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Abstract

The development of state-of-the-art (SOTA)001
Natural Language Processing (NLP) systems002
has steadily been establishing new techniques003
to absorb the statistics of linguistic data. These004
techniques often trace well-known constructs005
from traditional theories, and we study these006
connections to close gaps around key NLP007
methods as a means to orient future work. For008
this, we introduce an analytic model of the009
statistics learned by seminal algorithms (in-010
cluding GloVe and Word2Vec), and derive in-011
sights for systems that use these algorithms012
and the statistics of co-occurrence, in gen-013
eral. In this work, we derive—to the best of014
our knowledge—the first known solution to015
Word2Vec’s softmax-optimized, skip-gram al-016
gorithm. This result presents exciting potential017
for future development as a direct solution to a018
deep learning (DL) language model’s (LM’s)019
matrix factorization. However, we use the020
solution to demonstrate a seemingly-universal021
existence of a property that word vectors ex-022
hibit and which allows for the prophylactic dis-023
cernment of biases in data—prior to their ab-024
sorption by DL models. To qualify our work,025
we conduct an analysis of independence, i.e.,026
on the density of statistical dependencies in co-027
occurrence models, which in turn renders in-028
sights on the distributional hypothesis’ partial029
fulfillment by co-occurrence statistics.030

1 Motivation031

Suppose one wished to randomly optimize a Rube032

Goldberg machine (RGM) over many Dominoes033

with the intent of accomplishing a small down-034

stream task. Should the RGM be initialized to a035

random state, with dominoes scattered haphazardly,036

i.e., with no prior? Or would it help more to con-037

strain the RGM to initializations with all dominoes038

standing on end? Perhaps less effort could be used039

to modify the dominoes-on-end state for the goal—040

but that depends on the goal and how dominoes can041

be used to transfer energy over long ranges.042

Pre-trained models are often used as initializa- 043

tions, eventually applied to downstream NLP tasks 044

like part-of-speech tagging or machine translation. 045

This means model pre-training is a lot like initial- 046

izing an RGM to a highly-potentiated state, while 047

retaining a flexibility/generality to optimize sharply 048

for the diversity of phenomena which can depend 049

on statistical, linguistic information. A challenge 050

partly met by big data pre-training is with the need 051

for models to remain useful on a large diversity of 052

data and tasks. Under the RGM theory, pre-training 053

over big data simply potentiates more dominoes, 054

in more-usefully correlated ways, where ‘useful’ 055

is hands-off defined by a model’s parametric abil- 056

ity to explain language, i.e., which words were 057

where. However, if we knew how many dominoes 058

should be on end at the start and how many domi- 059

noes should be in configurations that make stairs, 060

etc., it seems plausible to initialize the RGM with 061

distributionally-useful tools, given what we know 062

about how humans use dominoes to transfer energy, 063

i.e., the statistics of how humans use vocabularies 064

to communicate. We investigate these questions, 065

replacing ‘domino’ with ‘parameter’, and lay the 066

groundwork for provisioning statistical priors to 067

efficiently meet model pre-training needs for future 068

research, while uncovering a cost-effective method 069

for probing the biases that DL models will learn if 070

they train on specific data. 071

2 Introduction 072

GPT-3 is an off-the-shelf AI that is perhaps the 073

pinnacle of LMs, and compared to GPT-2, was ba- 074

sically just trained on more data and with more pa- 075

rameters. The data that trained GPT-3’s SOTA un- 076

supervised machine translation performance were 077

simply an “unfiltered distribution of languages 078

reflected in internet text datasets” (Brown et al., 079

2020). To uncover how a blend of training data like 080

this aligns the semantics of, e.g., French and En- 081

glish vocabularies requires explaining what (statis- 082
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tically) NLP tasks are teaching to SOTA algorithms,083

