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FAA-CLIP: Federated Adversarial Adaptation of
CLIP
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Abstract—Despite the remarkable performance of vision lan-
guage models (VLMs) such as Contrastive Language Image Pre-
training (CLIP), the large size of these models is a considerable
obstacle to their use in federated learning (FL) systems where
the parameters of local client models need to be transferred to
a global server for aggregation. Another challenge in FL is the
heterogeneity of data from different clients, which affects the
generalization performance of the solution. In addition, natural
pre-trained VLMs exhibit poor generalization ability in the
medical datasets, suggests there exists a domain gap. To solve
these issues, we introduce a novel method for the Federated
Adversarial Adaptation (FAA) of CLIP. Our method, named
FAA-CLIP, handles the large communication costs of CLIP using
a light-weight feature adaptation module (FAM) for aggregation,
effectively adapting this VLM to each client’s data while greatly
reducing the number of parameters to transfer. By keeping CLIP
frozen and only updating the FAM parameters, our method is
also computationally efficient. Unlike existing approaches, our
FAA-CLIP method directly addresses the problem of domain
shifts across clients via a domain adaptation (DA) module. This
module employs a domain classifier to predict if a given sample
is from the local client or the global server, allowing the model to
learn domain-invariant representations. Extensive experiments on
six different datasets containing both natural and medical images
demonstrate that FAA-CLIP can generalize well on both natural
and medical datasets compared to recent FL approaches. Our
codes are available at https://github.com/AIPMLab/FAA-CLIP.

Index Terms—Federated learning, Foundation models, Domain
adaptation.

I. INTRODUCTION

While models based on deep learning (DL) have achieved
ground-breaking results in a broad range of computer vision
and natural language understanding tasks, their performance is
often dependent on the availability of large datasets [1]. In re-
cent years, there has been a growing concern on ensuring data
privacy and security, with many organizations implementing
regulations and laws such as the EU General Data Protection
Regulation (GDPR) [2]. These restrictions on sharing raw
data from different organizations poses a siginificant challenge
for training robust DL models in fields like medical imaging
where privacy is of utmost importance. One of the most
promising solutions to this problem is federated learning (FL).
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FL is a decentralized training framework that aggregates many
local models into a global model without sharing raw data,
thereby complying with the requirements for data security [3],
[4].

The standard approach for FL consists in training a local
model at each client involved in the process, using the client’s
own data, and then broadcasting the parameters of local
models to a global server. The server then combines these
parameters to obtain a global model, the parameters of which
are sent back to the clients. Repetition of this process for
several rounds allows the global model to implicitly learn from
the data of different clients, without having to directly share
these data [5]. Although FL models improve the privacy and
security of DL systems trained from multiple sources, their
performance and efficiency may be affected by two factors:
1) the communication and computation resources needed for
global transmission and local training; 2) data distribution
shifts among the clients. For example, discrepancies in the
distribution of data (i.e., data heterogeneity) can influence
the performance of FL models, especially in medical imaging
where the data acquisition process and patient demographics
can vary largely from one site (e.g., hospital or clinic) to
another [6], [7]. This challenge can limit the generalizability
of FL models where the test data are from different sources
with large heterogeneity [8]. Recent studies have shown that
VLMs trained on natural images do not perform well on
classification tasks involving medical images, highlighting the
need for specialized adaptation mechanisms [9]. Moreover, the
communication costs associated with parameter transmission
can be prohibitive if the model is large, which poses a
challenge for applications that require timely communication
where high transmission latency is not allowed [10]. This is
especially problematic for VLMs such as CLIP that have more
than 108 parameters (version based on ViT-B/32) [11].

