary. Specifically, we express the error ε as

ε = ĉ
α√

N
n0

(1− α)
(
1−
√

1− α
) , with

√
2 > ĉ > 1. (12)

Intuitively, one should expect FedRep-SRPFL to vastly outperform straggler-prone FedRep as ĉ approaches√
2 (large error), since in this case the biggest chunk of the workload is completed before FedRep-SRPFL

utilizes the slower half of the clients. In contrast, FedRep experiences heavy delays throughout the whole
training process due to the inclusion of stragglers at every round. On the contrary, as ĉ approaches 1 (small
error), the amount of rounds spent by FedRep-SRPFL utilizing N clients increases. In this case one should
expect the speedup achieved by FedRep-SRPFL in early stages, to eventually become obsolete. Theorem 4.9
provides a rigorous exposition of these insights.
Theorem 4.9. Suppose that at each stage the client’s computational times are i.i.d. random variables drawn
from the exponential distribution with parameter λ. Further, suppose that the expected communication cost
per round is C = c

λ , for some constant c. Finally, consider the target error ε given in (12). Then, we have
E[TSRPFL]
E[TFedRep] = O

(
log( 1

ĉ−1 )
log(N)+log( 1

ĉ−1 )

)
.
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Figure 5: Numerical results on CIFAR10, CIFAR100, EMNIST, FEMNIST with full participation (M = N)
in the random (dynamic) computation speeds setting. ‘Shard’ denotes the number of classes per client.
‘C.T.’ denotes the communication cost per round.

Theorem 4.9 establishes O (logN) speedup for our method compared to its straggler prone benchmark. This
result holds when speeds are drawn once at the beginning of the process as well as when new speeds are
drawn at every round thus rendering our method versatile in a broad class of settings.
Remark 4.10. Our analysis is crucially intertwined with the representation learning framework where the
presence of a shared, global representation serves as common ground across data-heterogeneous clients
allowing us to show that intermediate solutions constitute good starting points and substantial progress is
achieved between stages. Despite FedAvg being a general-purpose algorithm not designed for representation
learning, it was recently shown to recover the ground-truth representation in the case of multi-task linear
regression (Collins et al., 2022), thus casting FedAvg a potential candidate subroutine for our method.
Remark 4.11.The initialization phase of Algorithm 2 requires a one-time exchange of information between the
clients and the server. Although this process reveals only the sum of outer products of local samples, it can be
further fortified using differential privacy techniques, such as the ones in (Jain et al., 2021; Shen et al., 2022).

5 Experiments

In our empirical study we consider the classification tasks for the CIFAR10, CIFAR100, EMNIST, FEMNIST
and Sent140 datasets. We conduct experiments under the full and partial participation scheme with different
computation speed distributions comparing the performance of our proposed method against other state-of-
the-art benchmarks. Due to space limitation, in this section we present the results for the image classification
tasks in the full and partial participation regime with fixed and dynamic computation speeds. Additional
results and extensive discussion can be found in Appendix C.

Baselines. The first benchmarks under consideration are FedRep (Collins et al., 2021) and Local-Global
FedAvg (LG-FedAvg) (Liang et al., 2020). These federated methods utilize a mixture of global and local
models to derive personalized solutions with small global loss. Coupling these algorithms with our proposed
doubling scheme gives rise to FedRep-SRPFL and LG-SRPFL, respectively, which are our proposed algorithms
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Figure 6: Numerical results on CIFAR10, CIFAR100, EMNIST, FEMNIST with partial participation (M = N)
in the random (dynamic) computation speeds setting. ‘Shard’ denotes the number of classes per client.
‘C.T.’ denotes the communication cost per round.

for the numerical experiments. We further compare our methods with FLANP (Reisizadeh et al., 2022) and
FedAvg (McMahan et al., 2017) with and without fine-tuning. Note that the fine-tuning variants are also
considered as they often lead to better performance in data-heterogeneous settings (Wang et al., 2019; Yu
et al., 2020). Our final baseline is the HF-MAML algorithm from (Fallah et al., 2020a) which is a Model Agnostic
Meta Learning-based method producing high quality personalized solutions in data-heterogeneous settings.

Data allocation. To ensure that our data allocation is heterogeneous we randomly split the data points
among the clients in a way that each client can only observe a specific subset of classes. For instance, in the
CIFAR10 dataset where there are in total 10 different classes of data points, each client is only assigned data
from 5 different classes, which we refer to as Shards; see first column of Figure 3. We also make sure that the
test set for each client is consistent with the samples they have access to at training time, e.g., if client i only
observes samples with labels 1, 4, 5 during training, then at test time they are only asked to classify samples
from the same classes. Further details and different allocation schemes are presented in Appendix C.

Simulation of System Heterogeneity. We consider two different types of client speed configurations:
Fixed computation speeds. In this configuration we sample a value for each client from the exponential
distribution with parameter λ, once at the beginning of the training process. These personalized values
capture the computational time of every client and remain fixed throughout the training procedure. In
addition to the computational time, our methods suffer a fixed communication cost at every round. In
Figures 3 to 6 each row depicts the effects of different values of communication cost on the convergence of the
algorithms under consideration (C.T. = 0, 10, 1001).
Dynamic computation speeds. In this configuration every client samples at every round their processing times
from a personalized exponential distribution that remains fixed throughout the process. Specifically, at the
beginning of the training process we sample for each client i a parameter λi from the uniform distribution
over [1/M, 1]. Subsequently, at every round we sample a new computational time for each client i from the
exponential distribution with parameter λi. Similarly to the former setting an additional, fixed communication

1For reference the computational times are sampled with λ=1.

12



Published in Transactions on Machine Learning Research (10/2023)

cost is incurred at every round contributing to the overall running time. As we illustrate in Figure 5 (full
participation) and 6 (partial participation - %20), the experimental results under this configuration are
qualitatively similar to the ones presented in Figure 3 (full participation) and Figure 4(partial participation -
%20) for fixed computation speeds, with SRPFL providing substantial speedup over straggler prone variants.

Results and Discussions.From the numerical results in Figures 3 to 6 we distill the following takeaways:
1) Coupling SRPFL with FedRep exhibits consistently superior performance across different datasets and
communication time regimes compared to all proposed baselines. 2) Applying SRPFL to personalized FL
solvers (FedRep and LG-FedAvg) significantly enhances their efficiency. 3) The speedup achieved by our
meta-algorithm is more significant for smaller values of communication time. Concretely, we observe that the
gap between FedRep-SRPFL and FedRep as well as LG-SRPFL and LG-FedAvg diminishes as the communication
cost increases (plots in the same column C.T.= 0, 10, 100 ). This is unsurprising since our method improves
the computational cost of the training and thus when the communication cost dominates the overall running
time, the benefits of SRPFL are less apparent. 4) FedRep-SRPFL vastly outperforms the fine-tuning variant of
the previously proposed FLANP, especially in regimes with high data heterogeneity (FEMNIST).

6 Conclusion

In this paper, we proposed SRPFL, a straggler resilient FL meta-algorithm with near-optimal sample complexity
and provable logarithmic speedup guarantees in regimes with data and system heterogeneity. Our method
leverages ideas from representation learning theory to compute a global representation model along with local
client heads, thus deriving personalized solutions for all clients. In SRPFL the participating clients are selected
in an adaptive manner. In early stages fast nodes are prioritized and progressively slower nodes are included
in the training process, therefore mitigating the effects of stragglers without compromising the quality of the
solutions. Our numerical results illustrated the benefits of SRPFL when coupled with different personalized
FL methods such as FedRep and LG-FedAvg. Furthermore, our experiments support our theoretical findings
showcasing the superior performance of FedRep-SRPFL compared to state-of-the-art FL methods.
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A Appendix

Before we dive into the analysis we provide the following useful definition.
Definition A.1. For a random vector x ∈ Rd1 and a fixed matrix A ∈ Rd1×d2 , the vector A>x is called
‖A‖2-subgaussian if y>A>x is subgaussian with subgaussian norm O (‖A2‖ ‖y‖2) for all y ∈ Rd2 , i.e.
E
[
exp

(
y>A>x

)]
≤ exp

(
‖y‖22 ‖A‖

2
2 /2

)
.

We study the performance of SSRFRL with FedRep as the subroutine of choice. The first part of our analysis
focuses on a single round t and extends the analysis in Collins et al. (2021). We assume that there are N
clients in the network and at round t a subset It of them participate in the learning procedure with cardinality
n ≥ n0 := 2d

log(N)·σ̄max,∗
. Without loss of generality we assume that the clients are indexed from fastest to

slowest thus the clients that participate in the learning process are all i ∈ [n]. Each client i, draws a batch of
m ≥ c0

(1+σ2)k3κ4 log(N)
E2

0
fresh, i.i.d. samples at every round. We denote by Xt

i ∈ Rd×m and Yt
i ∈ Rm the

matrix of samples and the labels for client i, such that the rows of Xt
i are samples {x1

i , ...,xmi }. By Zti ∈ Rm
we denote the noise in the measurements of client i, with zi,j ∼ N (0, σ2). Let B̂∗ ∈ Rd×k and W∗ ∈ RN×k
stand for the optimal representation and the concatenation of optimal heads respectively. The hat denotes
that a matrix is orthonormal i.e. its columns form an orthonormal set. Similarly, B̂t ∈ Rd×k and Wt ∈ RN×k
denote the global representation and the concatenation of the heads at round t. w∗i ’s and wt

i’s denote the
optimal heads and the heads at round t which constitute the rows of W∗ and Wt respectively. Furthermore
we define σ̄min,∗ := minI∈[N ],|I|=n′,n′≤N σmin

1√
n′

W∗
I and σ̄max,∗ := maxI∈[N ],|I|=n′,n′≤N σmax

1√
n′

W∗
I , where

WI is formed by taking the rows of W indexed by I. That is σ̄max,∗ and σ̄min,∗ are the maximum and
minimum singular values of any submatrix W∗

I that can be obtained throughout the course of our algorithm.
Notice that by assumption 4.6 each row of W∗ has norm

√
k, so 1

n′ acts as a normalization factor such that∥∥ 1
n′W

∗
I
∥∥
F

=
√
k. Finally we define κ = σ̄max,∗/σ̄min,∗. Since we focus on a single round the time index can

be dropped for simplicity. Further, henceforth we drop the subscripts It on Wt.