e.g., via the language modeling or masked language084

modeling tasks. However, while off-the-shelf AIs085

like GPT-2 are becoming ubiquitous in applications,086

they’re also being shown to contain dangerous bi-087

ases that emerge from training data (Wallace et al.,088

2019; Heidenreich and Williams, 2021).089

2.1 Related Work090

Within the last decade, there have been major091

shifts in representation learning from context-092

independent word vectors (Mikolov et al., 2013a,b;093

Pennington et al., 2014), to context-dependent094

word representations (Howard and Ruder, 2018;095

Peters et al., 2018), to pre-trained language models096

(Devlin et al., 2019; Radford et al., 2018, 2019).097

These trends have been accompanied by large ar-098

chitectural developments from the dominance of099

RNNs (Hochreiter and Schmidhuber, 1997), to the100

appearance of attention (Bahdanau et al., 2015)101

and the proliferation of the Transformer architec-102

ture (Vaswani et al., 2017). Our work seeks to open103

a path towards the efficient engineering of SOTA104

NLP technologies. We aim to compute the natural105

statistics to which model parameters converge, and106

towards this our work analyzes the older, static-107

representations that preceded large LMs.108

Despite gains on empirical benchmarks, recent109

works suggest surprising findings: word order may110

not matter as much in pre-training as previously111

thought (Sinha et al., 2021), random sentence en-112

codings are surprisingly powerful (Wieting and113

Kiela, 2018), one can replace self-attention opera-114

tions in BERT (Devlin et al., 2019) with unparame-115

terized Fourier transformations and still retain 92%116

of the original accuracy on GLUE (Lee-Thorp et al.,117

2021), and many modifications to the Transformer118

architecture do not significantly impact model per-119

formance (Narang et al., 2021). There’s no denying120

increases in empirical performance, but these con-121

founding results raise questions about these models122

and the processing needed to perform NLP tasks.123

3 Harmonically-Distributed Data124

Historically, research has naïvely approached the125

characterization of language statistics by counting126

the occurrence of symbols. While occurrence fre-127

quency can be measured at different levels, e.g.,128

characters, tokens, or phrases, a statistical ubiquity129

was discovered early on for tokens—specifically130

the harmonic relationship which exists in the usage131

of a document’s vocabulary (Zipf, 1935, 1949). To 132

understand the harmonic relationship, suppose a 133

vocabulary V of ∣V∣ = N distinct types is used to 134

convey a collection of documents,D, containingM 135

tokens. A harmonic analysis of D first ranks each 136

t ∈ V with a positive integer rt that sorts the vocab- 137

ulary from high-to-low by frequency. Intuitively a 138

rank, rt indicates the number of other types which 139

occur at least as often as t (without loss of gener- 140

ality). Via this ranking, the empirical occurrence 141

frequency for any type, ft, can be mathematically 142

approximated by harmonically-proportioned val- 143

ues: ft ≈ N ⋅ r−1t , where N scales models to have 144

least-frequent types occur once. Crudely, harmonic 145

distributions describe the bulk of statistical struc- 146

ture in token-frequency distributions. 147

3.1 Co-Occurrence and Context 148

Token co-occurrence matrices, i.e., co-frequency 149

distributions, measure the number of times tokens 150

appear, but specifically, ‘near’ one another. In 151

general, for types t and s, we denote the occur- 152

rence of s in a fixed window of size ±m tokens 153

around t across a collection, D, by Fmt,s. Most 154

of the seminal representation-learning algorithms 155

(including LSA, Word2Vec, and GloVe) rely on 156

such empirical,m-sampled ‘data’ of co-occurrence. 157

Here, it’s important to note that totality in co- 158

occurrence distributions is dependent on the size of 159

the context window, i.e., co-occurrence marginal- 160

ization, which we denote by Mm
F , exhibits how 161

the distribution ‘inflates’ with larger values of m: 162

Mm
F = ∑t,s∈V F

m
t,s = O (2mM). This m-window 163

inflation thus slightly re-defines unigram statistics 164

along marginals, denoted: fmt = ∑l∈V F
m
t,l . 165

Generally, word co-occurrences define a specific 166

family of word-context joint-distributional mod- 167

els, or, context distributions, which can be tuned, 168

e.g., to count only forward, backward, or any un- 169

centered ‘windows’ of context. These can likewise 170

be generalized to n-gram context models (Pianta- 171

dosi et al., 2011). While the over-counting effects 172

of co-occurrence and n-gram contexts can be al- 173

leviated to form integrated higher-order models 174

via weighted context distributions (Williams et al., 175

2015), no representations have to-date used these 176

models. Here, our work is again retrospective, fo- 177

cusing on building solid foundations from the stan- 178

dard, symmetrically-centered word co-occurrence 179

model of context, which has been used across the 180

seminal word vector-learning algorithms. 181

2



4 Representation and Co-Occurrence182

Harmonic distributional structures have long been183

observed, but applications of them to NLP systems184

have largely not emerged. We can juxtapose this185

lack of application to the transformative impact on186

NLP by representation learning’s embeddings, or,187

word vectors. These allow modern DL systems188

to approximate the meanings of tokens. Since La-189

tent Semantic Analysis (LSA) was introduced (Du-190

mais et al., 1988), vector representations of tokens191

have been used to predict and retrieve synonyms192

and analogies (Mikolov et al., 2013a,b; Pennington193

et al., 2014). The fact that word vectors exhibit194

linear semantic relationships between tokens, i.e.,195

predict analogies, is heralded as a success in their196

capture of meaning, but exists without solid un-197

derstanding of how these meanings are captured.198

LSA has influenced theories about human cogni-199

tion (Landauer and Dumais, 1997) and been used200

to measure association of concepts during free re-201

call (Howard and Kahana, 2002; Zaromb et al.,202

2006). Word vectors are limited in representing203

polysemous words. However, as demonstrated in204

(Arora et al., 2018), polysemous words lie in a su-205

perposition of their senses within a linear semantic206

space, and one can approximately recover underly-207

ing sense vectors (Arora et al., 2018).208

4.1 Modeling Co-Occurrence209

The statistical dynamics of co-occurrence strongly210

depend on the hyper-parameter m, whose effect211

can be seen from a low-complexity model. Specif-212

ically, one can crudely sample from an empirical,213

harmonic-frequency distribution to retain some re-214

alistic structure. To compute a model F̂m for a doc-215

ument collection, D, a token t samples ft windows216

of ±m other tokens s that are also distributed by f .217

This makes the sampling proportional to frequency218

ratios with t: F̂mt,s = Ctfs/ft. To physicalize the219

model, one need only assert: ∑s∈V F̂mt,s = 2mft and220

solve for the constant of proportionality, 2mf2t /M ,221

allowing for a closed-form specification:222

F̂mt,s =
2mftfs
M

(1)223

We refer to Eq. 1 as the independent frequencies224

model (IFM), which forms a dense co-occurrence225

matrix that is computable from any set of unigram226

frequencies. To view this model, we present Fig. 1,227

which exhibits the IFM against co-occurrences of228

the word ‘they’ in the Georgetown University Mul-229

tilayer (GUM) Corpus (Zeldes, 2017).230

4.2 Co-Occurrence Factorizations 231

There is a deep connection between word rep- 232

resentation algorithms and the factorization of 233

token co-occurrence matrices. This connection 234

is perhaps most transparent for the GloVe algo- 235

rithm (Pennington et al., 2014), whose loss func- 236

tion is defined to factor the positive values of the 237

log-co-occurrence matrix, and is minimized under 238

frequency-dependent weights, W , to produce word 239

vectors u⃗t, v⃗s and bias parameters at, bs that predict 240

the values of Fm: 241

∑
t,s∈D

Wt,s (u⃗tv⃗
T
s + at + bs − logFmt,s)

