Q-Probe: A Lightweight Approach to
Reward Maximization for Language Models

Kenneth Li'?> Samy Jelassi® Hugh Zhang'> Sham Kakade '> Martin Wattenberg' David Brandfonbrener >

Abstract

We present an approach called Q-probing to adapt
a pre-trained language model to maximize a task-
specific reward function. At a high level, Q-
probing sits between heavier approaches such
as finetuning and lighter approaches such as few
shot prompting, but can also be combined with
either. The idea is to learn a simple linear func-
tion on a model’s embedding space that can be
used to reweight candidate completions. We the-
oretically show that this sampling procedure is
equivalent to a KL-constrained maximization of
the Q-probe as the number of samples increases.
To train the Q-probes we consider either reward
modeling or a class of novel direct policy learning
objectives based on importance-weighted policy
gradients. With this technique, we see gains in
domains with ground-truth rewards (code gen-
eration) as well as implicit rewards defined by
preference data, even outperforming finetuning in
data-limited regimes. Moreover, a Q-probe can be
trained on top of an API since it only assumes ac-
cess to sampling and embeddings. Code: https:
//github.com/likenneth/q_probe.

1. Introduction

Pre-training on diverse data endows large language models
(LLMs) with strong generic language capabilities. However,
goal-directed downstream tasks like coding, mathematical
reasoning, and dialogue systems require adapting the LLM
to the task at hand. Since the goals in these tasks can be
framed as rewards, this adaptation can take the form of
reward maximization.

!John A. Paulson School Of Engineering And Applied Sciences,
Harvard University >Kempner Institute for the Study of Natural and
Artificial Intelligence, Harvard University *Center of Mathematical
Sciences and Applications, Harvard University. Correspondence
to: Kenneth Li <ke_li@g.harvard.edu>, David Brandfonbrener
<david_brandfonbrener @g.harvard.edu>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

One approach to do this is finetuning, where the weights
of the model are adjusted to improve rewards. Exemplary
techniques include reinforcement learning from human feed-
back (RLHF, Ouyang et al., 2022; Rafailov et al., 2023)
and supervised finetuning on successful examples (Singh
et al., 2023; Dong et al., 2023; Yuan et al., 2023).

On the other hand, there is evidence that the capabilities re-
quired for these downstream tasks have already been learned
during pre-training, and the task of adaptation is merely to
extract them from the wide spectrum of pre-trained capa-
bilities. For example, Zaken et al. (2021) propose that
extremely parameter-efficient finetuning is evidence that the
finetuning process is mostly about “exposing knowledge in-
duced by language-modeling training”, while Saunders et al.
(2022) find that pre-trained language models are usually
better at discriminating than generating answers.

Motivated by this line of thought, we present a lightweight
approach to reward maximization. For each downstream
task, we keep the whole pre-trained model frozen and only
train a small probe which is the same dimension as the
residual stream (Alain and Bengio, 2016). We call our
method Q-probe as it “probes” the expected utility of a
completion (action) given a certain prompt (state).

To leverage the Q-probe at inference to generate samples,
we perform a sort of rejection sampling. Specifically, we
first draw k& sampled completions from the LLM given the
input prompt and also store the embedding of each prompt-
completion pair. The Q-probe then predicts a value for
each embedding, which determines the logits for the k-way
softmax distribution that we use to sample the chosen com-
pletion. In theory, we show that this procedure maximizes
the KL-constrained value of the probe as £ tends to infinity.

First, we evaluate Q-probes with access to ground truth
rewards on coding benchmarks our best Q-probe achieves
17% higher accuracy on MBPP (Austin et al., 2021) com-
pared to the base Code-LLaMA-7B (Roziere et al., 2023)
and outperforms finetuning on successes with LORA (Hu
et al., 2021) and few shot prompting. Although again, we
emphasize that Q-probes are not mutually exclusive with
these other techniques and can be combined for even better
results. One key component of the results is a novel ob-
jective for training the Q-probes via direct policy learning.

https://github.com/likenneth/q_probe
https://github.com/likenneth/q_probe

Q-Probe: A Lightweight Approach to Reward Maximization for Language Models

Program 2

Program 1

return [un for mum in 1 if num > 0]

Prompt

def get_positive(1):
"n"Return only positive numbers in the list.
>>> get_positive([-1, 2, -4, 5, 61) [2, 5, 6] Large Language Model
>>> get positive([s, -5, -3, 3, 0, 1, -10]) [5, 3, 1]"™"

Features 1 / |

CITIT]

\ Features 3

Features 2 I:I:I:L__lj

Program 3

‘ return Mmum for num in 1 if num >= 0] Q-probe

Probabilities over
programs

Sampled program

Softmax
_— ~

return [num for num in 1 if num > 0]

Figure 1. An illustration of the Q-probe inference procedure. Given a prompt, we use the language model to generate k = 3 completions
(in this case, programs) and the respective embeddings of the k prompt-completion pairs. Then the linear Q-probe maps the features into
the logits of a softmax distribution. We obtain our final sample from the Q-probe by sampling from this distribution.

We find that rather than training the Q-probe to model the
rewards, it is more effective to use an importance weighted
policy gradient objective. Since we only need access to sam-
ples and embeddings we can train Q-probes on API-based
models where gains are more modest (3% improvement
over base model) due to a stronger base model and lack of
access to internal model embeddings.

Next, we evaluate Q-probes on learning from human prefer-
ences. We conduct a standardized comparison (Ethayarajh
et al., 2022) and find that Q-probe outperforms offline PPO
and DPO by 6% in terms of win rate as judged by GPT4.
Moreover, we show that a Q-probe can be trained on top
of a KTO finetuned model and outperforms either method
individually by an additional 4%. This demonstrates how
Q-probes can be combined effectively with other adaptation
strategies.

Finally, in terms of computational cost, we should note
that using a Q-probe requires substantially less training
compute, but more inference-time compute when compared
to finetuning. In our experiments, we can train a Q-probe
in a few seconds (since it is just a 4096-dimensional linear
model) whereas even parameter efficient finetuning (Hu
etal., 2021) takes several hours. But, at inference, we draw k
samples from the base model rather than 1 from a finetuned
model, although improvements in parallel and speculative
decoding are making batched decoding easier (Fang et al.,
2021; Yu et al., 2022; Shen et al., 2024).