First we derive the update scheme our algorithm follows. Notice that the empirical objective function given
in (6) can be expressed via matrices Xi and Yi,

LN (B,W) = 1
2mn

n∑
i=1

(
Yi −XiB̂wi

)2
(13)

Further, computing the gradients we derive

1
2mn

n∑
i=1
∇B̂

(
Yi −XiB̂wi

)2
= 1
mn

n∑
i=1

X>i
(
XiB̂wi −Yi

)
w>i , (14)

1
2mn∇wi

n∑
j=1

(
Yj −XjB̂wj

)2
= 1
mn

B̂>X>i
(
XiB̂wi −Yi

)
(15)

and since
(

1
mB̂>X>i XiB̂

)
is invertible with high probability by Lemma A.4, solving for the minimizer gives

us

w+
i =

(
1
m

B̂>X>i XiB̂
)−1 1

m
B̂>X>i Yi (16)

Thus our update scheme with stepsize η is

∀i ∈ [n] w+
i =

(
1
m

B̂>X>i XiB̂
)−1 1

m
B̂>X>i Yi (17)

B+ = B̂− η

mn

n∑
i=1

X>i
(
XiB̂w+

i −Yi

)
w+>
i (18)

B̂+,R+ = QR(B+) (19)

where QR denotes the QR decomposition and Yi = XiB̂∗w∗i + Zi.
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Lemma A.2. For every client i the update for wi can be expressed as follows :

w+
i = B̂>B̂∗w∗i + Fi + Gi, (20)

where Fi and Gi are defined in equations (24) and (25), respectively.

Proof. Further expanding (17) we can write

w+
i =

(
1
m

B̂>X>i XiB̂
)−1 1

m
B̂>X>i XiB̂∗w∗i +

(
1
m

B̂>X>i XiB̂
)−1 1

m
B̂>X>i Zi (21)

= B̂>B̂∗w∗i +
(

1
m

B̂>X>i XiB̂
)−1( 1

m
B̂>X>i XiB̂∗ −

1
m

B̂>X>i XiB̂B̂>B̂∗
)

w∗i

+
(

1
m

B̂>X>i XiB̂
)−1 1

m
B̂>X>i Zi (22)

= B̂>B̂∗w∗i + Fi + Gi (23)

where we define

Fi :=
(

1
m

B̂>X>i XiB̂
)−1( 1

m
B̂>X>i XiB̂∗ −

1
m

B̂>X>i XiB̂B̂>B̂∗
)

w∗i , (24)

Gi :=
(

1
m

B̂>X>i XiB̂
)−1 1

m
B̂>X>i Zi (25)

We further have the following immediate corollary.
Corollary A.3. Let W+,F and G be the matrices with rows the concatenation of w+

i ,Fi and Gi, respectively.
Then

W+ = W∗B̂∗B̂ + F + G (26)

Our first goal is to control the norm of w+
i . In order to achieve that we provide lemmas that bound the

norms of Fi and Gi extending the analysis in Collins et al. (2021) and Jain et al. (2013).

Lemma A.4. Let δ = c
k3/2
√

log(N)√
m

for some absolute constant c, then with probability at least 1 −
exp

(
−115k3 log(N)

)
∀i ∈ [n], σmin

(
1
m

B̂>X>i XiB̂
)
≥ 1− δ (27)

It follows that with the same probability

∀i ∈ [n], σmax

(
1
m

B̂>X>i XiB̂
)−1

≤ 1
1− δ (28)

Proof. First notice that we can rewrite

1
m

B̂>X>i XiB̂ =
m∑
j=1

1√
m

B̂>xji
(

1√
m

B̂>xji
)>

(29)

For all i ∈ [n], j ∈ [m] we define vji := 1√
m

B̂>xji such that each vji is an i.i.d. ‖ 1√
m

B̂‖2-subgaussian random
variable (please see the definition of ‖A‖2-subgaussian in Definition A.1) and thus by equation (4.22)(Theorem
4.6.1) in Vershynin (2018) we obtain the following bound for any m ≥ k, l ≥ 0

σmin

(
1
m

B̂>X>i XiB̂
)
≥ 1− c1

(√
k

m
+ l√

m

)
, (30)
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with probability at least 1 − exp
(
−l2
)
and c1 some absolute constant. We set l = 12k3/2 log(N)

√
k and

δ1 = 12c1k
3/2
√

log(N)√
m

and the above bound becomes

σmin

(
1
m

B̂>X>i XiB̂
)
≥ 1− δ1, (31)

with probability at least 1− exp
(
−k
(

12k
√

log(N)− 1
)2
)

Further notice that

exp
(
−k
(

12k
√

log(N)− 1
)2
)

= exp
(
k
(
−144k2 log(N) + 24k log(N)− 1

))
(32)

≤ exp
(
−120k3 log(N)

)
(33)

Thus taking Union Bound over i ∈ [n] we have that for all i ∈ [n]

σmin

(
1
m

B̂>X>i XiB̂
)
≥ 1− δ1 (34)

with probability at least

1− n exp
(
−120k3 log(N)

)
≥ 1− exp

(
−115k3 log(N)

)
(35)

Choosing c sufficiently large derives the statement of the lemma.

Lemma A.5. Let Hi :=
(

1√
m

B̂>X>i
)

1√
m

Xi

(
B̂B̂> − Id

)
B̂∗ and δ := c

k3/2
√

log(N)√
m

, for an absolute con-
stant c. Then with probability at least 1− exp

(
−115k2 log(N)

)
we have

n∑
i=1
‖Hiw∗i ‖

2
2 ≤ δ

2 ‖W∗‖22 dist
2
(
B̂, B̂∗

)
(36)

Proof. In order to argue about the quantity Hi =
(

1√
m

B̂>X>i
)

1√
m

Xi

(
B̂B̂> − Id

)
B̂∗ we define matrix

U := 1√
m

Xi

(
B̂B̂> − Id

)
B̂∗ such that its j-th row, uj = 1√

m
B̂∗>

(
B̂B̂> − Id

)
xji is subgaussian with norm

at most 1√
m

B̂∗>
(
B̂B̂> − Id

)
. Similarly we define V = 1√

m
B̂>X>i such that its j-th row vj = 1√

m
B̂xji has

norm at most 1√
m

B̂. We are now ready to use a concentration argument similar to Proposition (4.4.5) in .
Let Sk−1 denote the unit sphere in k dimensions and Nk the 1/4-net of cardinality 9k. From equation (4.13)
in Vershynin (2018) we have

∥∥∥(B̂>X>i
)

Xi

(
B̂B̂> − Id

)
B̂∗
∥∥∥

2
=
∥∥U>V

∥∥
2 ≤ 2 max

p,y∈Nk
p>
 m∑
j=1

ujv>j

y (37)

= 2 max
p,y∈Nk

m∑
j=1
〈p,uj〉 〈vj ,y〉 (38)

By definition 〈p,uj〉 and 〈vj ,y〉 are subgaussians with norms 1√
m

∥∥∥B̂∗> (B̂B̂> − Id
)∥∥∥

2
= 1√

m
dist

(
B̂, B̂∗

)
and 1√

m
ˆ‖B‖2 = 1√

m
respectively and thus for all j ∈ [m] the product 〈p,uj〉 〈vj ,y〉 is subexponential with

norm at most C′

m dist
(
B̂, B̂∗

)
, for some constant C ′. Note that

E [〈p,uj〉 〈v,y〉] = p>
(
B̂∗>

(
Id − B̂B̂>

)
B̂
)

y = 0 (39)
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and thus we can use Bernstein’s inequality to bound the sum of m zero mean subexponential random variables,
for any fixed pair p,y ∈ Nk:

P

(
m∑
i=1
〈p,uj〉 〈vj ,y〉 ≥ s

)
≤ exp

−c2 min

 s2m2

dist2
(
B̂, B̂∗

) , sm

dist
(
B̂, B̂∗

)

 (40)

≤ exp

−c2mmin

 s2

dist2
(
B̂, B̂∗

) , s

dist
(
B̂, B̂∗

)

 (41)

for constant c2. Thus taking Union Bound over all the point in the net we derive

P

∀p,y ∈ Nk, 2
m∑
j=1
〈p,uj〉 〈vj ,y〉 ≥ 2s

 ≤ 92k exp

−c2mmin

 s2

dist2
(
B̂, B̂∗

) , s

dist
(
B̂, B̂∗

)


(42)

Since m > Ck2 log(N), by setting s = dist
(
B̂, B̂∗

)√
Ck2 log(N)

4m and (38) we obtain

P

(
1
m

∥∥∥(B̂>X>i
)

Xi

(
B̂B̂> − Id

)
B̂∗
∥∥∥

2
≥ dist

(
B̂, B̂∗

)√Ck2 log(N)
m

)
≤ 92k exp

−c2m s2

dist2
(
B̂, B̂∗

)


(43)
≤ 92k exp

(
−C · c2mk2 log(N)

)
(44)

≤ exp
(
−120k2 log(N)

)
(45)

for sufficiently large C. Using Union Bound again over all participating clients we get

P

(
∀i ∈ [n] ‖Hi‖2 ≤ dist

(
B̂, B̂∗

)√Ck2 log(N)
m

)
≥ 1− n exp

(
−120k2 log(N)

)
(46)

≥ 1− exp
(
−115k2 log(N)

)
(47)

The above also implies

P

(
1
n

n∑
i=1
‖Hi‖22 ≤ Cdist

2
(
B̂, B̂∗

) k2 log(N)
m

)
≥ 1− exp

(
−115k2 log(N)

)
(48)

P

(
k

n
‖W∗‖22

n∑
i=1
‖Hi‖22 ≤ C ‖W

∗‖22 dist
2
(
B̂, B̂∗

) k3 log(N)
m

)
≥ 1− exp

(
−115k2 log(N)

)
(49)

Finally notice that

n∑
i=1
‖Hiw∗i ‖

2
2 ≤

n∑
i=1
‖Hi‖22 k ≤

‖W∗‖2F
n

n∑
i=1
‖Hi‖22 ≤

k

n
‖W∗‖22

n∑
i=1
‖Hi‖22 , (50)

where we used Assumption (4.6) and the fact that the rank of W∗ is k. Combining this with (49) and
choosing sufficiently large c we derive the result.