2
(2) 242

Under GloVe’s loss function (Eq. 2), a perfect 243

model’s point of convergence would have zero- 244

valued squared terms (Kenyon-Dean et al., 2020): 245

246

logFmt,s = u⃗tv⃗
T
s + at + bs (3) 247

Observing this point of convergence, (Kenyon- 248

Dean et al., 2020) remark upon the variation exhib- 249

ited by GloVe’s vector products and bias terms, but 250

provide little insight into how word vectors inter- 251

act via inner products to produce PMI-like values. 252

We investigate these details and discover critical, 253

mechanical insights that will be used to produce a 254

bias-probing methodology. 255

4.2.1 Clamped GloVe 256

Separating the effects of bias terms and vector prod- 257

ucts is essential for understanding GloVe’s connec- 258

tion to other models, and can be achieved by intro- 259

ducing a ‘clamping’ hyper-parameter, κ ∈ {0,1}, to 260

turn on/off the bias terms. Multiplying this Boolean 261

factor into the bias terms, GloVe’s general factor- 262

ization is: 263

logFmt,s = u⃗tv⃗
T
s + κ(at + bs) (4) 264

So, suppose GloVe is clamped (κ = 0) and that 265

its data follow the IFM (Eq. 1). In this case, vec- 266

tor differences, e.g., between u⃗t and u⃗s, act on 267

every other token w ∈ V’s v-vector as a constant: 268

(u⃗t − u⃗s) ⋅ v⃗Tw = log(fs/ft). This then indi- 269

cates that pairs of vectors with the same frequency 270

ratio: fsx
ftx

=
fsy
fty

have representations which op- 271

erate semantically equivalently, under the GloVe 272

model. We now emphasize the importance of this 273

frequency-ratios property in describing model me- 274

chanics across all classical word-vector models. 275

3



4.2.2 The Frequency-Ratios Property276

As it will be regularly discussed throughout the277

remainder of this document we formally define the278

frequency-ratios property for any classical word-279

vector representation, below.280

Definition: Given two words from a vocabulary281

t, s ∈ V and any set of classical, IFM-trained word282

vectors: U,V ∈ R∣V∣×k (k ≤ ∣V∣), the frequency-283

ratios property exists when the action of vector dif-284

ferences, e.g., between U -vectors on any other to-285

ken w ∈ V’s V -vector is equal to the log-frequency286

ratio of t and s, regardless of w’s choice:287

(u⃗t − u⃗s) ⋅ v⃗
T
w = log

fs
ft

(5)288

We’ll use the frequency-ratios property to effi-289

ciently measure the semantic bias in data that rep-290

resentations would learn. To get there, we will ulti-291

mately ask: does the linear-semantic analogy prop-292

erty (completing analogies by addition/subtraction)293

relate to a relationship of comparable unigram fre-294

quency ratios (and products)? For example, this295

asks if “man is to king as woman is to queen” is296

described in data by: fking/fman ≈ fqueen/fwoman.297

4.2.3 Un-Clamped GloVe298

While a clamped model is technically less com-299

plex (having fewer predictive parameters), GloVe300

is often defined without clamping. In this case301

(κ = 1), the connections between vector differ-302

ences and model parameters become less clear.303

Current conjecture inclines bias parameters will304

converge to log-unigram-frequency values, leaving305

the vector products to model the point-wise mu-306

tual information (PMI) between tokens (Kenyon-307

Dean et al., 2020). Provided GloVe’s inner prod-308

ucts model the PMI, training GloVe on the IFM309

(Eq. 1) should force all vector products to zero:310

u⃗tv⃗
T
s = 0. From this view, more-independent311

word co-occurrences should produce less infor-312

mative vector products, i.e., poorer GloVe models.313

While the evidence for the bias-parameters’ depen-314

dence on frequency is compelling, we note that in315

(Kenyon-Dean et al., 2020)’s comparison of bias316

terms with unigram frequency exhibited a super-317

linear trend, which from the logarithmic scale318

of presentation allows rough approximation by a319

power-law. Denoting a model exponent by γ > 1,320

one can estimate the un-clamped bias parameters’321

behavior as eat , ebs ∝ (fmt )γ , (fms )γ . With an322

IFM defined by Fm-marginal frequencies, GloVe’s323

Figure 1: Comparison of the IFM and empirical co-
occurrences for the word “they” within the GUM cor-
pus. Statistical dependencies between words are the
distances between points and the red dashed line. Unity
is added to all points to clarify non-occurrent pairs.

γ-scaled PMIs exhibit a frequency-ratios property: 324

(u⃗t − u⃗s) ⋅ v⃗
T
w = (γ−1) log(fms /fmt ). So GloVe’s 325

optimization away from true PMI avoids inner- 326

product singularities under the IFM, ensuring the 327

frequency-ratios property’s presence. 328

4.2.4 Word2Vec Softmax 329

Prior to GloVe’s development, the Word2Vec al- 330

gorithm first emerged as a seminal advancement 331

for word representation. While Word2Vec is per- 332

haps most commonly applied under the skip-gram 333

with negative sampling (SGNS) objective (Mikolov 334

et al., 2013c), negative sampling objectives were 335

originally developed to approximate more compu- 336

tationally complex softmax objectives (Mikolov 337

et al., 2013a). Here, we investigate the effects of 338

the IFM’s co-occurrences on both objectives. 339

While it has been known for some time that the 340

SGNS Word2Vec objective factorizes a shifted PMI 341

matrix (Levy and Goldberg, 2014), the implicit 342

matrix factorization behind Word2Vec’s softmax 343

objective to-date has not been derived. While this 344

could be due to the softmax objective’s mathemati- 345

cal complexity or the perceived lack of a factoriza- 346

tion’s utility (given unfactorized softmax’s compu- 347

tational complexity), we show that neither is truly 348

an obstacle and now derive the softmax factoriza- 349

tion. While providing insight into Word2Vec as 350

an LM, this presents an optimization strategy that 351

makes the softmax objective much more computa- 352
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tionally feasible, opening new potential for large353

scale applications, which we leave to future work.354

Theorem: Under the log-softmax objective:355

Lsoft = −∑
t∈V

∑
s∈V

Fmt,s logϕ(u⃗tv⃗s), (6)356

the Word2Vec algorithm implicitly converges to-357

wards a matrix factorization for all non-zero co-358

occurrences of the form:359

u⃗tv⃗
T
s = log

Fmt,s

fmt
, (7)360

which is equal to the log-conditional probability361

matrix of the co-occurrence model.362

The proof of this theorem is provided in Ap-363

pendix A, which is the first known—to the best364

of our knowledge—proof of the softmax objec-365

tive’s factorization. This facorization produces a366

true LM, while Word2Vec’s SGNS objective and367

GloVe do not. Historically, the softmax objec-368

tive hasn’t been utilized for pre-training applica-369

tions due to computational complexity, and be-370

cause SGNS has been seen as a partial approxi-371

mation of softmax. However, our softmax solu-372

tion provides a low-complexity strategy for pre-373

training—more powerful—LM-representations ef-374

ficiently, via aggregated co-occurrences, just like375

GloVe’s regression-based loss, e.g., replacing the376

rightmost term of Eq. 2 with Eq. 7. This could377

have far reaching consequences, but devising new378

pre-training techniques was not the explicit in-379

tention of this proof. For us, the factorization380

elucidates the existence of the frequency-ratios381

property for what is arguably the most fundamen-382

tal/influential classical word vector algorithm as a383

corollary (proof, Appendix B).384

Corollary: When trained on the IFM, Word2Vec’s385

softmax objective, Lsoft, exhibits the frequency-386

ratios property asymmetrically for differences of387

V -vectors acting on U (only).388

Similar to un-clamped GloVe, the softmax skip-389

gram objective for Word2Vec only supports the390

frequency-ratios property on one side. The other391

side of its parameters could be responsible for main-392

taining the softmax’s normalization and/or contrast.393

This could possibly explain why one of the U vs. V394

matrices’ parameters have traditionally been prefer-395

entially retained, i.e., since only the V -vector differ-396

ences are guarenteed to exhibit the frequency-ratios397

property when acting on U . However, we note that398

both U and V are intrinsically intertwined as two 399

complimentary parts of the factorization. This also 400

indicates that both U and V matrices should proba- 401

bly be retained for later use, and perhaps only ever 402

combined by concatenation, since distribution in 403

this form would allow other researchers apply full 404

models. For example, this would allow for vectors 405

trained by Eq. 7 to be used as a low-compute LM. 406

4.2.5 Word2Vec-SGNS 407

We ask if the SGNS-Word2Vec objective also ex- 408

hibits any frequency-ratios property. Here, we find 409

asymmetric support again, and which is strikingly 410

similar to that of un-clamped GloVe: 411

Theorem: The Word2Vec SGNS objective trains 412

vectors which exhibit a frequency-ratios prop- 413

erty scaled by one minus its sampling parameter: 414

u⃗w(v⃗t − v⃗s)
T = (1 − α) log(fms /fmt ). 415

This theorem (proof, Appendix C) shouldn’t be 416

too surprising, since SGNS also factors a PMI-like 417

matrix (Kenyon-Dean et al., 2020). What is per- 418

haps most surprising about this result is that SGNS’ 419

frequency-ratios property emerges directly from 420

hyper-paramaterization via α > 0, which tempers 421

the negative-sampling rate as a power-law scaling 422

of frequency. While α is generally presented with 423

limited theoretical justification, its intent is acceler- 424

ated learning, and its effect is biased (high-entropy) 425

sampling during learning. Reflecting on this, it 426

seems possible that un-clamping Glove induces γ 427

in lieu of receiving a biased sample of contrastive 428

information via α, as is done with SGNS. We like- 429

wise note that the piece-wise construction of W in 430

GloVe’s formulation complicates analysis, which 431

could explain γ’s limited presence over only the 432

largest frequencies (Kenyon-Dean et al., 2020). 433

Considering how the frequency-ratios property 434

appears ubiquitously across the diversity of classi- 435

cal word vector models under the IFM, we will ex- 436

amine the degree to which independence pervades 437

co-occurrence models, below. However, with the 438

frequency-ratios property in the focus, we now ex- 439

hibit its immediate capacity to profile the semantic 440

biases present in data. 441

5 Probing Data for Semantic Biases 442

The experiments described here draw from sev- 443

eral publicly available data sets and intend to ex- 444

hibit how analogies and token frequencies inter- 445

act. Token-frequency distributions are taken from 446

two corpora denoted by G and W , correspond- 447
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ing to Google Books’ most recent N -grams re-448

