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Abstract

Linear Temporal Logic (LTL) offers a precise means for constraining the behavior of reinforce-
ment learning agents. However, in many settings, LTL is insufficient for task specification;
LTL-constrained policy optimization, where the goal is to optimize a scalar reward under
LTL constraints, is needed. Prior methods for this constrained problem are restricted to
finite state spaces, limiting its applicability in deep Reinforcement Learning (DRL) settings.
In this work, we present Cycle Experience Replay (CyclER), a reward-shaping approach to
this problem that succeeds in using DRL to learn performant policies in continuous state
and action spaces. CyclER guides a policy towards satisfaction by encouraging partial
behaviors compliant with the LTL constraint, using the structure of the constraint. In
doing so, it addresses the optimization challenges stemming from the sparse nature of LTL
satisfaction. We evaluate CyclER in three continuous control domains. On these tasks,
CyclER outperforms existing reward-shaping methods at finding effective and LTL-satisfying
policies.

1 Introduction

Significant research effort has explored Linear Temporal Logic (LTL) as an alternative means of specifying
objectives for reinforcement learning (RL) agents (Sadigh et al., 2014; Hasanbeig et al., 2018; Camacho et al.,
2019; Wang et al., 2020; Vaezipoor et al., 2021; Alur et al., 2022; De Giacomo et al., 2020; Voloshin et al.,
2023). LTL provides a flexible language for defining objectives, or specifications, that are often not reducible
to scalar Markovian rewards (Abel et al., 2021). Unlike typical reward functions, objectives defined in LTL
are composable, easily transferred across environments, and offer a precise notion of satisfaction.

LTL specifications and Markovian reward functions have been used separately in a variety of RL settings,
but few works consider both rewards and specifications in the same setting. The combination of the two
is important: an LTL specification can define the meaning of achieving a task, and a reward function can
be optimized to find the best way of achieving that task. For example, in robot motion planning, an LTL
specification can describe the waypoints a robot should reach and obstacles it should avoid, and a reward
function can optimize for factors like energy consumption, stability of motion, and so forth.

This work considers the problem setting of RL-based reward optimization under an LTL constraint. Previous
works that solve LTL satisfaction in a reward-maximizing setting propose planning-based solutions that are
limited to discrete state spaces (Voloshin et al., 2022). To the best of our knowledge, our work is the first to
approach this problem with Deep RL (DRL) to scale to continuous state and action spaces.

Our learning problem can be naturally formulated in an unconstrained form through a Lagrange-style
relaxation (Le et al., 2019; Achiam et al., 2017) where the LTL constraint is represented by a proxy reward
function. Some versions of such reward-shaping have been studied in the literature (Hasanbeig et al., 2020;
Voloshin et al., 2023; Camacho et al., 2019). However, these methods produce proxy rewards that are sparse
and hard to optimize. Due to this sparsity, learned policies in practice often end up ignoring the LTL
constraint entirely and focus only on optimizing the reward function.
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Figure 1: Left: The FlatWorld MDP and an example trajectory. Right: An LDBA for the LTL formula
φ = G(F (r)&F (g)&F (y))&G(¬b) (some edges omitted for readability); the accepting state 0 is coded in
green. The CyclER method considers all accepting paths within an LDBA and selects the most reward-ful
path for the trajectory to shape LTL reward. Unlike other approaches, CyclER offers dense reward, even
without visiting the accepting state.

In this paper, we address this reward-sparsity issue by introducing a novel reward-shaping proxy for LTL called
Cycle Experience Replay (CyclER). CyclER encourages partial behavior compliant with the specification by
exploiting the underlying automaton structure of LTL. Briefly, given the (known) automaton representing an
LTL objective, CyclER computes all possible infinite paths, or cycles, through the automaton that define
accepting behavior for our task. When an agent collects a finite episode of experience, CyclER counterfactually
reasons over the episode by considering how much progress it made through each cycle. The cycle that
the agent progressed through the furthest is then used to shape LTL reward. Under certain assumptions,
CyclER maintains theoretical guarantees on LTL optimality that are competitive with state-of-the-art LTL
proxy rewards (Voloshin et al., 2023). A key advantage of CyclER is how it readily incorporates quantitative
semantics (QS), a popular technique for reward design in temporal logic that has yet to be extended to
infinite-horizon LTL tasks. Our empirical results demonstrate CyclER’s effectiveness during policy learning.

To summarize, the paper makes the following contributions. We present the first problem formulation for
LTL-constrained policy optimization in the presence of continuous spaces and function approximators. We
propose a technique for this problem setting, CyclER, that alleviates the proxy reward sparsity issue, and
provides guarantees that CyclER reward-shaping will ensure approximate optimality of LTL satisfaction.
Third, we introduce a new way of using quantitative semantics in reward shaping for LTL. Lastly, we present
promising experimental results using CyclER in LTL-constrained optimization settings, outperforming existing
approaches.

2 Problem Setting

2.1 Preliminaries

Linear Temporal Logic (LTL) Linear Temporal Logic (Pnueli, 1977) is a specification language that
composes atomic propositions with logical and temporal operators to precisely define tasks. An atomic
proposition is a variable that takes on a Boolean truth value. We define an alphabet Σ as all possible
combinations over a finite set of atomic propositions (AP); that is, Σ = 2AP. For example, if AP = {a, b},
then Σ = {{a, b}, {b}, {a}, {}}. We will refer to individual combinations of atomic propositions, or predicates,
in Σ as ν. We use the symbol φ to refer to an LTL task specification, also called an LTL formula.

In LTL, specifications are constructed using both logical connectives: not (¬), and (&), and implies (→);
and temporal operators: next (X), repeatedly/always/globally (G), eventually (F ), and until (U). For more
detail on the exact semantics of LTL operators, see Baier & Katoen (2008).

As an example, consider the “FlatWorld” environment in Figure 1 (left), where AP = {r, g, b, y}, corresponding
to whether the agent is in the red, green, blue, or yellow region at any point in time. LTL can easily
define some simple objectives, such as safety G(¬b), reachability F (g), or progress F (y)&X(F (r)). We
can also combine operators to bring together these objectives into more complex specifications, such as
G(F (r)&F (y)&F (g))&G(¬b), which instructs an agent to oscillate amongst the red, yellow, and green regions
indefinitely while avoiding the blue region.
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In order to determine the logical satisfaction of an LTL specification, we can transform it into a specialized
automaton called a Limit Deterministic Büchi Automaton (LDBA). See Sickert et al. (2016); Hahn et al.
(2013); Křetínskỳ et al. (2018) for details on how LTL specifications can be transformed into semantically
equivalent LDBA.

More precisely, a (de-generalized) LDBA is a tuple B = (B,Σ, TB,B∗, E , b0) with a set of states B, the
alphabet Σ of predicates ν that defines deterministic transitions in the automaton, a transition function
TB : B × (Σ ∪ E) → B, a set of accepting states B∗, and an initial state b−1. An LDBA may have separate
deterministic and nondeterministic components B = BD ∪BN , such that B∗ ⊆ BD, and for b ∈ BD, x ∈ Σ then
TB(b, x) ⊆ BD. E is a set of “jump” actions, also known as epsilon-transitions, for b ∈ BN that transitions to
BD without evaluating any atomic propositions. A path ξ = (b0, b1, . . . ) is a sequence of states in B reached
through successive transitions under TB.
Definition 2.1 (Acceptance of ξ). We accept a path ξ = (b0, b1, . . . ) if an accepting state of the Büchi
automaton is visited infinitely often by ξ.

Labeled MDPs We formulate our environment as a labelled Markov Decision Process M =
(S,A, TM, d0, γ, r, L

M), containing a state space S, an action space A, an unknown transition function,
TM : S × A → ∆(S), an initial state distribution d0 ∈ ∆(S), a discount factor 0 < γ < 1, a reward function
r : S × A → [Rmin, Rmax], and a labelling function LM : S → Σ. The labelling function returns which atomic
propositions in our set AP are true for a given MDP state.

2.2 Problem Statement

We would like to learn a policy that produces satisfactory (accepting) trajectories with respect to a given
LTL formula φ while maximizing r, the reward function from the MDP. Before we define our formal problem
statement, we introduce more notation:
Definition 2.2 (Product MDP). A product MDP synchronizes the MDP with an LDBA. Specifically,
let Mφ be an MDP with state space Sφ = S × B. Policies over our product MDP space can be defined as
π : Sφ → ∆(Aφ), where our new set of actions combine Aφ((s, b)) = A(s) ∪ E , to include the jump transitions
in B as possible actions. We define the space of all possible policies as Π. The new probabilistic transition
relation of our product MDP is defined as:

T (s, b, a, s′, b′) =


TM(s, a, s′) a ∈ A(s), b′ = TB(b, L(s′))
1 a ∈ E , b′ = TB(b, a), s = s′

0 otherwise
(1)

A policy generates trajectories τ = ((s0, b0, a0), (s1, b1, a1), . . . ) in the product MDP. Define R(τ) ≡∑∞
t=0 γ

tr(st, at) as the total reward along a trajectory τ .
Definition 2.3 (Trajectory acceptance). A trajectory is said to be accepting with respect to φ (τ |= φ, or
“φ accepts τ”) if there exists some b ∈ B∗ that is visited infinitely often.
Definition 2.4 (Policy satisfaction). A policy π ∈ Π satisfies φ with some probability P[π |= φ] =
Eτ∼Mφ

π
[1τ |=φ]. Here, 1 is an indicator variable that checks whether or not a trajectory τ is accepted by φ,

and Mφ
π is the distribution of trajectories induced by policy π in a product MDP Mφ.

Definition 2.5 (Probability-optimal policies). We will denote Π∗ as the set of policies that maximize the
probability of satisfaction with respect to φ; that is, the policies that have the highest probability of producing
an accepted trajectory: Π∗ = {π ∈ Π|P[π |= φ] = maxπ′∈Π P[π′ |= φ]}.