2. Related work

Probing. Q-probes leverage the idea of probing to solve
reward maximization problems. This idea builds on prior
work that uses probes for understanding the internals of
neural networks (Alain and Bengio, 2016; Belinkov, 2016;
Liet al., 2022). A probe is a classifier or regressor that takes
internal activations of a network as its input and is trained to

predict a feature of interest, e.g., part of speech, parse tree
depth, or the expected reward in our case.

Rejection sampling. Rejection sampling for reward max-
imization is not a new idea. In fact, Gao et al. (2023);
Ganguli et al. (2022); Rafailov et al. (2023) also evaluate
rejection sampling as one of their baselines. However, their
selector model is instantiated by the preference language
model trained in a similar way to the first stage of RLHF
by Ouyang et al. (2022). This version of rejection sampling
not only involves higher training cost but is also double the
inference cost to run the reward model while evaluating the
Q-probe is essentially free in comparison to the base model.

Rejection sampling + finetuning. Another line of work
finetunes or distills models on top of data that is acquired
by rejection sampling (Singh et al., 2023; Dong et al., 2023;
Yuan et al., 2023; Rafailov et al., 2023). In this work, we
just focus on a lightweight way to do the rejection sampling,
but adding some sort of distillation step on top to reduce
inference cost could be an interesting future direction.

Iterative finetuning. While we focus our experiments pri-
marily on offline settings for simplicity, there is also an
interesting direction Iterative finetuning for reward maxi-
mization. (Anthony et al., 2017; Gulcehre et al., 2023; Singh
et al., 2023; Zelikman et al., 2022; Dong et al., 2023). The
Q-probe idea could be applied inside of iterative algorithms
like these and that is an interesting direction for future work.

Prompting. An important line of training-free adaptation
methods centers around prompting (Salewski et al., 2023)
which includes in-context learning (ICL, Min et al., 2022)
and Chain-of-thoughts (CoT, Wei et al., 2022). Though it
enjoys great flexibility, Mosbach et al. (2023) reveal by a
closer examination that finetuning still outperforms prompt-
ing methods. Prompting could also be sensitive to prompt

Q-Probe: A Lightweight Approach to Reward Maximization for Language Models

engineering (Lu et al., 2021) and takes up a valuable context
window, limiting the amount of data we can feed into it for
a fair comparison with Q-probe and finetuning.

Prompting with reward access. There are also a host of
other inference-time techniques designed for coding and
reasoning settings (Zhou et al., 2023a; Shinn et al., 2023;
Yao et al., 2023). However, they require access to the feed-
back from the environment at test time which is different
from the one-pass setting considered by us.

3. Setting

We consider a generic framing that examines downstream
language tasks as reward maximization problem. In this
setting, prompt strings x are sampled i.i.d. from some dis-
tribution Pp,.omp:. Then, our model generates completion
strings which we will denote by a (“actions” in the reinforce-
ment learning lingo). The goal is to generate completions to
maximize some reward function r(z, a).

Within this setting, we will consider a variety of feedback
types (oracle rewards or preferences) as well as interaction
levels (offline data or online reward access) that Q-probe can
tackle. We also only need limited black-box access to the
base model. This section formalizes all of these assumptions
about the setting.

3.1. Feedback: oracle rewards and preferences

Oracle reward function feedback. In this setting, we
assume access to a train set of prompts * € Dy.qqp and
access to the ground-truth or “oracle” reward function on
the train prompts 7(z,a) for £ € Dyyqipn and any a. For
example, in coding problems this is assuming that we have
test cases for the train prompts. For evaluation, we assume
access to a test set of prompts x € D, and also the reward
function on the the test prompts.

The goal when given oracle reward feedback is to learn a
policy 7 to maximize expected return:

J(rm)=E E [r(z,a)] e

T a~l|T

Note, there is a large literature of prior work on using re-
inforcement learning directly to finetune language models
when given access to oracle reward functions, e.g., for sin-
gle turn language tasks (Schulman et al., 2017; Snell et al.,
2022; Ramamurthy et al., 2022; Chang et al., 2023) or in
multiturn settings (Zhou et al., 2023b; Abdulhai et al., 2023).
In contrast, we focus on a lighter weight approach that only
requires training probes, but shows how probe training can
approximate traditional RL objectives.

Preference feedback. This is the same as above, except
that we have access to pairwise comparisons. For an z €
Diyqin for any pair of actions (ag,a;) we can get a label

[€ {0, 1} indicating which action is preferred (Christiano
et al., 2017; Ouyang et al., 2022; Rafailov et al., 2023) .

The goal when given preference feedback is to learn a policy
7 that generates actions to maximize the hidden reward
function that induces the preferences (if we assume e.g.
a Bradley-Terry model of preferences (Bradley and Terry,
1952)).

3.2. Online vs. offline access to feedback

We always assume a fixed dataset of contexts (i.e. prompts)
z; € Dyrain. For example, these could be programming
problems, math questions, or user queries. From these
prompts, we consider two possible levels of access to the
feedback source:

1. Online. With online access, we can query the reward or
preference of any action a or action pair (ag, a1) from
any context x; in the training set to get r(x;, a). This
setting is reasonable if we have unit tests for program-
ming or a human in the loop for preference learning.

2. Offline. In the offline setting, we assume that the
dataset also contains actions or action tuples and re-
ward or preference labels. So the data has tuples of
(4,a4,7;) or (x4, (ag)s, (a1)q, y;). We can only access
the rewards or preferences through these labels and
cannot make arbitrary queries.

Our method can function in the offline setting where the
dataset is sampled from the base model or in the online
setting when only given sampling access to the base model.
Throughout the paper we will default to the offline setting
so that we can learn from fixed datasets.

Our setting is different than other online settings in which
the learner can query r(x,a) at any x as well as any a.
For our purposes, we assume that this level of access is
too strong since it allows for searching against the reward
function on the test set. Examples of methods in this setting
are Reflexion (Shinn et al., 2023) or LATS (Zhou et al.,
2023a). This is an interesting setting, but beyond the scope
of this paper and not directly comparable to our results.

3.3. Access to the LLM
We assume access to a pretrained language model that gives

us two things:

1. Sampling from the LM distribution py. Given a context
x we can sample a completion a from pg(-|x).

2. Access to embeddings. We can extract an embedding
¢(x, a) of the joint prompt-completion string.

We do not in general assume access to the underlying model
to allow for finetuning, and our method will not require such

Q-Probe: A Lightweight Approach to Reward Maximization for Language Models

access, but we consider such methods for comparison. We
also do not assume access to densities or logits from the
underlying model. With these assumptions, our method is
applicable on top of API-based models.