lease (Google, 2006) and a controlled collection of449

Wikipedia articles, described in detail below. Our450

interest with analogies is not in their prediction, and451

rather in developing a bias-probing methodology452

for evaluating data. So while a number of analogi-453

cal test sets exist—including from the well-studied454

MSR collection (Mikolov et al., 2013a,b)—we uti-455

lize the Bigger Analogy Test Set (BATS) for its456

size, organization, and diversity, providing a to-457

tal of roughly 105 analogical comparisons across458

categories (Gladkova et al., 2016).459

Critically, BATS contains analogical compar-460

isons for multiple encyclopedic groups. While461

analogical prediction experiments often perform462

well at the country-capital relationship, the more463

acute geographic category comparing UK coun-464

ties and cities appears more challenging (Gladkova465

et al., 2016). We ask if this lower performance is466

due to poor representation in source data, i.e., if467

the relative abundance of language which discusses468

UK cities and counties is low in the data used to469

train word vectors that have been studied in the past.470

To examine this question, we will study the extent471

to which an intentionally-biased sample exhibits472

support for the UK city-county analogies.473

5.1 Bias Measurement via Analogies474

Stepping back, there should be no surprise if analo-475

gies can be used to directly measure bias in data.476

The WEAT test for measuring bias in word vec-477

tors (Caliskan et al., 2017) is based on four same-478

sized sets of words, which are referred to as target,479

e.g., gender-related words; and attribute, e.g., role-480

related words. Sampling one word from each of481

these sets essentially forms an analogy (even if non-482

sensical or offensive), and the WEAT formula mea-483

sures bias via similarity statistics averaged across484

all comparisons. Furthermore, more recent meth-485

ods for controlling bias in modern, self-attending486

systems retain this formulation (Karve et al., 2019),487

generalizing WEAT to four potentially-different-488

sized word sets, but again, with two for target words489

and two for attributes that can be used to constitute490

the dyads of hypothetical analogies.491

To measure bias directly in data using analo-492

gies, denote each of the dyads, e.g., (man,woman),493

within a given analogy, x ∶ y, as: x = (t, s) and494

y = (t̃, s̃). On any given pair of dyads, we intro-495

duce the absolute difference of log-frequency ratios496

as a measurement of the dissonance, ∆, expressed497

towards the dyads, given a corpus, D: 498

∆ (x, y ∣ D) = ∣log
ftfs̃
fsft̃

∣ /max
l∈V

{log fl} (8) 499

This quantity is entropicly ‘normalized’ by the 500

largest value that the absolute difference could pos- 501

sibly take, occurring when a dyad of ratio 1 is com- 502

pared to one with least-most frequent words. This 503

places ∆ in [0,1] and makes it possible to compare 504

dissonance between corpora, i.e., the expressions 505

of bias that data exhibit. 506

Musically, ∆, measures the degree to which the 507

dyads are consonantly/dissonantly equivalent, i.e., 508

whether the dyads play the same ‘chord’ (regard- 509

less of pitch). This is because ∆ can be considered 510

in terms of physical waves, i.e., modeling a docu- 511

ment as a superposition of unit-amplitude square 512

waves, whose peaks approximate the positions of 513

each type’s occurrences. Since physical waves of 514

constant amplitude and velocity will have powers 515

proportional to the squares of their frequencies, 516

each token-frequency ratio becomes equivalent to 517

the square root of two waves’ power ratio. Thus 518

when un-normalized, the dissonance can be under- 519

stood by its units of decibels, which more broadly 520

informs us that ∆ measures an absolute difference 521

in decibels expressed by each dyad, or, the differ- 522

ence in loudness between the dyads’ overtones. 523

5.2 Analogical-Bias Probing Experiment 524

While it is customary to train word vectors on 525

Wikipedia articles, we hypothesize that historical 526

samples have had relatively few descriptive pas- 527

sages relating the UK cities to their counties, as 528

compared to national capitols with their countries. 529

The latter are likely more-broadly discussed on 530

Wikipedia, and we hypothesize the former would 531

be if their relative associations were more ade- 532

quately represented in data. To ensure this, we 533

composed our sample of Wikipedia articles, W , 534

from the collection of all pages leading to and 535

from any UK city’s Wikipedia page, where UK 536

cities are strictly defined according to those listed 537

on Wikipedia in its presentation of the UK’s 69 538

officially-designated cities (as of 2021). This re- 539

sulted in a Wikipedia corpus of roughly 200,000 540

articles that is linked to the subjects of UK cities 541

and counties.1 By comparison of frequencies,W 542

is about one-thousand times smaller than G. 543

1Accessed 10/31/21: en.wikipedia.org/wiki/
List_of_cities_in_the_United_Kingdom
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Figure 2: Comparison of the dissonance towards the different BATS analogy categories for the Google Book
corpus, G, and a much smaller corpus of Wikipedia articles that connect to pages discussing the UK cities. Positive
bars indicate categories towards whichW is more biased, i.e., which contain analogies thatW supports more.

In application, low-dissonance values indicate544

which analogies are supported by corpus frequency545

ratios. To determine the overall support a corpus546

has for a set of analogies, A, an average, DD(A),547

of ∆-dissonance values can be computed. Method-548

ologically, we weight averages by the corpus fre-549

quencies of the tokens within each analogy’s dyads.550

In Fig. 2, we compute the difference of averages be-551

tween G andW : DG(A)−DW(A) for the different552

analogical categories of BATs, i.e., so that positive553

bars indicate whereW supports a category’s analo-554

gies more than G. Average values on their own555

(no differences) for this experiment can likewise be556

observed within Tab. 1 in the Appendices. Either557

view exhibits how the only category for whichW558

exhibits less dissonance (more bias) than G is the559

UK city-county category, and furthermore, that this560

bias is clustered amongst related categories, e.g.,561

name-nationality, which are elevated. We view562

these results as quite sensible for a bias metric, and563

indicating a promising pathway towards developing564

low-cost and -compute bias probes for data. This565

will feature centrally in our final discussion, af-566

ter investigating the IFM’s relevance to real-world567

corpora, both for its central role in elucidating the568

analogical bias probe methodology, and the paths569

it lays toward future discoveries.570

6 Co-occurrence and Independence571

Our study of the IFM and measurement of bias in572

data with analogical test sets raises an important573

question: how relevant is the IFM to real-world574

data? While it’s not possible to objectively state if 575

co-occurrences are independent or not, empirical 576

systems do express independence on a spectrum. 577

Determining the prevalence of independence in co- 578

occurrence statistics requires control over the con- 579

text model, i.e., m affects independence. To com- 580

pare co-occurrence frequencies between the data 581

and those sampled independently from marginal 582

distributions, one can compare to independence, as 583

measured by the IFM (Fig. 1). In the figure, the 584

extent to which the empirical frequencies are equal 585

to the IFM’s can be quantified by how close points 586

fall to the line y = x. Intuitively, this expresses how 587

independent the empirical co-occurrences are when 588

m = 10, and grounds the subject (independence) 589

that we wish to study at larger scales of data. 590

6.1 Quantifying Independence 591

To measure statistical dependencies one can take 592

the PMI’s expectation over its joint probabilities 593

and compute the co-occurrence mutual information 594

(MI). MI measures how dependent the statistics of 595

a joint distribution are. When MI is normalized 596

by the joint information its values fall in [0,1] 597

and define the information quality ratio (IQR): 598

Ik,m = −∑t,s∈V P
m
t,s log

Pmt,s
pmt p

m
s
/∑t,s∈V P

m
t,v logPmi,j . 599

Each of Pm and pm are probabilistic forms of Fm 600

and fm (divided by Mm
F ), and we will used k to 601

record the number of documents in a given sample. 602

Intuitively, Ik,m describes how close to indepen- 603

dent co-occurrences are, and Ik,m → 0 indicates 604

co-occurrences becoming more independent. 605
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Linguistic dependencies are reported to ex-606