Our aim is to find a policy in the probability-optimal set Π∗ that collects the largest expected cumulative
discounted reward. We state this constrained objective formally as follows:

π∗ ∈ argmaxπ∈Π∗Eτ∼Mφ
π

[
R(τ)

]
(2)
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For notational convenience, we will refer to the MDP value function as Rπ ≡ Eτ∼Mφ
π

[
R(τ)

]
.

In certain cases, the probability-optimal set of policies Π∗ may be empty; consequently, a solution to 2 may
not exist. In section 3, we introduce a proxy objective with a similar potential of non-existence and discuss
how our ultimate optimization objective behaves in this setting.

To align with our intended applications towards deep RL, we consider stochastic, memoryless policies over the
product MDP. Such policies are capable of capturing probability-optimal policies for a given LTL specification
if an optimal policy exists (Bozkurt et al., 2020; Voloshin et al., 2022).

3 LTL-Constrained Policy Optimization

Finding a policy within Π∗ is, in general, not tractable: an LTL constraint φ is defined over infinite-length
trajectories but policy rollouts in practice produce only finite-length trajectories (Yang et al., 2022). We
adopt eventual discounting (Voloshin et al., 2023), a common approach in the existing literature which aims
to optimize a proxy value function that approximates the satisfaction of φ. Eventual discounting is defined as:

Vπ = E
τ∼Mφ

π

[ ∞∑
t=0

ΓtrLTL(bt)
]
, Γt = γj

φ, rLTL(bt) =
{

1 if (bt ∈ B∗)
0 otherwise

(3)

where j =
∑t

k=0 rLTL(bk) counts how many times the set B∗ has been visited (up to and including the
current timestep). Notably, eventual discounting does not discount based on the amount of time between
visits to an accepting state. A policy that maximizes this eventual discounting reward is approximately
probability-optimal with respect to φ when γφ, the discounting factor associated with φ, is selected properly
(see Theorem 4.2 in Voloshin et al. (2023) for an exact bound).

As a result of eventual discounting, we can replace Π∗ in objective 2 with the set of policies that maximize
Vπ. Let Vmax = maxπ∈Π Vπ be the maximal value.

π∗ = argmax
π∈{π∈Π|Vπ=Vmax}

[
Rπ

]
(4)

We now form the Lagrangian dual of objective 4 as π∗ = minλ argmaxπ∈Π
[
Rπ +λ(Vπ −Vmax)

]
. In theorem 3.2

we show that because we only care about constraint-maximizing policies, there exists λ∗ ∈ R such that solving
the inner maximization of the Lagrangian dual must be constraint optimal for any fixed λ > λ∗. Intuitively,
the higher λ is, the more our learned policy will account for Vπ during optimization until the constraint
must be satisfied. At that point, because we are already achieving the maximum possible Vπ, any additional
lift will only come from maximizing over the MDP value R, even if we continue to increase λ. With this
observation, we can form an unconstrained objective function from objective 4 to be the following:

π∗ = arg max
π∈Π

[
Rπ + λVπ

]
(5)

where we have dropped the dependence on Vmax since it is a constant and fixed λ > λ∗. We show that under
certain assumptions, an exact value for λ∗ can be found to ensure that a policy that maximizes eq. 5 will
certainly maximize Vπ.
Assumption 3.1. There exists a positive nonzero gap ϵ > 0 between the value Vπ of policies in π ∈ Π∗ and
the highest-value policies that are not; that is, Vmax − maxπ∈(Π\Π∗)(Vπ) > ϵ.

Theorem 3.2. Under Assumption 3.1, for any choice of λ > Rmax−Rmin
ϵ(1−γ) , the solution to objective 5 must be

a solution to objective 4. See Appendix Section B for the proof.

We note that Assumption 3.1 can be found in previous literature (Voloshin et al., 2023) and serves as
a sufficient but not necessary condition for our results. We provide further analysis for the existence of
Assumption 3.1 in Appendix Section B.1.
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As briefly mentioned in Section 2, the probability-optimal set of policies with respect to φ may be empty.
The same is true for our updated definition of Π∗ that contain policies that achieve Vmax. In the case of this
non-existence, Assumption 3.1 does not hold, and a policy that optimizes 5 will prioritize improving Vπ at
the potential expense of Rπ. We provide an extended discussion of this consequence in Section B.2.

Empirical Considerations. Since the conditions for Assumption 3.1 are often unknown, there may not be
a verifiable way to know that that our learned policy is maximizing Vπ. Because of this, we will treat λ as a
tunable hyperparameter that allows a user to trade off the relative importance of empirically satisfying the
LTL constraint. There are a number of strategies one can use to find an appropriate λ: for example, one can
iteratively increase λ until a desired LTL reward is achieved. In our experiments, we show an example of
this trade off, and notice that the trade off lessens in severity once λ exceeds a value that enables learning
LTL-satisfying policies (table 2).

4 Cycle Experience Replay (CyclER)

To distinguish between the MDP’s reward function and the eventual-discounting proxy reward in 3, we write
the MDP reward function r(s, a) as rMDP(s, a). In Deep RL settings, we maximize objective 5 using the
reward function rDUAL(st, bt, at) = γtrMDP(st, at) + ΓtλrLTL(bt).

However, optimizing objective 5 is challenging due to the sparsity of rLTL. rLTL is nonzero only when an
accepting state in B is visited, which may require a long, precise sequence of actions.

Consider the FlatWorld MDP and LDBA in Figure 1. The MDP’s reward function incentivizes visiting the
small purple regions in the world. Under rLTL, a policy will receive no reward until it completes the entire
task of avoiding blue and visiting the red, yellow, and green regions through random exploration. If rMDP is
dense, a policy may fall into an unsatisfactory ‘local optimum’ by optimizing for rMDP it receives early during
learning, and ignore rLTL entirely. In Figure 2, we see that a policy trained on rDUAL makes such an error.

We seek to address this shortcoming by automatically shaping rLTL so that a more dense reward for φ is
available during training. Below, we present our approach, which exploits the known structure of the LDBA
B and cycles within B that visit accepting states.

4.1 Rewarding Accepting Cycles in B

Figure 2: Trajectories from un-
shaped rDUAL (left) and CyclER
rDUAL (right) for the formula
G(F (r)&F (g)&F (y)) & G(¬b).

By definition of LTL satisfaction (def. 2.3), a trajectory must repeatedly
visit an accepting state b∗ in an LDBA. In the context of the automaton
itself, that means that an accepting trajectory will traverse an accepting
path from the initial state to an accepting state, and then repeatedly
traverse accepting cycles within B that continually visit accepting states.
Definition 4.1 (Accepting Initial Path (AIP)). An accepting initial
path in B is a set of valid transitions (bi, ν, bj) (i.e., the predicate ν that
transitions bi to bj) in B that starts at the initial state b0 and ends at an
accepting state b∗

k ∈ B∗.
Definition 4.2 (Accepting Cycle (AC)). An accepting cycle in B is a set of valid transitions (bi, ν, bj) in B
that start and end at accepting states b∗

k, b
∗
l ∈ B∗.1

Our key insight is that we can use accepting paths and cycles in B to shape rLTL. Instead of only providing
reward when an accepting state in B is visited (as per previous approaches e.g. Voloshin et al. (2023)), we
reward progress within an accepting path or cycle. In our example from fig 1, if we reward each transition in
the initial path {1, 2, 3, 0} and the cycle with the same states, the agent would receive rewards for visiting
the red region, then yellow, then green, then for returning to red, and so on.

Multiple accepting paths and cycles may exist in B. The path and cycle that is used to shape rLTL cannot
be picked arbitrarily, since they may be infeasible under the dynamics of the MDP. For example, the cycle

1Our usage of the word “cycle” is not a cycle in the traditional sense of graph search, but instead refers to paths that connect
two accepting states in B (allowing for “cyclical” acceptance).
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{1, 2, 0} in Figure 1 cannot effectively shape rLTL because it is impossible to be both in the yellow and green
regions at the same time.

4.2 Reward Shaping with CyclER

CyclER is a reward function that automatically selects paths and cycles to shape rLTL based on collected
experience.

Definition 4.3 (Minimal AIP (MAIP)). A minimal accepting initial path for accepting state b∗
k is an AIP

that does not contain a subcycle for any node bi in the path where bi ̸= b∗
k.

Definition 4.4 (Minimal AC (MAC)). A minimal accepting cycle c for accepting states b∗
k and b∗

l is an AC
that does not contain a subcycle for any node bi in the cycle where bi /∈ {b∗

k, b
∗
l }.

We provide CyclER with all MAIPs and MACs in an LDBA using Depth-First Search with backtracking (see
Appendix Algs. 2 and 3). Let P and C be the set of MAIPs and MACs, respectively.

We also maintain a frontier e of visited transitions in B at each timestep in a trajectory that ensures reward
will only be given once per transition until an accepting state is visited. In particular, we set e[(bi, ν, bi)] = 1
when a transition (bi, ν, bi) is taken and reset all e ≡ 0 when bj ∈ B∗. Policies that use CyclER observe s, b,
and e as their current state.

Now we describe the CyclER reward computation. We first collect a complete trajectory τ induced by Mφ
π

for a given policy π. Then, at each timestep t from 0 to |τ | − 1, we compute rC for every path in P if we
have not yet visited an accepting state, or every cycle in C if we have. We will abuse notation slightly and
use c to refer to elements in either P or C:

rC(bt, st+1, bt+1, e, c) =
{

1
|c| if (b, LM(st+1), bt+1) ∈ c and e[b, LM(st+1), bt+1] = 0
0 otherwise

(6)

This function rewards every transition taken in a given c. In other words, when an agent “gets closer” to an
accepting state by progressing along a path or cycle, we reward that progress once per visit to an accepting
state. To account for c of varying length, rewards are normalized by the length |c|.

