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Abstract001

Prompt learning is susceptible to intrinsic002
bias present in pre-trained language models003
(LMs), resulting in sub-optimal performance004
of prompt-based zero/few-shot learning. In005
this work, we propose a null-input prompting006
method to calibrate intrinsic bias encoded in007
pre-trained LMs. Different from prior efforts008
that address intrinsic bias primarily for social009
fairness and often involve excessive computa-010
tional cost, our objective is to explore enhanc-011
ing LMs’ performance in downstream zero/few-012
shot learning while emphasizing the efficiency013
of intrinsic bias calibration. Specifically, we014
leverage a diverse set of auto-selected null-015
meaning inputs generated from GPT-4 to probe016
intrinsic bias of pre-trained LMs. Utilizing the017
bias-reflected probability distribution, we for-018
mulate a distribution disparity loss for bias cal-019
ibration, where we exclusively update bias pa-020
rameters (0.1% of total parameters) of LMs021
towards equal probability distribution. Exper-022
imental results show that the calibration pro-023
motes an equitable starting point for LMs while024
preserving language modeling abilities. Across025
a wide range of datasets, including sentiment026
analysis and topic classification, our method027
significantly improves zero/few-shot learning028
performance of LMs for both in-context learn-029
ing and prompt-based fine-tuning (on average030
9% and 2%, respectively).031

1 Introduction032

The advent of GPT models (Radford et al., 2019;033

Brown et al., 2020) has catalyzed the transforma-034

tive prompt-learning paradigm. The innovative ap-035

proach of "pre-train, prompt, and predict" (Schick036

and Schütze, 2021a; Liu et al., 2023) facilitates fast037

adaptation of pre-trained language models (LMs)038

in learning various tasks and empowering LMs’039

strong zero/few-shot learning abilities (Schick and040

Schütze, 2021b; Gao et al., 2021).041

Due to the susceptibility to bias ingrained in042

pre-trained LMs, prompt learning tends to make043

biased predictions toward some specific answers, 044

thereby impacting the performance of prompt- 045

based zero/few-shot learning (Zhao et al., 2021; 046

Han et al., 2023). To mitigate this issue and im- 047

prove LM performance, Zhao et al. (2021) and 048

Holtzman et al. (2022) propose to reweigh LM 049

output probabilities. Han et al. (2023) explores cal- 050

ibrating decision boundaries. While these research 051

has demonstrated substantial improvements, they 052

are primarily designed for in-context learning with 053

frozen pre-trained LMs, leading to two main limita- 054

tions: (1) They may be not effective in task-specific 055

fine-tuning scenario (Jian et al., 2022). Note, how- 056

ever, prompt-based fine-tuning has shown perfor- 057

mance improvements over in-context learning (Gao 058

et al., 2021; Logan IV et al., 2022). It is particularly 059

important for relatively small-sized LMs. (2) The 060

intrinsic bias encoded in pre-trained LMs persists 061

since these research focuses on output calibration 062

and does not modify LMs. 063

To address these limitations, we investigate the 064

potential for enhancing the performance of LMs 065

as zero/few-shot learners in classification tasks by 066

calibrating intrinsic bias of pre-trained LMs. This 067

exploration extends to various prompt-learning sce- 068

narios: in-context learning and prompt-based fine- 069

tuning. Prior approaches to mitigate intrinsic bias 070

primarily focus on achieving social fairness, and 071

often require laborious corpora augmentation and 072

costly re-training (Huang et al., 2020; Kaneko and 073

Bollegala, 2021; Solaiman and Dennison, 2021; 074

Li et al., 2023a). To improve efficiency in both 075

data generation and model updates, we propose 076

leveraging auto-generated null-meaning inputs to 077

prompt pre-trained LMs for intrinsic bias probing, 078

and subsequently updating only bias parameters 079

BLM of LMs for bias calibration. Null-meaning 080

inputs are essentially normal text devoid of mean- 081

ingful content or sentiment. Unlike numerical-zero 082

inputs, they maintain the contextual framework of 083

prompts, ensuring the proper functioning of contex- 084
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Figure 1: We demonstrate our calibration method significantly improves classification performance of pre-trained
LM. Upper: The pipeline of proposed null-input prompting method for intrinsic bias calibration targeting AGNews
task (Zhang et al., 2015). Lower left: Performance comparison of zero-shot in-context learning using: original LM
(Orig. RoBERTa); calibrated (Calib.) LM with full model updates (WLM + BLM); calibrated LM with only BLM
updates. Lower right: Case study illustrating that LM makes correct prediction after intrinsic bias calibration.

tual LMs. Our motivation stems from the expecta-085

tion that bias-calibrated models should produce uni-086

form probabilities across all categories if the input087

in a prompt delivers null information (Zhao et al.,088

2021). BLM functions as offsets in neural networks,089

and strategically updating only BLM could poten-090

tially counteract intrinsic bias of pre-trained mod-091

els, achieving higher efficiency (updating ∼ 0.1%092

parameters of entire LM). The approach promotes093

an equitable starting point, and we expect that the094

light model updates preserve pre-trained models’095

language modeling abilities while maintaining the096

focus on bias calibration, ultimately making LMs097

better zero/few-shot learners.098

The pipeline of our calibration method is illus-099

trated in Figure 1. We use Masked LMs (RoBERTa100

Liu et al., 2019) for zero/few-shot learning since101

they generally produce competitive performance in102

classification tasks and their moderate size facili-103

tates combining prompting with fine-tuning (Gao104

et al., 2021; Liu et al., 2023). First, we utilize105

GPT-4 API to automatically generate diverse null-106

meaning inputs Xnull including symbols, words,107

phrases, and sentences. This generation process is108

downstream task-agnostic. By concatenating each 109

null-meaning input xnull with an answer format ans 110

aligned with the downstream task, we construct 111

null-input prompts (similar to Zhao et al., 2021), 112

e.g., "An empty sentence. It is about <mask>.". 113

For better cohesive integration of the "null" infor- 114

mation into the prompts, we additionally devise a 115

filtering strategy to select xnull, to which the answer 116

format ans exhibits relatively strong Next Sentence 117

Prediction (NSP) correlation (Devlin et al., 2019). 118

Next, we update BLM with null-input prompts to 119

calibrate intrinsic bias. Given the absence of task- 120

relevant information in these prompts, the antici- 121

pated outcome in the parameter updating process 122

is a convergence towards equal output probabilities 123

for each label word. We formulate a customized 124

Kullback–Leibler (KL) divergence loss for gradient 125

descent on BLM to minimize the distribution dis- 126

parity. Finally, bias-calibrated LMs are applied in 127

downstream prompt-based zero/few-shot learning 128

following Gao et al. (2021). 129

The main contributions of our work are: 130

• We introduce a null-input prompting method 131

for calibrating intrinsic bias of pre-trained 132
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Masked LMs, aiming for better prompt-based133