hibit power-law relationships between dependence607

length-d (the number of other words up through608

the dependence) and frequency (Chen and Gerdes,609

2019). Through preliminary analysis of the610

GUM corpus’, we find Ik,m values—statistical611

dependencies—also appear to decay as a power law612

function of the window size, m (Appendix E.2).613

Critically, we observe that the sentence-length dis-614

tribution sets a bound on the background of con-615

trastive information, saturating with increasing val-616

ues of m (Fig. 3). However, for even the smallest-617

k corpora and any values of m, Ik,m appears618

less than 0.5, suggesting in some sense that co-619

occurrences are more independent than dependent.620

However, this view is reductive and leaves some621

critical questions, which we begin to address below.622

Does the IQR measure linguistic dependencies?623

Beyond observing Ik,m < 0.5, we evaluate Ik,m624

more broadly in Appendix E, where a full pro-625

file of Ik,m-values is provided for GUM. We like-626

wise model the IQR as a power-law function of the627

context-window size,m, to elucidate if and how lin-628

guistic dependencies contribute to the statistical dy-629

namics of co-occurrence dependence, as measured630

by Ik,m. Seemingly, Ik,m can be modeled strongly,631

when properly modulated by the sentence length632

distribution. This means sentence tokenization633

plays a central role in defining co-occurrence statis-634

tics. Likewise, lower-quality sentence tokeniza-635

tions seem to result in more-complex distributions,636

optimization challenges, and noisy Ik,m-profiles.637

Perhaps most surprisingly, the power-law which638

models Ik,m’s statistical dependencies appears to639

exhibit a scaling exponent, ν, which parametrically640

fits the density of linguistic dependencies annotated641

in GUM (Fig. 3, inset). Further experimentation642

on different, parsed corpora is clearly required to643

determine if this model and relationship are robust.644

Does the IQR have a lower bound? Determin-645

ing this requires measuring and fitting Ik,m for646

larger data sets. Combinatorality imposes signifi-647

cant computational challenges for large values of648

m, so lower-m values (a smaller window) were649

used to measure the IQR for larger values of k650

(with more data). As there is no way to measure651

Ik,m for arbitrary corpus sizes, limiting arguments652

are ultimately required (Appendix. E.4). We find653

that the k-limiting dynamics of Ik,m-values appear654

non-zero and convergent with bounds that can be655

solved (Eq. 12) and computed (Fig. 4).656

7 Discussion and Conclusions 657

The gravity of the IQR’s lower bound should not be 658

understated: even a countably-infinite collection of 659

documents will retain a definite portion of depen- 660

dent statistical information in its co-occurrences. 661

In some sense, this assures the statistical need for 662

large corpora to ‘chip away’ at the underlying sta- 663

tistical dependencies recorded in linguistic data. 664

However, while convergence is rapid at first, it 665

slows considerably for larger corpora, indicating 666

ever-diminishing returns from bigger data. From 667

our bias-probing experiments, we exhibit how more 668

data isn’t necessarily more representative (Fig. 2). 669

Thus, we ask if the IQR’s limiting behavior is a 670

process of document structure washing out in fa- 671

vor of more-local relationships. If so, we might 672

then interpret Fig. 2 as exhibiting a corpus whose 673

co-occurrences have been unusually constrained 674

for its document distribution, providing another 675

interpretation of semantic bias. 676

Seemingly, statistical dependencies are sparse 677

in sentences, and m-word sliding-window context 678

models can’t separate these from independent vari- 679

ation while absorbing co-occurrences. This inter- 680

pretation can be intuitively stated by modifying 681

Firth’s famous quote (hence the paper’s title): You 682

shall know a word by the company it keeps, and 683

what else lies in the vicinity. However, we know 684

less if it is us who know words by this truism, as 685

much as it is AIs who know how to use words by it. 686

Arriving at this point has entailed the develop- 687

ment of novel techniques for probing unstructured, 688

linguistic data for semantic biases using data sets of 689

analogies. On their own, these results appear pos- 690

itive, and exhibit their own methodological value. 691

However, they likewise emerged from another dis- 692

covery, of the universal, frequency-ratios property 693

for word vectors. The substantiation of that prop- 694

erty required deriving a limiting factorization for 695

the original Word2Vec objective, whose apparent 696

natural formulation as the contextualizing LM pro- 697

duced by the co-occurrence conditional-probably- 698

matrix underpins its importance. This production 699

of a closed-form solution to Word2Vec could per- 700

haps produce the biggest impacts of this work by 701

providing rich new pathways towards efficiently 702

deriving representation statistics. To this end, we 703

highlight the IFM’s derivation as another core out- 704

come of our work, both for its central roles in anal- 705

ysis, and it’s potential to warm-start embedding 706

layers efficiently via unigram statistics. 707
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A Word2Vec’s Softmax Factorization 899

Theorem: Under the log-softmax objective: 900

Lsoft = −∑
t∈V

∑
s∈V

Fmt,s logϕ(u⃗tv⃗s), (9) 901

the Word2Vec algorithm implicitly converges to- 902

wards a matrix factorization for all non-zero co- 903

occurrences of the form: 904

u⃗tv⃗
T
s = log

Fmt,s

fmt
, (10) 905

which is equal to the log-conditional probability 906

matrix of the co-occurrence model. 907

Proof: The softmax function is computed by row: 908

ϕ(u⃗tv⃗
T
s ) = e

u⃗tv⃗Ts /∑l∈V e
u⃗tv⃗Tl . To solve for u⃗tv⃗Ts , 909

we must determine all components of Lsoft’s gra- 910

dient which depend on u⃗tv⃗Ts , and which arise from 911

different portions of Lsoft’s Jacobian. This in- 912

cludes the positive, differential portion from the 913

softmax’s numerator: −Fmt,s (1 − ϕ (u⃗tv⃗
T
s )) as well 914

as the negative, differential portion emerging from 915

the softmax denominators: ∑l∈V ∖{s} Fmt,lϕ (u⃗tv⃗
T
s ), 916

which sums over all l ≠ s, since softmax’s deriva- 917

tive is vector valued. 918

By combining the negative and positive portions,
the partial derivative of Lsoft with respect to u⃗tv⃗Ts
is a sum which ranges over the entire vocabulary:

∂Lsoft

∂ (u⃗tv⃗Ts )
(u⃗tv⃗

T
s ) = −F

m
t,s + ∑

l∈V

Fmt,lϕ (u⃗tv⃗
T
s )
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When set equal to zero, the sum is easily solved:919