Algorithm 1: Cycle Experience Replay (CyclER)
Input: Trajectory τ , B∗, cycles C, paths P
Initialize matrix RC size max(|C|, |P|) × (|τ | − 1);
Initialize rCyclER to an array of size (|τ | − 1);
Initialize j = 0;
foreach t = 0, . . . , |τ | − 1 do

if j = 0 then
foreach Path pi ∈ P do

RC [i, t] = rC(bt, st+1, bt+1, et, pi)
else

foreach Cycle ci ∈ C do
RC [i, t] = rC(bt, st+1, bt+1, et, ci)

if bt+1 ∈ B∗ or t + 1 = |τ | then
Select i = argmaxi∈|C|(

∑t

j′=j
RC [i, j′]);

foreach t′ from j to t + 1 do
rCyclER[t′] = RC [i, t′]

j = t + 1;
return rCyclER;

If we visit an accepting state b∗ or reach the end of
a trajectory, we retroactively assign rewards to the
timesteps that preceded this point, up to the most
recent accepting state visit (if one exists). Assigned
rewards correspond to the cycle with the highest
total reward for that partial trajectory. Put simply,
CyclER picks the ‘best’ cycle for a partial trajectory
and uses it to shape reward. Even if a trajectory
does not manage to visit an accepting state, CyclER
will still provide reward if it was able to take any
transition along any MAIP. The specifics are given
in Algorithm 1.

We denote the rewards returned from Alg. 1 as
rCyclER. rCyclER can be used in place of the un-
shaped rLTL in function 3 to provide a more dense
reward for τ .

Theorem 4.1 (Informal). By replacing rLTL with
rCyclER in 3, the solution to problem 5 remains (ap-
proximately) probability optimal in satisfying the LTL
formula φ. See Appendix Lemma C.3 for the proof.
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4.3 CyclER with Quantitative Semantics

A number of recent works have explored the usage of Quantitative Semantics (QS) to help shape rewards for
temporal logic tasks (Li et al., 2017; Balakrishnan & Deshmukh, 2019; Jothimurugan et al., 2021; Kalagarla
et al., 2021; Ikemoto & Ushio, 2022). QS defines a set of rules for temporal logic which extend Boolean logic to
operations over real values. Using QS, we can take real-valued signals from our atomic propositions x ∈ AP,
and compose them with the QS version of our logical connectives (&, ¬ and →) and temporal operators
((X), (G), (F ), and (U)) to compute a real-valued signal for how close a trajectory comes to satisfying a
specification. We will refer to this computation as the quantitative evaluation of a trajectory with respect to
an LTL task. The exact quantitative semantics of the aforementioned LTL operations are provided in Fig. 6
of the Appendix.

Unfortunately, there are several shortcomings of “off-the-shelf” usage of QS as a reward function. Quantitative
evaluation produces a single value for an entire trajectory, which makes credit assignment for individual
transitions difficult. More pressingly, quantitative evaluation of a finite trace frequently produces values
that do not correlate with visits to accepting states in B, especially for LTL formulae with indefinite
horizons or arbitrarily ordered sub-goals. Existing approaches have circumvented these issues by using
QS for explicitly time-bounded temporal logics with simple tasks (Kalagarla et al., 2021; Balakrishnan &
Deshmukh, 2019), or by considering fragments of LTL that can be reasoned about as finite sequences of
ordered sub-tasks (Jothimurugan et al., 2021). In what follows, we show that CyclER easily incorporates QS
for more effective LTL reward shaping by considering each transition in B as an independently evaluable
sub-task.

We first define some notation. In order to use QS, we assign robustness measures (real-valued signals)
fx : S → R to each atomic proposition x ∈ AP, where x is true when fx(s) ≥ cx (a constant threshold). We
will follow standard practice and notate the quantitative evaluation of an LTL formula φ over a trajectory τ
as ρφ(τ), where φ is true when ρφ(τ) > 0. We also define a maximum and minimum for ρ as ρmax and ρmin,
respectively.

Now we explain how to incorporate QS into CyclER. At a given state b in B, we can think of our sub-task
as taking the next transition in the accepting path or cycle currently under consideration by CyclER. We
need to only consider one transition at a time because CyclER reasons about each accepting path and cycle
independently. Our approach to incorporating QS builds on this idea by rewarding quantitative progress
towards taking the next transition in a path or cycle. Importantly, each transition ν in B is associated with
an atomic predicate, which can be quantitatively evaluated at individual states rather than entire trajectories
(i.e., ρν(s) : S → R). If we move from state s to s′ in M, we can evaluate how much closer we are to satisfying
the predicate of our next transition ν by taking the difference in quantitative evaluation between successive
states: ρν(s′) − ρν(s). This measure of progress is used to shape reward.

Specifically, our approach to incorporating QS uses the following reward function for a given cycle or initial
path c. We use c[b] to refer to the transition predicate in c with parent node b:

rqs(s, b, s′, b′, e, c) =
{

ρc[b](s′)−ρc[b](s)
(ρmax−ρmin)∗|c| if (b, LM(st+1), bt+1) ∈ c and e[b, LM(st+1), bt+1] = 0
0 otherwise

(7)

We use ρmax and ρmin to normalize the quantitative progress made towards taking a transition2. Reward
function 7 acts as a direct substitute to function 6 in Alg. 1 to compute rCyclER. In our experiments (section 5),
we show that incorporating quantitative semantics into CyclER for shaping rLTL leads to improvement in
empirical performance when compared to existing methods of using QS. We provide the full QS for LTL,
along with additional explanation and examples for CyclER+QS in Appendix E.

2We note that the reward in fn. 7 is most well-shaped when the robustness measures for all x ∈ AP are of similar scale, but
we make no such assumptions for the sake of generality.
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5 Experiments

We demonstrate experimental results in several domains with continuous state and action spaces on LTL tasks
of varying complexity. We seek to answer the following questions: (1) Does CyclER learn satisfactory policies
and avoid ignoring rLTL in favor of rMDP? (2) Does a policy that optimizes the dual reward formulation in
rDUAL gain higher rMDP than a policy that only seeks to satisfy the LTL constraint? (3) How does the value
of λ in rDUAL affect the performance of the learned policy?

5.1 Experimental Domains and Tasks

In our experiments, we evaluate the efficacy of CyclER on indefinite-horizon (ω-regular) tasks expressible
by LTL. We use environments where rMDP does not explicitly correlate with rLTL in order to effectively
distinguish between policies that learn to only optimize rMDP and policies that learn to satisfy the LTL
specification.

FlatWorld The FlatWorld domain (1) is a two dimensional world with continuous state and action spaces.
The agent (denoted by a green dot) starts at (-1, -1). The agent’s state, denoted by x, is updated by an action
a via x′ = x+ a/10 where x ∈ R2 and a ∈ [0, 1]2. There exists a set of randomly generated purple ‘bonus
regions’, which offer a small reward when visited. We use the specification from Figure 1 as our LTL task.

ZonesEnv We use the Zones environment from the MuJoCo-based Safety-Gymnasium suite of environ-
ments (Ji et al., 2023). In this domain, a robot must navigate the environment, which includes four differently
colored goal regions and ‘hazard’ areas that offer a small negative reward. The robot receives an observation
of lidar data that detects the presence of nearby objects at each timestep. The LTL task description instructs
the agent to oscillate amongst visiting the four colored regions.

ButtonsEnv We use the Buttons environment, also from Safety-Gymnasium. This domain is a more
challenging version of the Zones environment, where an agent must press a number of small buttons in a larger
space while avoiding cube-shaped ‘gremlins’ that move in a fixed circular path. The LTL task description
instructs the agent to press two specific buttons infinitely often, while avoiding making contact with gremlins.
Unlike the ZonesEnv, ‘bonus’ regions are scattered around the environment, offering a small reward if visited.

5.2 Implementation Details and Baselines

We use entropy-regularized PPO (Schulman et al., 2017) with a Gaussian policy over the action space as our
policy class.

Although we are not aware of an existing approach that considers reward optimization under general LTL
constraints for deep RL, we compare against a number of existing reward methods for temporal logic-guided RL
as rLTL in our rDUAL formulation. We use a baseline policy trained using the LCER method (Voloshin et al.,
2023), a state-of-the-art approach to RL for general LTL that uses an unshaped reward with counterfactual
experience replay to improve the sample efficiency of learning. Additionally, we compare against the LCER
baseline, but trained only on the LTL reward function rLTL, in order to observe the performance of a policy
that does not get ‘distracted’ during training by rMDP.

In the ZonesEnv and ButtonsEnv domains, where the dynamics are more complex, we define simple robustness
measures for each atomic proposition and use the QS version of CyclER defined in section 4.3. In these
environments, we compare against two additional baselines that also use QS for reward shaping and are
computable for infinite-horizon LTL tasks: a TLTL-based reward (Li et al., 2017) and BHNR (Balakrishnan
& Deshmukh, 2019). For each baseline, λ was chosen to be that which led to best performance (on unshaped
rLTL, using rMDP as a tie-breaker) from a hyperparameter sweep. The robustness measures used in these
domains along with all hyperparameters used during training are available in Appendix H.

5.3 Results

(1) Does CyclER learn satisfying policies and prevent ignoring rLTL? Yes - our results demonstrate
that CyclER achieves significant improvement in performance in satisfying the LTL task when compared to
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FlatWorld ZonesEnv ButtonsEnv
rLTL rMDP rLTL rMDP rLTL rMDP

CyclER 2.0 ± 0.5 45.3 ± 8.5 1.8 ± 0.4 −27.8 ± 4.55 2.6 ± 0.3 30.4 ± 5.6
LCER 0.0 ± 0.0 103.4 ± 76.6 0.0 ± 0.0 −3.8 ± 1.9 0.0 ± 0.0 118.8 ± 143.2
LCER, no rMDP 0.8 ± 0.4 30.8 ± 10.1 0.0 ± 0.0 −2.7 ± 0.9 0.6 ± 0.4 13.2 ± 8.53
TLTL - - 0.0 ± 0.0 −4.0 ± 2.2 0.0 ± 0.0 9.6 ± 6.7
BHNR - - 0.0 ± 0.0 −0.8 ± 0.6 0.0 ± 0.0 35.8 ± 7.9

Table 1: Reward average and standard deviation achieved on each domain with an extended horizon. rLTL
identifies the average number of visits to an accepting state in B achieved for a trajectory from π, and rMDP
refers to the average MDP reward collected during a trajectory.