zero/few-shot classification performance.134

• Our method integrates two key aspects for135

efficient bias calibration: auto-construction136

of null-input prompts and updating only bias137

parameters of LMs. The calibration promotes138

a fair starting point for LMs while preserving139

language modeling abilities.140

• Extensive experiments on eight classifica-141

tion datasets with four prompt-learning ap-142

proaches show that our method significantly143

improves LMs’ zero/few-shot performance,144

and outperforms output-calibration methods.145

2 Related Work146

Impact of intrinsic bias on downstream LM per-147

formance. Intrinsic bias in pre-trained LMs stems148

from imbalances present in extensive pre-training149

corpora. Higher frequency of specific terms in150

those corpora could lead to common token bias151

(Zhao et al., 2021). Additionally, frequent co-152

occurrence of certain terms with specific sentiment153

in pre-training could introduce association bias154

(Cao et al., 2022). Because of those intrinsic bias,155

prompt-based predictions by pre-trained LMs are156

prone to bias towards some specific answers, re-157

sulting in sub-optimal performance in downstream158

tasks (Zhao et al., 2021; Han et al., 2023).159

Mitigating strategies. Research has focused on160

counteracting the bias solely at the output predic-161

tion stage, without modifying pre-trained LMs. For162

example, Zhao et al. (2021) introduces contextual163

calibration and Holtzman et al. (2022) presents Do-164

main Conditional Pointwise Mutual Information165

to reweigh answer scores. Min et al. (2022) ex-166

plores computing the probability of the input con-167

ditioned on the label. Han et al. (2023) proposes168

to calibrate decision boundaries. However, these169

studies mainly demonstrate their effectiveness for170

in-context learning using frozen pre-trained LMs,171

without addressing the intrinsic bias encoded in the172

LMs. Other research on mitigating intrinsic bias173

primarily targets removing social bias (Dinan et al.,174

2020; Huang et al., 2020; Cheng et al., 2021; Zhou175

et al., 2023), often employing costly data augmenta-176

tion and re-training, and as a by-product, degrades177

language modeling abilities (Meade et al., 2022).178

Efficiently calibrating intrinsic bias in pre-179

trained LMs for enhancing downstream zero/few-180

shot learning performance is an open research prob-181

lem. We introduce a parameter-efficient intrinsic-182

bias calibration method leveraging automatically 183

constructed null-input prompts, which significantly 184

improves zero/few-shot learning of LMs. 185

Parameter-efficient fine-tuning (PEFT) for 186

downstream tasks. It has been demonstrated that 187

fine-tuning a very small portion of model param- 188

eters can achieve performance on par with fine- 189

tuning the entire set of parameters. People pro- 190

pose integrating small, trainable adapter modules 191

between model layers (Bapna and Firat, 2019; 192

Houlsby et al., 2019), coupled with further opti- 193

mization using low-rank adaptations (LoRA) (Hu 194

et al., 2021). Some other research focuses on 195

prompt tuning (Lester et al., 2021; Li and Liang, 196

2021; Gu et al., 2022; Guo et al., 2022) which only 197

tunes continuous prompt embeddings for efficiently 198

adapting pre-trained LMs to downstream tasks. 199

Our method provides a unique perspective of 200

enhancing LM performance on downstream tasks 201

through efficient intrinsic-bias calibration. We 202

update only bias parameters of pre-trained LMs 203

with null-input prompts in calibration. Contrary to 204

adapters and LoRA which would need sufficient 205

labeled data to learn new matrices, we do not intro- 206

duce new matrices to pre-trained LMs, preserving 207

LMs’ few-shot learning capabilities. Moreover, 208

our approach does not necessarily require target- 209

domain data (whether labeled or unlabeled), en- 210

abling fully unsupervised deployment, particularly 211

advantageous for zero-shot setting. 212

3 Null-Input Prompting for Intrinsic Bias 213

Calibration 214

3.1 Task Formulation 215

Let LM be a pre-trained Masked LM. Verbalizer 216

V (·) maps label y to vocabulary token. Prompt 217

function fp(·) modifies original input xin into cloze- 218

style prompt containing one <mask> token to be 219

predicted. The output representation h<mask> of 220

the <mask> token is acquired from the last encoder 221

layer after forwarding the prompt to the LM. Fol- 222

lowing Gao et al. (2021), the probability prediction 223

of each class y ∈ Y is formulated as: 224

P (y |xin,LM) = P (V (y) | fp(xin),LM) 225

=
exp

(
indexV (y)(Wlm_head · h<mask>)

)
∑|Y|

j=1 exp
(

indexV (yj)(Wlm_head · h<mask>)
) ,

(1)

226

where Wlm_head is the pre-trained masked language 227

modeling head weight matrix, and indexV (y) se- 228
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lects the logits corresponding to the label words229

based on their index in LM token list.230

One can probe intrinsic bias encoded in pre-231

trained LM by replacing xin with null-meaning232

input xnull ∈ Xnull (Zhao et al., 2021). Xnull rep-233

resents a set of xnull and we will elaborate their234

generation and selection in § 4. As shown by the235

blue bars in the upper part of Figure 1, while null-236

meaning inputs essentially provide no task-relevant237

prior information, the mean output probability as-238

sociated with different labels P̄Xnull(y |xnull,LM)239

may exhibit significant difference attributed to240

model’s intrinsic bias. Ideally, for bias-calibrated241

LM LMcalib, the expectation of output distribu-242

tion conditioned on null-meaning inputs should be243

uniform across all label words, i.e.,244

EXnull [P (y |xnull,LMcalib; ∀y ∈ Y)] =
1

|Y|
.

(2)245

We aim to calibrate intrinsic bias by updating246

LM to minimize this distribution disparity which247

we quantify using differentiable KL divergence as:248

DKL
(
U(Y) || P̄Xnull(Y)

)
249

=
∑
y∈Y

(
1/|Y| · log 1/|Y|

P̄Xnull(y)

)
250

= log(1/|Y|)− (1/|Y|) ·
∑
y∈Y

log P̄Xnull(y), (3)251

where U(Y) denotes uniform probability distribu-252

tion and P̄Xnull(y) represents the simplified form of253

P̄Xnull(y |xnull,LM).254

3.2 Update Only Bias Parameters255

While intrinsic bias may be encoded across various256

parts of pre-trained LMs, one question arises: is257

it essential to update the entire model, or is there258

a more efficient alternative that can achieve com-259

parable effectiveness in intrinsic bias calibration?260

We propose to only update bias parameters BLM,261

with the following rationale: (i) BLM constitutes262

less than 0.1% of total LM parameters, offering sig-263

nificant memory and computation cost saving com-264

pared to updating entire LM. (ii) Weight parameters265

WLM
1 may carry crucial pre-existing knowledge for266

language modeling, which risks impairment with267

a full model update (Meade et al., 2022). BLM,268

often overlooked in LM research, serves as offsets269

in DNN layers. Strategic updates may counteract270

1WLM also includes embedding parameters in our context.

intrinsic bias while potentially preserving language 271

modeling abilities. (iii) Empirical research on ef- 272

ficient fine-tuning has demonstrated the important 273

role of bias parameters in LMs (Ben Zaken et al., 274

2022; Logan IV et al., 2022). 275

We update BLM using gradient descent to min- 276

imize the dissimilarity between output probabil- 277

ity distribution from the LM conditioned on null- 278

meaning inputs and uniform probability distribu- 279

tion U(Y). We formulate a customized KL diver- 280

gence loss L, including both divergence of indi- 281

vidual null-input’s output distribution Pi(Y) with 282

respect to U(Y), and batch-averaged distribution 283

P̄N (Y) with respect to U(Y), as: 284

L =
1

N

N∑
i=1

DKL
(
U(Y) ||Pi(Y)