This study investigates the potential of natural pretrained
VLMs in the context of FL and propose a novel framework
called Federated Adversarial Adaptation of CLIP (FAA-CLIP)
addressing the challenges of data heterogeneity, communi-
cation, and computation costs. FAA-CLIP handles the large
size of CLIP with a light-weight feature adaptation module
(FAM) that adapts this VLM to each client’s data. Keeping
the parameters of CLIP frozen, our method only updates
and broadcasts the parameters of the clients’ FAM, thereby
reducing the overall computational and communication costs.
Furthermore, compared to existing FL approaches, FAA-CLIP
addresses the problem of data heterogenity in different clients
directly, using a specialized domain adaptation (DA) module.
The proposed module enables FAA-CLIP to learn domain-
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invariant representations with a domain classifier that predicts
whether a given sample is from the local client or from a global
reference data set. The novelty of this study lies in our proposal
of a training and communication efficient FL approach using a
lightweight FAM and a domain adaptation module for adapting
CLIP to both natural and medical datasets. Further calibration
analysis conducted demonstrates the potential of FAA-CLIP
for calibration tasks.

The contributions of our work can be summarized as
follows:

1) We propose a specialized feature adaptation module
(FAM) for adapting CLIP to natural and medical imag-
ing data from multiple sites, which significantly reduces
the computational and communication costs of our so-
lution.

2) Unlike existing apporoaches like FedCLIP [11], our
FAA-CLIP method addresses the problem of domain
shifts directly using a domain adaptation (DA) module.
As shown in our results, this DA module boosts perfor-
mance in the various test scenarios.

3) Through experiments on six publicly available classi-
fication benchmark datasets, including both natural and
medical images, we demonstrate the higher classification
accuracy and balanced accuracy of FAA-CLIP over
state-of-the-art FL approaches.

II. RELATED WORK

Before presenting our FAA-CLIP method, we give a brief
overview of related work on federated learning and CLIP-
based methods in the literature.

Federated learning (FL). The increasing awareness of
challenges related to data privacy and security has urged
researchers to develop novel machine learning solutions that
can learn from multiple sources of data without having to
share this data [2]. Among the many solutions proposed for
this issue, FL has emerged as the most promising and popular
approach [12]. Methods based on this approach can be roughly
divided into three categories: horizontal federated learning
(HFL), vertical federated learning (VFL), and federated trans-
fer learning (FTL) [6]. In HFL, clients share the same feature
space while holding different samples. On the other hand,
VFL in the FL setting where the datasets of individual clients
contain information about the same samples but have different
features. Last, in the FTL setting, client datasets differ both in
terms of features and samples, with limited overlaps.

One of the leading HFL methods, FedAVG [5], proposes
a simple averaging mechanism to combine the parameters
of locally-trained models into a single global one. Although
it preserves data privacy by only sharing parameters, this
method may still suffer from the problem of data heterogeneity
between clients [13]. To solve this issue, FedProx added a
proximal regularization term and allowed slight model gaps
between clients and the server [14]. In [15], authors argued
that local distribution shifts in separate clients can be handled
efficiently via batch normalization (BN) parameters. Based on
this idea, they proposed a FedBN method that updates the
BN parameters of each client locally without averaging them

on the global server. On the other hand, MOON [16] used
a contrastive loss between local clients and global servers to
improve overall performance.

Despite their improved performance, these methods mostly
ignored the problem of generalization, which is also an im-
portant challenge in FL. To solve this problem, the work in
[17] proposed a method to address separately the performance
gaps arising from unseen client data (out-of-sample gap) and
from unseen client distributions (participation gap). Likewise,
the authors of [18] introduced a FL framework based on
the Sharpness Aware Minimization (SAM) local optimizer
to improve the model’s generalization ability. Moreover, the
method presented in [19] employed a new variance reduc-
tion regularizer to dynamically calibrating the aggregation
weights, thereby improving generalization ability. In [20], they
proposed a novel FL framework using mutual learning to
provide a personalized local model with feasible performance.
However, it introduces extra local training epochs. Although
these approaches boost the model robustness to distribution
shifts, they were not intended for foundation models such as
the one used in our work.