FlatWorld ZonesEnv ButtonsEnv

Figure 3: Training curves showing unshaped rLTL (top) and rMDP (bottom) performance averaged over 5
random seeds. Each point is the mean of 10 stochastic policy rollouts.

our baseline methods. In Figure 3, we plot the learning curves for both the unshaped rLTL (i.e., the number
of times an agent visits an accepting state) and rMDP. We record the (stochastic) performance of the best
policies found during training on an extended horizon to enable repeated visits to the accepting state, and
present the results (averaged over 50 rollouts) in Table 1.

We find that unshaped rewards (LCER) quickly ignore rLTL in most trials. From Table 1, we see that the
LCER baseline even without rMDP was not able to accomplish the LTL task as consistently as CyclER,
even when successful in visiting an accepting state. This implies that reward shaping is critical for LTL-
guided RL even in settings where no rMDP is present. In ZonesEnv and ButtonsEnv, the TLTL and BHNR
baselines, which are not suited to infinite-horizon tasks with multiple unordered subgoals, learned behavior
that optimized their respective QS-shaped LTL rewards but did not correlate with task satisfaction (zero
rLTL achieved in Fig. 3). CyclER with QS, on the other hand, quickly learned to achieve the tasks in these
two domains. Most meaningfully, CyclER is able to repeatedly visit the accepting state in all domains
(as evidenced by Table 1), demonstrating that our technique enables consistent-behaving policies that can
indefinitely traverse accepting cycles. We additionally provide a qualitative analysis of learned behavior in
the FlatWorld domain in Appendix D.

(2) Does optimizing rDUAL improve rMDP? To evaluate this question, we conducted an ablation study
where we trained a CyclER-based policy in the FlatWorld domain, making it completely unaware of rMDP,
and then evaluated its performance to observe if the rDUAL formulation led to a nontrivial difference in
behavior between policies. We found that the rDUAL-optimizing CyclER policy achieved LTL reward of 2.0
(std. dev. 0.3) and MDP reward of 45.3 (std. dev. 8.5), and the rLTL-only policy achieved LTL reward of 2.2

9
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(std. dev. 0.4) and MDP reward of 27.4 (std. dev. 0.7). Optimizing rDUAL does lead to an improvement in
rMDP, albeit at the potential cost of rLTL.

FlatWorld
rLTL rMDP

λ = 100 0.0 ± 0.0 62.7 ± 4.36
λ = 200 0.0 ± 2.0 69.6 ± 4.1
λ = 300 2.0 ± 0.4 37.2 ± 9.0
λ = 400 2.1 ± 0.4 34.3 ± 7.3

Table 2: Performance results for
CyclER with differing λ.

(3) How does varying λ affect the resulting policy? In Table 2,
we report results from a study where we vary the value of λ in rDUAL for
the FlatWorld domain experiment. We observe, as expected, a tradeoff
in the performance of rLTL and rMDP as λ increases. However, we notice
that the tradeoff diminishes once a value for λ is reached that enables
LTL-satisfying behavior. This supports our intuition that λ can effectively
be used as a hyperparameter to trade off the empirical performance of
LTL satisfaction and the MDP reward achieved by a policy.

6 Related Work

Temporal Logic-Constrained Policy Optimization. Previous work
has explored cost-optimal control under linear temporal logic constraints
with known dynamics (Ding et al., 2014; Cai et al., 2021). More recently, interest has emerged in RL-based
approaches to logic-constrained policy optimization. Voloshin et al. (2022) provides an exact solution method
for policy optimization under general LTL constraints in discrete settings where the dynamics are unknown
by assuming a lower bound on transition probabilities in M. Other works focus on Signal Temporal Logic
(STL) and are either designed for discrete spaces (Kalagarla et al., 2021) or lack guarantees (Ikemoto &
Ushio, 2022). To the best of our knowledge, this work is the first to extend policy optimization under general
LTL constraints to continuous spaces (and thereby DRL), providing theoretical guarantees of soundness for
both our objective formulation and reward shaping technique.

RL with Temporal Logic Objectives. In contrast to settings with both temporal logic constraints and
reward functions, a significant amount of work has been devoted to developing RL approaches with temporal
logic specification(s) as the lone objective. Early efforts focused primarily on using Q-learning-style methods
over augmentations of M (Sadigh et al., 2014; Aksaray et al., 2016; Venkataraman et al., 2020; Cai et al.,
2021). Subsequent works (Hasanbeig et al., 2020; Toro Icarte et al., 2022; Camacho et al., 2019; Jothimurugan
et al., 2019) extend temporal logic-guided RL to deep RL settings. In developing the theoretical limitations
of temporal-logic guided RL, (Yang et al., 2022; Alur et al., 2022) show that guarantees on RL for LTL
cannot in general be made. To obtain (approximate) guarantees on learning, existing works have made
assumptions on the environment dynamics (Fu & Topcu, 2014; Voloshin et al., 2022; Wolff et al., 2012) or
finitized the policy’s horizon through discounting or recurrence time (Alur et al., 2023; Perez et al., 2023). In
continuous spaces, prior works provide guarantees that the optimal policy under a proxy objective will satisfy
the original logical specification of interest (Voloshin et al., 2023; Hasanbeig et al., 2020; Jothimurugan et al.,
2021; Camacho et al., 2019), similar to the guarantees made in our work.

To handle longer-horizon specifications, previous endeavors proposed compositional RL approaches that
leverage the DAG-like structure for finitary fragments of temporal logic (Jothimurugan et al., 2021; Bonassi
et al., 2023). Other works take a multi-task RL approach that learns subtasks, which allows for the completion
of extended-horizon tasks and unseen tasks over the same AP set (Vaezipoor et al., 2021; Qiu et al., 2023;
León et al., 2022; Liu et al., 2022). More recent work considers problem settings where there is uncertainty in
an agent’s knowledge of atomic propositions and proposes a belief-based approach to policy learning in this
setting (Li et al., 2024). Our approach is able to handle indefinite-horizon specifications for single tasks and
we see the integration of our reward shaping into both multi-task frameworks and noisy environments as
exciting directions for future work. An extended discussion of related work is available in Appendix F.

7 Conclusion

This paper proposes a novel approach to finding policies that are both reward-maximal and probability-optimal
with respect to an LTL constraint. Specifically, we introduce CyclER, an experience replay technique that
automatically shapes the LTL proxy reward based on cycles within a Büchi automaton, alleviating a sparsity
issue that often plagues LTL-driven RL approaches. CyclER enables LTL-constrained policy optimization in
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continuous spaces using function approximators. We extend CyclER to effectively use quantitative semantics
for full LTL and demonstrate its success empirically.

There are numerous directions for future work. For example, the reward shaping idea behind CyclER can be
extended to other classes of logical specifications, such as Reward Machines (Toro Icarte et al., 2022). We
are also interested in applying CyclER to accelerate learning in multi-task LTL settings, such as (Vaezipoor
et al., 2021; Qiu et al., 2023).

References
David Abel, Will Dabney, Anna Harutyunyan, Mark K Ho, Michael Littman, Doina Precup,

and Satinder Singh. On the expressivity of markov reward. In Advances in Neural In-
formation Processing Systems, 2021. URL https://proceedings.neurips.cc/paper/2021/file/
4079016d940210b4ae9ae7d41c4a2065-Paper.pdf.

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In International
conference on machine learning, pp. 22–31. PMLR, 2017.

Derya Aksaray, Austin Jones, Zhaodan Kong, Mac Schwager, and Calin Belta. Q-learning for robust satisfaction
of signal temporal logic specifications. In 55th IEEE Conference on Decision and Control, CDC 2016, Las
Vegas, NV, USA, December 12-14, 2016, pp. 6565–6570. IEEE, 2016. doi: 10.1109/CDC.2016.7799279.
URL https://doi.org/10.1109/CDC.2016.7799279.

Eitan Altman. Constrained Markov decision processes. Routledge, 2021.

Rajeev Alur, Suguman Bansal, Osbert Bastani, and Kishor Jothimurugan. A framework for transforming spec-
ifications in reinforcement learning. In Jean-François Raskin, Krishnendu Chatterjee, Laurent Doyen, and
Rupak Majumdar (eds.), Principles of Systems Design - Essays Dedicated to Thomas A. Henzinger on the
Occasion of His 60th Birthday, volume 13660 of Lecture Notes in Computer Science, pp. 604–624. Springer,
2022. doi: 10.1007/978-3-031-22337-2\_29. URL https://doi.org/10.1007/978-3-031-22337-2_29.

Rajeev Alur, Osbert Bastani, Kishor Jothimurugan, Mateo Perez, Fabio Somenzi, and Ashutosh Trivedi.
Policy synthesis and reinforcement learning for discounted LTL. In Constantin Enea and Akash Lal (eds.),
Computer Aided Verification - 35th International Conference, CAV 2023, Paris, France, July 17-22, 2023,
Proceedings, Part I, volume 13964 of Lecture Notes in Computer Science, pp. 415–435. Springer, 2023. doi:
10.1007/978-3-031-37706-8\_21. URL https://doi.org/10.1007/978-3-031-37706-8_21.

Marcin Andrychowicz, Dwight Crow, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob McGrew,
Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. In Isabelle Guyon, Ulrike
von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett
(eds.), Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5048–5058, 2017. URL https:
//proceedings.neurips.cc/paper/2017/hash/453fadbd8a1a3af50a9df4df899537b5-Abstract.html.

Christel Baier and Joost-Pieter Katoen. Principles of model checking. The MIT Press, Cambridge, Mass,
2008. ISBN 978-0-262-02649-9.

Anand Balakrishnan and Jyotirmoy V. Deshmukh. Structured reward shaping using signal temporal logic
specifications. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2019,
Macau, SAR, China, November 3-8, 2019, pp. 3481–3486. IEEE, 2019. doi: 10.1109/IROS40897.2019.
8968254. URL https://doi.org/10.1109/IROS40897.2019.8968254.