)
285

+DKL
(
U(Y) || P̄N (Y)

)
, (4) 286

where N is the batch size of null-meaning inputs. 287

Incorporating the second term in the loss function 288

promotes calibration stability and aligns with the 289

objective of Equation 2. 290

3.3 Early Stopping of Calibration 291

We aim to obtain LM with improved zero/few-shot 292

performance at the calibration stopping point. An 293

overly calibrated model may simply produce uni- 294

form probability predictions regardless of input 295

information. To avoid this, we develop specialized 296

early stopping strategies depending on whether the 297

downstream task is zero-shot or few-shot. 298

For zero-shot downstream tasks. Determining 299

the calibration stopping point for optimal zero-shot 300

learning performance is challenging due to the ab- 301

sence of labeled data for validation during calibra- 302

tion. To discern the patterns of a good stopping 303

point, we first conduct empirical experiments by 304

validating LM zero-shot performance on the entire 305

test dataset after each calibration batch (consisting 306

of N null-meaning inputs) across different cali- 307

bration learning rates (Figure 7 in Appendix A). 308

As shown in Figure 2, with optimal calibration 309

learning rate, model performance exhibits signifi- 310

cant improvements in the first one/few calibration 311

batches with low variance, and then starts to de- 312

grade and becomes unstable. The low performance 313

and instability at the calibration tail confirm our 314

assumption on the detrimental effects of excessive 315

calibration on LM’s modeling abilities. Notably, 316

calibration with only one batch of null inputs (indi- 317

cated by the red vertical line in Figure 2) delivers 318

4



consistent and significant improvement compared319

to the original LM (although might not be the best320

improvement). Therefore, for enhancing LM zero-321

shot performance, we directly adopt the One-batch322

Calibration as the early stopping criterion.323

Figure 2: Empirical experiments show the impact of
calibration on zero-shot learning performance as the
number of calibration batches increases (batch size is
32). The intersections of the curves and red vertical line
signify the outcomes of the first calibration batch.

For few-shot downstream tasks. With the acquisi-324

tion of a few labeled downstream data, the previous325

challenge of lacking validation for determining the326

stopping point in the calibration process is allevi-327

ated. We utilize the small amount of labeled data as328

validation dataset Dcalib
val to set a stopping criterion329

for calibration. Additionally, we take into account330

above-mentioned empirical findings that, for some331

tasks, stopping at one batch of calibration yields op-332

timal LM performance. Relying on the limited size333

of Dcalib
val might fail to identify such stopping points.334

To this effect, we store both LMone_batch
calib (obtained335

from one-batch stopping) and LMval
calib (obtained336

from validation-based stopping) for downstream337

few-shot leaning tasks. Since LMone_batch
calib is stored338

in the process of obtaining LMval
calib, this will not re-339

sult in additional computation overhead. Memory340

overhead is minimal, as it only requires storing an341

additional set of updated bias parameters.342

We summarize our method for intrinsic bias cal-343

ibration in Algorithm 1 (Appendix A).344

4 Auto-Construct Null-Input Prompt345

4.1 Generate Null-Meaning Input346

We employ null-meaning inputs to probe the in-347

trinsic bias of pre-trained LMs, and then use those348

bias-reflected outputs to calibrate the LMs. Craft-349

ing a diverse set of null-meaning inputs Xnull for350

an averaged output helps prevent overfitting to sub- 351

optimal instances, thereby contributing to the ef- 352

fectiveness of calibration. To enable cost-effective 353

acquisition of various null-meaning data, we utilize 354

GPT-4 API for automatic generation with instruc- 355

tions such as "Please generate null meaning sym- 356

bols, words, phrases, and sentences, in total <Num- 357

ber>.". This process is task-agnostic, generating 358

data that contains null information with respect to 359

any downstream task. Note that null information 360

is not equivalent to neutral sentiment, as it carries 361

no inherent meaning or contextual sentiment im- 362

plications. We further validate this through t-SNE 363

(van der Maaten and Hinton, 2008) visualization in 364

Appendix A Figure 6. 365

Generated null-meaning input xnull Pnsp(xnull, ans)

This is an example sentence. 0.9996
A message without purpose. 0.9979

Words without message. 0.9809

123abc 0.0267
@#$%ˆ&*()-_=+[]{} 0.0145

//////////////////// 0.0008

Table 1: Some examples of generated null-mean inputs.
In this case, "It is about <mask>." is used as the an-
swer format ans. The green/yellow numbers represent
higher/lower NSP probabilities.

4.2 Select xnull and Build Null-Input Prompt 366

We construct null-input prompt fp(xnull) by con- 367

catenating the generated null-meaning input with 368

an answer format ans. For consistency, the answer 369

format (e.g., "It is <mask>.") is the same as the 370

one intended for use in the downstream task. Some 371

examples are shown in the upper part of Figure 1. 372

To pursue better cohesive integration of the 373

"null" information into the prompts, we priori- 374

tize the null-meaning inputs, with which the an- 375

swer format exhibits higher Next Sentence Pre- 376

diction (NSP) probability (Devlin et al., 2019). 377

Specifically, after we generate a large set of null- 378

meaning inputs {xnull_1, xnull_2, . . . , xnull_k} and 379

the answer format ans is selected, we employ 380

BERT-large model (Devlin et al., 2019) to pre- 381

dict NSP Pnsp(xnull, ans) and sort null-meaning in- 382

puts by their probabilities. Table 1 shows some 383

generated xnull, with which a specific answer for- 384

mat presents high/low NSP scores. After the sort- 385

ing, we retain the top 80% xnull instances (800 in 386

total), which maintains the diversity among the 387

selected samples. We observed that null inputs 388
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In-context lrn no demo† In-context lrn with demo Prompt FT no demo Prompt FT with demo

NoCal OutCal IntrCal NoCal OutCal IntrCal NoCal OutCal IntrCal NoCal OutCal IntrCal

AGNews 47.00.0 54.31.0 54.50.6 79.70.8 78.83.3 82.40.9 89.10.9 86.31.6 89.00.8 86.92.8 87.51.3 89.30.9

DBPedia 58.20.0 54.11.9 61.80.6 92.60.6 94.00.9 94.80.7 98.21.3 99.00.5 99.00.1 98.60.3 98.50.2 98.90.3

TREC 24.00.0 29.42.1 31.10.5 48.31.4 42.53.4 48.62.2 85.07.4 82.22.0 89.34.5 87.62.5 74.24.0 89.71.0

Subj 50.80.0 64.02.7 62.70.8 47.20.2 55.01.3 63.52.3 91.20.9 88.22.5 93.21.2 91.43.3 93.00.8 94.30.2

SST-5 31.50.0 33.02.1 37.50.4 34.41.7 31.22.6 36.61.0 47.84.6 45.32.8 49.92.7 47.11.9 42.64.0 50.01.7

Laptop 54.60.0 58.32.5 59.61.9 50.81.0 65.12.7 67.41.7 74.31.4 74.31.6 74.92.9 76.81.0 75.61.4 78.71.4

Restaurant 68.60.0 72.04.9 72.81.6 69.81.1 74.31.6 74.01.0 79.72.2 79.01.0 82.00.9 78.44.9 79.05.5 79.84.5