Contrastive Language Image Pre-training (CLIP) is an
effective and scalable method learning representations jointly
from image and text data [21]. The CLIP model, which was
trained from scratch using over 400 million image-text data
pairs collected from the Internet [21], recently demonstrated
remarkable performance in a wide range of image understand-
ing tasks [22]. However, the integration and use of VLMs
like CLIP in FL applications is stll in its infancy. In [23],
authors proposed replacing full VLM training with federated
text prompt learning to reduce communication costs. Neverthe-
less, significant computational costs are still required to train
the VLM. The work in [24] also highlighted the challenge
of designing task-specific prompts for CLIP. Furthermore,
in [11], an adapter-based strategy was designed to leverage
the power of pre-trained VLMs. This strategy, which only
tunes and aggregates the parameters of adapters, demonstrated
its effectiveness on several natural datasets. Inspired by the
superior performance of CLIP for zero shot and few shot tasks,
the authors of [25] used CLIP to optimize FL between the
server and client models, alleviating the problem of data het-
erogeneity between clients. However, this approach incurred
large communication costs as it requires sharing the entire
model. In [26], they introduced low-rank adaptation (LoRA)
for large language models to reduce computational costs,
and this technique is widely used in the CLIP backbone in
recent studies [27]. In [28], they proposed to use personalized
prompts instead of global prompts for aggregation. The main
idea is that they decoupled the parameters into base (global)
and personalized (local) parameters. In [29], they proposed an
adapter-based dual teacher technique using mutual knowledge
distillation to adapt VLMs in FL tasks. However, it has not
been validated in medical datasets. Furthermore, in [23], they
proposed to aggregate the prompts instead of a shared global
model to reduce communication costs (PromptFL).

Unlike previous studies, we explore the potential of natural
pre-trained CLIP in the FL context for both natural and medi-
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cal images with an acceptable resource cost. We also introduce
calibration analysis [30] into CLIP-based FL approaches, an
area that has been less explored in this context.

III. METHODOLOGY

Before presenting our FAA-CLIP method for the federated
adversarial adaptation of CLIP, we first introduce the FL
setting considered in our study.

A. Problem formulation

In our FL setting, we work with a set of N clients
{C1, C2, · · · , CN}, each client Ci having a private dataset
Di = {(xi,j , yi,j)}ni

j=1. As in related studies [11], we assume
that the data of separate clients have the same input and output
space, but follow different distributions, i.e., P (Di′) ̸= P (Di),
∀i′ ̸= i. Each dataset Di consists of three non-overlapping
parts, namely a training Dtrain

i = {(xtrain
i,j , ytraini,j )}n

train
i

j=1 , a

validation Dval
i = {(xvali,j , y

val
i,j )}

nval
i

j=1 and a test set Dtest
i =

{(xtesti,j , ytesti,j )}n
test
i

j=1 . Our goal is to learn a global model
fθ(·) while preserving data privacy and security. This model
provides a good performance on the test data of every client,
i.e.,

min
f

1

N

N∑
i=1

1

ntest
i

ntest
i∑

j=1

ℓ(fθ(x
test
i,j ), ytesti,j ), (1)

based on a given loss function ℓ. For generalization, we assume
that there exist Q different clients {M1,M2, · · · ,MQ} with
data DM

i = {(xi,j , yi,j)}ni
j=1. Our objective is for the model to

perform on clients that were not included in the local training
phase, i.e.,

min
f

1

M

M∑
i=1

1

mi

mi∑
j=1

ℓ(fθ(xi,j), yi,j). (2)

B. Our FAA-CLIP framework

Our FL framework for CLIP-based image classification,
which is illustrated in Figure 1, comprises three key com-
ponents: 1) a feature adaptation module (FAM) for efficient
updating and sharing of models, 2) a feature adaptation strat-
egy addressing the problem of data distribution shifts between
clients, and 3) a global aggregation strategy to combine the
learned features from multiple clients. We present each of
these components in the following.

