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I. INTRODUCTION

With the rise of robotics foundation models [1], simulation
has become an indispensable tool for both policy training and
evaluation [2, 3]. Simulations enable generating large-scale
training data at a fraction of the cost of real-world collection
and facilitate evaluating model checkpoints in controlled
environments, ensuring repeatability. In these settings, mod-
ern physics simulators for robotics must satisfy several key
requirements to be effective: (i) strong numerical stability
guarantees, (ii) sufficient accuracy to capture real-world
success and failure modes, (iii) computational efficiency
to support data collection and policy evaluation at scale,
and (iv) the ability to model diverse environments.

Among existing physics simulators for robotics, Drake
[4] and MuJoCo [5] are well-regarded for their strong
robustness guarantees and high accuracy required for manip-
ulation tasks. Both employ a convex formulation of frictional
contact, ensuring stability and global convergence [6, 7].
However, despite recent advancements in deformable body
simulation within the convex framework [8–10], these simu-
lators struggle to efficiently simulate deformable bodies with
a large number of degrees of freedom (DoFs) at interactive
rates. This limitation arises partly from the need to solve
poorly-conditioned convex optimization problems that neces-
sitates direct linear solvers with O(n3) complexity [7]. The
inclusion of deformable bodies exacerbates this challenge,
as it significantly increases the number of DoFs—often by
orders of magnitude—making efficient solutions increasingly
difficult. Moreover, the inherently serial nature of direct
linear solvers precludes efficient parallelization on GPUs,
further restricting scalability.

Among various methods for simulating deformable ma-
terials, the Material Point Method (MPM) has gained
traction due to its ability to handle large deformations and
topology changes [11]. However, existing simulators struggle
to achieve both robustness and efficiency [10]. In this paper,
we propose a novel convex formulation for coupling MPM
with rigid bodies through frictional contact, designed for
efficient GPU parallelization. We prove the stability and
global convergence of our frictional contact model. Further-
more, we demonstrate that our method efficiently simulates
a wide range of materials while preserving the high accuracy
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Fig. 1: A challenging T-shirt folding task demonstrating the
accuracy, speed, and robustness of our method.

required for robotic manipulation tasks. We make our method
available in the open-source robotics toolkit, Drake.

II. MATHEMATICAL FORMULATION

A. Asynchronous Time-Splitting Scheme

We discretize time into intervals of size ∆t to advance
the system dynamics from tn to the next time step tn+1 :=
tn +∆t using the governing equation:

M(q)(vn+1 − vn) = ∆tk(q,v) + ĴT (q)γ̂(q,v), (1)

where q and v are generalized positions and velocities, γ is
the contact and friction impulses, k represents all non-contact
forces, and Ĵ is the contact Jacobian. Using subscripts d for
MPM DoFs and r for rigid body DoFs, we define:

qT = [qT
r , q

T
d ], vT = [vT

r , v
T
d ],

kT = [kT
r , k

T
d ], M = diag(Mr, Md). (2)

Specifically, qd and vd denote the MPM particle positions
and grid velocities ; kd includes elastic-plastic and external
forces on MPM DoFs; qr and vr are the articulated rigid
body joint positions and velocities; kr captures Coriolis
terms and gravity on rigid body DoFs.



We further separate contact between MPM and rigid
bodies from contact among rigid bodies as:

γ̂ =

(
γd

γr

)
, Ĵ =

(
Jr Jd

Jrr 0

)
.

Notably, we do not explicitly model contact forces among
MPM DoFs, as these are naturally resolved through the
hybrid Eulerian/Lagrangian representation with constitutive
and plasticity modeling [12, 13].

To achieve efficient GPU parallelization without sacri-
ficing stability, we integrate elastic forces explicitly using
symplectic Euler, while treating stiff frictional contact forces
implicitly via backward Euler. However, symplectic Euler
requires smaller time step sizes than backward Euler for sta-
bility, motivating our asynchronous time-splitting approach:

Mr(q
n
r )(v

n+1
r − vn

r ) = ∆tkr(q
n
r ,v

n
r ) + JT

rrγr(v
n+1
r )

+ JT
r

N−1∑
k=0

γn,k
d , (3)

Md(q
n,k
d )(vn,k+1

d − vn,k
d ) =

∆t

N
kd(q

n
d ) + JT

d γ
n,k
d , (4)

for k = 0, . . . , N − 1, with vn,0
d = vn

d , and vn,N
d = vn+1

d .