Twitter 19.70.0 43.44.1 51.70.4 21.00.5 40.75.4 49.42.7 51.72.9 44.13.9 57.04.2 57.72.8 50.34.2 59.32.3

Average 44.3 51.1 54.0 55.5 60.2 64.6 77.1 74.8 79.3 78.1 75.1 80.0

Table 2: Result comparisons among NoCal (LM-BFF Gao et al., 2021; no calibration), OutCal (output calibration)
and IntrCal (ours; intrinsic-bias calibrated LM) using RoBERTa-large. We report the mean and standard deviation of
performance in 8 classification datasets with 4 prompt-learning methods. "In-context lrn" refers to in-context learning
and "Prompt FT" refers to prompt-based fine-tuning. "with/no demo" denotes incorporating/not incorporating
demonstrations in prompts. In-context lrn no demo† is zero-shot learning, while the other three are few-shot learning.

with lower NSP scores are typically randomly-389

combined alphabet letters and symbols. These sam-390

ples may have minimal occurrences in pre-training391

corpora. The low NSP scores can be attributed to392

RoBERTa’s lack of comprehension of their mean-393

ings in context. Their representations extracted by394

LM might have high variance, which might im-395

pact the stability and effectiveness of calibration.396

We show calibration with xnull selection strategy397

further improves LM performance in § 5.2 Table 3.398

5 Experiments399

We conduct extensive experiments on 8 English400

datasets, including sentiment analysis and topic401

classification.2 They consist of 5 sentence-level402

datasets potentially impacted by common token403

bias: AGNews (Zhang et al., 2015), DBPedia404

(Lehmann et al., 2015), TREC (Voorhees and Tice,405

2000), Subj (Pang and Lee, 2004), SST-5 (Socher406

et al., 2013) and 3 aspect-level sentiment analysis407

datasets likely subject to association bias: Restau-408

rant and Laptop reviews from SemEval 2014 Task409

(Pontiki et al., 2014), Twitter (Dong et al., 2014).410

For aspect-level datasets, the task is to predict sen-411

timents associated with the marked aspects in each412

sentence. More details are in Appendix A Table 7.413

5.1 Evaluation Protocol414

We evaluate the effectiveness of our intrinsic-bias415

calibration method on enhancing Masked LMs416

2We mainly focus on single-sentence tasks, which aligns
with the use of single-sentence null inputs for calibration. The
alignment may enhance calibration effectiveness. We also
experiment on sentence-pair tasks in Appendix B Table 15
and demonstrate better performance after calibration.

zero/few-shot learning performance with 4 prompt 417

learning methods: in-context learning and prompt- 418

based fine-tuning, both with and without demon- 419

stration. We follow the prompt-based fine-tuning 420

and demonstration method of Gao et al. (2021). 421

We conduct calibration with 5 different seeds, 422

and for the few-shot setting, we randomly sample 423

5 different groups of training and validation sets 424

(K samples per class). We report the mean and 425

standard deviation of LM performance. For the 5 426

sentence-level classification tasks, we use accuracy 427

as the metric. For the 3 aspect-level classification 428

tasks, because of the imbalance in test set, we use 429

weighted F1 for a balanced evaluation. Details of 430

calibration and prompt learning are in Appendix A. 431

We present our main results using RoBERTa- 432

large, and K = 16 for few-shot setting. Results of 433

using RoBERTa-base, K = {2, 4, 8}, and different 434

prompt templates are in Appendix B (Table 10, 435

Table 11 and Figure 8). 436

5.2 Main Results 437

In Table 2, we compare our results of IntrCal (in- 438

trinsic bias calibration) with reproduced results of: 439

(1) NoCal: No calibration. Use LM-BFF (Gao 440

et al., 2021) to compute P (y |xin) for predictions. 441

(2) OutCal: Output calibration. OutCal computes 442
P (y |xin)

P (y |xdomain)
instead of P (y |xin) to counteract sur- 443

face form competition and bias (Zhao et al., 2021; 444

Holtzman et al., 2022). Note that OutCal was orig- 445

inally demonstrated for in-context learning with 446

GPT models, while here, we apply the method in 447

Masked LMs for fair comparisons. 448

In addition to NoCal and OutCal, we compare 449
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our results with those reproduced from NoisyTune450

(Wu et al., 2022), NSP-BERT (Sun et al., 2022)451

and Perplection (Lu et al., 2023), as detailed in Ap-452

pendix B.1 (Table 8, 9). The superior performance453

further validates the effectiveness of our method.454

In-context learning results. OutCal has signifi-455

cantly improved LM zero/few-shot performance456

compared to NoCal. Our method (IntrCal) further457

outperforms OutCal by a large margin: 2.9% and458

8.3% absolute in zero-shot learning & 4.4% and459

8.7% absolute in few-shot learning, in terms of460

average and best-case improvement. This demon-461

strates the advantages of intrinsic bias calibration462

over attempting to counteract bias solely at the out-463

put. Moreover, OutCal exhibits higher variance464

in performance due to its sensitivity to human-465

crafted domain-relevant strings xdomain. Using cer-466

tain xdomain instances may not accurately capture467

the bias of LMs, resulting in under-calibration or468

over-calibration and leading to the high variance. In469

our approach, we use a large set of auto-generated470

and selected xnull as the training set for bias cali-471

bration. This mitigates the impact of sub-optimal472

samples and enhances calibration robustness, con-473

tributing to more stable and reliable performance.474

Prompt-based fine-tuning results. This method475

fine-tunes all LM parameters utilizing limited la-476

beled data by minimizing the cross-entropy loss477

based on Equation 1. It greatly raises LM perfor-478

mance compared to in-context learning and sets up479

a strong baseline (i.e., NoCal). OutCal fails to sur-480

pass NoCal. We speculate that OutCal’s limitation481

lies in its exclusive focus on offsetting bias at the482

output and lack of interaction with the interior of483

LM. This appears to impede OutCal from adapting484

effectively to the intricate dynamics of LM after485

prompt-based fine-tuning, leading to some counter-486

productive calibrations. In contrast, IntrCal (ours)487

with the aim of intrinsic bias calibration achieves488

superior performance with absolute gains of maxi-489

mum 5.3% and average 2% compared to NoCal.490

The output representations of <mask> token for491

label word predictions are visualized by t-SNE in492

Figure 3. On the left, samples from the two cate-493

gories are almost mixed together, indicating that494

the original LM tends to bias toward one class pre-495

diction. In contrast, the right visualization demon-496

strates improved separability after One-batch Cali-497

bration(§ 3.3), which explains the significant per-498

formance enhancement achieved by our intrinsic-499

bias calibration method.500

In-context lrn no demo Prompt FT no demo

UnSel. xnull Sel. xnull UnSel. xnull Sel. xnull

AGNews 53.10.6 54.50.6 87.81.7 89.00.8

DBPedia 62.11.2 61.80.6 98.70.2 99.00.1

TREC 30.90.6 31.10.5 88.53.5 89.34.5

Subj 60.53.2 62.70.8 92.81.6 93.21.2

SST-5 35.51.7 37.50.4 48.74.2 49.92.7

Table 3: Benefits from null-meaning input xnull selec-
tion strategy (§ 4.2). UnSel. signifies using all GPT-
generated xnull in calibration, while Sel. denotes select-
ing top xnull based on the sorting of Pnsp(xnull, ans).