Luigi Bonassi, Giuseppe De Giacomo, Marco Favorito, Francesco Fuggitti, Alfonso Emilio Gerevini, and Enrico
Scala. Planning for temporally extended goals in pure-past linear temporal logic. In Sven Koenig, Roni
Stern, and Mauro Vallati (eds.), Proceedings of the Thirty-Third International Conference on Automated
Planning and Scheduling, July 8-13, 2023, Prague, Czech Republic, pp. 61–69. AAAI Press, 2023. doi:
10.1609/ICAPS.V33I1.27179. URL https://doi.org/10.1609/icaps.v33i1.27179.

11

https://proceedings.neurips.cc/paper/2021/file/4079016d940210b4ae9ae7d41c4a2065-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/4079016d940210b4ae9ae7d41c4a2065-Paper.pdf
https://doi.org/10.1109/CDC.2016.7799279
https://doi.org/10.1007/978-3-031-22337-2_29
https://doi.org/10.1007/978-3-031-37706-8_21
https://proceedings.neurips.cc/paper/2017/hash/453fadbd8a1a3af50a9df4df899537b5-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/453fadbd8a1a3af50a9df4df899537b5-Abstract.html
https://doi.org/10.1109/IROS40897.2019.8968254
https://doi.org/10.1609/icaps.v33i1.27179


Under review as submission to TMLR

Alper Kamil Bozkurt, Yu Wang, Michael M Zavlanos, and Miroslav Pajic. Control synthesis from linear
temporal logic specifications using model-free reinforcement learning. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pp. 10349–10355. IEEE, 2020.

Mingyu Cai, Shaoping Xiao, Zhijun Li, and Zhen Kan. Optimal probabilistic motion planning with potential
infeasible ltl constraints. IEEE Transactions on Automatic Control, 68(1):301–316, 2021.

Alberto Camacho, Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Valenzano, and Sheila A. McIlraith. Ltl
and beyond: Formal languages for reward function specification in reinforcement learning. In Proceedings
of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pp. 6065–6073.
International Joint Conferences on Artificial Intelligence Organization, 7 2019. doi: 10.24963/ijcai.2019/840.
URL https://doi.org/10.24963/ijcai.2019/840.

Giuseppe De Giacomo, Marco Favorito, Luca Iocchi, Fabio Patrizi, and Alessandro Ronca. Temporal Logic
Monitoring Rewards via Transducers. In Proceedings of the 17th International Conference on Principles
of Knowledge Representation and Reasoning, pp. 860–870, 9 2020. doi: 10.24963/kr.2020/89. URL
https://doi.org/10.24963/kr.2020/89.

Xuchu Ding, Stephen L. Smith, Calin Belta, and Daniela Rus. Optimal control of markov decision processes
with linear temporal logic constraints. IEEE Transactions on Automatic Control, 59(5):1244–1257, May
2014. ISSN 0018-9286, 1558-2523. doi: 10.1109/TAC.2014.2298143.

Alexandre Duret-Lutz, Etienne Renault, Maximilien Colange, Florian Renkin, Alexandre Gbaguidi Aisse,
Philipp Schlehuber-Caissier, Thomas Medioni, Antoine Martin, Jérôme Dubois, Clément Gillard, and
Henrich Lauko. From Spot 2.0 to Spot 2.10: What’s new? In Proceedings of the 34th International
Conference on Computer Aided Verification (CAV’22), volume 13372 of Lecture Notes in Computer Science,
pp. 174–187. Springer, August 2022. doi: 10.1007/978-3-031-13188-2_9.

Georgios E. Fainekos and George J. Pappas. Robustness of temporal logic specifications for continuous-
time signals. Theor. Comput. Sci., 410(42):4262–4291, 2009. doi: 10.1016/J.TCS.2009.06.021. URL
https://doi.org/10.1016/j.tcs.2009.06.021.

Jie Fu and Ufuk Topcu. Probably approximately correct MDP learning and control with temporal logic
constraints. In Dieter Fox, Lydia E. Kavraki, and Hanna Kurniawati (eds.), Robotics: Science and Systems
X, University of California, Berkeley, USA, July 12-16, 2014, 2014. doi: 10.15607/RSS.2014.X.039. URL
http://www.roboticsproceedings.org/rss10/p39.html.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep data-driven
reinforcement learning, 2020.

Ernst Moritz Hahn, Guangyuan Li, Sven Schewe, Andrea Turrini, and Lijun Zhang. Lazy probabilistic model
checking without determinisation. arXiv preprint arXiv:1311.2928, 2013.

Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening. Logically-constrained reinforcement
learning, 2018. URL https://arxiv.org/abs/1801.08099.

Mohammadhosein Hasanbeig, Daniel Kroening, and Alessandro Abate. Deep reinforcement learning with
temporal logics. In International Conference on Formal Modeling and Analysis of Timed Systems, pp. 1–22.
Springer, 2020.

Yujing Hu, Weixun Wang, Hangtian Jia, Yixiang Wang, Yingfeng Chen, Jianye Hao, Feng Wu, and Changjie
Fan. Learning to utilize shaping rewards: A new approach of reward shaping. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/
2020/hash/b710915795b9e9c02cf10d6d2bdb688c-Abstract.html.

12

https://doi.org/10.24963/ijcai.2019/840
https://doi.org/10.24963/kr.2020/89
https://doi.org/10.1016/j.tcs.2009.06.021
http://www.roboticsproceedings.org/rss10/p39.html
https://arxiv.org/abs/1801.08099
https://proceedings.neurips.cc/paper/2020/hash/b710915795b9e9c02cf10d6d2bdb688c-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b710915795b9e9c02cf10d6d2bdb688c-Abstract.html


Under review as submission to TMLR

Junya Ikemoto and Toshimitsu Ushio. Deep reinforcement learning under signal temporal logic constraints
using lagrangian relaxation. IEEE Access, 10:114814–114828, 2022. doi: 10.1109/ACCESS.2022.3218216.
URL https://doi.org/10.1109/ACCESS.2022.3218216.

Jiaming Ji, Borong Zhang, Jiayi Zhou, Xuehai Pan, Weidong Huang, Ruiyang Sun, Yiran Geng, Yifan Zhong,
Juntao Dai, and Yaodong Yang. Safety-gymnasium: A unified safe reinforcement learning benchmark.
arXiv preprint arXiv:2310.12567, 2023.

Kishor Jothimurugan, Rajeev Alur, and Osbert Bastani. A composable specification language for reinforcement
learning tasks. Advances in Neural Information Processing Systems, 32, 2019.

Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, and Rajeev Alur. Compositional reinforcement
learning from logical specifications. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin,
Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances in Neural Information Processing Systems
34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-
14, 2021, virtual, pp. 10026–10039, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
531db99cb00833bcd414459069dc7387-Abstract.html.

Krishna C. Kalagarla, Rahul Jain, and Pierluigi Nuzzo. Cost-optimal control of markov decision processes
under signal temporal logic constraints. In 2021 Seventh Indian Control Conference (ICC), pp. 317–322,
2021. doi: 10.1109/ICC54714.2021.9703164.
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A Limitations

The success of CyclER is ultimately limited to the quality and achievability of the atomic propositional
variables in a given environment. If robustness measures are not available and a task specification has
relatively few variables that are difficult to satisfy, CyclER will not provide significant improvement over
existing unshaped LTL reward proxies. For example, the specification F (G(x)) with no robustness measure
for x will offer the same reward under CyclER and existing methods. When robustness measures are available,
it is important that measures for each variable in the set AP are of a similar scale, so that the QS-shaped
rewards do not vary highly across different transitions in B. The issue of needing similar scale for robustness
measures is well-known in the temporal logic literature and is an open direction for future work Balakrishnan
& Deshmukh (2019); Li et al. (2017).

Although we show that the performance of policy learning is somewhat robust to λ in our formulation of rDUAL,
we do not have a systematic way of finding an appropriate value for λ beyond traditional hyperparameter
search methods. We see an interesting opportunity for future work in intelligently searching for λ based on
the desired rLTL and rMDP of a user.

The CyclER approach incurs computational overhead by (1) computing all possible cycles prior to policy
learning and (2) keeping track of all potential reward values for each cycle for each trajectory stored in
an agent’s replay buffer. Although we did not observe a significant slowdown or memory increase in our
experiments as a result of this overhead, we acknowledge that in complex specifications with a large number
of cycles this overhead may become meaningful.

B Proof for Theorem 3.2

Proof. Consider two policies: (1) π ∈ Π \ Π∗, which does not achieve Vmax, (2) π̃ ∈ Π∗, achieving Vmax. Let
Rmax and Rmin be upper and lower bounds on the maximum and minimum achievable R in M, respectively.
Evaluating objective 5 for both of these policies satisfies the following series of inequalities:

Rπ̃ + λVπ̃

(a)
≥ Rmin

1 − γ
+ λ(Vπ + ϵ)

(b)
≥ Rmax

1 − γ
+ λVπ

(c)
≥ Rπ + λVπ

where (a) follows from assumption 3.1 and bounding the worst-case MDP value, (b) follows from selecting
λ > Rmax−Rmin

ϵ(1−γ) (≡ λ∗), (c) follows since the highest MDP value achievable by π must be upper bounded by
the best-case MDP value.

As a consequence of (a− c) we see that policies achieving Vmax are preferred by objective 5. Consider π∗ ∈ Π∗,
the solution to objective 5. Thus, since π∗ ∈ Π∗, then π∗ must also achieve Vπ∗ = Vπ̃ = Vmax. Therefore,
in comparing objective 5 for both π∗ and π̃ it follows immediately that Rπ∗ ≥ Rπ̃ since π∗ is optimal for
objective 5. Since the choice of π̃ is arbitrary, we have shown that π∗ is also a solution to objective 4.

B.1 On the existence of Assumption 3.1.