We are not aware of prior work on learning algorithms
that use this access model. So, we will compare to a few
baselines that either get more access (full finetuning of open
source models) or less access (just sampling with different
prompts).

4. Inference using Q-probes

4.1. Defining the Q-probe policy

To define the Q-probe policy we reweight samples from the
base model using a value function. Let Qg : X x A — R,
then our policy 7 j, is defined by the following procedure:

1. Sample a; ~ polz, 1<i<k.

2. Sample a ~ softmax (<Q9(;§’al) ey QS(Z"”") >>

Note that Q9 does not have to represent a Q function in the
lingo of RL, and can be any real valued function, this is just
a way to define a policy.

4.2. Theoretical motivation for the Q-probe policy

To motivate the Q-probe policy, it is instructive to consider
the limit as we take ¥ — oo. In particular, we will show
that in this limit, the policy converges to the optimal KL-
constrained policy that maximizes the expected value of the
probe Q.

Theorem 4.1. Our policy approaches the following limit

exp(Qp(z, a)/B)
Epro\x[eXp(Qﬁ (z,0)/8)] '

Corollary 4.2. The limiting policy is the KL regularized
policy that optimizes the Q-values:

lim 7 x(alr) = po(alz)
k—o00

klim To) = argmax IEI [Qo(z,a)] — BKL(w||po)
— 00 T

See proofs in Appendix A.

Connection to rejection sampling. Our softmax sam-
pling algorithm has a clear analogy to more standard rejec-
tion sampling. To define the rejection sampling analog, as-
sume we know a value M such that M > exp(Qp(z,a)/5)
for all a. Now the algorithm is:

1. Sample a from py(-|x)

exp(Qo(x,a)/B)
M

2. Accept a with probability , otherwise

return to step 1.

The runtime to get a sample accepted is M iterations in
expectation. We can view the softmax version as an approx-
imation of rejection sampling with k in place of M. This
gives us consistent runtime and parallelization, but does
mean that for finite k£, we are only approximately sampling
from the target distribution.

This also makes it clear that to send S — 0 we need to send
M — oo (and implicitly k& — c0).

5. Training algorithms for Q-probes

So far we have defined the procedure for sampling from a
Q-probe policy and shown that this is a reasonable policy
definition. Now we move on to demonstrating the variety of
learning algorithms that can be used to train the Q-probes.
Essentially, we can either attempt to learn reward/value func-
tions or to learn policies directly. Moreover, we can apply
this idea to either reward feedback or preference feedback.

5.1. Learning from oracle reward feedback

Reward learning. The simplest approach is to simply use
mean squared error to learn a () probe to approximate the
oracle reward function directly.

Lo(0)=E E [(Qo(z,a) —r(z,a)?’] ()

T arpolz

This learned ()4 then induces a policy g ;.. Note that in the
problems we consider, there is only one step of interaction
with the environment so the reward function is equal to the
@ function in the RL sense, this is why we call it a Q-probe.

In many of the problems we consider, the rewards are either
0 or 1. In this case we can also estimate the reward with a
classification loss like cross entropy (CE). Then the loss is:

Legr(0) = IE@NIE Iw[r(% a)logo(Qe(x,a))+ 3

(1 =r(z,a))log(1l - o(Qo(z,a)))]
This learned (D also induces a policy 7 j in the same way.

Direct policy learning. One benefit of Q-probes is that
we can derive a loss that more directly tries to optimize the
expected return of the policy. For notational convenience,
define f(a) = exp(Qq(x,a)/B). Then we can define the
softmax probability as:

a, {a;i}f_,) = fa) . 4
po(a,{ai}i_s) f(a)+2f=2 Fas) 4)

This pg is the probability of sampling a conditioned on the
k samples from step 1 of the sampling procedure being
a,asg,...,ar. The nice thing about py is that it approxi-
mated the ratio of densities between g ;, and po. This al-
lows us to define the following importance weighted policy

Q-Probe: A Lightweight Approach to Reward Maximization for Language Models

gradient loss:

Wkaﬂj
z@ aNIEm [—r(x,a)pe(a, {ai}iy)]

az,...,ax~po|x

Where by Theorem 4.1 we have that this approximation is
exact as k — oo.

As is standard in the policy gradient literature, we can also
introduce a baseline b(z) and replace —r(z, a) in the loss
by —(r(x,a) — b(z)) (Greensmith et al., 2004; Schulman
et al., 2015). In practice, we use the context-independent
mean reward in the dataset as our baseline.

Remark 5.1. This PG loss ends up looking much like a
contrastive loss, which has traditionally been used for repre-
sentation learning (Wu et al., 2018; Oord et al., 2018). Here,
the contrastive loss arises naturally since the inference-time
procedure of selecting one sample from many requires us to
compare and contrast a set of samples. By directly tying the
loss to the inference procedure we can force the model to
allocate its errors in such a way that performs better when
selecting a sample by softmax.

5.2. Learning from preference feedback

Reward learning. The simplest approach to use Q-probes
to learn from preferences is to use the probe to learn a reward
model using a Bradley-Terry model. The per sample loss is:

[(.’L’,aw,al,e) :U(Qe(%aw) _QQ("E,GJ)) (6)
And the full Q-preference loss function becomes:

Lop(6)= E [—loglz,am,a.0)] (D

A ,A1~Po

This learned @)y then induces a policy g .

Remark 5.2. The preference learning reward objective has a
sort of contrastive flavor as well. Since we pair positive and
negative samples and incentivize giving them different val-
ues, this loss matches better with the downstream inference
procedure of sampling many completions and choosing one.

Finally, while we did not find it to be useful in practice,
it is also possible to parameterize direct policy learning
objectives from preference feedback with Q-probes as in
DPO (Rafailov et al., 2023). A full derivation can be found
in Appendix B.

6. Oracle reward experiments

For our first experiment, we evaluate the ability of Q-probes
to maximize ground-truth oracle rewards. Specifically, we
focus on a program synthesis as a task with oracle rewards
given by evaluating test cases. We train probes using the

training set from MBPP (Austin et al., 2021) and test on the
MBPP test set as well as evaluating generalization to Hu-
manEval (Chen et al., 2021). To see if the method general-
izes to mathematical capabilities, we carry out experiments
on GSM-8K in Subsection 6.4.