Figure 3: t-SNE visualization for output representations
of <mask> token. Left is obtained from original LM;
Right is obtained from the LM after One-batch Calibra-
tion. Two colors denote the two classes in Subj task.

In-context lrn no demo Prompt FT no demo

WLM + BLM BLM WLM + BLM BLM

AGNews 53.50.8 54.50.6 89.30.8 89.00.8

DBPedia 63.20.9 61.80.6 99.00.5 99.00.1

TREC 31.30.8 31.10.5 87.62.8 89.34.5

Subj 53.30.6 62.70.8 93.70.6 93.21.2

SST-5 33.50.4 37.50.4 49.40.7 49.92.7

Laptop 58.20.8 59.61.9 78.11.3 74.92.9

Restaurant 70.71.8 72.81.6 81.31.0 82.00.9

Twitter 51.80.7 51.70.4 55.72.3 57.04.2

Average 51.9 54.0 79.3 79.3

Table 4: Performance comparisons between differently
calibrated LMs. WLM + BLM updates entire LM in cal-
ibration while BLM only updates bias parameters. Ad-
ditional results of In-context lrn/Prompt FT with demo
are in Appendix B Table 14.

5.3 Update Entire LM vs. Only Bias 501

Parameters in Calibration 502

In Table 4, we evaluate the impact of updating en- 503

tire LM (WLM + BLM) during calibration on down- 504

stream task performance, as compared to only up- 505

dating bias parameters (BLM). The optimal learning 506

rate for updating entire LM is smaller (Appendix A 507

Table 6). For in-context learning, the LM with only 508

BLM updates in calibration achieves better over- 509

all performance compared to the LM with entire 510
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parameter updates, most likely attributed to better511

preserved language modeling abilities (Appendix B512

Table 12). For prompt-based fine-tuning, two dif-513

ferently calibrated LMs demonstrate comparable514

performance, as the impact of entire-parameter cali-515

bration on the modeling ability is mitigated through516

task-specific fine-tuning. Considering the signifi-517

cant saving in memory and computation, we rec-518

ommend only updating BLM in calibration.519

5.4 Analysis520

How does intrinsic bias calibration impact521

downstream tasks? Our method calibrates the522

intrinsic bias associated with a set of task-specific523

label words. In this section, we explore the impact524

of updating LM for task-specific bias calibration on525

other downstream task performance. Specifically,526

we take the LM calibrated for one task and evaluate527

its performance on the other tasks as shown in Fig-528

ure 4. In general, intrinsic bias calibration for one529

task has a minimal adverse effect on other tasks’530

performance (no more than 2% degradation) be-531

cause of the light model updates, while remarkably532

enhancing LM performance on that specific task.533

Notably, there is consistent performance increase534

at bottom right, as these tasks are all sentiment clas-535

sification sharing or including same label words.3536

Figure 4: Impact of calibration on downstream tasks
shown through the changes with respect to baseline
on each column. Each row shows the zero-shot per-
formance of one task employing: original LM (first
column; baseline), task-specific calibrated LM (diago-
nal), other-task calibrated LM (other places).

3For aspect-level datasets, better improvement is on the
diagonals (task-specific calibration), indicating our method
mitigates the impact of association bias (Appendix A).

How does intrinsic bias calibration impact lan- 537

guage modeling abilities? We employ pseudo- 538

perplexity (Salazar et al., 2020) to evaluate lan- 539

guage modeling for Masked LM. Following each 540

task-specific intrinsic bias calibration, we measure 541

pseudo-perplexity and compare the results with 542

original RoBERTa on WikiText-2, WikiText-103 543

(Merity et al., 2017), and LAMBADA dataset (Pa- 544

perno et al., 2016). As shown in Table 5, language 545

modeling abilities are largely preserved after cali- 546

bration due to the minimal updates to the model. 547

WT-2 WT-103 LAMBADA

Original RoBERTa 6.189 7.008 24.52

+ CALIBRATION

for_AGNews ↑0.017 6.206 ↑0.029 7.037 ↑0.02 24.54

for_DBPedia ↑0.008 6.197 ↑0.002 7.010 ↓0.22 24.30

for_TREC ↓0.027 6.162 ↓0.042 6.966 ↓0.27 24.25

for_Subj ↓0.021 6.168 ↓0.030 6.978 ↑0.08 24.60

for_SST-5 ↓0.031 6.158 ↓0.039 6.969 ↓0.18 24.34

for_Laptop ↑0.011 6.200 ↑0.002 7.010 ↓0.01 24.51

for_Restaurant ↑0.055 6.244 ↑0.074 7.082 ↑0.13 24.65

for_Twitter ↓0.029 6.160 ↓0.037 6.971 ↑0.05 24.57

Table 5: Pseudo-perplexities of original RoBERTa and
task-specific calibrated RoBERTa on WikiText-2 (WT-
2), WikiText-103 (WT-103) and LAMBADA. We use
2000 test samples of each dataset. An increase in values
(highlighted in red) indicates a reduction in language
modeling abilities after calibration.

6 Conclusion 548

In this work, we propose a null-input prompt- 549

ing method to calibrate the intrinsic bias of pre- 550

trained Masked LMs, aiming to enhance zero/few- 551

shot learning performance in classification tasks. 552

Our method incorporates two key features for effi- 553

ciency: (1) auto-construction of null-input prompts 554

for bias probing, leveraging a diverse set of selected 555

null-meaning inputs easily crafted from generative 556

Large LM; (2) updating only bias parameters for 557

bias calibration. Experimental results show that 558

bias-calibrated LMs demonstrate significant perfor- 559

mance improvement for both in-context learning 560

and prompt-based fine-tuning, with average gains 561

of 9% and 2%, respectively. Moreover, our method 562

outperforms output-calibration approaches, high- 563

lighting the advantage of intrinsic bias calibration. 564

We believe this work presents a new perspective 565

of making LMs better zero/few-shot learners via 566

intrinsic bias calibration. Additionally, the demon- 567

strated significance of bias parameters could pro- 568

vide insights for future bias-related research. 569
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7 Limitations570

While our method has achieved substantial im-571

provement in prompt-based zero/few-shot learning,572

it comes with limitations that could open avenues573

for future research.574

First, calibration is fully unsupervised in the sce-575

nario where no labeled data is available (zero-shot576

downstream tasks in § 3.3). Based on empirical577

experimental results, we adopt the conservative578

One-batch Calibration strategy to ensure a safe and579

consistent performance enhancement. In the future,580

we aim to explore more rigorous approaches to581

determine optimal stopping points in this scenario.582

Second, we utilize RoBERTa (encoder) mod-583

els for classification tasks, as encoder models may584

more effectively encode task-specific patterns for585

discriminative tasks compared to some genera-586

tive LMs (Gao et al., 2021; Li et al., 2023b), as587

shown in Table 16. However, the relatively small588

size of those Masked LMs (355M parameters for589

RoBERTa-large) could be the ultimate limitation590

to their capabilities. Given the proliferation of591

large-scale generative (decoder) LMs and their ac-592

complishments in tackling more challenging tasks593

(Thoppilan et al., 2022; Chowdhery et al., 2023;594

Touvron et al., 2023), we anticipate extending our595

method to large decoder models and validating the596

applicability of our findings. Furthermore, we ex-597

pect to expand the scope of tasks to include regres-598

sion problems (e.g., sentiment score prediction)599

leveraging KL divergence to measure disparities600

in continuous probability distributions, aiming to601

address bias-related challenges across diverse sce-602

narios.603

8 Ethics Statement and Broader Impact604

Our work is conformant to the Code of Ethics. We605

appropriately cite relevant methods, models, and606

datasets that we use. We affirm that all datasets in607

our experiments are public, and no private or sen-608

sitive information is incorporated in our research.609

Our use of datasets and pre-trained models is con-610

sistent with their intended use. For broader im-611

pacts, our method, extending beyond calibrating612

common token bias and association bias, might in-613

spire prospective research in mitigating social bias614

and improving the fairness of pre-trained LMs.615
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A Experimental Details960

