MRI image Reconstruction from K-space

Author: Livingstone Eli Ayivor
MRI images are not directly acquired; instead, data is collected in k-space (frequency domain).

* Toreconstruct an image, we apply an inverse Fourier transform.

. Misunderstanding k-space often leads to reconstruction errors (e.g., misplaced
frequencies, noise, artifacts).

This notebook shows a step-by-step approach to reconstructing an MRl image from K-space
data. we'll make use of the M4Raw_kspace dataset from kaggle.

Install and Load Required Libraries

I'pip -qq install fastmri

101.4/101.4 kB 3.2 MB/s eta
0:00:00

etadata (setup.py) ...
58.1/58.1 kB 2.7 MB/s eta 0:00:00

363.4/363.4 MB 4.2 MB/s eta

0:00:00

664.8/664.8 MB 2.1 MB/s eta
0:00:00

211.5/211.5 MB 1.9 MB/s eta
0:00:00

56.3/56.3 MB 27.8 MB/s eta
0:00:00

127.9/127.9 MB 11.8 MB/s eta
0:00:00

207.5/207.5 MB 7.3 MB/s eta
0:00:00

21.1/21.1 MB 66.0 MB/s eta
0:00:00

ERROR: pip's dependency resolver does not currently take into account
all the packages that are installed. This behaviour is the source of
the following dependency conflicts.

pylibcugraph-cul2 24.12.0 requires pylibraft-cul2==24.12.%*, but you
have pylibraft-cul2 25.2.0 which is incompatible.

pylibcugraph-cul2 24.12.0 requires rmm-cul2==24.12.*, but you have
rmm-cul2 25.2.0 which is incompatible.

import h5py
import numpy as np
from matplotlib import pyplot as plt

https://www.kaggle.com/datasets/arafatshovon/m4raw-kspace
https://www.linkedin.com/in/livingstone-ayivor/

import os

import fastmri

from fastmri.data import transforms as T
import matplotlib.animation as animation

from matplotlib.animation import FuncAnimation

Load sample data

file path =
‘/kaggle/input/mdraw-kspace/multicoil train/2022061001 FLAIRO1.h5'
hf = h5py.File(file path)

volume kspace = hf['kspace'][()]
middle index

slice kspace
of this volume

volume kspace.shape[0] //2
volume kspace[middle index] # Choosing the middle slice

In multi-coil MRIs, k-space has the following shape: (number of slices, number of coils, height,
width)

volume kspace = hf['kspace'][()]
print('Kspace shape:',volume kspace.shape)
out = hf['reconstruction rss'][()]
print('reconstruction rss shape:',out.shape)

Kspace shape: (18, 4, 256, 256)
reconstruction rss shape: (18, 256, 256)

Let's see what the absolute value of k-space looks like

def show coils(data, slice nums, cmap=None):
fig = plt.figure()
for i, num in enumerate(slice_nums):
plt.subplot(l, len(slice nums), 1 + 1)
plt.imshow(data[num], cmap=cmap)

show coils(np.log(np.abs(slice kspace) + 1le-9), [0, 1, 2, 3]) # This
shows coils 0, 1, 2 and 3

100

200

0 200 0 200 0 200 0 200

The glow in the centre of the k-space image represents the lower spatial frequencies, which
contains the bulk of the image contrast information. As we move away from this central glow,
the finer details and edges, representing the higher spatial frequencies, become apparent. These
outer regions may appear fainter, but they hold vital information that sharpens our final image.
In essence the outer region carries the fine details and edges of the image.

How do we get to an actual image?

To get from k-space to an actual image, we use the inverse Fourier transform. This process
translates the frequency data from k-space into spatial information, giving us a clear image.
When this transformation is applied to our k-space data, we're left with an image that reveals
the underlying structures and details.

slice kspace2 = T.to tensor(slice kspace) # Convert from numpy
array to pytorch tensor
slice image = fastmri.ifft2c(slice kspace2) # Apply Inverse

Fourier Transform to get the complex image
slice image abs = fastmri.complex abs(slice image) # Compute
absolute value to get a real image

show coils(slice image abs, [0, 1, 2, 3], cmap='gray') # This shows
coils 0, 1, 2 and 3

100

200

0 200

After applying the inverse Fourier transform to our k-space data, what we get isn’t just a regular
image but a complex-valued image. This translates to each pixel having both a real and
imaginary component.

While each pixel has both a real and imaginary component, they combine to form two vital
attributes: magnitude and phase. The magnitude tells us about the pixel's brightness, and it's

what we usually associate with the familiar MRl image. The phase, on the other hand, captures
angular information. While the real and imaginary parts might seem random on their own, their
combined effect through magnitude and phase unveils the detailed structure in our MRI.

Combining coils into a unified image

In MRl imaging, multiple coils are often used to capture data, each producing its own image. As
we can see, each coil in a multi-coil MRI scan focusses on a different region of the image. To
unify these images into one comprehensive picture, we use the Root Sum of Squares (RSS)
technique. By employing RSS, for each pixel, the values from each coil are squared, summed,
and then the square root is taken. The result is a single, combined image that consolidates the
information from all coils.

slice image rss = fastmri.rss(slice image abs, dim=0)

plt.imshow(np.abs(slice image rss.numpy()), cmap='gray')

<matplotlib.image.AxesImage at Ox7b8bd0e0e990>

30

100

150

200

250
0 50 100 150 200 250

	MRI image Reconstruction from K-space
	Install and Load Required Libraries
	Load sample data
	How do we get to an actual image?