Here, γn,k
d = γd(v

n
r ,v

n,k+1
d ) is the frictional impulse

between rigid bodies and MPM at substep k. Notice that in
Eq. (4), we decompose a single time step into N substeps.
Elastic forces kd are integrated explicitly to facilitate paral-
lelization, whereas contact forces γd are integrated implicitly
with respect to vn,k+1

d for stability. Throughout all substeps
in a single timestep, the rigid body velocity is fixed at vn

r .
The contact impulses at each substep are accumulated and
applied to rigid body DoFs in Eq. (3). This approach results
in a weak coupling between rigid bodies and MPM DoFs,
in contrast to the strong coupling scheme proposed by [10].
We evaluate the accuracy of our weak coupling scheme in
Section III.

B. Convex Formulation

The integration of rigid DoFs in Eq. (3) follows the same
methodology as described in [14]. We refer readers to that
work for detailed explanations and implementation practices.
Here, we focus on the integration of Eq. (4) for MPM DoFs.
For notational simplicity, we drop the subscript d and the
superscript n in Eq. (4), reducing it to an algebraic difference
equation that advances a substep of MPM:

M(vk+1 − vk) =
∆t

N
k+ JTγ(vc). (5)

Here, vc = Jvk+1+br denotes the relative contact velocity
between particles and the rigid body they are in contact with,
expressed in the contact frame, where the contact frame is a
local frame with the z-axis aligned with the contact normal.
The term br = Jrv

n
r represents the bias velocity from the

rigid body in the contact frame.
We solve Eq. (5) in two stages by performing another

time-splitting. First, we compute the free motion velocity,

v∗, which is the velocity the MPM DoFs would attain in the
absence of contact forces:

M(v∗ − vk) =
∆t

N
k. (6)

This step is equivalent to a standard explicit MPM step. We
adopt the moving least-squares formulation described in [15]
for this computation.

In the second stage, we compute the post-contact velocity
vk+1 by solving:

M(vk+1 − v∗) = JTγ(vc). (7)

To ensure global convergence, we reformulate Eq. (7) as a
convex optimization problem [14]:

vk+1 = argmin
v

ℓp = argmin
v

1

2
∥v − v∗∥2M + ℓc(vc). (8)

The term ℓc(vc) is the contact potential energy, defined such
that γ(vc) = −∂ℓc/∂vc. With mass lumping, M is diagonal
and positive definite, ensuring that problem (8) is strongly
convex as long as the frictional contact model is designed
with a convex ℓc. We adopt the lagged contact model in [14].

C. Quasi-Newton Solver

A key advantage of our weak coupling scheme is that,
instead of requiring the Schur complement of the Jacobian
of the momentum residual as in [10]—which is unfriendly
to GPU parallelization—our formulation replaces it with
the diagonal mass matrix, which is trivial to parallelize.
However, the Hessian Ĥ of ℓp still contains off-diagonal
entries from the Hessian of ℓc. Given the massive paral-
lelization capabilities of GPUs, it is more efficient to trade
additional solver iterations for better parallelization (see
Section III-A). Therefore, we adopt a quasi-Newton strategy
by approximating Ĥ with its 3×3 block diagonal counterpart
H to avoid the inherently serial Cholesky factorization of Ĥ.
We leverage the convergence criteria from [7] and [10] to
ensure robustness against large mass ratios and enable fair
comparison in Section III-A. The resulting γ is accumulated
into Eq. (3).

III. RESULTS

We present several test cases to showcase the efficiency,
accuracy, and robustness of our method. All simulations are
run on a system with an Intel(R) Xeon(R) CPU E5-2690
v4 processor (56-core) and 128 GB of RAM, and an RTX
4090 with 24 GB device memory. All simulations are solved
to convergence with εr = 5 × 10−2 and εa set to machine
epsilon unless otherwise specified.