Building on the previous lemmas we can now bound the norm of Fi.
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Lemma A.6. Let δ := c
k3/2
√

log(N)√
m

for some absolute constant c and for all i ∈ [n] let Fi given by (24).
Further let matrix F ∈ Rn×k such that its rows are the concatenation of Fi’s. Then with probability at least
1− exp

(
−110k2 log(N)

)
we have

∀i ∈ [n] ‖Fi‖2 ≤
δ

1− δ dist
(
B̂, B̂∗

)
‖w∗i ‖2 , (51)

‖F‖F ≤
δ

1− δ dist
(
B̂, B̂∗

)
‖W∗‖2 (52)

Proof.

‖Fi‖22 ≤

∥∥∥∥∥
(

1
m

B̂>X>i XiB̂
)−1

∥∥∥∥∥
2

2

‖Hi‖22 ‖w
∗
i ‖

2
2 (53)

≤ δ2

(1− δ)2 · dist
2
(
B̂, B̂∗

)
‖w∗i ‖

2
2 (54)

which holds for all i ∈ [n] with probability at least 1− exp
(
−110k2 log(N)

)
by using Union Bound on the

failure probability of (28) and (47). Similarly, we have

‖F‖2F =
n∑
i=1
‖Fi‖22 ≤

m∑
i=1

∥∥∥∥∥
(

1
m

B̂>X>i XiB̂
)−1

∥∥∥∥∥
2

2

‖Hiw∗i ‖
2
2 (55)

≤ 1
(1− δ)2

m∑
i=1
‖Hiw∗i ‖

2
2 (56)

≤ δ2

(1− δ)2 · dist
2
(
B̂, B̂∗

)
‖W∗‖22 (57)

which holds with probability at least 1− exp
(
−110k2 log(N)

)
taking Union Bound on the failure probability

on (28) and (36).

We now turn our attention on deriving a bound for ‖Gi‖2.

Lemma A.7. Let δ := c
k3/2
√

log(N)√
m

for some absolute constant c and for all i ∈ [n] let Gi given by (25).
Further let matrix G ∈ Rn×k such that its rows are the concatenation of Gi’s. Then with probability at least
1− exp

(
−110k2 log(N)

)
we have

∀i ∈ [n] ‖Gi‖2 ≤
δ

1− δ σ
2, (58)

‖G‖F ≤
δ

1− δ
√
nσ2 (59)

Proof. Notice that we can write

Gi =
(

1
m

B̂>X>i XiB̂
)−1 1

m
B̂>X>i Zi =

(
1
m

B̂>X>i XiB̂
)−1 1

m

m∑
i=1

zji B̂
>xji , (60)

and since zji ∼ N
(
0, σ2) we can conclude that for all i, j, zji B̂>xji is an i.i.d. zero mean subexponential with

norm at most C ′2σ2 ˆ‖B‖2 = C ′2σ
2 for some constant C2. Once again we denote by Sk−1 the unit sphere in k

dimensions and by Nk the 1/4-net with cardinality 9k. Using Bernstein’s inequality and Union Bound over
all the points on the net we follow the derivations from Lemma A.5 to get

P

(∥∥∥∥∥ 1
m

m∑
i=1

zji B̂
>xji

∥∥∥∥∥
2

≥ 2s
)
≤ 9k+1 exp

(
−c3mmin

{
s2

σ4 ,
s

σ2

})
(61)
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Since m > C2k
2 log(N), by setting s = σ2

√
C2k2 log(N)

4m we derive

P

(∥∥∥∥∥ 1
m

m∑
i=1

zji B̂
>xji

∥∥∥∥∥
2

≥ σ2

√
C2k2 log(N)

m

)
≤ 9k+1 exp

(
−c3m

s2

σ4

)
(62)

≤ 9k+1 exp
(
−C2 · c3k2 log(N)

)
(63)

≤ exp
(
−115k2 log(N)

)
(64)

for sufficiently large C2. Choosing c large enough and taking Union Bound over all i ∈ [n] we can obtain

P

(
∀i ∈ [n]

∥∥∥∥∥ 1
m

m∑
i=1

zji B̂
>xji

∥∥∥∥∥
2

≤ σ2δ

)
≤ 1− n exp

(
−115k2 log(N)

)
(65)

≤ 1− exp
(
−113k2 log(N)

)
(66)
(67)

Finally taking Union Bound over the failure probabilities of (28) and (67) we get

∀i ∈ [n] ‖Gi‖2 ≤

∥∥∥∥∥
(

1
m

B̂>X>i XiB̂
)−1

∥∥∥∥∥
2

∥∥∥∥∥ 1
m

m∑
i=1

zji B̂
>xji

∥∥∥∥∥
2

≤ δ

1− δ σ
2 (68)

with probability at least 1− n exp
(
−110k2 log(N)

)
. It follows that with the same probability

‖G‖2F =
n∑
i=1
‖Gi‖22 ≤ n

(
δ

1− δ

)2
σ4 (69)

For all i ∈ [n] we define qi := B̂w+
i − B̂∗w∗i . The following lemma provides upper bounds on the norms of

w+
i and qi

Lemma A.8. Let δ := c
k3/2
√

log(N)√
m

for some absolute constant c and δ̂ = δ/(1− δ). Then with probability
at least 1− exp

(
−105k2 log(N)

)
we have

∀i ∈ [n]
∥∥w+

i

∥∥
2 ≤ 2

√
k + σ2δ̂ (70)

Further with probability at least 1− exp
(
−105k2 log(N)

)
we have

∀i ∈ [n] ‖qi‖2 ≤ 2
√
k · dist

(
B̂, B̂∗

)
+ σ2δ̂ (71)

Proof. ∥∥w+
i

∥∥
2 ≤

∥∥∥B̂>∥∥∥
2

∥∥∥B̂∗∥∥∥
2
‖w∗i ‖2 + ‖Fi‖2 + ‖Gi‖2 (72)

≤ ‖w∗i ‖2 + δ̂ ‖w∗i ‖2 · dist
(
B̂, B̂∗

)
+ δ̂σ2 (73)

≤ 2
√
k + δ̂σ2 (74)

where the first inequality comes from (20) and the third from Assumption 4.6. For the second inequality
we take Union Bound over the failure probability of (51) and (58) and thus the above result holds with
probability at least 1− exp

(
−107k2 log(N)

)
. Taking Union Bound for all i ∈ [n] we get that with probability

at least 1− exp
(
−105k2 log(N)

)
∀i ∈ [n]

∥∥w+
i

∥∥
2 ≤ 2

√
k + σ2δ̂ (75)
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and the first result of the lemma follows. For the second part we have

‖qi‖2 =
∥∥∥B̂w+

i − B̂∗w∗i
∥∥∥

2
≤
∥∥∥B̂B̂>B̂∗w∗i + B̂Fi + B̂Gi − B̂∗w∗i

∥∥∥
2

(76)

≤
∥∥∥(B̂B̂> − Id

)
B̂∗w∗i

∥∥∥
2

+
∥∥∥B̂Fi

∥∥∥
2

+
∥∥∥B̂Gi

∥∥∥
2

(77)

≤
∥∥∥B̂⊥B̂∗

∥∥∥
2
‖w∗i ‖2 + ‖Fi‖2 + ‖Gi‖2 (78)

≤ dist
(
B̂, B̂∗

)
‖w∗i ‖2 + dist

(
B̂, B̂∗

)
δ̂ ‖w∗i ‖2 + σ2δ̂ (79)

≤ dist
(
B̂, B̂∗

)
2
√
k + σ2δ̂ (80)

where the first inequality comes from (20). For the forth inequality we take Union Bound over the failure
probability of (51) and (58) and thus the above result holds with probability at least 1− exp

(
−107k2 log(N)

)
.

Taking Union Bound for all i ∈ [n] we get that with probability at least 1− exp
(
−105k2 log(N)

)
∀i ∈ [n] ‖qi‖2 ≤ 2

√
k · dist

(
B̂, B̂∗

)
+ σ2δ̂ (81)

Lemma A.9. Let δ := c
k3/2
√

log(N)√
m

for some absolute constant c and δ̂ = δ/(1− δ). Then with probability
at least 1− exp (−105d)− exp

(
−105k2 log(N)

)
we have∥∥∥∥∥ 1

mn

n∑
i=1

X>i Ziw+>
i

∥∥∥∥∥
2

≤ c ·
σ2
(√

k + δ̂σ2
)√

d
√
mn

(82)

Proof. Let Sd−1,Sk−1 denote the unit spheres in d and k dimensions and Nd,Nk the 1/4-nets of cardinality
9d and 9k, respectively. By equation 4.13 in Vershynin (2018) we have∥∥∥∥∥ 1

mn

n∑
i=1

X>i Ziw+>
i

∥∥∥∥∥
2

≤ 2 max
p∈Nd,y∈Nk

p>
(

n∑
i=1

1
mn

X>i Ziw+>
i

)
y (83)

=≤ 2 max
p∈Nd,y∈Nk

p>
 n∑
i=1

m∑
j=1

zji
mn

xjiw
+>
i

y (84)

=≤ 2 max
p∈Nd,y∈Nk

n∑
i=1

m∑
j=1

(
zji
mn

〈
xji ,p

〉 〈
w+
i ,y

〉)
(85)

Notice that for any fixed p,y and ∀i ∈ [n], j ∈ [m] the random variables zj
i

mn

〈
xji ,p

〉 〈
w+
i ,y

〉
are i.i.d. zero

mean subexponentials with norm at most C′3σ
2‖w+

i ‖2
mn , for some absolute constant C ′3. Conditioning on the

event

E1 :=
n⋂
i=1

{∥∥w+
i

∥∥
2 ≤ 2

√
k + δ̂σ2

}
, (86)

which holds with probability at least 1 − exp
(
−105k2 log(N)

)
by Lemma A.8, we can invoke Bernstein’s

inequality to get

P

 n∑
i=1

m∑
j=1

zji
mn

〈
xji ,p

〉 〈
w+
i ,y

〉
≥ s
∣∣∣ E1
 ≤ exp

−c4mnmin

 s2

σ4
(

2
√
k + σ2δ̂

)2 ,
s

σ2
(

2
√
k + σ2δ̂

)


(87)
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Since m > d·C3
n0
≥ d·C3

n by setting s = σ2(2
√
k+δ̂σ2)√d·C3

8
√
mn

the above quantity simplifies as follows

P

 n∑
i=1

m∑
j=1

zji
mn

〈
xji ,p

〉 〈
w+
i ,y

〉
≥
σ2
(

2
√
k + δ̂σ2

)√
d · C3

√
mn

∣∣∣∣∣∣ E1
 ≤ exp

−c4mn s2

σ4
(

2
√
k + σ2δ̂

)2

 (88)

≤ exp (−C3 · c4 · d) (89)
≤ exp (−110d) (90)

for C3 large enough. Taking Union Bound over all points p,y on the Nd,Nk and using (85) we derive

P

∥∥∥∥∥ 1
mn

n∑
i=1

X>i Ziw+>
i

∥∥∥∥∥
2

≥
√
C3
σ2
(√

k + δ̂σ2
)√

d
√
mn

∣∣∣∣∣∣ E1
 ≤ 9d+k exp (−110d) (91)

≤ exp (−105d) (92)

and removing the conditioning on E1 we get

P

∥∥∥∥∥ 1
mn

n∑
i=1

X>i Ziw+>
i

∥∥∥∥∥
2

≥
√
C3
σ2
(√

k + δ̂σ2
)√

d
√
mn

 ≤ exp (−105d) + P
(
EC1
)

(93)

≤ exp (−105d) + exp
(
−105k2 log(N)

)
(94)

Choosing c large enough and taking the complementary event derives the result.