Rather than using a raw LLM as the base model, we start
from a model that has already been finetuned on coding
data (Chen et al., 2021; Roziere et al., 2023; Li et al., 2023;
Azerbayev et al., 2023). This supervised finetuning facil-
itates more effective Q-probing for task-specific rewards.
Specifically, we present two sets of results, first building
on top of Code-LLaMA-7B (Roziere et al., 2023) and sec-
ond building on top of the OpenAl API to demonstrate how
Q-probes can be applied to API models.

6.1. Setup

We train models on the MBPP train set which consists of
464 programming prompts with test cases. We consider the
reward to be 1 if all tests are passed and O otherwise. For
each training prompt, we can generate as many completions
as we want from the base model to automatically label
with these rewards. We sample from the base model with
temperature 0.8 and top-p 0.95, following (Roziere et al.,
2023), unless otherwise noted. For experiments on Code-
LLaMA-7B, we take the 26th hidden layer of the same
model for embeddings'. For OpenAl API experiments,
we experiment with both embedding API calls as well as
Code-LLaMA-70B. Unless otherwise stated, the Q-probe
is a 1-layer (linear) probe, the optimizer is Adam (Kingma
and Ba, 2014), the learning rate is 5e — 5, the batch size
is 1000, and we train for 150 epochs. For the PG loss, we
need multiple samples from one prompt to compute the loss.
To do this, we group samples by prompt and reshape the
batch so it contains 100 problems with 10 samples from
each problem.

We evaluate the models on the MBPP test set of 500 pro-
gramming prompts with test cases and also test generation to
HumanEval dataset which has 164 prompts with test cases.
The HumanEval dataset has a slightly different format, but
contains problems of a similar level of difficulty to test the
generalization abilities of the probes.

We consider a variety of baselines. First, we report the aver-
age success rate of the base model with default temperature
sampling (BASELINE (PASS@ 1)). We also report greedy
sampling from the base model (BASE-GREEDY). We in-
clude a few-shot baseline where we sample 5 successful
completions from the training dataset and put them into
context and then sample with temperature 0 (5-SHOT ON
SUCCESSES). We also include a skyline of pass@48 which
has oracle access to the ground truth rewards.

!Probe performance usually peaks at an intermediate layer (He-
witt and Manning, 2019).

Q-Probe: A Lightweight Approach to Reward Maximization for Language Models

Table 1. Expected return for Q-probes on top of Code-LLaMA-7B,
trained on 464 problems from MBPP-train. For Q-probe inference
we use k = 48 and 5 = 0.1. Q-probe results are the mean over 10
training runs.

METHOD MBPP-TEST HUMANEVAL
BASELINE (PASS@1) 0.29 0.24
BASELINE (GREEDY) 0.38 0.30
5-SHOT ON SUCCESSES 0.42 0.33
SFT ON SUCCESSES 0.42 0.32
PROMPT RM 0.31 0.25
FINETUNE RM 0.34 0.26
Q-PROBE Lg 0.38 0.29
Q-PROBE L¢cg 0.40 0.32
Q-PROBE Lpg 0.46 0.34
5-SHOT + Q-PROBE Lpg 0.52 0.39
(SKYLINE) PASs @48 0.76 0.77

For the Code-LLaMA model, we have white-box access to
the model so we also add baselines that use LORA finetun-
ing (Hu et al., 2021). We consider supervised finetuning
on the successful completions from the training data fol-
lowed by greedy decoding (SFT ON SUCCESSES) (Singh
et al., 2023; Dong et al., 2023). We also consider two kinds
of rejection sampling alternatives: one using instruction to
prompt the model to judge its own generation (PROMPT
RM) and the other using a LORA finetuned reward model
instead of a lightweight probe (FINETUNE RM). For the lat-
ter, we add linear probe to the base policy model at the last
residual steam; but different to Q-probe, the whole model
is tuned for judging reward with Lora (Hu et al., 2021).
At inference time, both rejection sampling baselines adopt
hardmax over 48 generations.

6.2. Code-LLaMA results

We present results for training Q-probes on top of Code-
LLaMA-7B in Table 1. The main finding is that Q-probe
with the policy gradient loss Lp¢ is the best model. This
confirms the idea that finding a loss that is a more direct
proxy for the downstream task leads to better outcomes. The
policy gradient loss contrasts many samples for the same
prompt, which mirrors the inference procedure and leads to
better performance at test time.

Also, recall that Q-probe is easily combined with other meth-
ods. To illustrate this, we combine few shot prompting with
Q-probe. This leads to even better performance, showing
how the different inference procedures are actually lead-
ing to complementary improvements in performance that
neither approach achieves on its own.

At a higher level, it is also important to note the benefits
of training such small and lightweight probes. Because the
probe is so small, we can extract a useful discriminator from

0.45
0.40
e
©
= 0.35
(]
o
Il
R0.30 Lo
— Lps
0.25 Lee
Lo
Baseline (Pass@1)
0.20

0 100 200 300 400
Number of training prompts

Figure 2. How MBPP test reward scales with the size of the train-
ing dataset. At inference we fixing K = 48 and 5 = 0.1. Error
bars show 95% confidence interval over 10 training runs.

the generative model with only a small amount of training
and use this probe to improve performance.

Figure 2 shows how the Q-probes scale as we vary the
number of prompts in the training dataset. In this experiment
we take 10 different random samples of n prompts and train
Q-probes on a dataset of completions of these prompts from
the base model. We find that The PG loss consistently beats
the Q and CE losses and that data efficiency can be quite
good, achieving 0.4 test reward from only 50 prompts.

0.7
To6 —— Skyline (Pass@k)
(]
2 Lpg
[
« Lee
a —
8os g

0.4 //--f _—

0 10 20 30 40 50

Figure 3. How MBPP test reward scales with inference-time com-
pute when sweeping over K with 8 = 0.1. Error bars show 95%
confidence interval over 10 training runs.

Figure 3 shows how the Q-probes scale as we vary k, the
number of samples drawn at inference time. We see that
the model trained with PG loss sees consistent improvement
with k, although it is beginning to saturate. In contrast, L
and Lo g actually see performance slightly degrading as we

Q-Probe: A Lightweight Approach to Reward Maximization for Language Models

increase k. This again affirms how matching the training
loss to the inference procedure is beneficial.

1.5
1.0
0.5
0.0

-0.5

Normalized Q-probe value

‘ T lzg
-1.0 § Lce
— Lo
-1.5
0.0 0.2 0.4 0.6 0.8
Base model expected reward

Figure 4. Per-problem correlation between base model expected
reward and Q-probe value (centered and normalized by standard
deviation). Each point corresponds to a prompt in the training set
and averages across the 200 sampled completions. L pg learns by
contrasting completions to the same prompt, so it learns a probe
that is less prompt-dependent.