Feature Adaptation Module (FAM) training. We use a
pretrained CLIP model, comprising an image encoder eI(·)
and a text encoder eT (·), to extract features from the data
for each client Ci. For a training example xj ∈ Dtrain

i , we
denote as Ij = eI(xj) ∈ RD the D-dimensional vector of
image features. For text features, we use the standard prompt
“a picture of a {class}” as input to the text encoder
to obtain features Tj = eT (xj) ∈ RD.

Pre-trained VLMs can extract a rich set of features, however,
not all of those are suitable for learning a specific task. This is
particularly true for detecting and classifying abnormal regions
such as lesions in medical images, as these regions are absent

in normal images and typically represent a small part of the
image. To identify the regions of focus for locally trained mod-
els, we introduce a local FAM, denoted as atti(·). The main
idea of FAM is to reduce the training costs while adapting the
features extracted by CLIP to the new task through a series
of nonlinear transformations. This FAM takes as input image
features I and returns an attention mask atti(I) ∈ [0, 1]D.
The attention mask is typically generated using the Softmax
function. The mask is then used to generate the features of the
masked images I∗ = atti(I) ⊗ I, where ⊗ is the Hadamard
product (element-wise).

We measure the probability that an example xj belongs to a
class c using the cosine similarity between the image features
of xj and the text features Tc corresponding to the prompt of
c:

p(Y=c |xj) =
exp(sj,c/τ)∑K

c′=1 exp(sj,c′/τ)
, with sj,c =

⟨I∗j ,Tc⟩
∥I∗j∥·∥Tc∥

(3)
where τ is the Softmax temperature parameter.

Keeping the image and text encoders frozen, we train
the local FAMs by minimizing a contrastive loss Lcontr

that pushes together the image and text features from the
same training example and pulls apart non-matching ones.
Following [21], we compute the contrastive loss over batches
of size B. Let S be the B×B matrix where sj,j′ is the
cosine similarity between the image features I∗j and Tj′ as
measured in Eq (3). We compute an image probability matrix
P = softmax (S/τ) ∈ [0, 1]B×B and a text probability matrix
Q = softmax (S⊤/τ) ∈ [0, 1]B×B . The contrastive loss is
then formulated as follows:

Lcontr = − 1

B

B∑
j=1

1

2

(
log pj,j + log qj,j

)
. (4)

Feature adaptation. We use a domain adversarial loss to
align feature representations between clients [31]. For each
local client i, this loss trains a domain classifier (discriminator)
Di that predicts whether a given image representation Ij is
from a source (Di(Ij) = 1) or a target domain (Di(Ij) = 0).
For client i, the source domain contains the image features Ij
of the client’s training samples, i.e. xj ∈ Di. Since private
data cannot be shared in our FL scenario, we use a global
set of unlabeled images Dtgt to obtain the representations
of the target domain. This requirement does not constitue
a significant limitation as there are many publicly available
datasets in medical imaging (e.g., UK Biobank [32] or Human
Connectome Project – HCP [33] for brain images). For each
client i, batches of 2B samples are generated by randomly
selecting the same number of source and target examples.
Denoting as zj = 1(xj ∈ Di) the domain label of example
xj , the domain adaptation (DA) loss is then defined using
cross-entropy, as follow:

LDA = − 1

2B

2B∑
j=1

zj logDi(I
∗
j ) + (1− zj) log

(
1−Di(I

∗
j )
)

(5)
This loss is minimized for the domain classifier Di, but
maximized for the adapter atti so that the adapted image
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Fig. 1: FAA-CLIP pipeline. Each client trains its local model separately, optimizing only the parameters of its local feature
adaptation module (FAM) (atti) and domain classifier Di using contrastive and domain adaptation losses. After receiving the
local client parameters, the server aggregates them into a global (FAM) (att∗) whose parameters are transmitted back to clients.

features of each client’s data are indistinguishable from those
on the shared reference data. Combined with the contrastive
loss of Eq. (3), this gives rise to the following adversarial
objective:

min
atti

max
Di

L = Lcontr (atti) − λLDA(atti, Di), (6)

where λ is a hyper-parameter controlling the trade-off between
these two loss terms. In practice, this minimax optimization
problem is converted to standard minimization using a gradient
reversal layer [31].