If we are restricted to stationary policies and the space of policies Π is finite, then assumption 3.1 will always
hold. A finite space of policies can be enumerated over, and we can take the difference between the optimal
and next-best policies to find ϵ. As an example, consider a toy MDP with a continuous, 1-dimensional state
space [0, 1] and continuous, 1-dimensional action space [0, 1], where the transition function determines the
next state as the agent’s action, i.e. TM(s, a, s′). Suppose we are given a task specification G(F (1)). Under
this specification, the agent will receive a reward of 1 every time it outputs 1, and 0 otherwise.

Consider a finite-sized policy class Π of just two deterministic policies: π0 that only outputs 0, and π1 that
only outputs 1. Here, assumption 3.1 holds even in this continuous space.

However, assumption 3.1 is not limited to just finite-sized policy classes. Consider an infinite-sized Π, where
one policy in Π, called π∗, always outputs 1, and all other policies are Gaussian policies with σ = 0.0001
and µ uniformly sampled from the interval [0, 0.0001]. Here, even when Π is infinite and contains stochastic
policies in a continuous space, assumption B.1 holds.

17



Under review as submission to TMLR

Although the aforementioned examples are toyish, they demonstrate that although assumption 3.1 is always
true when Π is finite, this is not the only case. Further characterization for when the assumption holds is left
for future work.

B.2 On the existence of a solution to 4

In our definition of Π∗ in 2.5 and the formulation of our objective in 2, it is possible that no solution to 2
exists in settings where Π∗ is empty. This non-existence issue reoccurs in objective 4, where it is possible
that no policies exist that achieve Vmax. In all of these cases, non-existence is a result of an infinite-sized Π
where a sequence of policies exists in Π that come increasingly arbitrarily close to achieving Vmax (or, in the
case of 2, to achieving the optimal probability of satisfying φ), without ever reaching the maximum value.

In these cases, we clarify what a policy that optimizes our true objective 5 is actually achieving. Recall that
we ultimately aim to optimize a proxy objective of Rπ + λVπ, under a sufficiently large λ. If the set Π∗ is
empty, then by definition, there does not exist a “gap” between policies in Π∗ and policies outside of it. In
other words, the value of ϵ is 0, and Assumption 3.1 does not hold. As a result, if λ is sufficiently large, the
sequence of policies that is increasingly optimal with respect to Rπ + λVπ will always prioritize increasing Vπ

over Rπ. In other words, if assumption 3.1 does not hold, optimizing 5 will continually try to improve the
proxy reward for LTL satisfaction and will ignore resulting changes to the MDP reward Rπ.

It is theoretically possible that subsequent policies along the aforementioned sequence have arbitrarily different
Rπ, which is undesirable. However, in practice, this does not tend to be the case, and policies that learn
to optimize objective 5 exhibit behavior that is apparently both LTL-satisfying and performant in MDP
reward, as evidenced by our experiments in Section 5. Generally, values for Rπ are not highly unstable
along the sequence of policies that are increasingly optimal with respect to Vπ, and allowing λ to serve as a
hyperparameter effectively enables a tradeoff to value Rπ against Vπ (see Section 5).

C Proof for Theorem 4.1

We start with some notation. Let rτ
CyclER represent the reward function for a trajectory τ that are returned

by the execution of Alg. 1. Let T (τ) be the set of timesteps when an accepting state in B is visited for a
trajectory. We write the value function for CyclER, letting Γt be the same function as defined in function 3:

Assumption C.1. Suppose Tmax = maxπ∈Π Eτ∼MP
π

[
T (τ)

∣∣∣∣τ ̸|= φ

]
< M , there is a uniform bound on the

last time a bad (non-accepting) trajectory visits an accepting state across all bad trajectories induced by any
policy.
Lemma C.2. Under Assumption C.1, for any π ∈ Π and ϵ > 0 we have

|(1 − γ)V cyc
π − P[π |= φ]| ≤ ϵ

when γ ≥ (1 − ϵ)
1

M+1 is chosen appropriately.

Proof. We follow the proof style of Lemma 4.1 from Voloshin et al. (2023). Let P[π |= φ] = p be the probability
that π satisfies the LTL specification φ. Recall the value function

V cyc
π = E

τ∼Mφ
π

[ ∞∑
t=0

Γtr
τ
CyclER[t]

]

Let T (τ)(i) be the (random) i-th visit to an accepting state in B. Let T (τ)(0), T (τ)(−1) refer to the first and
last visit, respectively.

Because rτ
CyclER[t] = 1

|c| only when a transition in a cycle is taken (and only once per that transition) and the
distance between successive visits to an accepting state is |c| then at most γi reward is accumulated between
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successive visits to an accepting state. In other words Eτ∼Mφ
π

[ ∑T(i+1)
t=T(i)+1 Γtr

τ
CyclER[t]

]
= γi and therefore

V cyc
π ≤ 1

1−γ .

Further, every trajectory τ is decomposable into (1) the partial trajectory up to the first visit (ie. at time
T (τ)(0)), the partial trajectory between the first and last visit (ie. between time T (τ)(0) and T (τ)(−1)), and (3)
the remainder of the trajectory. For trajectories that satisfy the LTL specification, T (τ)(−1) = ∞, otherwise
T (τ)(−1) ≤ M , finite and bounded (by Assumption C.1). For ease of notation, we omit the dependence of T
on τ (i.e. we write T (τ)(0) as T(0)). By linearity of expectation, we can rewrite our previous equation as:

V cyc
π = E

τ∼Mφ
π

[ T(0)∑
t=0

Γtr
τ
CyclER[t]

]
+ E

τ∼Mφ
π

[ T(−1)∑
t=T(0)+1

Γtr
τ
CyclER[t]

]
+ E

τ∼Mφ
π

[ ∞∑
t=T(−1)+1

Γtr
τ
CyclER[t]

]
.

When a path τ is accepting, by definition, Eτ∼Mφ
π

[ ∑T(0)
t=0 Γtr

τ
CyclER[t]

∣∣∣∣τ |= φ

]
= 1 because every accepting

initial path will achieve a reward of 1.

By considering accepting trajectories of LTL formula φ, then T(−1) = ∞:

V cyc
π ≥

1 + E
τ∼Mφ

π

[ ∞∑
t=T(0)+1

Γtr
τ
CyclER[t]

∣∣∣∣τ |= φ

]P[π |= φ] = p

1 − γ

where the inequality follows from having dropped any value from non-satisfying trajectories. On the other
hand, by the law of total expectation, for a lower bound we have:

V cyc
π = p E

τ∼Mφ
π

[ ∞∑
t=0

Γtr
τ
CyclER[t]

∣∣∣∣τ |= φ

]
+(1 − p) E

τ∼Mφ
π

[ ∞∑
t=0

Γtr
τ
CyclER[t]

∣∣∣∣τ ̸|= φ

]
≤ p

1
1 − γ

+ (1 − p)1 − γM+1

1 − γ

where the first term comes from the upper bound on V cyc
π ≤ 1

1−γ and the second term comes from bounding
T(0) with a uniform upper bound M by Assumption C.1

Combining the upper and lower bound together and subtracting off p from both sides, we have

0 ≤ (1 − γ)V cyc
π − p ≤ 1 − γM+1

Select γ ≥ (1 − ϵ)
1

M+1 which implies that

|(1 − γ)V cyc
π − p| ≤ ϵ

Lemma C.3. Let p∗ = maxπ∈Π P[π |= φ]. Under Assumption C.1, then any policy π optimizing V cyc
π (ie.

achieving V cyc
max} maintains |V cyc

π − p∗| ≤ ϵ.

Proof. This follows by an identical argument as in Theorem 4.2 in Voloshin et al. (2023), by using Lemma
C.2: V cyc-optimizing policy π∗

cyc must satisfy |(1 − γ)V cyc
max − p∗| ≤ ϵ when γ is selected as in Lemma C.2.
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CyclER LCER LCER (no rMDP)

Figure 4: Sample trajectories from each baseline method in the FlatWorld domain (each row is a different
seed). CyclER is able to consistently learn behavior that repeatedly visits and accepting state. The LCER
baseline cannot achieve this long horizon task and instead optimizes for rMDP. The LCER (no rMDP) baseline,
even when successful in visiting the accepting state (bottom right), does qualitatively learn satisfying behavior
despite visiting the accepting state.

D Additional Experimental Results

Qualitative Analysis To provide more insight into how CyclER learns to repeatedly visit the accepting
state, we visualize sample trajectories from policies learned by each of our baselines in the FlatWorld domain,
and present these samples in Figure 4. Recall that in this domain, our LTL specification instructs an agent
to traverse the red, yellow, and green regions indefinitely, while avoiding the blue region. It is obvious that
the most efficient path to achieve this behavior is to navigate around the blue region and visit each colored
region along a circular path.

On the left hand column of Fig. 4, we see that policies learned using CyclER are able to perform this behavior,
only slightly diverting from the circular path to visit purple regions and collect reward from rMDP. In the
middle column, we visualize trajectories from policies learned where LCER is used as rLTL. Due to the
sparsity of this reward function, the policy quickly finds areas in the MDP where purple regions are clustered
together, and repeatedly visits those areas (in the top middle, it traverses to a corner where the entropy of
the policy will affect its position the least.) On the right hand column, we show trajectories from LCER
trained without rMDP in its reward formulation. On the top right, we see that the baseline fails to achieve the
task at all. More interestingly, however, on the bottom right, we find that the baseline does indeed achieve
the task (i.e., visits the accepting state once), but does not exhibit behavior that qualitatively satisfies our
task specification. After completing the task once, the agent turns back in the opposite direction and does
not make obvious progress back towards either the red or yellow regions, suggesting that this baseline has not
learned to repeatedly satisfy the task.