Prompts with or without demonstrations. Ta-961

ble 7 shows the prompt templates and label words962

of each dataset we use for main experiments.963

For downstream tasks, in few-shot setting, task-964

specific example-label pairs (i.e., demonstrations)965

can be incorporated in the context to enhance the966

LM’s comprehension. While in zero-shot setting,967

no labeled data is available and thereby no demon-968

strations.969

For calibration, demonstrations are either absent970

from or added to null-input prompts, consistent971

with their exclusion from or inclusion in prompts972

for downstream tasks. An example of a null-input973

prompt without demonstration is:974

<s> An empty sentence. It is <mask>. </s>975

<s> and </s> respectively denote <cls> token and976

<sep> token in RoBERTa. In the other case, we in-977

corporate demonstrations retrieved from the small978

training set into the null-input prompt such as:979

<s> An empty sentence. It is <mask>. </s>
Compellingly watchable. It is great. </s>
The film is strictly routine. It is terrible. </s>

980

Association-bias calibration for aspect-level task.981

For aspect-level sentiment analysis, e.g., "Wonder-982

ful food but poor service. Service was <mask>.",983

the answer contains the aspect word "service". Be-984

cause the model makes sentiment predictions for985

specific aspect words, the task is likely subject to986

association bias (§ 2). For association-bias cali-987

bration, the only difference is that we incorporate988

various aspect words in the answer format (e.g.,989

"<aspect words> was <mask>.") when construct-990

ing null-input prompts. One can either leverage991

GPT-4 to generate in-domain aspect words (e.g.,992

for restaurant reviews, the generated aspect words993

could be menu, food, etc.), or simply employ the994

aspect words in the original training dataset. In995

this work, we choose the latter option. Due to the996

variability of <aspect words> in the answer format,997

sorting null-meaning inputs by NSP score can yield998

different results. To this effect, we do not apply999

xnull selection strategy (§ 4.2) for aspect-level task,1000

and instead keep all the generated xnull.1001

Null-meaning inputs for One-batch Calibration.1002

For zero-shot downstream tasks, since only one1003

batch of null-meaning inputs is required for calibra-1004

tion in our early-stopping criterion (§ 3.3), we se-1005

lect the Top-N{Pnsp(xnull, ans)} xnull from Xnull,1006

where N is batch size. We prioritize these sam- 1007

ples as our observations show that null-meaning 1008

inputs with higher Pnsp(xnull, ans) exhibit higher 1009

attention scores between the null input and <mask>, 1010

as demonstrated in Figure 5. This indicates more 1011

effective conveyance of the "null" information to 1012

the placeholder <mask>, which could facilitate LM 1013

deciphering the "null" patterns of the prompts and 1014

benefit calibration. 1015

Figure 5: Visualization of attention score by the depth
of color in the connecting lines. We only show the atten-
tion between <mask> token and null-meaning input xnull.
Attn<mask>(xnull) is the attention score of <mask> on
xnull, averaged over encoder layers and attention heads.
Left: Higher attention score indicates enhanced pattern
extraction from xnull which has higher Pnsp(xnull, ans).

Hyper-parameters. In calibration stage, we shuf- 1016

fle the null-input prompts and conduct gradient 1017

descent on BLM (or WLM + BLM as comparative 1018

experiment) with 5 different seeds to account for 1019

calibration variance. There are two main hyper- 1020

parameters for calibration: (1) xnull batch size N ; 1021

(2) calibration learning rate lrcalib. We conduct 1022

grid search on N = {8, 16, 32} and lrcalib from 1023

1e − 6 to 1e − 3, and obtain the best settings: 1024

N = 32 and lrcalib as shown in Table 6. 1025

Calibrated LMs are applied in downstream tasks 1026

with prompt-learning methods. We use the same 1027

hyper-parameters as Gao et al. (2021) for prompt 1028

learning. We evaluate on each task’s original test 1029

set, except for AGNews and DBPedia, where we 1030

randomly sample 2000 test examples. 1031

We use PyTorch (Paszke et al., 2019) and pub- 1032

lic HuggingFace Transformers library (Wolf et al., 1033

2020), and conduct all the experiments with one 1034

NVIDIA V100 GPU in Google Colab. 1035
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Calibration (lrcalib) Prompt FT
(downstream)WLM + BLM BLM

No demo 1e− 5 1e− 3 1e− 5

With demo 1e− 6 1e− 4 1e− 5

Table 6: Optimal learning rates for calibration and down-
stream prompt-based fine-tuning (Prompt FT). With/No
demo denotes adding/not adding demonstrations in
prompts.

Algorithm 1 Null-input prompting for calibration

Inputs:
Downstream task: zero_shot or few_shot
Null-input prompts: {Nprompt}
(Val. data in Calibration: Dcalib

val ← Ddownstrm
train )

▷ Only when downstream task is few_shot.
▷ Downstream training dataset Ddownstrm

train con-
stitutes K samples per class.
Output:
LMone_batch

calib for zero_shot
LMone_batch

calib & LMval
calib for few_shot

1: for batch in {Nprompt} do
2: P = LM(batch) ▷ Null input prompting
3: L = DKL(U ||P ) ▷ Unif. distribution U
4: BLM ← BLM − α · ∂L

∂BLM
▷ Freeze WLM

5: if first batch then
6: Save LMone_batch

calib
7: end if
8: if downstream is zero_shot then break
9: end if

10: if better Compute_Metric(Dcalib
val ) then

11: Save LMval
calib

12: end if
13: end for

Figure 6: t-SNE visualization of output representations
for null-meaning inputs generated from GPT-4 (red)
compared to neutral samples from SST-5 dataset (blue).
We utilize the pre-trained sentiment analysis model
(Loureiro et al., 2022) to obtain the embeddings. The
different distributions validate that null information is
not equivalent to neutral sentiment.
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Dataset Task Type Prompt Template Label Words

AGNews News topic classification {Sentence} It is about <mask>. World / Sports / Business / Technology

DBPedia† Ontology classification {Sentence} It is about <mask>. Company / Artist / Building / Nature

TREC Question classification {Sentence} It is about <mask>. Number / Location / Person
/ Description / Entity / Expression

Subj Subjectivity classification {Sentence} This is <mask>. objective / subjective

SST-5 Movie sentiment analysis {Sentence} The movie was <mask>. terrible / bad / okay / good / great

Laptop Aspect level sentiment analysis {Sentence} {Aspect words} was <mask>. terrible / okay / great

Restaurant Aspect level sentiment analysis {Sentence} {Aspect words} was <mask>. terrible / okay / great

Twitter Aspect level sentiment analysis {Sentence} {Aspect words} was <mask>. terrible / okay / great

Table 7: Prompt templates and label words of the eight datasets in our experiments for main results. For DBPedia†,
we use four classes out of the total fourteen classes.