Finally, Figure 4 attempts to provide some intuition about
how Lpg differs from Lg and Lo g in a way that is benefi-
cial. First and foremost L pg attempts to optimize a proxy
of the test metric, expected reward. This experiment tries
to look at a lower level to see how this changes the learned
models. Intuitively, Lg and L¢ g treat samples a from the
same z independently (since they just sum over all samples)
and end up allocating a good amount of capacity to classi-
fying which prompts are hard (causing higher slope in the
figure). But the L p¢ loss forces the model to learn which
completions are good when compared to each other for the
same prompt. The contrastive nature of this loss helps the
model allocate capacity more effectively to the part of the
problem that matters: comparing different completions of
the same prompt.

6.3. OpenAl API results

Finally, we conduct a similar experiment on top of genera-
tions of the OpenAl API. Results are reported in Table 2. We
use embeddings from CodeLlama—-70b-Python since
embeddings are not available from the API generative model.
We find gains over the baselines on both datasets.

While this is a nice proof of concept that Q-probes can be
applied on top of API-based models, the results are not as
strong as they were for Code-LLaMA. We hypothesize that
this is largely for two reasons: (1) the base model is much
stronger on the task and has likely been finetuned to do
particularly well at these coding tasks so there is simply less
room for reweighting to help, and (2) we do not have access

Table 2. Expected return for Q-probe models on top of
gpt—-3.5-turbo-1106 and CodeLlama-70b-Python
embeddings. Q-probe inference uses k = 48 and § = 0.1.
Q-probe results are the mean over 10 training runs.

METHOD MBPP-TEST HUMANEVAL
BASELINE (PASS@ 1) 0.65 0.54
BASELINE (GREEDY) 0.65 0.59
5-SHOT ON SUCCESSES 0.66 0.61
Q-PROBE Lg 0.68 0.57
Q-PROBE L¢cg 0.69 0.64
Q-PROBE Lpg 0.69 0.58
(SKYLINE) PASs @438 0.80 0.81

to the embeddings from the model itself and the open source
embeddings from Code-LLaMA are likely less performant.

We also experimented with embeddings from the OpenAl
API, and found them to work less well than the Code-LlaMa
embeddings. Full results and discussion of these experi-
ments are in Appendix C.

6.4. Additional Experiments on GSM-8K

We also conduct experiment on GSM-8K with Code-Llama-
7B, k = 48 and 8 = 0.1, following the implementation
of (Gao et al., 2022; Cobbe et al., 2021), using 8-shot eval-
uation with code adopted from the Code Generation LM
Evaluation Harness project (Ben Allal et al., 2022). Re-
sults in Table 3 show a similar trend as the experiments on
coding.

Table 3. Expected return on GSM-8K, trained on 7473 problems
from the training set of GSM-8K. Hyperparameters kept the same
as Table 1. Evaluation protocols follow (Gao et al., 2022).

METHOD GSM-8k
BASELINE (PASS@1) 0.25
BASELINE (GREEDY) 0.29
Q-PROBE Lg 0.36
Q-PROBE Lc¢E 0.43
Q-PROBE Lpg 0.45
(SKYLINE) PASs @48 0.80

7. Preference feedback experiments

We also experiment with Q-probe on learning from human
preference data. We follow the set-up and implementa-
tion of Ethayarajh et al. (2023) strictly unless otherwise
specified. We use the combination of three open-source
preference datasets—Anthropic Helpfulness and Harmless-
ness (HH) (Ganguli et al., 2022), OpenAssistant (Kopf
et al., 2023), and Stanford Human Preferences Dataset

Q-Probe: A Lightweight Approach to Reward Maximization for Language Models

0.9 —— Q-softmax
Skyline

0.8

8 0.7

[}

ot

£

= 0.6

0 10 20 30 40 50
K, Number of Candidate Generations

Figure 5. How the win rate of Q-probe scales with inference-time
compute on preference learning benchmarks. The skyline shows
the performance of a perfect oracle selector. The shaded area
represents 95% confidence interval for 10 runs.

(SHP) (Ethayarajh et al., 2022). Experiments are carried out
on LLaMA-7B (Touvron et al., 2023).

7.1. Setup

We first extract features for probe training. Combining the
training sets of three datasets together, we obtain a dataset
with 200, 336 training pairs, each containing a winning com-
pletion and a losing completion. We concatenate the prompt
with both completions and run a forward pass of the model
to extract embeddings. Note that our Q-probing is applied
on the supervised finetuned model, which is also the start-
ing point for the compared methods (Ouyang et al., 2022;
Rafailov et al., 2023; Ethayarajh et al., 2023). Offline PPO,
DPO, and KTO use different loss functions to finetune the
model weights from this supervised finetuned model.

Upon finishing training, we sample 48 samples for each
prompt in the test set and embed them with the model. The
Q-probe then returns the scores for each completion. Here
we use 5 = 0 and select the argmax of the scores. During
evaluation, the model’s completion is compared against the
winning completion in the data for that prompt by GPT-4 as
the judge to compute the “win rate”.

Experiment Details We implement the Q-probe with a
1-layer probe, trained at a learning rate of 5e — 5 with batch
size 1024 for 150 epochs using 20% of the whole training
set used by other methods, which is 40, 067 pairs of winning
and losing generations. All methods use nucleus sampling
(p = 0.95) and temperature 1.0 at inference (Holtzman
et al., 2019).

Win Rate

©
'S
IS

0.42 pu— One-layer \/\(
Two-layer N

0.40 Three-layer

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Training Data
Figure 6. How the win rate on human preference learning bench-
marks scales with the percentage of data used for training three
different kinds of probes, from 5% to 100% at an interval of 5%.
There are in total 200, 336 training pairs.

Table 4. Comparison of different preference learning methods on
the combination of three datasets. (Ethayarajh et al., 2023)’s setting
is exactly followed; numbers for base models are taken from their
paper. The base model is LLaMA-7B after SFT training.