ϕ (u⃗tv⃗
T
s ) =

Fmt,s

∑l∈V F
m
t,l

=
Fmt,s

fmt
(11)920

where the co-occurrence m-window ‘inflation’ de-921

fines the unigram statistics as: fmt = ∑l∈V F
m
t,l by922

the tth marginal sum, i.e., pushing the factorization923

towards the log-conditional probability matrix924

Eq. 11 almost provides the main result, but only
factorizes the softmax’s application. Due to nor-
malization, there will necessarily be error from
the log-conditional probability matrix, which we
handle by defining some βt close to 1 in (0,1)
for each t ∈ V . Selecting these values can used
to produce an ansatz solution, which can be used
to understand the limiting matrix being factorized,
and hence algebraically solve for arbitrarily-well
optimized softmax representations. First, define
the ansatz’s positive-occurring elements by:

u⃗tv⃗
T
s = logβt

Fmt,s

fmt

Then define t’s nt negative-occurring elements by:

u⃗tv⃗
T
l = log

1 − βt
nt

Under this initialization, the error for the positive-
occurrence pairs, εt,s, is determined as:

εt,s =
Fmt,s

fmt
− ϕ (u⃗tv⃗

T
s ) =

Fmt,s

fmt
(1 − βt)

Likewise, we can also now easily observe the error
for the non-occurrent pairs:

εt,l = −ϕ (u⃗tv⃗
T
l ) =

1 − βt
kt

Critically, these errors diminish as βt → 1. Fur-
thermore, driving βt → 1 reduces the negative log
likelihood as it pushes the true co-occurrent factor-
ized values towards the claimed limiting solution.
This also indicates that the softmax model likely
has no exact algebraic solution for its factoriza-
tion. Specifically, while positive-occurring entries
converge toward:

lim
βt→1

u⃗tv⃗
T
s = log

Fmt,s

fmt

the non-occurring pairs in the factorized matrix
have values which become ever more negative:

lim
βt→1

u⃗tv⃗
T
l = −∞

This is generally the case for GloVe and 925

Word2Vec’s SGNS objective, too, as neither is de- 926

fined on negative-occurring values and would re- 927

quire a similar, negative-diverging ansatz for an 928

algebraic solution to their factorizations. This con- 929

cludes the main proof, and now allows for inves- 930

tigation of how unigram-frequency ratios interact 931

with vector differences. ∎ 932

B Softmax Frequency Ratios 933

Corollary: When trained on the IFM, Word2Vec’s 934

softmax objective, Lsoft, exhibits the frequency- 935

ratios property asymmetrically for differences of 936

V -vectors acting on U (only). 937

Proof: Substituting the IFM into the solved
softmax-Word2Vec factorization (Eq. 10), we find:

u⃗t(v⃗s − v⃗s̃)
T
= log

fs
fs̃

which is precisely the frequency-ratios property.
However, when we apply this analysis symmetri-
cally we find something different:

(u⃗t − u⃗t̃)v⃗
T
s = log

βtftf
m
t̃

βt̃ft̃f
m
t

,

which depends on co-occurrence ‘inflation’, as well 938

as the ansatz’s choice of βt values. This is yet an- 939

other, different form of the frequency-ratios prop- 940

erty, where if the βt values are chosen proportional 941

to their respectively-inflated unigram frequencies: 942

βt = f
m
t /Mm

F , the exact frequency-ratios property 943

is recovered to a full symmetry. ∎ 944

C SGNS Frequency Ratios 945

Theorem: The Word2Vec SGNS objective trains 946

vectors which exhibit a frequency-ratios prop- 947

erty scaled by one minus its sampling parameter: 948

u⃗w(v⃗t − v⃗s)
T = (1 − α) log(fms /fmt ). 949

Proof: In (Kenyon-Dean et al., 2020)’s work, the
noise distribution was assumed different from con-
vention, which utilizes a hyper-parameter, α ∈ R,
commonly set to α = 3/4. Its general effect will
modify the PMI-convergence points into:

u⃗tv⃗
T
s = − log

⎡
⎢
⎢
⎢
⎣

Fmt,s

fmt

Mm,α
f

(fms )
α

⎤
⎥
⎥
⎥
⎦
+ log k.

where Mm,α
f is the corresponding normalization 950

constant for an α-power, m-inflated unigram fre- 951

quency distribution: Mm,α
f = ∑s∈V (fms )

α. 952
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Observing the V -vector-difference action on U
and When one defines an IFM by the inflated un-
igram statistics and substitutes the corresponding
F̂min for Fm another frequency-ratios property
emerges, but this time with effect scaled by 1 − α:

u⃗w(v⃗t − v⃗s)
T
= (1 − α) log

fms
fmt

So when one sets α ≠ 1, the frequency-ratios prop-953

erty appears again, for Word2Vec’s V -vectors on954

the U matrix. Note that the only value of α for955

which this property doesn’t exist (α = 1) is gen-956

erally not utilized in applications, with most dis-957

cussion usually asserting that α = 1 produces less958

adept models.959

For SGNS, a frequency-ratios property is only
clearly entailed for U -vector differences on the V
matrix. However, it appears that the frequency-
ratios property for U -vector differences on V
should be absent, as SGNS’s negative informa-
tion/normalization is noisily rigid, based entirely
on independent sampling at a fixed rate of k-to-1:

(u⃗t − u⃗s)v⃗
T
w = − log

F̂mt,wf
m
s

F̂ms,wf
m
t

= 0

A fuller analysis of the frequency-ratios property960

for the SGNS objective (as well as for softmax)961

would ultimately benefit from limiting analysis of962

the gradient descent process. While this is partly963

considered for softmax in the context of an ansatz964

solution, further discussions of limiting effects and965

optimization is left for future work. ∎966

D Bias Probing Experiment 967

BATS Category Dissonance (D)
Inflection G W

I01: noun-plural_reg 0.035 0.053
I02: noun-plural_irreg 0.044 0.068
I03: adj-comparative 0.038 0.068
I04: adj-superlative 0.032 0.068
I05: verb_inf-3pSg 0.033 0.057
I06: verb_inf-Ving 0.03 0.054
I07: verb_inf-Ved 0.025 0.076
I08: verb_Ving-3pSg 0.048 0.064
I09: verb_Ving-Ved 0.036 0.092
I10: verb_3pSg-Ved 0.04 0.057
Derivation G W

D01: noun+less_reg 0.076 0.118
D02: un+adj_reg 0.048 0.072
D03: adj+ly_reg 0.045 0.067
D04: over+adj_reg 0.066 0.151
D05: adj+ness_reg 0.074 0.129
D06: re+verb_reg 0.073 0.11
D07: verb+able_reg 0.1 0.178
D08: verb+er_irreg 0.061 0.114
D09: verb+tion_irreg 0.061 0.082
D10: verb+ment_irreg 0.039 0.065
Lexicography G W

L01: hypernyms-animals 0.159 0.212
L02: hypernyms-misc 0.1 0.181
L03: hyponyms-misc 0.119 0.165
L04: meronyms-substance 0.084 0.123
L05: meronyms-member 0.072 0.111
L06: meronyms-part 0.123 0.166
L07: synonyms-intensity 0.098 0.152
L08: synonyms-exact 0.091 0.125
L09: antonyms-gradable 0.113 0.163
L10: antonyms-binary 0.122 0.173
Encyclopedia G W

E01: country-capital 0.051 0.067
E02: country-language 0.101 0.135
E03: UK_city-county 0.081 0.063
E04: name-nationality 0.06 0.062
E05: name-occupation 0.065 0.08
E06: animal-young 0.097 0.147
E07: animal-sound 0.094 0.163
E08: animal-shelter 0.095 0.132
E09: things-color 0.073 0.11
E10: male-female 0.072 0.105

Table 1: Comparison of D for G andW (lower values
mean less dissonance/more bias) over BATS analogies.
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Figure 3: IQR profile for GUM (points), measured
on 75 randomizations, scanning all values of m and
k at powers of two, alongside dependence model fits
(dashed lines). Color indicates the log-average num-
ber of tokens for each sample size, k. Inset shows
the whole corpus’ (black points/dashed lines) scaling
exponent, ν, as a natural fit (red dashed line) for
the cumulative-rate of dependencies, λ, that one can
observe against the co-occurrence background (gray
points), as the dependence length and co-occurrence
window size (d =m) increase.