E Quantitative Semantics for LTL

Practitioners have defined Quantitative Semantics (QS) for a number of temporal logics in order to quantify
the measure of satisfaction for a given specification. These semantics, originally developed to monitor how
close hybrid control systems are to violating properties reliant on continuous-value sensor data (Maler &
Nickovic, 2004), have since been used in reinforcement learning to learn policies that satisfy formulae in
a variety of specification languages, including Signal Temporal Logic (STL) (Li et al., 2017; Balakrishnan
& Deshmukh, 2019). However, existing methods of QS for reward shaping fail to effectively extend to
indefinite-horizon LTL tasks. In what follows, we will introduce QS for LTL, discuss why naïvely using QS
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ρ(st:t+k,⊤) = ρmax,

ρ(st:t+k, fx(st) < cx) = cx − fx(st),
ρ(st:t+k,¬φ) = −ρ(st:t+k, φ)

ρ(st:t+k, φ =⇒ ψ) = max(−ρ(st:t+k, φ), ρ(st:t+k, ψ))
ρ(st:t+k, φ&ψ) = min(ρ(st:t+k, φ), ρ(st:t+k, ψ))
ρ(st:t+k, φ∥ψ) = max(−ρ(st:t+k, φ), ρ(st:t+k, ψ))
ρ(st:t+k, G(φ)) = min

t′∈[t,t+k)
(ρ(st′:t+k, φ))

ρ(st:t+k, F (φ)) = max
t′∈[t,t+k)

(ρ(st′:t+k, φ))

ρ(st:t+k, X(φ)) = ρ(st+1:t+k, φ)(k > 0)
ρ(st:t+k, (φUψ)) = max

t′∈[t,t+k)
(min(ρ(st′:t+k, ψ), min

t′′∈[t,t′)
(ρ(st′′:t′ , φ))))

Figure 6: Quantitative Semantics for LTL.

as reward is ill-fitted to deep RL for LTL, and introduce our own approach, extending the CyclER reward
shaping method to effectively incorporate QS.

Figure 5: A toy trajectory
in the Flatworld MDP.

To use QS, we associate each atomic predicate x ∈ AP with a robustness measure
fx : S → R that quantifies how close x is to being satisfied at state s. x evaluates
to true at a given state iff fx(s) ≥ cx, where cx is a constant threshold. We
can compose variables in AP with the logical and temporal operators of LTL by
introducing QS for each operator, which follows the standard semantics defined
for languages like TLTL (Li et al., 2017) and STL (Maler & Nickovic, 2004;
Fainekos & Pappas, 2009) and is provided in figure 6. An LTL formula φ is
true if the quantitative evaluation of ρφ > 0 and false otherwise. We also define
a maximum and minimum achievable value for ρ in a given MDP as ρmax and
ρmin, respectively.

To better understand quantitative evaluation for a given LTL formula, consider a
trajectory (which we will denote as ξ) from the Flatworld MDP, shown in figure 5
and the formula φtoy = F (r)&G(¬b). We can define robustness measures for our
atomic propositional variables as fx(s) = distance(s, xcenter) < xradius, requiring
that the agent be within a region for its variable to evaluate to true.

Let’s quantitatively evaluate φtoy on the trajectory ξ. For the expression F (r), we find the maximum
quantitative evaluation for the variable r in our trajectory. Since our trajectory visits the red region at point
(0.5, -1), the evaluation for r at that point is some positive value cr > 0, so the expression F (r) will evaluate
to true. For the expression G(¬b), we negate the quantitative evaluation and find the minimum value for
the negated evaluation of b. At the point (-1, 0), the agent is closest to the blue region, but since it does
not enter it, the minimum value is some positive value cb > 0. The quantitative evaluation for φtoy on ξ is
therefore a positive value min(cr, cb), so φtoy evaluates to true for ξ.

Suppose we were to naively use the quantitative evaluation of a given LTL specification “off-the-shelf” as a
reward function for an RL agent. Since the quantitative evaluation of a trajectory at any given point in time
requires evaluating the future states of the trajectory, we can only assign a reward for entire trajectories.
For the toy specification considered in our example, the reward would be the smaller of (1) the maximum
distance the agent reaches from the blue region and (2) the minimum distance the agent reaches from the red
region during the trajectory. Although this seems reasonable as a reward for our example, the quantitative
evaluation of an LTL formula becomes increasingly more obscure as the specification increases in complexity.
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For example, for the specification defined in Figure 1, which instructs the agent to indefinitely oscillate
amongst the red, green and yellow regions while avoiding blue, ξ would have a lower quantitative evaluation
than a trajectory that does not visit any of the three regions but just barely enters the blue region, even
though the latter violates the specification without making any qualitative progress. Moreover, there would
be no meaningful difference in quantitative evaluation between ξ and a trajectory that visits red, green and
yellow while avoiding blue, or between a trajectory that completes the task twice, or thrice, and so on.

The quantitative evaluation of a trajectory as a reward signal for LTL fails because there are no well-defined
terminal conditions for evaluating a finite trace under an infinite-horizon specification (e.g., φ from Figure 1),
which means that value produced is often useless when used as a reward signal. This is made worse due to
the fact that quantitative evaluation of an LTL formula assigns a single value for an entire trajectory, making
credit assignment difficult. We propose an alternative reward that avoids these issues, extending the CyclER
approach to handle quantitative semantics by rewarding “progress” made by traversing individual transitions
in B.

The high-level intuition for our method is as follows: recall that for a given trajectory, CyclER computes
hypothetical rewards for each cycle in B, where reward is given if the next transition is taken within that
cycle during the trajectory. Our key insight is that we can straightforwardly extend this paradigm to use QS
by instead rewarding quantitative progress made towards taking the next transition within an individual
cycle. Each transition in B corresponds to a non-temporal predicate of atomic propositions. Crucially, we
can quantitatively evaluate these predicates on individual states, rather than trajectories. When an agent
moves to a new state in M, we can quantify how close the agent is to satisfying the transition predicate
(and therefore taking the transition in the cycle), and compare it to how close the agent was to satisfying
the transition predicate in the previous state. If there is a positive difference between these two values, we
reward that progress made towards satisfying the transition predicate.

We present our reward function in function 7 in the main text. In the context of Alg. 1, the reward function
defined in 7 will replace rC . Intuitively, we can interpret the reward function defined in 7 as identical to rC ,
but rewarding quantitative progress towards taking a transition in a cycle rather than only offering reward
once that transition is taken. We normalize progress using ρmax and ρmin to ensure that the scale of rewards
from function 7 remain consistent.

Let us once again return to the example trajectory in Figure 5, with the LTL specification and Buchi
automaton from Figure 1 as our objective, and consider the cycle {1, 2, 3, 0}. We begin in state 1 of B, where
the transition we aim to take has the corresponding predicate r. When we transition from (-1, -1) to (0.5, -1),
we satisfy r, and receive positive reward from CyclER because we are closer to r than we were in the previous
state. We are now in state 2 of B and seek to take the transition with predicate g. For the transition from
(0.5, -1) to (1, 0), we receive positive reward for getting closer to g, and for the transition from (1, 0) to (0.5,
1) we receive positive reward for successfully moving closer to g. Note that each transition of our trajectory ξ
qualitatively makes progress towards visiting the accepting state of B, and this is reflected in the positive
rewards assigned by rqs.

In environments where the individual variables in AP are difficult to satisfy, the usage of QS can offer
a more dense reward that still leverages the full expressivity of LTL. In our experiments, we show that
using the QS version of CyclER strongly outperforms existing approaches of using QS in learning to satisfy
indefinite-horizon LTL specifications (Li et al., 2017; Balakrishnan & Deshmukh, 2019) and enables the
learning of LTL-compliant policies in complex environments.

F Extended Related Work

Temporal Logic-Constrained Policy Optimization. The problem of optimizing a cost or reward function
under a set of temporal logic constraints has primarily been explored from a control-theoretic perspective.
For general LTL constraints, Ding et al. (2014) provides a solution to this LTL-constrained cost optimization
under assumptions that the dynamics of M are known and that a stationary policy exists in Π that will
always satisfy the LTL constraints in the given MDP. Cai et al. (2021) improves on this result by relaxing the
assumption that the LTL constraints can always be satisfied. In terms of RL approaches to our problem
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setting, Voloshin et al. (2022) provides an exact solution method in discrete settings where the dynamics
are unknown by assuming a lower bound on transition probabilities in M. Our work takes a step forward
in this space, extending policy optimization under general LTL constraints to continuous state and action
spaces. Although PAC-learning guarantees cannot be made for general LTL objectives in RL without certain
assumptions (as we will discuss later), our formulation does provide theoretical guarantees of soundness for
both our objective formulation and reward shaping technique.

Beyond general LTL constraints, there exist efforts that consider policy optimization under different classes
of temporal logic constraints, particularly Signal Temporal Logic (STL). Kalagarla et al. (2021) provides an
optimal learning approach for discrete state spaces under constraints in a fragment of STL. Separately, Ikemoto
& Ushio (2022) considers STL-constrained policy optimization in a deep RL setting. Our objective formulation
is similar to that of Ikemoto & Ushio (2022), but we extend the setting to the space of general LTL and
provide guarantees on the correctness of our formulation.

RL with LTL Objectives. In contrast to settings with both temporal logic constraints and separate
reward functions, a significant amount of work has been devoted to developing RL approaches with LTL
specification(s) as the lone objective. Earlier works primarily focus on using Q-learning-style methods over
augmentations of M (Sadigh et al., 2014; Aksaray et al., 2016; Venkataraman et al., 2020; Cai et al., 2021).
Subsequent works (Hasanbeig et al., 2020; Toro Icarte et al., 2022; Camacho et al., 2019; Jothimurugan et al.,
2019) extend temporal logic-guided RL to deep RL settings. Although previous work shows that guarantees
on learning an optimal policy cannot be made for RL with LTL objectives in general (Yang et al., 2022; Alur
et al., 2022), existing approaches have obtained (approximate) learning guarantees by making assumptions
on the environment dynamics (Fu et al., 2020; Fu & Topcu, 2014; Voloshin et al., 2022; Wolff et al., 2012)
or by finitizing the policy’s horizon through discounting or recurrence time (Alur et al., 2023; Perez et al.,
2023). In DRL-based approaches, where learning guarantees cannot be made, previous approaches make
guarantees of varying strength and approximation on their objective formulations, ensuring that the optimal
policy under a proxy objective will satisfy the original logical specification (Voloshin et al., 2023; Hasanbeig
et al., 2020; Jothimurugan et al., 2021; Camacho et al., 2019). The guarantees made in our work are of a
similar vein, with comparable approximative strength to Voloshin et al. (2023).