METHOD WIN RATE (%)
BASELINE 37.86
PPO (OFFLINE) 44.07
DPO 44.97
KTO 51.46
Q-PROBE W/ Lgp 50.10
KTO + Q-PROBE W/ Lgp 55.01
(SKYLINE) PASS @48 91.59

7.2. Experimental Results

Table 4 presents our results on human preference data. Start-
ing from the same supervised finetuned model, Q-probe
outperforms strong existing methods like PPO (offline) and
DPO, while performing on par with KTO. We also experi-
ment with swapping the base model with the KTO-finetuned
model, and show that Q-probe on the KTO-finetuned model
outperforms either KTO alone or Q-probing on the base
model. This shows how our proposed inference-time algo-
rithm is orthogonal to existing finetuning methods and that
they can be applied together.

In Figure 5, we vary the amount of inference-time com-
pute by varying the k, the number of samples we generate.
Improvement begins to plateau around k£ = 5 but further
scaling continues to slowly increase the win rate.

In Figure 6, we examine how much data is required for
the Q-probe to work well. For the 1-layer linear probe,
thanks to its simplicity, only 20% of the data is required

Q-Probe: A Lightweight Approach to Reward Maximization for Language Models

to reach plateaued performance, making Q-probe a worth-
considering candidate method when the available preference
data is small. We also experiment with more powerful
probe architectures, e.g. 2 or 3-layer MLPs, discovering this
actually harms performance by overfitting (note that larger
datasets also lead to more training since we fix the number
of epochs and batch size). In one interpretation, the Q-probe
discovers a linear preference direction in the hidden space of
the LLM, which could be related to the formation of linear
structures in various neural networks (Radford et al., 2017,
Voynov and Babenko, 2020; Rogers et al., 2021).

8. Discussion

We have proposed Q-probe, a lightweight approach to maxi-
mize reward on downstream tasks given a pre-trained lan-
guage model. Q-probes can be used effectively as a comple-
ment to or replacement for other techniques like finetuning
or prompting. On two settings with access to oracle rewards
and human preference pairs respectively, Q-probe outper-
forms strong baselines. For anyone who does not have the
resource or access to finetune large language models but
wishes to adapt them for their own downstream tasks, Q-
probe can serve as a solid replacement, and even given a
finetuned model, Q-probe can be added on top to leverage
more inference-time compute to squeeze out better perfor-
mance.

One interesting direction for future work is to study in more
depth what sort of probes are learned by Q-probes on dif-
ferent tasks. Are the probes possibly similar across tasks?
There could also be interesting connections to “task vec-
tors” (Ilharco et al., 2022).

Finally, Q-probe is inspired by, and corroborates, earlier
findings about the generation-discrimination (GD) gap in
large language models (Saunders et al., 2022). This work
essentially demonstrates the technical possibility of closing
GD gap by rejection sampling—use the stronger discrimi-
nation capability to help the weaker generation capability.
One interesting direction for future work is to investigate
whether fine-tuning with the improved policy could, in turn,
enhance the discrimination capability, and if so, how long
this self-improving spiral could last.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here. A benefit of the proposed
lightweight approach is that it lowers carbon emissions.

Acknowledgments

Kenneth Li and Hugh Zhang are supported by a fellowship
from the Kempner Institute for the Study of Natural and Ar-

tificial Intelligence at Harvard University. Kempner Institute
computing resources enabled this work. Hugh is addition-
ally supported by a Graduate Research Fellowship from the
National Science Foundation. Samy Jelassi acknowledges
funding supported by the Center of Mathematical Sciences
and Applications. This work has been made possible in part
by a gift from the Chan Zuckerberg Initiative Foundation
to establish the Kempner Institute for the Study of Natural
and Artificial Intelligence. Sham Kakade acknowledges
funding from the Office of Naval Research under award
N00014-22-1-2377.

References

Marwa Abdulhai, Isadora White, Charlie Snell, Charles
Sun, Joey Hong, Yuexiang Zhai, Kelvin Xu, and Sergey
Levine. Lmrl gym: Benchmarks for multi-turn reinforce-

ment learning with language models. arXiv preprint
arXiv:2311.18232, 2023.

Guillaume Alain and Yoshua Bengio. Understanding in-
termediate layers using linear classifier probes. arXiv
preprint arXiv:1610.01644, 2016.

Thomas Anthony, Zheng Tian, and David Barber. Think-
ing fast and slow with deep learning and tree search.

Advances in neural information processing systems, 30,
2017.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen Jiang,
Carrie Cai, Michael Terry, Quoc Le, et al. Program
synthesis with large language models. arXiv preprint
arXiv:2108.07732, 2021.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,
Marco Dos Santos, Stephen McAleer, Albert Q Jiang,
Jia Deng, Stella Biderman, and Sean Welleck. Llemma:
An open language model for mathematics. arXiv preprint
arXiv:2310.10631, 2023.

Yonatan Belinkov. Probing classifiers: Promises, shortcom-

ings, and advances. Computational Linguistics, pages
1-12, 2016.

Loubna Ben Allal, Niklas Muennighoff, Logesh Ku-
mar Umapathi, Ben Lipkin, and Leandro von Werra. A
framework for the evaluation of code generation models.
https://github.com/bigcode-project/
bigcode-evaluation—-harness, 2022.

Ralph Allan Bradley and Milton E. Terry. Rank anal-
ysis of incomplete block designs: 1. the method
of paired comparisons. Biometrika, 39:324, 1952.
URL https://api.semanticscholar.org/
CorpusID:125209808.

https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness
https://api.semanticscholar.org/CorpusID:125209808
https://api.semanticscholar.org/CorpusID:125209808

Q-Probe: A Lightweight Approach to Reward Maximization for Language Models

Jonathan D Chang, Kiante Brantley, Rajkumar Ramamurthy,
Dipendra Misra, and Wen Sun. Learning to generate
better than your llm. arXiv preprint arXiv:2306.11816,
2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Hen-
rique Ponde de Oliveira Pinto, Jared Kaplan, Harri Ed-
wards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374, 2021.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic,
Shane Legg, and Dario Amodei. Deep reinforcement
learning from human preferences. Advances in neural
information processing systems, 30, 2017.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark
Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plap-
pert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano,
Christopher Hesse, and John Schulman. Training ver-
ifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Rui Pan,
Shizhe Diao, Jipeng Zhang, Kashun Shum, and Tong
Zhang. Raft: Reward ranked finetuning for gener-
ative foundation model alignment. arXiv preprint
arXiv:2304.06767, 2023.

Kawin Ethayarajh, Yejin Choi, and Swabha Swayamdipta.
Understanding dataset difficulty with v-usable informa-
tion. In International Conference on Machine Learning,
pages 5988-6008. PMLR, 2022.