A. Rolling an Elastoplastic Dough

We reproduce the complex dough rolling example from
[10] with our asynchronous time-splitting scheme, as shown
in Fig. 2. The friction coefficient is 1.0 between the dough
and the rolling pin.

We compare the runtime performance of our method with
[10] under various tolerance criteria in Fig. 2. For both
methods, we set the absolute tolerance εa to machine epsilon



Fig. 2: (Top) Flattening a piece of dough with a rolling
pin. Our coupling scheme captures the rolling pin’s friction-
driven rotation and the dough’s deformation. (Bottom) We
compare the runtime between ours and Zong et al. [10] under
various relative tolerances.

and vary the relative tolerance εr from 10−5 to 10−1. Both
methods are simulated with a time step size ∆t = 10 ms,
and our method uses N = 10 substeps. Across all tolerance
levels, our method consistently outperforms [10], achieving
at least a 10× speed-up and demonstrating strong scalability
as the convergence criteria are relaxed, making it well-suited
for interactive-rate simulations. With εr = 10−1, our method
attains a 500× speed-up compared to [10], reaching a 59%
real-time rate (defined as simulation time divided by wall-
clock time).

B. Cloth and rigid bodies

Another key advantage of our weak coupling scheme is
that it eliminates the requirement for a convex energy density
in the constitutive model of MPM, as mandated by [10]
to maintain convexity in the optimization problem (8). This
flexibility unlocks the potential of MPM to model a broader
range of materials.

In this experiment, we implement the method from [16]
to model cloth with MPM. The frictional contact and self-
collision of the cloth are automatically handled by the MPM
grid. The simulation setup involves a 42 cm2 cloth modeled
with a Young’s modulus of Ecloth = 3.2×106 Pa, a Poisson’s

𝑡 = 6𝑠

𝑡 = 7𝑠

𝑡 = 10𝑠

𝑡 = 14𝑠

Fig. 3: Pick and place rigid boxes into a deformable cradle.
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Fig. 4: A robot picks up a piece of cloth and throws it in a
“laundry bag” . Our method resolves the complex cloth-on-
cloth collisions and cloth self-collisions at interactive rate.

ratio of ν = 0.4, and a density of ρcloth = 1.5× 103 kg/m3.
The four corners of the cloth are fixed with boundary
conditions to form a cradle. A KUKA LBR iiwa 7 arm,
equipped with an anthropomorphic Allegro hand, picks up
two rigid boxes and places them on the cloth. Each box has
a side length of 8 cm and a density of ρbox = 103 kg/m³. The
friction coefficient is 0.2 between the boxes and the cloth.
The cloth corners are then moved inward to wrap around the
rigid boxes, and finally, two corners are released, allowing
the boxes to fall out.

C. Laundry

Similar to the setup in Section III-B, we replace the
two boxes with another piece of cloth to mimic a common
household scenario of moving clothes into a laundry bag.
The robot follows a prescribed trajectory to grasp the cloth
and throw it into the laundry bag. We then release the grip
on two corners of the laundry bag, allowing the cloth to
fall out naturally. The simulation achieves a real-time rate
of 26.5%, demonstrating that our method efficiently handles
intense cloth-on-cloth collisions and self-collision scenarios.

D. Folding and Unfolding a T-Shirt

We demonstrate the accuracy and robustness of our
method with a challenging T-shirt folding task (Fig. 1). The
T-shirt mesh consists of 4,171 vertices and 7,987 faces, and is
simulated with a Young’s modulus of Ecloth = 105 Pa, a Pois-
son’s ratio of ν = 0.3, and a density of ρcloth = 103 kg/m³.
The robot setup features two PD-controlled KUKA LBR iiwa
7 arms equipped with custom parallel grippers.

Our method accurately captures frictional interactions
between the gripper and the T-shirt, enabling smooth task
execution. The T-shirt undergoes two folds, resulting in up to
eight stacked layers. Our approach effectively handles cloth
self-collisions and rigid-MPM interactions, preventing cloth
self-penetration throughout the simulation. This ensures the
T-shirt is successfully unfolded without artifacts, showing the
robustness of our method.

We refer readers to the supplemental video for the full
trajectories of all experiments.
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