Lemma A.10. Let δ := c
k3/2
√

log(N)√
m

for some absolute constant c and δ̂ = δ/(1− δ). Then with probability
at least 1− exp (−100d)− exp

(
−100k2 log(N)

)
we have

∥∥∥∥∥ 1
n

n∑
i=1

(
1
m

X>i Xi

(
B̂w+

i − B̂∗w∗i
)
−
(
B̂w+

i − B̂∗w∗i
))

w+>
i

∥∥∥∥∥
2

≤ c ·

√
d

(
dist

(
B̂, B̂∗

)
k +
√
kδ̂σ2 +

(
δ̂σ2
)2
)

√
mn

(95)

Proof. Let us define the event

E2 :=
n⋂
i=1

{∥∥w+
i

∥∥
2 ≤ 2

√
k + δ̂σ2

⋂
‖qi‖2 ≤ dist

(
B̂, B̂∗

)
2
√
k + δ̂σ2

}
, (96)

which happens with probability at least 1− exp
(
−100k2 log(N)

)
by Union Bound and Lemma A.8. For the

rest of this proof we work conditioning on event E2. Recall that qi := B̂w+
i − B̂∗w∗i and thus we can write

1
n

n∑
i=1

(
1
m

X>i Xi

(
B̂w+

i − B̂∗w∗i
)
−
(
B̂w+

i − B̂∗w∗i
))

w+>
i = 1

n

(
n∑
i=1

X>i Xiqiw+>
i −

n∑
i=1

qiw+>
i

)
(97)

= 1
n

 1
m

n∑
i=1

m∑
j=1

〈
xji ,qi

〉
xjiw

+>
i −

n∑
i=1

qiw+>
i


(98)
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Let Sd−1,Sk−1 denote the unit spheres in d and k dimensions and Nd,Nk the 1/4-nets of cardinality 9d and
9k, respectively. By equation 4.13 in Vershynin (2018) we have

∥∥∥∥∥∥ 1
n

n∑
i=1

m∑
j=1

1
m

〈
xji ,qi

〉
xjiw

+>
i − 1

n

n∑
i=1

qiw+>
i

∥∥∥∥∥∥
2

≤ 2 max
p∈Nd,y∈Nk

1
n

p>
 n∑
i=1

m∑
j=1

1
m

〈
xji ,qi

〉
xjiw

+>
i − 1

n

n∑
i=1

qiw+>
i

y

(99)

= 2 max
p∈Nd,y∈Nk

1
mn

n∑
i=1

m∑
j=1

(〈
xji ,qi

〉〈
p,xji

〉 〈
w+
i ,y

〉
− 〈p,qi〉

〈
w+
i ,y

〉)
(100)

Notice that for any fixed p,y the products
〈
xji ,qi

〉
are i.i.d. subgaussians with norm at most

c̃1 ‖qi‖ and
〈
p,xji

〉
are i.i.d. subgaussians with norm at most c̃2 ‖p‖2 = c̃2. Hence un-

der the event E2 the product 1
mn

〈
xji ,qi

〉〈
p,xji

〉 〈
w+
i ,y

〉
are subexponentials with norm at most

C′4
mn

(
dist

(
B̂, B̂∗

)
k +
√
kδ̂σ2 +

(
δ̂σ2
)2
)
, for some constant C ′4. Also note that

E
[〈

xji ,qi
〉〈

p,xji
〉 〈

w+
i ,y

〉
− 〈p,qi〉

〈
w+
i ,y

〉]
= 0 (101)

and thus applying Bernstein’s inequality we get

P

 1
mn

n∑
i=1

m∑
j=1

〈
xji ,qi

〉〈
p,xji

〉 〈
w+
i ,y

〉
− 1
n

n∑
i=1
〈p,qi〉

〈
w+
i ,y

〉
≥ s

∣∣∣∣∣ E2


≤ exp

−c5 ·mnmin


s2(
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(
B̂, B̂∗

)
k +
√
kδ̂σ2 +

(
δ̂σ2
)2
)2 ,

s(
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(
B̂, B̂∗

)
k +
√
kδ̂σ2 +

(
δ̂σ2
)2
)



(102)

Since m > d·C4
n0
≥ d·C4

n by setting s =
√
C4·d

(
dist(B̂,B̂∗)k+

√
kδ̂σ2+(δ̂σ2)2)

2
√
mn

and taking Union Bound over all
p ∈ Nd,y ∈ Nk we derive

P


∥∥∥∥∥ 1
n

n∑
i=1

(
1
m

X>i Xi

(
B̂w+

i − B̂∗w∗i
)
−
(
B̂w+

i − B̂∗w∗i
))

w+>
i

∥∥∥∥∥
2

≥

√
C4 · d

(
dist

(
B̂, B̂∗

)
k +
√
kδ̂σ2 +

(
δ̂σ2
)2
)

√
mn

∣∣∣∣∣∣∣∣ E2


≤ 9d+k exp

 −c5 ·mns2(
dist

(
B̂, B̂∗

)
k +
√
kδ̂σ2 +

(
δ̂σ2
)2
)2


≤ 9d+k exp (−C4 · c5 · d) (103)
≤ 9d+k exp (−120d) (104)
≤ exp (−100d) (105)
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choosing a large enough constant C4. Recall that P
(
EC2
)
≤ exp

(
−100k2 log(N)

)
. Hence by removing the

conditioning on E2 we get that with probability at least 1− exp (−100d)− exp
(
−100k2 log(N)

)
∥∥∥∥∥ 1
n

n∑
i=1

(
1
m

X>i Xi

(
B̂w+

i − B̂∗w∗i
)
−
(
B̂w+

i − B̂∗w∗i
))

w+>
i

∥∥∥∥∥
2

≤ c ·

√
d

(
dist

(
B̂, B̂∗

)
k +
√
kδ̂σ2 +

(
δ̂σ2
)2
)

√
mn

(106)

for sufficiently large c.

Having set all the building blocks we now proceed to the proof of Theorem 4.7.
Theorem 4.7. Let Assumptions 4.3-4.6 hold. Further, let the following inequalities hold for the number of
participating nodes and the batch size respectively, n ≥ n0 and m ≥ c0

(1+σ2)k3κ4

E2
0

max {log(N), d/n0}, for
some absolute constant c0. Then FedRep-SRPFL with stepsize η ≤ 1

8σ̄2
max,∗

, satisfies the following contraction
inequality:

dist
(
Bt+1,B∗

)
≤ dist

(
Bt,B∗

)√
1− a+ a√

n
n0

(1− a)
, (10)

w.p. at least 1− T · exp
(
−90 min

{
d, k2 log(N)

})
, where a = 1

2ηE0σ̄
2
min,∗ ≤ 1

4 .

Proof. First let us recall the definition of δ := c
k3/2
√

log(N)√
m

for some absolute constant c and δ̂ = δ/(1− δ).
Further notice that for our choice of m and sufficiently large c0 we have the following useful inequality

δ̂ = δ

1− δ ≤ 2δ ≤ E0

20 · κ2 ·
1

1 + σ2 ≤
1
20 (107)

From the update scheme of our algorithm (18) we have

B+ = B̂− η

mn

(
n∑
i=1

X>i XiB̂w+
i w+>

i −
n∑
i=1

X>i XiB̂∗w∗iw+>
i −

n∑
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X>i Ziw+>
i

)
(108)

= B̂− η

n

(
n∑
i=1

(
1
m

X>i Xi

(
B̂w+

i − B̂∗w∗i
)
−
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B̂w+
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))

w+>
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)
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n

n∑
i=1

(
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)

w+>
i + η

n

n∑
i=1

1
m

X>i Ziw+>
i (109)

where we added and subtracted terms. Multiplying both sides by B̂∗>⊥ we get

B̂∗>⊥ B+ = B̂∗>⊥ B̂− η
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1
m

X>i Ziw+>
i (110)

= B̂∗>⊥ B̂
(
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η

n

n∑
i=1
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i w+>

i

)
+ η
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)
(111)

26



Published in Transactions on Machine Learning Research (10/2023)

where the second equality holds since B̂∗>⊥ B̂∗ = 0. Recall that from the QR decomposition of B+we have
B+ = B̂+R+. Hence multiplying by (R+)−1 and taking both sides the norm we derive

dist
(
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)
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η

n
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)∥∥∥∥∥
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∥∥∥

2
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∥∥∥∥∥
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2

+
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∥∥∥

2

(112)

Let us define

A1 := dist
(
B̂, B̂∗

)∥∥∥∥∥Ik − η

n

n∑
i=1

w+
i w+>

i

∥∥∥∥∥
2

(113)

A2 :=

∥∥∥∥∥ ηnB̂∗>⊥
n∑
i=1

1
m

X>i Ziw+>
i

∥∥∥∥∥
2

(114)

A3 :=

∥∥∥∥∥ ηnB̂∗>⊥

(
n∑
i=1

(
1
m

X>i Xi

(
B̂w+

i − B̂∗w∗i
)
−
(
B̂w+

i − B̂∗w∗i
))

w+>
i

)∥∥∥∥∥
2

(115)

so that the following inequality holds

dist
(
B̂+, B̂∗

)
≤ (A1 +A2 +A3)

∥∥∥(R+)−1
∥∥∥

2
(116)

For the rest of the proof we will work conditioning on the intersection of the events

E2 :=
n⋂
i=1

{∥∥w+
i

∥∥
2 ≤ 2

√
k + δ̂σ2

⋂
‖qi‖2 ≤ dist

(
B̂, B̂∗

)
2
√
k + δ̂σ2

}
(117)

E3 :=
{
‖F‖F ≤ dist

(
B̂, B̂∗

)
δ̂ ‖W∗‖2

⋂
‖G‖F ≤ δ̂

√
nσ2

}
(118)

E4 :=


∥∥∥∥∥ 1
mn

n∑
i=1

X>i Ziw+>
i

∥∥∥∥∥
2

≤ c ·
σ2
(√

k + δ̂σ2
)√

d
√
mn

 (119)

E5 :=


∥∥∥∥∥ 1
n

n∑
i=1

(
1
m

X>i Xi

(
B̂w+

i − B̂∗w∗i
)
−
(
B̂w+

i − B̂∗w∗i
))

w+>
i

∥∥∥∥∥
2

≤
c
√
d

(
dist

(
B̂, B̂∗

)
k +
√
kδ̂σ2 +

(
δ̂σ2
)2
)

√
mn


(120)

which happens with probability at least 1− exp (−90d)− exp
(
−90k2 log(N)

)
by Union Bound on the failure

probability of (52), (59), (82), (95) and (96).