E Quantifying Independence968

Here, we first empirically review the IQR’s overall969

shape in the context of the Georgetown University970

Multilayer (GUM) Corpus (Zeldes, 2017), which971

affords opportunity to model the IQR as a function972

of the context-window size, m, allowing for deter-973

mination of if and how linguistic dependencies con-974

tribute to the statistical dynamics of co-occurrence975

dependence, as measured by Ik,m.976

E.1 Measuring Dependencies Empirically977

We perform samples amongst GUM’s kmax=150978

documents. In Fig. 3, we observe that even for979

the highest-IQR (1-document) samples, I1,m < 0.5,980

i.e., the IQR’s values are less than one half for all981

window and sample sizes. For now, we’ll forego982

the effects of k and focus on how Ik,m is a decreas-983

ing function of m. This should be expected, i.e.,984

that lower-m values exhibit less independence, and985

as we now show, this can be understood according986

to the dashed-line models that Fig. 3 exhibits.987

E.2 Modeling the Density of Dependencies988

In one sense, dependency parsing grammatically989

determines a rule for ‘who’ each given word’s com-990

pany is. By annotators, each dependency must be991

determined from the full range of co-occurrences 992

available in the given sentence. As it turns out, 993

dependencies are believed to have their own power- 994

law statistical relationships between dependence 995

length-d (the number of other words up through 996

the dependence) and frequency (Chen and Gerdes, 997

2019). Previously, raw counts of dependencies 998

were observed to form a power-law-like distribu- 999

tion that scaled as d2.5. However, we wish to 1000

model dependencies against their background of co- 1001

occurrences in sentences. This means the sentence- 1002

length distribution modulates a critical bound on 1003

co-occurrence IQR. Next, we use the nature of how 1004

this background of contrastive information in sen- 1005

tences saturates with increasing m to model the 1006

lower limit of IQR values observed in Fig. 3. To 1007

produce this model, we first formally state our con- 1008

jecture, and then derive the model. 1009

Conjecture. Linguistic dependencies are ‘the com- 1010

pany words keep’ from the distributional hypothe- 1011

sis, and underpin the statistical dependencies one 1012

can measure against the co-occurrence background 1013

via Ik,m. We find support for this conjecture by 1014

developing a parametric model for Ik,m, fitting it 1015

over the GUM corpus, and exhibiting how its fit 1016

corresponds to the density of linguistic dependen- 1017

cies against their co-occurrence background as the 1018

same power-law of m. 1019

E.2.1 Forming Dependence Models 1020

Define gm to be the number of dependencies of a
given length: gm ∝ m−ν , where ν is a positive,
power-law scaling exponent. Alongside ν, we de-
fine a maximum dependence length, mmax, as a
model parameter to form the IQR’s estimator as
a function of the context window, m. First, we
approximate the ν-power-law’s cumulative distri-
bution function over dependencies covered by the
window m:

Gm = ∫

m

0
g`d` =

m1−ν

mmax1−ν .

Here, totality requires setting Gm = 1 for all m >

mmax. This definition for Gm allows us to accu-
rately show how independent statistics saturate co-
occurrence models as m becomes large. However,
predicting the IQR for empirical co-occurrences de-
pends heavily on the sentence-length distribution,
which determines how many co-occurrences exist
per each center word. Any sentence of length L
will induce L(L − 1) co-occurrences if m ≥ L.
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If m < L, the longer-range co-occurrences are
ignored, making the general, total number of co-
occurrences per sentence of length L equal to:

TL,m = (min(m,L) − 1) ⋅ (2L −min(m,L))

Supposing there are SL sentences for each L and
that the longest sentence length is Lmax, the total
number of co-occurrences in an m-radius sliding-
window model will be Tm = ∑

m
L=1 SLTL,m, which

defines the limiting-m co-occurrence model—with
the longest range dependencies—by TLmax . Setting
T0 = 0 and denoting the total unigram frequency
in a sample of size k as Mk allows us to define the
co-occurrence sampling rate for allm = 1,⋯, Lmax

as:
qm =

Tm − Tm−1
2Mk

Given any m, Gm, represents the cumulative
portion of all dependences sampled from a 2m-
window, according to our base model. This base
model is then modulated by the sampling rate, qm,
and scaled by a constant ρ:

Îk,m = ρ ⋅ [qm
Gm
2m

+ (1 − qm)
Mk

Tm
]