Kawin Ethayarajh, Winnie Xu, Dan Jurafsky, and Douwe
Kiela. Human-centered loss functions (halos). Technical
report, Contextual Al, 2023.

Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou. Tur-
botransformers: an efficient gpu serving system for trans-
former models. In Proceedings of the 26th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel
Programming, pages 389—402, 2021.

Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda
Askell, Yuntao Bai, Saurav Kadavath, Ben Mann, Ethan
Perez, Nicholas Schiefer, Kamal Ndousse, et al. Red
teaming language models to reduce harms: Methods,
scaling behaviors, and lessons learned. arXiv preprint
arXiv:2209.07858, 2022.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for
reward model overoptimization. In International Confer-
ence on Machine Learning, pages 10835-10866. PMLR,
2023.

10

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei
Liu, Yiming Yang, Jamie Callan, and Graham Neubig.
Pal: Program-aided language models. arXiv preprint
arXiv:2211.10435, 2022.

Evan Greensmith, Peter L Bartlett, and Jonathan Baxter.
Variance reduction techniques for gradient estimates in
reinforcement learning. Journal of Machine Learning
Research, 5(9), 2004.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan,
Ksenia Konyushkova, Lotte Weerts, Abhishek Sharma,
Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie
Gu, et al. Reinforced self-training (rest) for language
modeling. arXiv preprint arXiv:2308.08998, 2023.

John Hewitt and Christopher D Manning. A structural probe
for finding syntax in word representations. In Proceedings
of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short
Papers), pages 4129-4138, 2019.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin
Choi. The curious case of neural text degeneration. arXiv
preprint arXiv:1904.09751, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. Lora: Low-rank adaptation of large language mod-
els. arXiv preprint arXiv:2106.09685, 2021.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman,
Suchin Gururangan, Ludwig Schmidt, Hannaneh Ha-
jishirzi, and Ali Farhadi. Editing models with task arith-
metic. arXiv preprint arXiv:2212.04089, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Andreas Kopf, Yannic Kilcher, Dimitri von Riitte, Sotiris
Anagnostidis, Zhi-Rui Tam, Keith Stevens, Abdullah
Barhoum, Nguyen Minh Duc, Oliver Stanley, Richard
Nagyfi, et al. Openassistant conversations—democratizing
large language model alignment. arXiv preprint
arXiv:2304.07327, 2023.

Kenneth Li, Aspen K Hopkins, David Bau, Fernanda
Viégas, Hanspeter Pfister, and Martin Wattenberg. Emer-
gent world representations: Exploring a sequence
model trained on a synthetic task. arXiv preprint
arXiv:2210.13382, 2022.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muen-
nighoff, Denis Kocetkov, Chenghao Mou, Marc Marone,
Christopher Akiki, Jia Li, Jenny Chim, et al. Star-
coder: may the source be with you! arXiv preprint
arXiv:2305.06161, 2023.

Q-Probe: A Lightweight Approach to Reward Maximization for Language Models

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. Fantastically ordered prompts and
where to find them: Overcoming few-shot prompt order
sensitivity. arXiv preprint arXiv:2104.08786, 2021.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike
Lewis, Hannaneh Hajishirzi, and Luke Zettlemoyer. Re-
thinking the role of demonstrations: What makes in-
context learning work? arXiv preprint arXiv:2202.12837,
2022.

Marius Mosbach, Tiago Pimentel, Shauli Ravfogel, Dietrich
Klakow, and Yanai Elazar. Few-shot fine-tuning vs. in-
context learning: A fair comparison and evaluation. arXiv
preprint arXiv:2305.16938, 2023.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Rep-
resentation learning with contrastive predictive coding.
arXiv preprint arXiv:1807.03748, 2018.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Car-
roll Wainwright, Pamela Mishkin, Chong Zhang, Sand-
hini Agarwal, Katarina Slama, Alex Ray, et al. Train-
ing language models to follow instructions with human
feedback. Advances in Neural Information Processing
Systems, 35:27730-27744, 2022.

Alec Radford, Rafal Jozefowicz, and Ilya Sutskever. Learn-
ing to generate reviews and discovering sentiment. arXiv
preprint arXiv:1704.01444, 2017.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Er-
mon, Christopher D Manning, and Chelsea Finn. Direct
preference optimization: Your language model is secretly
areward model. arXiv preprint arXiv:2305.18290, 2023.

Rajkumar Ramamurthy, Prithviraj Ammanabrolu, Kianté
Brantley, Jack Hessel, Rafet Sifa, Christian Bauckhage,
Hannaneh Hajishirzi, and Yejin Choi. Is reinforcement
learning (not) for natural language processing?: Bench-
marks, baselines, and building blocks for natural language
policy optimization. arXiv preprint arXiv:2210.01241,
2022.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A
primer in bertology: What we know about how bert works.
Transactions of the Association for Computational Lin-
guistics, 8:842-866, 2021.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu
Liu, Tal Remez, Jérémy Rapin, et al. Code llama:
Open foundation models for code. arXiv preprint
arXiv:2308.12950, 2023.

Leonard Salewski, Stephan Alaniz, Isabel Rio-Torto, Eric
Schulz, and Zeynep Akata. In-context impersonation re-
veals large language models’ strengths and biases. arXiv
preprint arXiv:2305.14930, 2023.

11

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills,
Long Ouyang, Jonathan Ward, and Jan Leike. Self-
critiquing models for assisting human evaluators. arXiv
preprint arXiv:2206.05802, 2022.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jor-
dan, and Philipp Moritz. Trust region policy optimization.
In International conference on machine learning, pages
1889-1897. PMLR, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ethan Shen, Alan Fan, Sarah M Pratt, Jaec Sung Park,
Matthew Wallingford, Sham M Kakade, Ari Holtz-
man, Ranjay Krishna, Ali Farhadi, and Aditya Kusu-
pati. Superposed decoding: Multiple generations from
a single autoregressive inference pass. arXiv preprint
arXiv:2405.18400, 2024.

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion:
an autonomous agent with dynamic memory and self-
reflection. arXiv preprint arXiv:2303.11366, 2023.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh
Anand, Piyush Patil, Peter J Liu, James Harrison, Jachoon
Lee, Kelvin Xu, Aaron Parisi, et al. Beyond human data:
Scaling self-training for problem-solving with language
models. arXiv preprint arXiv:2312.06585, 2023.

Charlie Snell, Ilya Kostrikov, Yi Su, Mengjiao Yang, and
Sergey Levine. Offline rl for natural language genera-
tion with implicit language q learning. arXiv preprint
arXiv:2206.11871, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Mar-
tinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al.
Llama: Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971, 2023.