We will now provide bounds for each of the terms of interest in (116), starting from A1. Notice that by (26)
we have

λmax
(
W+W+) =

∥∥W+∥∥2
2 =

∥∥∥W∗B̂∗B̂ + F + G
∥∥∥2

2
(121)

≤ 2 ‖W∗‖22 + 4 ‖F‖22 + 4 ‖G‖22 (122)

≤ 2 ‖W∗‖22 + dist
(
B̂, B̂∗

)
4δ̂2 ‖W∗‖22 + 4δ̂2σ4n (123)

≤ 4
(
‖W∗‖22 + n

)
(124)

≤ 4n
(
σ̄2

max,∗ + 1
)

(125)
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where in the last inequality we use the fact that ‖W∗‖2 =
√
n · σ̄max,∗. Since η <

(
σ̄2

max,∗ + 1
)−1 the matrix

Ik − η
nW+>W+ is positive definite. Thus we have∥∥∥Ik − η

n
W+>W+

∥∥∥
2
≤ 1− η

n
λmin

(
W+>W+) (126)

≤ 1− η

n
λmin

((
W∗B̂∗B̂ + F + G

)> (
W∗B̂∗B̂ + F + G

))
(127)

≤ 1− η

n

(
σ2

min

(
W∗B̂∗B̂

)
− σ2

min(F)− σ2
min(G)

)
+ 2η

n

(
σmax

(
F>W∗B̂∗>B̂

)
+ σmax

(
F>G

)
+ σmax

(
G>W∗B̂∗>B̂

))
(128)

≤ 1− η

n

(
σ2

min (W∗)σ2
min

(
B̂∗>B̂

)
+ 2

∥∥∥B̂∗>B̂
∥∥∥

2

(
σmax

(
F>W∗)+ σmax

(
G>W∗)))

+ 2η
n
σmax(F)σmax(G) (129)

≤ 1− η · σ̄2
min,∗ · σ2

min

(
B̂∗>B̂

)
+ 2η

n
(‖F‖2 + ‖G‖2) ‖W∗‖2 + 2η

n
(‖F‖2 · ‖G‖2) (130)

where we used that the norms of B̂∗ and B̂ are 1 since the matrices are orthonormal and σ̄min,∗ ≤ σmin(W∗).
Recall that we operate under E3 and thus we can further write∥∥∥Ik − η

n
W+>W+

∥∥∥
2
≤ 1− η · σ̄2

min,∗ · σ2
min

(
B̂∗>B̂

)
+ 2η

n

(
dist

(
B̂, B̂∗

)
δ̂ ‖W∗‖2 +

√
nδ̂σ2

)
‖W∗‖2

+ 2η
n

(
dist

(
B̂, B̂∗

)
δ̂2σ2√n ‖W∗‖2

)
(131)

≤ 1− η · σ̄2
min,∗ · σ2

min

(
B̂∗>B̂

)
+ 2η

(
δ̂
‖W∗‖22
n

+ δ̂σ2 ‖W∗‖2√
n

+ δ̂2σ4 ‖W∗‖√
n

)
(132)

≤ 1− η · σ̄2
min,∗ · σ2

min

(
B̂∗>B̂

)
+ 3η

(
E0σ̄

2
min,∗

20σ̄2
max,∗

· σ̄2
max,∗

)
(133)

≤ 1− η · σ̄2
min,∗ · σ2

min

(
B̂∗>B̂

)
+ 1

6ηE0σ̄
2
min,∗ (134)

where we upper bound dist
(
B̂, B̂∗

)
by 1, δ̂ ≤ E0

20·κ2 · 1
1+σ2 and use Assumption 4.4 in the third inequality.

Further by the definition of E0 := 1− dist2
(
B̂0, B̂∗

)
≤ σ2

min

(
B̂∗>, B̂

)
we have

∥∥∥Ik − η

n
W+>W+

∥∥∥
2
≤ 1− ηE0σ̄

2
min,∗ + 1

6ηE0σ̄
2
min,∗ (135)

and it follows immediately that

A1 ≤ dist
(
B̂, B̂∗

)(
1− ηE0σ̄

2
min,∗ + 1

6ηE0σ̄
2
min,∗

)
(136)

Further since we operate under E4 (119) and
∥∥∥B̂∗⊥∥∥∥2

= 1 we have

A2 ≤ ηcσ2
(√

k + 1
) √d√

mn
(137)

and since we operate under E5 (120) we obtain

A3 ≤ ηc
(
dist

(
B̂, B̂∗

)
k +
√
k + 1

) √d√
mn

(138)
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Combining (116), (136), (137) and (138) we get

dist
(
B̂+, B̂∗

)
≤ dist

(
B̂, B̂∗

)(
1− 5

6ηE0σ̄
2
min,∗ + ηck

√
d√
mn

)
·
∥∥∥(R+)−1

∥∥∥
2

+ ηc
(√

k + 1
) (
σ2 + 1

) √d√
mn
·
∥∥∥(R+)−1

∥∥∥
2

(139)

The last part of the proof focuses on bounding
∥∥∥(R+)−1

∥∥∥
2
.

Let us define

S :=
n∑
i=1

1
m

X>i Xi

(
B̂w+

i − B̂∗w∗i
)

w+>
i (140)

E :=
n∑
i=1

1
m

X>i Ziw+>
i (141)

and hence (108) takes the form

B+ = B̂− η

n
S + η

n
E (142)

and also

B+>B+ = B̂>B̂− η

n

(
B̂>S + S>B̂

)
+ η

n

(
B̂>E + E>B̂

)
+ η2

n2 S>S− η2

n2

(
E>S + S>E

)
+ η2

n2 E>E (143)

= Ik −
η

n

(
B̂>S + S>B̂

)
+ η

n

(
B̂>E + E>B̂

)
− η2

n2

(
E>S + S>E

)
+ η2

n2 E>E + η2

n2 S>S (144)

By Weyl’s inequality and since R+>R+ = B̂+>B̂+ we derive

σ2
min
(
R+) ≥ 1− η

n
λmax

(
B̂>S + S>B̂

)
− η

n
λmax

(
B̂>E + E>B̂

)
− η2

n2λmax
(
E>S + S>E

)
(145)

Let us further define

R1 := η

n
λmax

(
B̂>S + S>B̂

)
(146)

R2 := η2

n2λmax
(
E>S + S>E

)
(147)

R3 := η

n
λmax

(
B̂>E + E>B̂

)
(148)

So that we can succinctly rewrite the above inequality as follows

σ2
min
(
R+) ≥ 1−R1 −R2 −R3 (149)

We work to bound separately each of the three terms.

R1 = 2η
n

max
p:‖p‖2=1

p>B̂>Sp (150)

= max
p:‖p‖2=1

2η
n

p>B̂>
[(

n∑
i=1

(
1
m

X>i Xi

(
B̂w+

i − B̂∗w∗i
)
−
(
B̂w+

i − B̂∗w∗i
))

w+>
i

)]
p

+ max
p:‖p‖2=1

2η
n

p>B̂>
[

n∑
i=1

(
B̂w+

i − B̂∗w∗i
)

w+>
i

]
p (151)
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and since we operate under E5 (120) the above simplifies to

R1 ≤ 2η
∥∥∥B̂∥∥∥

2
c
(
dist

(
B̂, B̂∗

)
k +
√
k + 1

) √d√
mn

+ max
p:‖p‖2=1

2η
n

p>B̂>
[

n∑
i=1

(
B̂w+

i − B̂∗w∗i
)

w+>
i

]
p (152)

≤ 3ηc
(
dist

(
B̂, B̂∗

)
k +
√
k
) √d√

mn
+ max

p:‖p‖2=1

2η
n

p>B̂>
[

n∑
i=1

(
B̂w+

i − B̂∗w∗i
)

w+>
i

]
p (153)

We focus on the second term and using (20) we get

2η
n

p>B̂>
[

n∑
i=1

(
B̂w+

i − B̂∗w∗i
)

w+>
i

]
p = 2η

n
· tr
[

n∑
i=1

(
B̂w+

i − B̂∗w∗i
)

w+>
i pp>B̂>

]
(154)

= 2η
n
· tr
[

n∑
i=1

(
B̂w+

i − B̂∗w∗i
)(

B̂>B̂∗w∗i + Fi + Gi

)>
pp>B̂>

]
(155)

We bound each term separately and to this end we define

T1 := 2η
n
· tr
[

n∑
i=1

(
B̂w+

i − B̂∗w∗i
)

w∗>i B̂∗>B̂pp>B̂>
]

(156)

T2 := 2η
n
· tr
[

n∑
i=1

(
B̂w+

i − B̂∗w∗i
)

F>i pp>B̂>
]

(157)

T3 := 2η
n
· tr
[

n∑
i=1

(
B̂w+

i − B̂∗w∗i
)

G>i pp>B̂>
]

(158)

such that (155) can be expressed as

2η
n

p>B̂>
[

n∑
i=1

(
B̂w+

i − B̂∗w∗i
)

w+>
i

]
p = T1 + T2 + T3 (159)

Further expanding T1 we have

T1 = 2η
n
tr
[

n∑
i=1

(
B̂B̂>B̂∗w∗iw∗>i + B̂Fiw∗>i + B̂Giw∗>i − B̂∗w∗iw∗>i

)
B̂∗>B̂pp>B̂>

]
(160)