Figure 7: Empirical experiments show the impact of calibration on zero-shot learning performance across different
calibration learning rates lrcalib, with a fixed batch size of 32. Only BLM is updated in calibration. We identify
the optimal lrcalib = 1e− 3 across all datasets and illustrate with AGNews dataset (top two figures) and DBPedia
dataset (bottom two figures). A smaller learning rate (left figures) consistently yields less performance improvement,
considering both peak accuracy and accuracy after the first calibration batch (the intersections of the curves and red
vertical line). A larger learning rate (right figures) consistently degrades performance.
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B Additional Results1036

B.1 Performance Comparison with1037

NSP-BERT, Perplection and NoisyTune1038

We additionally choose NSP-BERT (Sun et al.,1039

2022) and Perplection (Lu et al., 2023) as in-context1040

learning comparison baselines and NoisyTune (Wu1041

et al., 2022) as prompt-base fine-tuning comparison1042

baseline. NSP-BERT constructs potential answers1043

using each label word and predict Next Sentence1044

Prediction (NSP) probability between the input1045

and each answer. Perplection proposes perplexity-1046

based selection method for zero-shot prompt learn-1047

ing. NoisyTune demonstrates that adding noise1048

to pre-trained LMs benefits fine-tuning on down-1049

stream tasks. We re-implement their methods with1050

the same settings as ours for fair comparisons. As1051

shown in Table 8 and Table 9, our method achieves1052

superior results in almost all datasets.1053

Furthermore, our method consistently outper-1054

forms NoisyTune, demonstrating that the gains in1055

prompt-based fine-tuning with our method are not1056

solely a result of perturbing LM parameters. This1057

confirms the efficacy of intrinsic bias calibration in1058

enhancing LM performance.1059

Zero-shot in-context learning

NSP-BERT Perplection IntrCal

AGNews 52.4 49.3 54.5
DBPedia 58.4 59.6 61.8

TREC 32.4 30.8 31.1

Subj 60.3 59.9 62.7
SST-5 30.2 31.0 37.5
Laptop 57.3 58.2 59.6

Restaurant 50.4 66.5 72.8
Twitter 35.3 31.5 51.7

Average 47.1 48.4 54.0

Table 8: Comparison of NSP-BERT (Sun et al., 2022),
Perplection (Lu et al., 2023) and IntrCal (ours) in zero-
shot in-context learning.

B.2 Other Experiments1060

We briefly summarize the contents of each table1061

and figure below that presents other additional re-1062

sults.1063

Table 10 contains results for performance using1064

RoBERTa-base model.1065

Table 11 contains results for performance of K =1066

{2, 4, 8} few-shot learning.1067

Prompt FT no demo Prompt FT with demo

NoisyTune IntrCal NoisyTune IntrCal

AGNews 89.01.8 89.00.8 88.41.5 89.30.9

DBPedia 98.00.8 99.00.1 98.60.9 98.90.3

TREC 86.24.3 89.34.5 87.24.6 89.71.0

Subj 93.01.2 93.21.2 92.91.2 94.30.2

SST-5 49.41.1 49.92.7 47.53.5 50.01.7

Laptop 73.83.2 74.92.9 75.53.2 78.71.4

Restaurant 79.92.7 82.00.9 78.32.6 79.84.5

Twitter 51.85.8 57.04.2 59.01.9 59.32.3

Average 77.6 79.3 78.4 80.0

Table 9: Comparison between NoisyTune (Wu et al.,
2022) and IntrCal (ours) in prompt-based fine-tuning.

Figure 8 contains results for performance using 1068

different prompt templates (Table 13). 1069

Table 12 contains results for pseudo-perplexity 1070

comparisons between updating entire LM and only 1071

updating bias parameters in calibration. 1072

Table 14 contains results for performance compar- 1073

isons between updating entire LM and only updat- 1074

ing bias parameters in calibration. 1075

Table 15 contains results for performance of 1076

sentence-pair datasets. 1077

Table 16 contains results for performance compar- 1078

isons between Llama-2 and RoBERTa. 1079

Table 17 contains results for variance of probability 1080

distribution across labels before and after calibra- 1081

tion. 1082
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In-context lrn no demo In-context lrn with demo Prompt FT no demo Prompt FT with demo

NoCal OutCal IntrCal NoCal OutCal IntrCal NoCal OutCal IntrCal NoCal OutCal IntrCal

AGNews 37.80.0 36.24.6 49.00.9 68.40.4 69.74.3 73.70.3 88.20.3 87.80.6 88.91.0 86.70.1 74.24.1 87.20.1

DBPedia 57.20.0 50.57.1 54.90.1 56.53.4 78.74.4 83.90.4 95.22.1 93.55.0 99.00.4 97.80.9 96.70.8 98.60.1

TREC 28.20.0 25.44.4 30.20.1 41.20.3 39.93.8 42.51.0 82.510.9 70.32.3 86.46.5 85.71.8 80.65.0 91.20.6

Subj 53.60.0 63.61.9 66.41.8 50.80.2 67.01.7 69.60.4 92.51.3 91.10.4 91.91.7 90.42.1 92.00.2 92.30.1

SST-5 31.90.0 30.83.4 32.20.2 25.34.3 28.63.4 29.81.7 45.93.3 42.92.3 48.11.8 44.35.2 40.72.5 45.82.6

Laptop 56.10.0 56.73.8 60.00.1 49.20.9 61.52.8 64.00.6 75.83.4 73.01.3 76.31.8 74.80.1 76.00.6 76.30.5

Restaurant 69.80.0 72.02.9 69.50.5 67.60.7 70.52.4 73.20.7 75.56.6 77.33.4 77.21.1 74.83.3 75.20.7 76.13.9

Twitter 22.00.0 48.65.1 52.30.6 17.60.4 41.85.4 48.40.5 54.51.1 47.73.8 57.91.3 50.64.6 51.82.1 56.04.9

Average 44.6 48.0 51.8 47.1 57.2 60.6 76.3 73.0 78.2 75.6 73.4 77.9

Table 10: Result comparisons among NoCal (LM-BFF Gao et al., 2021; no calibration), OutCal (output calibration)
and IntrCal (ours; intrinsic-bias calibrated LM) using RoBERTa-base. We report the mean and standard deviation
of performance in 8 classification datasets with 4 prompt-learning methods.