The compositionality and generalizability of temporal logic specifications have spurred a number of works that
exploit these advantages. Jothimurugan et al. (2021) proposes a compositional RL approach that leverages
the DAG-like structure of finite temporal logic specifications. Other works leverage these properties to design
multi-task RL methods that can generalize to unseen tasks over the same AP set (Vaezipoor et al., 2021; Qiu
et al., 2023; León et al., 2022; Liu et al., 2022). Our reward shaping approach can be used in conjunction
with these multi-task frameworks to potentially accelerate learning; we leave this as a promising direction for
future work.

Reward Shaping (for LTL). Reward shaping for RL is a well-studied problem that seeks to alleviate
reward sparsity by offering denser rewards that does not change the optimal policy (Ng et al., 1999). Common
approaches to reward shaping include using potential functions (Ng et al., 1999; Hu et al., 2020), using
hindsight experience replay (Andrychowicz et al., 2017), or leveraging expert inductive bias (Nair et al., 2018).
Similar to potential-based reward shaping, the CyclER approach ensures maintenance of the optimal policy
between the shaped and unshaped rewards.

In the context of Reward Shaping for LTL, there have been previous efforts to use the structure and properties
of B to shape the reward proxy of an LTL specification (Hasanbeig et al., 2020; Oura et al., 2020; Wang et al.,
2020). Unlike CyclER, these methods rely on generalized LDBAs (GLDBAs) with acceptance conditions
that require visiting multiple states in B. GLDBAs often do not encode progress as monotonically as their
de-generalized counterparts (for example, many GLDBAs require revisiting previous states in B to collect all
acceptance conditions when the de-generalized version does not), which complicates learning. Moreover, since
GLDBA-based approaches must often reason over multiple transitions from a single state, these approaches
cannot easily leverage QS for reward shaping in the way CyclER can.

Quantitative Semantics. There have also been previous approaches to temporal logic-guided RL that
leverage QS to shape reward. In continuous settings, Li et al. (2017) and Balakrishnan & Deshmukh
(2019) leverage the recursive semantics of QS in temporal logic to shape rewards. We directly compare
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Algorithm 2: Find Minimal Accepting Initial Paths and Cycles (FindMAIPsAndMACs)
Input: Buchi Automaton B, accepting states set B∗

Initialize C to an empty set;
Initialize P to an empty set;
DFS(b−1, {}, P);
foreach accepting state b∗ ∈ B∗ do

Initialize visited to an empty set;
Initialize C to an empty set;
DFS(b∗, {}, C);
Add C to C;

return C, P

against both approaches and show that reasoning over the QS of an entire LTL specification (including its
temporal operators) often fails to properly shape reward. QS have been used in reasoning over individual
predicates assigned to edges of a temporal logic’s corresponding automaton (Jothimurugan et al., 2021),
but this approach is limited to finite-time tasks and explicitly makes use of the reach-avoid nature of tasks
considered to shape reward. In contrast, CyclER can use QS for the full expressiveness of LTL specifications,
as demonstrated in our experiments where QS is used to shape the reward for infinite-time tasks.

Constrained Policy Optimization. The broader constrained policy optimization works mostly relate to
the constrained Markov Decision Process (CMDP) framework (Le et al., 2019; Achiam et al., 2017; Altman,
2021), which enforce penalties over expected constraint violations rather than absolute constraint violations.
In contrast, our work aims to satisfy absolute constraints in the form of LTL.

G Additional Algorithmic Details

Figure 7: A partial
Büchi automaton that
necessitates a visited
frontier.

Motivation of visiting frontier. To motivate the importance of maintaining the
visited frontier e introduced in section 4.2, we show via example that the existence
of non-accepting cycles in B may allow for trajectories that infinitely take transitions
in a MAC or MAIP without ever visiting an accepting state.

Consider the accepting cycle {3, 1, 2} in the partial automaton in Figure 7. Although
this cycle is a MAC, there does exist a separate cycle starting and ending at state 1
(i.e. the cycle {1, 2, 0}.) If we give reward every time a transition in the cycle {3, 1, 2}
is taken, a policy may be able to collect infinite reward without ever visiting an
accepting state. For example, in Figure 7, a path {1, 2, 0, 1, 2, 0 . . . } would infinitely
take transitions in a MAC, and therefore collect infinite reward without ever visiting
the accepting state 3. Our visited frontier e will ensure that rewards will only be
given once per transition until an accepting state is visited.

G.1 Finding Minimal Accepting Cycles and Accepting Initial Paths

In algorithms 2 and 3, we include the psuedocode for finding minimal accepting initial
paths and minimal accepting cycles in a given B, which constitute the sets P and
C respectively for usage in algorithm 1.

H Additional Experimental Details

Environments and Tasks. For each random seed of training, the locations of the following objects were
randomized and fixed: in FlatWorld, the location of the bonus areas, in ZonesEnv, the locations of all
colored regions and hazard regions, and in ButtonsEnv, the locations of the buttons, bonus areas, and
gremlins. In ZonesEnv and ButtonsEnv, we use the Point robot from Ji et al. (2023) as our agent, which has
a 2-dimensional action space a ∈ [−1, 1]2.
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Algorithm 3: DFS (Helper for Alg. 2
Input: Starting node b, Path p, set S
Add node b to visited;
foreach Outgoing transition (b, ν, b′) from b do

if b′ ∈ B∗ then
Add the transition (b, ν, b′) to p;
Add p to S;

else
if b′ /∈ visited then

Add the transition (b, ν, b′) to p;
DFS(b′, p, S);

Remove node b from visited;

The observation space and environment used in our ZonesEnv are the the default spaces provided the Zones
Level 1 environment in Ji et al. (2023), with the following changes: there are additional lidar observations for
each of the four colored zones, and we place four static collidable walls as boundaries to enclose the agent’s
environments at the border of where objects can be randomly placed. The observation space and environment
used in our ButtonsEnv experiments are the default spaces provided the Button Level 1 environment in Ji
et al. (2023), with two gremlins and eight bonus regions.

In ZonesEnv and ButtonsEnv, we define a simple robustness measure for each atomic propositional variable
in the environments (the red, yellow, green, and purple regions in ZonesEnv, and buttons 1 through 4 and
gremlin for ButtonsEnv). The robustness measure for a general variable x at a given state s is defined as
follows:

fx(s) = distance(s, x) ≤ 0

For example, if an agent was a distance of 2 units away from the red region in ZonesEnv, the robustness
measure of the variable “red” at that state would evaluate to -2. For ButtonsEnv, where the gremlin variable
refers to multiple moving objects, the robustness measure corresponds to the minimum distance from the
agent to any gremlin. We set ρmax = 0 in our environments and ρmin to be the negative largest distance
achievable in each environment.

Figure 8: Example visualizations of the ZonesEnv (left)
and ButtonsEnv (right) environments.

Our LTL task specifications are defined in Table 3.
We use the Spot tool Duret-Lutz et al. (2022) to
convert our specifications into corresponding Büchi
automata.

Training details. For all experiments, results are
averaged over five random seeds. We provide hyper-
parameter choices for PPO for each experiment in
Table 5 and choices for λ in Table 4. In Table 5,
batch size refers to the number of trajectories. In our
PPO implementation, we use a 3-layer, 64-hidden
unit network as the actor using ReLU activations,
and a 3-layer, 64-hidden unit network architecture
with tanh activations in between layers and no final activation function for the critic. The actor outputs the
mean of a Gaussian, the variance for which is learned by a 3-layer, 64-hidden unit network that shares the
first 2 layers with the actor policy itself. All experiments were done on an Intel Core i9 processor with 10
cores equipped with an NVIDIA RTX A4500 GPU. We use the Adam optimizer in all experiments.

In Figure 3, reward was computed by evaluating the policy every ten trajectories in the case of FlatWorld,
and every 25 trajectories for ZonesEnv and ButtonsEnv. The rLTL and rMDP values shown are from averaging
performance over ten rollouts for each data point with a smoothing window of size 5.
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Environment LTL φ
FlatWorld G(F (red)&X(F (green)&X(F (yellow))))&G(¬blue)
ZonesEnv G(F (blue)&F (purple)&F (red)&F (green))

ButtonsEnv G(F (button1)&F (button2))&G(¬gremlin)

Table 3: Specification for each domain.

Environment CyclER LCER TLTL BHNR
FlatWorld 400 1000 - -
ZonesEnv 200 1000 10 1

ButtonsEnv 100 1000 10 1

Table 4: Values for λ used by baselines for each domain.

For the BHNR baseline, we use a partial signal window size of 60 for FlatWorld, 700 for ZonesEnv, and 750
for ButtonsEnv, treating this value as a hyperparameter and performing a sweep to select the window size.
Our TLTL baseline is trained by assigning the TLTL value of a trajectory as the reward at the end of the
trajectory, and using the discounted reward-to-go for each prior timestep as the reward signal. For our TLTL
and BHNR baselines, we tried computing rLTL in two ways: first, we tried using the original quantitative
evaluation of the formula as the reward, where the resulting rewards were mostly negative due to how we
defined our robustness measures for each variable. To evaluate if the sign and magnitude of the reward caused
difficulty during learning, we normalized the quantitative evaluation done in TLTL and BHNR using ρmin
and ρmax, so that the reward value would be between 0 and 1. We found that this adjustment did not have a
significant impact on either baseline’s ability to learn rLTL, but it did allow for easier optimization of rMDP;
therefore, we report the results from the normalized evaluation in our experiments.

Environment Critic LR Actor LR α Update freq. γ Batch size |τ | (training)
FlatWorld 0.001 0.0003 - 1 0.98 128 120
ZonesEnv 0.0125 0.0025 0.3 3 0.99 128 700

ButtonsEnv 0.001 0.0003 0.2 3 0.99 128 750

Table 5: Hyperparameters used during training for each domain.
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