= 2η
n
tr
[
B̂>

(
B̂B̂> − Id

) n∑
i=1

(
B̂∗>w∗iw∗>i

)
B̂∗>B̂pp>

]
+ 2η

n
tr
[

n∑
i=1

(
B̂Fiw∗>i

)
B̂∗>B̂pp>B̂>

]

+ 2η
n
tr
[

n∑
i=1

(
B̂Giw∗>i

)
B̂∗>B̂pp>B̂>

]
(161)

= 2η
n
tr
[
B̂>B̂

(
F> + G>

)
W∗B̂∗>B̂pp>

]
(162)

≤ 2η
n

(‖F‖F + ‖G‖F ) ‖W∗‖2 (163)

where in the first equality we expand w+
i via (20) and in the third equality we use that B̂>

(
B̂B̂> − Id

)
= 0

and F> =
n∑
i=1

Fiw∗>i , G> =
n∑
i=1

Giw∗>i . The inequality is obtained by noticing that the norms of the

orthonormal B̂, B̂∗ is one and also
∥∥pp>

∥∥
2 ≤ 1. Conditioning on E3 (118) we can further simplify as follows

T1 ≤
2η
n

(
dist

(
B̂, B̂∗

)
δ̂ ‖W∗‖22 + δ̂σ2√n ‖W‖2

)
(164)

≤ 1
10ηE0σ̄

2
min,∗ (165)
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We now turn our attention to T2

T2 = 2η
n
· tr
[

n∑
i=1

(
B̂B̂>B̂∗w∗i + B̂Fi + B̂Gi − B̂∗w∗i

)
F>i pp>B̂>

]
(166)

= 2η
n
tr
[
B̂>

(
B̂B̂> − Id

) n∑
i=1

(
B̂∗w∗i

)
F>i pp>

]
+ 2η

n
tr
[
B̂>B̂

n∑
i=1

FiF>i pp>
]

+ 2η
n
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[
B̂>B̂

n∑
i=1

GiF>i pp>
]

(167)

= 2η
n
tr
[
B̂>B̂

(
F>F + G>F

)
pp>

]
(168)

≤ 2η
n

(
‖F‖2F + ‖G‖F ‖F‖F

)
(169)

where in the third equality we used that B̂>
(
B̂B̂> − Id

)
= 0 and in the forth that the norms of the

orthonormal matrices is 1 as well as the norm of pp>. Following the same calculations for T3 we get

T3 ≤
2η
n

(
‖G‖2F + ‖G‖F ‖F‖F

)
(170)

and thus summing the two terms we get the following

T2 + T3 ≤
2η
n

(‖F‖F + ‖G‖F )2 (171)

Again conditioning on E3 (118) we derive

T2 + T3 ≤
2η
n

(
δ̂
(
‖W∗‖2 +

√
nσ2))2

(172)

≤ 2ηδ̂2 (σ̄2
max,∗ + σ4) (173)

≤ 1
10ηE0σ̄

2
min,∗ (174)

Hence combining (153), (165) and (174) we get a bound for R1

R1 ≤ 3ηc
(
k +
√
k
) √d√

mn
+ 1

5ηE0σ̄
2
min,∗ (175)

≤ 6η · c · k
√
d√
mn

+ 1
5ηE0σ̄

2
min,∗ (176)

We work in similar fashion to derive the bound on R2

R2 = η2

n2λmax
(
E>S + S>E

)
(177)

= 2η2

n2 max
p:‖p‖2=1

p>S>Ep (178)

≤ 2η2

n2 max
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n∑
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(
1
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(
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)
−
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i

]
n∑
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(
1
m

X>i Ziw+>
i

)
p
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[

n∑
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(
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)
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i

]
n∑
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(
1
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X>i Ziw+>
i

)
p (179)

≤ 2η2

∥∥∥∥∥ 1
n
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1
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(
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i − B̂∗w∗i
)
−
(
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i

∥∥∥∥∥
2

·

∥∥∥∥∥ 1
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(
X>i Ziw+>

i

)∥∥∥∥∥
2

+ 2η2

n

∥∥∥∥∥
n∑
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(
B̂w+

i − B̂∗w∗i
)

w+>
i

∥∥∥∥∥
2

·

∥∥∥∥∥ 1
mn

n∑
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(
X>i Ziw+>

i

)∥∥∥∥∥
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(180)

(181)
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Since we work conditioning on the event E4
⋂
E5 we further derive

R2 ≤ 2η2

c
√
d

(
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(
B̂, B̂∗

)
k +
√
kδ̂σ2 +

(
δ̂σ2
)2
)

√
mn

 ·
cσ2

(√
k + δ̂σ2

)√
d

√
mn



+ 2η2

n

∥∥∥∥∥
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i − B̂∗w∗i
)
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i

∥∥∥∥∥
2

·

cσ2
(√

k + δ̂σ2
)√

d
√
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 (182)

≤ 3η2

(
ck

√
d√
mn

)(
c
√
kσ2

√
d√
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)
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n

n∑
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‖qi‖2

∥∥w+
i

∥∥
2

(
c
√
kσ2

√
d√
mn

)
(183)

And since we also condition on E2 (117) we finally get

R2 ≤ 3η2c2k
3
2σ2 d

mn
+ 2η2

n

n∑
i=1

(
2
√
k + δ̂σ2

)2
(
c
√
kσ2

√
d√
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)
(184)

≤ 3η2c2k
3
2σ2 d

mn
+ 9η2

(
ck

3
2σ2

√
d√
mn

)
(185)

The last term we need to bound is R3

R3 = η

n
λmax

(
E>B̂ + B̂>E

)
(186)

= 2η2

n2 max
p:‖p‖2=1

p>B̂>Ep (187)

≤ 2η
n

∥∥∥B̂∥∥∥
2

∥∥∥∥∥
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1
m

X>i Ziw+>
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∥∥∥∥∥
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(188)

≤ 2ηc ·
σ2
(√

k + δ̂σ2
)√

d
√
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(189)

≤ 3ηc
√
kσ2

√
d√
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Combining (149) with (176), (185) and (190) we derive
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√
d√
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d√
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2
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d√
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2
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where the last inequality holds since
√
mn ≥ c

√
d. We can now combine (139) and (193) to obtain the

contraction inequality
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We divide and multiply by n0 and using our bounds on m and n the previous inequality further simplifies,
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)
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1− 15ηck 3
2σ2

√
d√

mn0 · nn0

− 1
5ηE0σ̄

2
min,∗

−1/2

(195)

≤ dist
(
B̂, B̂∗

)(
1− 1

2ηE0σ̄
2
min,∗

)(
1− 1

2ηE0σ̄
2
min,∗

)−1/2
+
(√

n0

4nηE0σ̄
2
min,∗

)(
1− 1

2ηE0σ̄
2
min,∗

)−1/2

(196)

≤ dist
(
B̂, B̂∗

)√(
1− 1

2ηE0σ̄2
min,∗

)
+

( 1
2ηE0σ̄

2
min,∗

)√
n
n0

(
1− 1

2ηE0σ̄2
min,∗

) (197)

where in the second inequality we used that for our choices of m and n the following inequality holds
15ηck 3

2 (1 + σ2)
√
d√

mn0
≤ 1

10ηE0σ̄
2
min,∗. Taking Union Bound over the total number of iterations T we derive

the result.

Corollary A.11. Recall that our algorithm starts at stage 0 with n0 participating clients and doubles
the number of participating clients at every subsequent stage. Thus, by slightly abusing notation, we can
reformulate the contraction inequality of Theorem 4.7 at stage r as follows

dist+ ≤ dist
√

1− a+ a√
2r(1− a)

with a ≤ 1
4 (198)

B Appendix

In the second part of our analysis we compute the expected ‘Wall Clock Time’ of our proposed method
and compare it to the corresponding ‘Wall Clock Time’ of straggler-prone FedRep. We prove that when the
computational speeds are drawn from the exponential distribution with parameter λ and the communication
cost is given by C = c 1

λ , (for some constant c), then SRPFL guarantees a logarithmic speedup. Recall that in
Corollary A.11 we get the following simplified version of the contraction inequality

dist+ ≤ dist
√

1− a+ a√
2r(1− a)

with a ≤ 1
4 . (199)

For the rest of this section w.l.g. we assume that the clients are re-indexed at every stage so that the expected
computation times maintain a decreasing ordering i.e. ∀r E [T r1 ] ≤ E [T r2 ] ≤ ...,≤ E [T rN ]. For simplicity
henceforth we drop the stage index r. Notice that the decreasing ordering of the computation times in
combination with (199) imply that SRPFL initially benefits by including only few fast nodes in the training
procedure. However, as the distance diminishes the improvement guaranteed by the contraction inequality
becomes negligible and thus our method benefits by including slower nodes, thus decreasing the second term
of the r.h.s. of (199).

Let us denote by Xi the maximum distance for which the optimal number of participating nodes (for SRPFL)
is n0 · 2i. This definition immediately implies that X0 = +∞. To compute each Xi we turn our attention on
measuring the progress per unit of time achieved by SRPFL, when 2r · n0 nodes are utilized. This ratio at
stage r can be expressed as

dist+ − dist
√

1− a− a√
2r(1−a)

E [Tn02r ] + C . (200)
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Notice that by (199) the nominator captures the progress per round while the algorithm incurs E [Tn02r ]
computation and C communication cost. Similarly the ration when 2r+1 · n0 nodes are used is given by

dist+ − dist
√

1− a− a√
2r+1(1−a)

E [Tn02r+1 ] + C . (201)

Based on the above inequalities we can now compute the optimal doubling points (in terms of distance) and
thus the values of Xi’s. Subsequently, we compute the number of iterations SRPFL spends in every stage.
Lemma B.1. For all i let Xi denote the maximum distance for which the optimal number of nodes for SRPFL
is n0 · 2i. Then the following holds

∀i > 0 Xi = a√
2r(1− a)1−

√
1− a)

1 +
(E [Tn02r ] + C)

(
1− 1√

2

)
E [Tn02r+1 ]− E [Tn02r ]

 (202)

X0 = +∞

Further SRPFL spends at each stage r at most tr communication rounds such that

tr ≥
2 log

(√
2(E[Tn02r+1 ]−E[Tn02r ])
E[Tn02r ]−E

[
Tn02r−1

] )
log( 1

1−a )
. (203)

Proof. For each stage r let us compute the point where the transitioning between 2r · n0 and 2r+1 · n0 occurs.
That is the distance at which SRPFL benefits by doubling the number of participation nodes to 2r+1. Thus
equating the two ratios in (200) and (201) we get