Andrey Voynov and Artem Babenko. Unsupervised dis-
covery of interpretable directions in the gan latent space.
In International conference on machine learning, pages

9786-9796. PMLR, 2020.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large
language models. Advances in Neural Information Pro-
cessing Systems, 35:24824-24837, 2022.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua
Lin. Unsupervised feature learning via non-parametric
instance discrimination. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
3733-3742, 2018.

Q-Probe: A Lightweight Approach to Reward Maximization for Language Models

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large
language models. arXiv preprint arXiv:2305.10601,
2023.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong
Kim, and Byung-Gon Chun. Orca: A distributed serving
system for {Transformer-Based} generative models. In
16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22), pages 521-538, 2022.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong,
Chuanqgi Tan, and Chang Zhou. Scaling relationship
on learning mathematical reasoning with large language
models. arXiv preprint arXiv:2308.01825, 2023.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv
preprint arXiv:2106.10199, 2021.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman.
Star: Bootstrapping reasoning with reasoning. Advances

in Neural Information Processing Systems, 35:15476—
15488, 2022.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Hao-
han Wang, and Yu-Xiong Wang. Language agent tree
search unifies reasoning acting and planning in language
models. arXiv preprint arXiv:2310.04406, 2023a.

Xuhui Zhou, Hao Zhu, Leena Mathur, Ruohong Zhang,
Haofei Yu, Zhengyang Qi, Louis-Philippe Morency,
Yonatan Bisk, Daniel Fried, Graham Neubig, et al. So-
topia: Interactive evaluation for social intelligence in lan-
guage agents. arXiv preprint arXiv:2310.11667, 2023b.

12

Q-Probe: A Lightweight Approach to Reward Maximization for Language Models

A. Proofs

Theorem A.1. Our policy approaches the following limit

exp(Qp(, a) /)

li = 8
B mok0fe) = P (@, b)/B) ®
Proof. First note that we can write the density of g j, as follows:
mor(alz) = Y woralr, {aito)po({ai i |2) ©)
{ai}?ZIEAk
= E (70,1 (alz, {ai}i=y)] (10)
{ai}f_;~polz
" exp(Qo(x, a:)/5)
= E Ha; = 11
{ai}f_ ~polz _zi: {a G}Zj eXp(Qe(CE,CLj)/ﬂ)‘| (an
[S Hai=a}
= E L , 12
TR) eXp(Qe(x,aj)/ﬁ)] Qo)) (12
1
15 Ia, = a}
= E k £ x, 13
L % > eXp(Qg(fL‘,aj)/ﬁ)‘| exp(Qo(x,a)/B) (13)
Taking the limit of k& — co and using Law of Large Numbers (a;’s are i.i.d.)
. o po(alz)
kli’nolo W@,k(“‘w) B kll)nolo {ai ?:H?NPOM Ebwl)olw [eXp(Qg(SU, b)/ﬂ)]:| eXp(Q9(x7 a)/ﬁ) (14)
exp(Qy(z,a)/B)
= 15
Pl g, exp(Qa(z,b)/B) (4
O
Corollary A.2. The limiting policy is the optimal KL regularized policy:
. _ exp(Qo(z,a)/B) _
klinolo 779,k(a’|x) _pO(a‘x)Epro\m[GXp(Qe(x,b)/ﬁ)] - arng?“XGNIE‘I[QG(l‘7a’)} BKL(WHPO) (16)

The proof follows directly from Appendix A.1 in Rafailov et al. (2023).

B. Preference learning objectives

Direct policy learning. Alternatively, we can take inspiration from DPO (Rafailov et al., 2023) and learn the policy
directly. Recall that to define the DPO loss, we consider the per-sample likelihood of an example as:

k k
p(x’aw,ahe) — 0 (aﬂo(@wl‘) _aﬂa(aﬂﬂ?)) (17)
Po(aw|z) polar|z)
And then the full DPO loss is:
LDPO(Q) =]g [_ 1ng(x7a'waala9)] (18)

A, A1,05~Po

When using Q-probing as the policy, we can use py to approximate the ratio between 7y 1 and pg in the expression for p. To
do this, let p(a, a,, a;, aifzg,) be defined as follows:

o (po(aw, {ar, ai}i_s) — apo(ar, {aw, a; }r_3)) (19)

13

Q-Probe: A Lightweight Approach to Reward Maximization for Language Models

Then Lppo(0) can be approximated by:

~ IIE [_ logﬁ(av Aoy AL, aif:Qa 9)] (20)

Aw,A1,A;~Po
az,...,ag~Po

where again by Theorem 4.1 this approximation becomes exact as k — co.

We can expand py in the above loss and notice that it becomes:

(o exp(Q(x, au)/8) ~ exp(Q(w, a1)/5))
exp(Q(w,a0)/5) + exp(@, a0)) + 32 exp(QUw, 1) /F)

If there are no a,; we can still implement this with just two samples a,, and a; at which point it begins to look much like the
reward modeling loss, but with the softmax incorporated.

2

C. Additional OpenAI API Experiments

Here we experiment with embeddings from the OpenAl API. As shown in Table 5, embeddings from
text-embedding-3-small underperforms the Code-LLaMA embeddings and did not yield any performance gains
over the baseline models. This is likely because in addition to likely using a smaller, less performant model than gpt-3.5,
the API embedding models are likely trained for retrieval applications rather than generation. This difference may harm
performance as a Q-probe, but future work is needed to more deeply understand the differences between various embeddings
as Q-probes.

Table 5. Expected return for Q-probe models on top of gpt—-3.5-turbo-1106 and text-embedding—3-small. Q-probe
inference uses £ = 48 and 3 = 0.1. Q-probe results are the mean over 10 training runs.

METHOD MBPP-TEST HUMANEVAL
BASELINE (PASS@1) 0.65 0.54
BASELINE (GREEDY) 0.65 0.59
5-SHOT ON SUCCESSES 0.66 0.61
Q-PROBE Lg 0.65 0.54
Q-PROBE L¢g 0.65 0.54
Q-PROBE Lpg 0.66 0.54
Q-PROBE Lg (3 LAYER) 0.67 0.53
Q-PROBE Lcg (3 LAYER) 0.67 0.47
Q-PROBE Lpg (3 LAYER) 0.68 0.51
(SKYLINE) PASS @438 0.80 0.81

14