which parametrically defines the average number of1021

dependencies word. Overall, this formulation can1022

intuitively by understood to transfer—via the sam-1023

pling rate—power-law varying dependence den-1024

sity smoothly, into a limiting ρ number of depen-1025

dences per word in the sample: Mk

TLm
. Via ρ, the1026

model assumes on average that each word depends1027

on ρ of the other words in the same sentence (co-1028

occurrences), meaning ρ ∈ [0,
TLmax

M ].1029

E.3 Fitting Dependence Models1030

As can be seen in Fig. 3, Îk,m can be parame-1031

terized to fit the IQR quite strongly. Compared1032

to the scale of co-occurrences absorbed by large1033

representation models, the GUM data set is quite1034

small. However, it affords a critical opportunity1035

to observe how the power-law exponent, ν, corre-1036

sponds to the density of linguistic dependencies1037

against the co-occurrence background. Critically,1038

we find in Fig. 3’s inset a correspondence between1039

ν and the rate of decay of linguistic dependencies1040

against the co-occurrence background for full order1041

of magnitude in the dependence-length distribution.1042

While the scale of these results are small inside of1043

GUM, they strongly support our conjecture. How-1044

ever, a number of questions and challenges emerge1045

from these experiments. Practically, sampling from 1046

GUM has exhibited how the longest-range depen- 1047

dencies are simply not available to model in shorter 1048

sentences—the effects of small samples and vary- 1049

ing sentence lengths can be seen in the empiri- 1050

cal roughness for larger-m windows in smaller-k 1051

samples. Furthermore, larger samples pose com- 1052

binatoral scaling for larger-m co-occurrences that 1053

makes direct measurement of the IQR prohibitive. 1054

To compound these issues, we seek to know if 1055

any limiting bounds on the IQR exist, i.e., we ask: 1056

“would the IQR from an infinite number of docu- 1057

ments be zero?” 1058

E.4 Bounding Dependence from Below 1059

To see the effects of scale on the IQR, more data 1060

are required for experimentation than are available 1061

within the GUM corpus. Even if we can’t expect 1062

linguistic dependencies to be annotated, we still 1063

wish to control for tokenization. Hence, to bound 1064

the IQR we work next with the well-known Wiki- 1065

Text language modeling benchmark (Merity et al., 1066

2016), which was expanded in v103 to over 30,000 1067

documents (roughly 200-times the size of GUM). 1068

Our objective in this section is to bound the IQR, 1069

and large-m measurement becomes intractable for 1070

large k-document samples. Hence, we will restrict 1071

m ≤ 10 for all bounding experiments. 1072

Suppose we fix any window size, m, let k be 1073

the number of documents in a sample, and Ik,m 1074

denote the IQR’s average value. For any sample 1075

size, k, then let Mk denote the expected number 1076

of tokens in the sample, and observe that dou- 1077

bling k will double the expected number of tokens: 1078

M2k = 2Mk. We’re most interested in the rate of 1079

IQR reduction incurred from doubling the number 1080

of sampled documents, which we denote by δ2k,m. 1081

Averaging across samples, we have generally ob- 1082

served the IQR to fall into a well-ordered—perhaps 1083

power-law—pattern of decay (Fig. 4, left). This 1084

means that for large values, k1 ≤ k2, one can ex- 1085

pect: δ2k2,m ≤ δ2k1,m. Next, we prove that these 1086

observed conditions result in the existence of a 1087

positive lower bound for the IQR, which exists be- 1088

low the IQR one could measure for any document- 1089

sample size, k. 1090

Theorem. If the k-limiting behavior of the IQR- 1091

reduction rate is power-law decay: δ2k,m ∝ Mγ
k , 1092

the IQR’s limiting, I∞,m, values are positive. 1093

Proof. Supposing we fix any window size, m, 1094

let k be the number of documents in a sample, 1095
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Figure 4: (Left) Rate of IQR reduction presented against the number of tokens in 75 samples of of size k taken
at powers of two from the training articles of the WikiText-103 corpus for context-window sizes m up to 10
(indicated by color). Past the size of the whole corpus (black dotted line), the reduction rates are extrapolated
with a power-law to model limiting behavior (spectrum of dashed lines). (Right) IQR profile for the WikiText-103
training corpus up to the largest two-power sample size (most pink) for context-window sizes up to m = 10. Past
the largest-sampled size (circled points), the rate-reduction power law is used to extrapolate (e.g., the black dashed
line) beyond the corpus (black dashed line) to compute non-zero limiting IQR values across m-window sizes.

and Ik,m denote the IQR’s average value. For1096

any sample size, k, let Mk denote the expected1097

number of tokens in the sample, and observe that1098

doubling k will double the expected number of to-1099

kens: M2k = 2Mk. We next express the rate of1100

IQR reduction incurred from doubling the num-1101

ber of sampled documents by δ2k,m. Averaging1102

across samples, we have generally observed the1103

IQR to fall into a well-ordered—perhaps power-1104

law—pattern of decay. This means that for large1105

values, k1 ≤ k2, one can expect: δ2k2,m ≤ δ2k1,m.1106

We wish to know about any limiting dynamics of1107

Ik,m for large k, which under the observed pattern1108

of decay ammounts to asking if the IQR converges1109

to zero or a positive limit. In either case, we’ll refer1110

to any limiting quantity as I∞,m, which describes1111

the portion of information that is dependent in a1112

co-occurrence model of context for a population1113

of data, i.e., an arbitrarily-large sample. Critically,1114

this limit expresses the dependence in how a pop-1115

ulation of language was used, separately from the1116

dependence on what its samples convey.1117

Assuming k is large enough to well order the re-
duction rate at a window size of m, we use δI2k,m
to write an IQR-update rule for doubled samples:

I2k,m = Ik,m(1 − δ2k,m),

Applying recursion over this equation allows us to

express IQR values for arbitrarily large samples:

I2nk,m = Ik,m

n

∏
l=1

(1 − δ2lk,m)

However, to study a limiting value for the IQR we
apply the reduction rate in series: I∞,m = Ik,m −

∑
∞
n=0 I2nk,mδ2n+1k,m. With this, we can substitute

the product form for I2nk,m into our expression for
I∞,m to produce:

I∞,m = Ik,m [1 −
∞

∑
n=0

δ2n+1k,m

n

∏
l=1

(1 − δ2lk,m)]

Decreasing monotonicity in the reduction rate im-
plies that the fastest-decaying extreme occurs when
the reduction rate is a constant. Supposing this to
be the case, we assume a critical sample size, km,
past which a constant, δm, describes the reduction
rate. When one substitutes this into our expres-
sion for the IQR’s limit, a geomtric series emerges
which unsurprisingly brings the IQR’s limit to its
low (0-valued) extreme:

I∞,m = Ikm,m [1 − δm
∞

∑
n=0

(1 − δm)
n
] = 0

One can in fact approximate the reduction rate em-
pirically by computing a quotient of expected IQR
values from samples of documents:

δ2k,m ≈
E [Ik,m − I2k,m]

E [Ik,m]
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When measured, we find that for k-samples larger
than some critical sample size, km (dependent on
m), the reduction rate appears to scale like a power
law in the number of tokens sampled:

δ2k,m ≈
M−γ
k

10bm

This models δ2k,m with a scaling exponent, γ,
and constant of proportionality, 10bm , the latter
of which is dependent upon the window size, m.
Utilizing this empirically-motivated power-law, we
obtain a different form for the limiting IQR:

I∞,m = Ik,m

⎡
⎢
⎢
⎢
⎢
⎣

1 −
∞

∑
n=0

M−γ
2n+1k

10bm

n

∏
l=1

⎛

⎝
1 −

M−γ
2lk

10bm

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

To bound I∞,m from below one can replace1118

each of the products of n with unity. The iden-1119

tity: M2k = 2Mk allows further generalization of1120

the doubling numbers as: M2n+1k = 2M2nk, whose1121

substitution into the bound produces a convenient1122

form and infinite geometric series of ratio 2−γ :1123

Ik,m [1 −
M−γ

2k

10bm(1 − 2−γ)
] < I∞,m (12)1124

To assure this lower bound is positive we now need
only require:

M−γ
2k

10bm(1 − 2−γ)
< 1

which amounts to asserting that the average number
of tokens, Mk, from the original sample size of k is
sufficiently large to bound the the a positive-valued
function parameterized by m via γ and bm that
notably has no dependence on k:

10−bm/γ(2γ − 1)−1/γ <Mk

Hence, positive lower bounds on the IQR could1125

be confirmed experimentally for any given m by1126

increasing the initial sample size of an the analysis.1127

This likewise provides a means for the observing1128

the elimination of transient independence in a co-1129

occurrence model, where specifically, as k is in-1130

creased, the positive, lower bound tightens to the1131

limiting IQR value from below. ∎1132

E.4.1 Computing a Bound for Dependence1133

Returning to the WikiText Corpus, we repeatedly1134

sample the available powers of k = 2n, which1135

for WikiText-103 allows n ≤ 14, since the total1136

number of documents in the collection is roughly: 1137

kmax = 215. These doubling samples are used to 1138

empirically compute our approximations of the re- 1139

duction rate’s average behavior in Fig. 4 (left), and 1140

the value of γ is optimized over only those values 1141

for this the power-law decay is apparent. Moreover, 1142

we constrain the values of b to satisfy a continuous 1143

model projecting from the data, i.e., optimization 1144

is only performed over γ. Once γ and the dif- 1145

ferent values of bm are established, 210 iterative 1146

updates to , for 215 to produce the large-k IQR val- 1147

ues needed for stable computation the IQR’s limit, 1148

∞, . Each of these modeling components used in 1149

computing the IQR’s bound is exhibited in Fig. 4 1150

(right), and confirm the nature of our bounding 1151

result. 1152
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