Xr+1 −Xr+1
√

1− a− a√
2r(1−a)

E [Tn02r ] + C =
Xr+1 −Xr+1

√
1− a− a√

2r+1(1−a)

E [Tn02r+1 ] + C (204)

Xr+1 (E [Tn02r+1 ]− E [Tn02r ]) = a√
2r(1− a)(1−

√
1− a)

(
E [Tn02r+1 ]− 1√

2
E [Tn02r ] + C

(
1− 1√

2

))
(205)

Xr+1 = a√
2r(1− a)(1−

√
1− a)

1 +
(E [Tn02r ] + C)

(
1− 1√

2

)
E [Tn02r+1 ]− E [Tn02r ]

 (206)

Let us now compute the number of rounds tr (henceforth denoted by t) required in stage r. That is the
minimum number of iterations that SRPFL needs to decrease the distance from Xr to Xr+1 using only the
n02r fastest participating nodes. Thus, starting off at Xr and following (199) for t rounds we have

Xt
r ≤ Xr(

√
1− a)t +

t−1∑
i=0

a√
2r(1− a)

(
√

1− a)i (207)

As stated above we want to find the minimum number of rounds such that we reach the next doubling point
i.e. we want t large enough such that

Xr+1 ≥ Xr(
√

1− a)t +
t−1∑
i=0

a√
2r(1− a)

(
√

1− a)i (208)

≥ Xr(
√

1− a)t + a√
2r(1− a)

· 1−
√

1− at

1−
√

1− a
(209)
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where in the last inequality we use geometric series properties. We proceed to solve for t by rearranging and
using (202) and the fact that Xr >

a√
2r(1−a)(1−

√
1−a)

,

(
√

1− a)t ≤
√

2r(1− a)(1−
√

1− a)Xr+1 − a√
2r(1− a)(1−

√
1− a)Xr − a

(210)

≤

(E[Tn02r ]+C)
(

1− 1√
2

)
E[Tn02r+1 ]−E[Tn02r ]

√
2
(

(E
[
Tn02r−1

]
+C)
(

1− 1√
2

)
E[Tn02r ]−E

[
Tn02r−1

] + 1− 1√
2

) (211)

≤ E [Tn02r ]− E [Tn02r−1 ]
E [Tn02r+1 ]− E [Tn02r ]

(212)

(213)

taking the logarithm on both sides we derive the required amount of rounds

t ≥
2 log

(√
2(E[Tn02r+1 ]−E[Tn02r ])
E[Tn02r ]−E

[
Tn02r−1

] )
log( 1

1−a )
(214)

(215)

The following lemmas compute the ‘Wall Clock Time’ that SRPFL and FedRep require in order to achieve
target accuracy ε. As discussed in Section 4.1 for fair comparison we consider accuracy of the form

ε = ĉ
α√

N
n0

(1− α)
(
1−
√

1− α
) , with

√
2 > ĉ > 1. (216)

When ĉ takes values close to
√

2 we expect SRPFL to vastly outperform FedRep and as ĉ takes values close to
1 the performance gap diminishes.

Lemma B.2. Suppose at each stage the client’s computational times are i.i.d. random variables drawn from
the exponential distribution with parameter λ. Further, suppose that the expected communication cost per
round is C = c 1

λ , for some constant c. Finally, consider target accuracy ε given in (12). Then the expected
‘Wall Clock Time’ for SRPFL is upper bounded as follows

E [TSRPFL] ≤ logN
(

6(c+ 1) + 4 log( 1
ĉ−1 )

log( 1
1−a )

)
1
λ

(217)

Proof. First we upper bound the expected cost suffered by our method until the distance between the current
representation and the optimal representation becomes smaller than Xlog(N/n0), i.e. the cost corresponding to
the first log

(
N

2n0

)
stages of SRPFL (denoted by E [TSRPFL]) .
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E
[
T 1

SRPFL
]

=
log( N

2n0
)∑

i=1
ti (E [Tn02i ] + C) (218)

≤
log( N

2n0
)∑

i=1
2 (E [Tn02i ] + C) ·

log
(√

2
(
E
[
Tn02i+1

]
−E
[
Tn02i

])
E
[
Tn02i

]
−E
[
Tn02i−1

] )
log( 1

1−a )
(219)

≤
log( N

4n0
)∑

i=1
2 (E [Tn0·2i ] + C)

log

√2(E
[
TN

2

]
−E
[
TN

4

]
)

E
[
TN

4

]
−E
[
TN

8

] 
log( 1

1−a )

+ 2(E
[
TN/2

]
+ C)

log

√2(E[TN ]−E
[
TN

2

]
)

E
[
TN

2

]
−E
[
TN

4

] 
log( 1

1−a )
, (220)

where we used 214. Since the computational times of the clients come from the exponential distribution it is
straightforward to derive the following bounds

E [TN ]− E
[
TN/2

]
= 1
λ

N/2∑
i=1

1
i
≤ 1
λ

(ln(N/2) + 1) ≤ 1
λ

log(N) (221)

E
[
TN/2

]
− E

[
TN/4

]
= 1
λ

(
1

N/2 + 1 + 1
N/2 + 2 + ...+ 1

3N/4

)
≥ 1
λ
· N4 ·

4
3N = 1

3λ (222)

E
[
TN/2

]
− E

[
TN/4

]
≤ 1
λ
· N4 ·

2
N

= 1
2λ (223)

E
[
TN/4

]
− E

[
TN/8

]
= 1
λ

(
1

3N/4 + 1 + 1
3N/4 + 2 + ...+ 1

7N/8

)
≥ 1
λ
· N8 ·

4
3N = 1

6λ (224)

Making use of the above bounds the expression in 220 further simplifies to

≤ 2
log
(
N

4n0

)∑
i=1

[
(E [Tn0·2i ] + C) log(3

√
2)

log( 1
1−a )

]
+ 2

(
E
[
TN/2

]
+ C

) log(3
√

2 log(N))
log( 1

1−a )
(225)

≤ 5
log( 1

1−a )

log
(
N

4n0

)∑
i=1

E [Tn0·2i ] + log
(
N

2n0

)
· C

+ 2log(3
√

2 log(N))
log( 1

1−a )
(E
[
TN/2

]
+ C) (226)

Further, notice that

E
[
TN/2

]
= 1
λ

N/2∑
i=1

1
N/2 + i

≤ 1
λ
, (227)

and similarly E
[
TN/4

]
≤ 1

λ ·
1
3 , E

[
TN/8

]
≤ 1

λ ·
1
7 , E

[
TN/16

]
≤ 1

λ ·
1
15 and so on. Thus,

log
(
N

4n0

)∑
i=1

E [Tn0·2i ] = E [2n0] + E [4n0] + ...+ E [N/4] ≤ 1
λ

∞∑
i=1

1
2i ≤

1
λ

(228)

Combining the bounds from 227 and 228 and substituting C = c 1
λ in expression 226 we derive the following

bound

E
[
T 1

SRPFL
]
≤ 5

log
(

1
1−a

) (c log(N/2n0) + 1) 1
λ

+ 2 log(3
√

2 log(N))
log
(

1
1−a

)
(c+ 1)

1
λ

(229)

≤ log(N/n0) 6(c+ 1)
log
(

1
1−a

) · 1
λ

(230)
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Having derived an upper bound on the cost suffered by SRPFL on the first log
(
N

2n0

)
stages we now turn our

attention on bounding the cost incurred from Xlog( Nn0
) until the target accuracy ε is achieved (denoted by

E
[
T 2

SRPFL
]
). Recall that

Xlog(N/n0) = a√
N

2n0
(1− a)(1−

√
1− a)

(
1 +

(E
[
TN/2

]
+ C)(1− 1√

2 )
E [TN ]− E

[
TN/2

] )
(231)

and further during the last stage of SRPFL, N clients are utilized deriving the following form in the contractions
inequality from (199)

dist+ ≤ dist
√

1− a+ a√
N
n0

(1− a)
with a ≤ 1

4 . (232)

We first compute the number of rounds required in this second phase of the algorithm. Starting with distance
Xlog(N/n0) and following the contraction in (232) for t rounds, we derive current distance at most

Xlog
(
N
n0

) · (√1− a)t +
t−1∑
i=0

a√
N
n0

(1− a)
(
√

1− a)i (233)

= Xlog
(
N
n0

) · (√1− a)t + a√
N
n0

(1− a)

1−
√

1− at

1−
√

1− a
(234)

= a√
N
n0

(1− a)(1−
√

1− a)

(
√

2
(

1 +
(E
[
TN/2

]
+ C)(1− 1√

2 )
E [TN ]− E

[
TN/2

] )
(
√

1− at) + (1−
√

1− at)
)

(235)

where in the first equality we use geometric series properties and in the second we substitute according to
(231). Using the fact that

√
2(E [T N/2] + C)(1 − 1√

2 ) ≤ 1
λ (c + 1)(

√
2 − 1) and E [TN ] − E [T N/2] ≤ 1

λ logN
expression (235) is upper bounded by

≤ a√
N
n0

(1− a)(1−
√

1− a)

((√
2 + (c+ 1)(

√
2− 1)

logN

)
(
√

1− at) + (1−
√

1− at)
)

(236)

≤ a√
N
n0

(1− a)(1−
√

1− a)
+ a√

N
n0

(1− a)(1−
√

1− a)
·
√

1− at (237)

The above implies that the number of rounds in the second phase is the smallest t so that the target accuracy
is achieved, i.e.,

ε ≥ a√
N
n0

(1− a)(1−
√

1− a)
+ a√

N
n0

(1− a)(1−
√

1− a)
·
√

1− at (238)

Further recall that from (216) the accuracy can be expressed in terms of

ε = ĉ
α√

N
n0

(1− α)
(
1−
√

1− α
) , with

√
2 > ĉ > 1. (239)

Combining the above and solving for t we derive the required number of rounds for the second phase

t ≥
2 log( 1

ĉ−1 )
log( 1

1−a )
(240)

The expected cost during phase 2 can be computed as follows

37



Published in Transactions on Machine Learning Research (10/2023)

E
[
T 2

SRPFL
]
≤(E [TN ] + C)

(
2 log( 1

ĉ−1 )
log( 1

1−a )
+ 1
)

(241)

≤(ln(N) + 1 + c) 1
λ

(
2 log( 1

ĉ−1 )
log( 1

1−a )
+ 1
)

(242)

≤4 log(N)
(

log( 1
ĉ−1 )

log( 1
1−a

)
1
λ

(243)

≤ log(N) · 4
log( 1

1−a )
log
(

1
ĉ− 1

)
1
λ

(244)

Summing the two quantities of interest we can derive the promised upper bound on the ‘Wall Clock Time’ of
SRPFL.