In-context lrn with demo Prompt FT no demo Prompt FT with demo

NoCal IntrCal NoCal IntrCal NoCal IntrCal

2-shot

AGNews 70.46.7 76.33.6 76.45.4 80.28.0 78.21.3 83.21.1

DBPedia 92.90.9 94.01.0 97.01.6 98.40.9 97.41.0 97.81.1

TREC 49.84.2 50.54.0 49.122.6 60.39.6 65.29.3 66.19.3

Subj 49.41.1 56.23.9 66.45.4 82.25.9 72.313.9 81.513.2

4-shot

AGNews 75.73.9 80.31.7 85.42.7 87.31.3 76.713.1 85.91.9

DBPedia 93.00.4 93.90.4 97.20.8 97.91.1 96.41.5 98.60.6

TREC 51.92.6 53.22.5 64.57.1 67.66.7 73.68.5 78.29.7

Subj 48.82.2 59.43.1 81.43.9 88.53.2 78.99.3 83.67.8

8-shot

AGNews 79.61.0 82.41.6 86.91.9 88.10.4 85.51.7 88.01.4

DBPedia 92.90.8 94.20.2 97.31.2 98.80.5 98.20.8 98.60.2

TREC 47.92.2 48.72.0 71.64.9 72.25.1 75.46.2 81.75.6

Subj 48.41.0 60.54.8 91.91.3 92.70.8 88.95.3 92.12.2

Table 11: Few-shot learning with different number of training samples (K = {2, 4, 8}) using RoBERTa-large.
IntrCal (ours; intrinsic-bias calibrated LM) consistently outperforms NoCal (no calibration).

Model
Datasets

WikiText-2 WikiText-103 LAMBADA

Original RoBERTa 6.189 7.008 24.52

+ CALIBRATION WLM + BLM BLM WLM + BLM BLM WLM + BLM BLM

for_AGNews ↑0.105 6.294 ↑0.017 6.206 ↑0.059 7.067 ↑0.029 7.037 ↑0.58 25.10 ↑0.02 24.54

for_DBPedia ↑0.101 6.290 ↑0.008 6.197 ↑0.092 7.100 ↑0.002 7.010 ↑0.76 25.28 ↓0.22 24.30

for_TREC ↑0.049 6.238 ↓0.027 6.162 ↑0.040 7.048 ↓0.042 6.966 ↑0.57 25.09 ↓0.27 24.25

for_Subj ↑0.081 6.270 ↓0.021 6.168 ↑0.116 7.124 ↓0.030 6.978 ↑0.70 25.22 ↑0.08 24.60

for_SST-5 ↓0.018 6.171 ↓0.031 6.158 ↑0.143 7.151 ↓0.039 6.969 ↑0.65 25.17 ↓0.18 24.34

for_Laptop ↑0.133 6.322 ↑0.011 6.200 ↑0.075 7.083 ↑0.002 7.010 ↑0.56 25.08 ↓0.01 24.51

for_Restaurant ↑0.102 6.291 ↑0.055 6.244 ↑0.071 7.079 ↑0.074 7.082 ↑0.64 25.16 ↑0.13 24.65

for_Twitter ↑0.204 6.393 ↓0.029 6.160 ↑0.096 7.104 ↓0.037 6.971 ↑0.39 24.91 ↑0.05 24.57

Table 12: Pseudo-perplexities of original RoBERTa and task-specific calibrated RoBERTa on WikiText-2, WikiText-
103 and LAMBADA. We use 2000 test samples of each dataset. An increase in values (highlighted in red) indicates
a reduction in language modeling abilities after calibration. WLM + BLM updates entire LM in calibration while BLM
only updates bias parameters.

17



Task Prompt Templates

AGNews

{Sentence} It is about <mask>.

{Sentence} This is about <mask>.

{Sentence} This is on <mask>.

{Sentence} It pertains to <mask>.

{Sentence} In relation to <mask>.

TREC

{Sentence} It is about <mask>.

{Sentence} Concerning <mask>.

{Sentence} This is about <mask>.

{Sentence} In relation to <mask>.

{Sentence} This is on <mask>.

Table 13: The five different prompt templates used in
Figure 8.

Figure 8: Performance comparison averaged on using
five different prompt templates with RoBERTa-large. In-
trCal (ours; intrinsic-bias calibrated LM) demonstrates
significantly improved accuracy with lower variance
compared to NoCal (no calibration).

In-context lrn with demo Prompt FT with demo

WLM + BLM BLM WLM + BLM BLM

AGNews 82.00.8 82.40.9 89.30.6 89.30.9

DBPedia 95.10.7 94.80.7 99.00.1 98.90.3

TREC 49.12.6 48.62.2 88.92.3 89.71.0

Subj 65.60.4 63.52.3 93.91.6 94.30.2

SST-5 37.11.0 36.61.0 51.31.7 50.01.7

Laptop 65.80.3 67.41.7 77.70.8 78.71.4

Restaurant 72.71.2 74.01.0 81.43.4 79.84.5

Twitter 45.82.7 49.42.7 60.41.7 59.32.3

Average 64.2 64.6 80.2 80.0

Table 14: Performance comparisons between differ-
ently calibrated LMs using RoBERTa-large. WLM +
BLM updates entire LM in calibration while BLM only
updates bias parameters. This table (prompt learning
with demonstrations) is the supplement to § 5.3 Table 4
(prompt learning without demonstrations).

In-context lrn no demo Prompt FT no demo

NoCal IntrCal NoCal IntrCal

MNLI 32.70.0 37.70.7 67.92.1 68.61.9

SNLI 33.60.0 36.70.9 77.42.8 78.52.3

MRPC 51.10.0 53.60.2 73.64.3 74.91.4

QQP 50.80.0 54.60.2 65.23.5 66.23.3

Table 15: Benchmark on sentence-pair datasets, MNLI
(Williams et al., 2018), SNLI (Bowman et al., 2015),
MRPC (Dolan and Brockett, 2005), QQP (Wang et al.,
2018). NoCal denotes no-calibration (baseline) and In-
trCal denotes our method. Our method demonstrates
effectiveness on sentence-pair datasets. The overall low
performance of in-context learning can be attributed to
two main factors: (1) RoBERTa’s inherent limited capa-
bilities when using in-context learning for the more diffi-
cult tasks, which is significantly improved with prompt-
based fine-tuning. (2) The misalignment between these
sentence-pair datasets and the use of single-sentence
null inputs for calibration, which could impact the ef-
fectiveness of calibration.

Llama-2 (7B) RoBERTa-large (355M)

AGNews 44.1 47.0
DBPedia 47.1 58.2

TREC 42.0 24.0

Subj 49.8 50.8
SST-5 29.3 31.5
Laptop 48.5 54.6

Restaurant 65.4 68.6
Twitter 25.5 19.7

Table 16: Comparison between Llama-2 (7B parame-
ters) (Touvron et al., 2023) and RoBERTa-large (355M
parameters) on zero-shot in-context learning perfor-
mance for classification tasks. Llama-2 does not consis-
tently outperform RoBERTa in these tasks.

AGNews DBPedia TREC Subj SST-5

Orig. LM 0.033 0.130 0.025 0.195 0.011

Calib. LM 0.022 0.025 0.011 0.112 0.011

Table 17: We calculate the variance of probability distri-
bution across labels conditioned on null-meaning inputs,
i.e., V ar

(
P̄Xnull(Y)

)
, before and after calibration. A

smaller variance indicates that a distribution is closer to
uniform distribution. Orig. LM denotes original LM,
and Calib. LM denotes the LM after One-batch Calibra-
tion (§ 3.3). The decreasing variance in each task after
calibration demonstrates that our method promotes the
establishment of equitable LMs.
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