E [TSRPFL] = E
[
T 1

SRPFL
]

+ E
[
T 2

SRPFL
]

(245)

≤ log(N/n0) 6(c+ 1)
log
(

1
1−a

) · 1
λ

+ log(N) · 4
log( 1

1−a )
log
(

1
ĉ− 1

)
1
λ

(246)

≤ logN
(

6(c+ 1) + 4 log( 1
ĉ−1 )

log( 1
1−a )

)
1
λ

(247)

Having computed an upper bound on the expected ‘Wall Clock Time’ of SRPFL we proceed to compute an
lower bound on the expected ‘Wall Clock Time’ of FedRep.
Lemma B.3. Suppose at each stage the client’s computational times are i.i.d. random variables drawn from
the exponential distribution with parameter λ. Further, suppose that the expected communication cost per
round is C = c 1

λ , for some constant c. Finally, consider target accuracy ε given in (12). Then the expected
‘Wall Clock Time’ for FedRep is lower bounded as follows

E [TFedRep] ≥ logN

 logN + 2 log
(

1
ĉ−1

)
log
(

1
1−a

)
 1
λ

(248)

Proof. First we compute the number of rounds required by FedRep to achieve the target accuracy. Recall
that FedRep utilizes N clients at each round deriving the following form of the contractions inequality from
(199)

dist+ ≤ dist
√

1− a+ a√
N
n0

(1− a)
with a ≤ 1

4 . (249)

Starting with distance equal 1 and following the contraction in (249) for t rounds, we derive current distance
at most

(
√

1− a)t +
t−1∑
i=0

a√
N
n0

(1− a)
(
√

1− a)i = (
√

1− a)t + a√
N
n0

(1− a)

1−
√

1− at

1−
√

1− a
, (250)

using the properties of geometric series. Further recall that from (216) the accuracy can be expressed as

ε = ĉ
α√

N
n0

(1− α)
(
1−
√

1− α
) , with

√
2 > ĉ > 1. (251)
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The above imply that the number of rounds is going to be the smallest t that guarantees that the target
accuracy has been achieved that is

ĉ
α√

N
n0

(1− α)
(
1−
√

1− α
) ≥ (

√
1− a)t + a√

N
n0

(1− a)

1−
√

1− at

1−
√

1− a
(252)

We use the fact that
√

N
n0

(1− a)(1−
√

1− a)− a > 0 for a ≤ 1/4 and all reasonable values of N to rearrange
and solve for t. Thus, we derive

t ≥
2 log

(
1
ĉ−1

)
log
(

1
1−a

) + logN
log
(

1
1−a

) (253)

Multiplying the number of rounds with a lower bound on the expected cost incurred per round, results in the
desired lower bound on the expected ‘Wall Clock Time’ suffered by FedRep:

E [TFedRep] ≥ (E [TN ] + C)

2 log
(

1
ĉ−1

)
log
(

1
1−a

)
 (254)

≥ logN

 logN + 2 log
(

1
ĉ−1

)
log
(

1
1−a

)
 1
λ

(255)

Combining the results of Lemma B.2 and Lemma B.3 we obtain Theorem 4.9.
Theorem 4.9. Suppose that at each stage the client’s computational times are i.i.d. random variables drawn
from the exponential distribution with parameter λ. Further, suppose that the expected communication cost
per round is C = c

λ , for some constant c. Finally, consider the target error ε given in (12). Then, we have
E[TSRPFL]
E[TFedRep] = O

(
log( 1

ĉ−1 )
log(N)+log( 1

ĉ−1 )

)
.

Proof.

E [TSRPFL]
E [TFedRep] ≤

6(c+ 1) + 4 log( 1
ĉ−1 )

logN + 2 log
(

1
ĉ−1

) = O

 log
(

1
ĉ−1

)
log(N) + log

(
1
ĉ−1

)
 (256)

Remark B.4. The initialization scheme in Algorithm 2 guarantees that dist
(
B0,B∗

)
≤ 1− c, with probability

at least 1−O
(
(mn)−100), effectively without increasing the overall sample complexity. The formal statement

and proof is identical to Theorem 3 in (Collins et al., 2021) and is omitted.

C More on Experiments

Hyperparameters and choice of models.We set the hyperparameters following the work of (Collins
et al., 2021). Specifically, for the implementation of FedRep and FedRep-SRPFL we use SGD with momentum
where the momentum parameter is set to 0.5 and the local learning rate to 0.1. Further, similarly to (Collins
et al., 2021) we set the local learning rate to 0.1 for all other methods under consideration, which obtains
optimal performance. We fix the batch size to 10 for all our implementations. The number of local epochs
is set to 1 for CIFAR10 with N = 100 and to 5 for the rest of the datasets. In terms of the choice of the
neural network model, for CIFAR10, we use LeNet-5 including two convolution layers with (64, 64) channels
and three fully connected layers where the numbers of hidden neurons are (120, 64). The same structure is
used for CIFAR100, but the numbers of channels in the convolution layers are increased to (64, 128) and
the numbers of hidden neurons are increased to (256, 128). Additionally, a dropout layer with parameter 0.6
is added after the first two fully connected layers, which improves the testing accuracy. For EMNIST and
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Figure 7: Numerical results on CIFAR10, EMNIST, Sent140 with full participation (M = N) in the fixed
computation speeds setting. ‘Shard’ denotes the number of classes per client. ‘C.T.’ denotes the communication
cost per round.

FEMNIST, we use MLP with three hidden layers with (512, 256, 64) hidden neurons. For Sent140 we use
two-layer bidirectional LSTM with dimension 256 and dropout rate 0.5 followed by a fully connected layer of
dimensions 5 and a classification head. Further, we use the standard glove embedding of dimension 100 and
vocabulary of size 10000.
For the needs of SRFRL, we split the neural network model into two parts, the customized head hi and the
common representation φ. In our experiments, we simply take the customized head to be the last hidden
layer and the rest of the parameters are treated as the common representation. Note that LG-FedAvg and
LG-FLANP have a different head/representation split scheme and the head is globally shared across all
clients while a local version of the representation is maintained on every client. For all included datasets,
i.e. CIFAR10, CIFAR100, EMNIST, FEMNIST and Sent140 the common head include the last two fully
connected layers and the rest of the layers are treated as the representation part.
Datasets. We include five datasets in our empirical study: CIFAR10 which consists of 10 classes and a
total number of 50,000 training data points, CIFAR100 which consists of 100 classes and the same amount of
data points as CIFAR10, and EMNIST (balanced) which consists of 47 classes and 131,600 training data
points. Note that in Figures 3-7, we use the first 10 classes from EMNIST following (Collins et al., 2021).
For FEMNIST, we use the same setting as (Collins et al., 2021) with the exception that in Figures 3-6 we
allocate to each client 150 data points and in Figure 6 we allocate to client i, (100 + ui) samples, with ui
a uniformly distributed random variable in [0, 50] . The sentiment140 dataset contains 1, 600, 000 tweets
annotated negative or positive and they can be used to detect sentiment. For this dataset we perform
pre-processing splitting the samples across clients both in a homogeneous as well as a heterogeneous manner.
The number of allocated samples to clients follow the log-normal distribution. During our training procedure,
we perform the data augmentation operations of standard random crop and horizontal flip on the first two
datasets and and perform no pre-processing for the last one.

Homogeneous Setting.Apart from providing straggler-resilience benefits our method takes advantage of the
shared representation model to simultaneously address the hurdle of data heterogeneity. In the less challenging
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Figure 8: Numerical results on FEMNIST, Sent140, CIFAR10 in the fixed computation speeds setting. From
left to right: Imbalanced/Imbalanced/Stragglers%/Correlated Heterogeneity. ‘Shard’ denotes the number of
classes per client.‘C.T.’ denotes the communication cost per round.

homogeneous setting one would expect FedRep-SRPFL to lose some of its competitive advantage. However,
our numerical results in Figure 7 indicate that our method exhibits a stable performance while maintaining
an edge over the other baselines. We note that LG-SRPFL outperforms FedRep-SRPFL in the Sent140 dataset
where LG-FedAvg appears to be better-suited than FedRep. Importantly, our doubling scheme continues to
enhance both subroutines providing clear straggler-resilience benefits even in data homogeneous environments.

Additional Regimes. In Figure 8 we observe the extent at which the benefits of our meta-algorithm
persist in various regimes. Imbalanced Datasets. In the two left columns we explore how the performance of
our doubling scheme degrades for different levels of imbalanced local datasets. In the FEMNIST dataset
we allocate to each client i, (100 + ui) local samples where ui is a random variable uniformly distributed in
[0, 50]. In this setting the numbers of local samples are sufficiently close and as a result the benefits of our
scheme are prevalent for all different values of communication cost. As we allow the clients to have more
diverse numbers of local samples however, the speedup provided by our doubling scheme diminishes. Indeed
this is the case in the Sent140 dataset where we allocate data to clients in a more dispropotional manner
following the log-normal distribution. We point out that in settings with high diversity simply doubling the
number of clients is not sufficient. Instead, to achieve optimal performance one needs to select consecutive
participating sets of clients with cumulative number of samples that double from one stage to the next.
Different levels of stragglers. We further consider the setting where clients are split into two categories.
The first category consists of typically fast clients whose computational values come from the exponential
distribution with λ = 0.1. The second category consists of clients who are typically straggling, i.e. sampling
their computational cost from the exponential distribution with λ = 10. On the third column of Figure 8 we
compare FedRep, LG-FedAvg and their straggler-resilient variants for different percentages of clients coming
from the latter category. Unsurprisingly, the performance of the methods under consideration degrades as
the percentage of stragglers increases however our doubling scheme to some extent mitigates this effect.
Correlated heterogeneity. In this setting we assign data to clients depending on their speeds. More specifically,
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we split clients into 3 groups based on the computational times and respectively we group samples into 3
distinct groups based on their labels. Subsequently, we allocate mutually exclusive (with respect to their
labels) groups of data to specific groups of clients. The rightmost column of Figure 8 indicates that the
benefits of our doubling scheme persist, although to a lesser degree as the correlation between data and
system heterogeneity grows.
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