Algorithm 1 Training procedure of FAA-CLIP.

Require: N clients’ data {Di}Ni=1, image encoder eI , text encoder
eT , feature adaptation module att∗, domain classifier Di

Ensure: Feature adaptation module att
1: For client i, compute the corresponding features obtain image

and text features I = eI(image), T = eT (text)
2: For client i, train the local feature adaptation module, atti and

domain classifier Di according to Eq. (5 );
3: Send the current feature adaptation module atti to the server;
4: Aggregate feature adaptation modules’ parameters via Eq. (7) to

obtain att∗;
5: Transmit att∗ to each client i;
6: Repeat steps 2 to 5 until convergence;

Global aggregation. The last component of our FAA-
CLIP framework is the aggregation strategy to combine the
parameters of different clients into a single global model.
This strategy works as follows. In every round, each client Ci

uploads its FAM parameters θatti to the server. Thereafter, the
server combines these parameters into a single vector θattglobal

using a simple average

θattglobal =
1

N

N∑
i=1

θatti . (7)

Subsequently, the server redistributes the global FAM parame-
ters to every client. Compared to CLIP encoders, the FAM has
less parameters. Hence our method has very low computational
and communication costs. Algorithm 1 summarizes the main
steps of FAA-CLIP.

IV. EXPERIMENTS

We start by presenting the data used for evaluating the
proposed FAA-CLIP model and then provide implementation
details about our model’s architecture, parameter optimiza-
tion strategy and FL setup. Afterwards, we demonstrate our
method’s outstanding performance by comparing it to state-
of-the-art FL approaches and baselines. Finally, we present
several ablation studies to further investigate the impact of
our method’s different components and hyperparameters.

A. Datasets

Our method is evaluated on six datasets that contain both
natural and medical images, which are described in the fol-
lowing.

OfficeHome is a large image classification benchmark, which
contains 65 classes [34]. This dataset has four sub-domains
(Art, Clipart, Product, and Real World) with about 15,500
images. Following [11], for each client, we divide the data
into training (60%), validation (20%), and test (20%) sets. In
each experiment, three subdomains are used as clients (denoted
as source), while one subdomain is considered as the global
testing set (denoted as target).

Multi-OF is a custom dataset derived from OfficeHome
dataset. Following [20], Dirichlet distribution is used to gen-
erate client data. Specifically, A, C and P domain are used for
local training, while each domain is divided into five clients.
For each domain data, we considered different α values used
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Fig. 2: Example of data distribution in each client using kite
graph in Multi-OF dataset. C1 to C15 indicate each client while
C 1 to C 65 represent each class.

TABLE I: Samples of each client.

Dataset Clients

OfficeHome A (2,427) C (4,365) P (4,439) R (4,357)
ModernOffice31 A (2,817) D (498) S (3,100) W (795)
SC C1 (1,971) C2 (19,766) C3 (8,512) Cglo (6,233)
BT C1 (1,474) C2 (423) C3 (949) Cglo (394)
HK C1 (3,186) C2 (3,186) C3 (3,186) Cglo (1,104)

in the Dirichlet function to simulate heterogeneous data. Fur-
thermore, domain R is used for the global evaluation following
the study in [11]. Figure 2 shows the data distribution in
each client using the kite graph (e.g., the size of polygon
reflects the number of samples). As illustrated, there exist large
heterogeneous data across all clients.

ModernOffice31 is a refined version of the Office31 image
classification benchmark [35] having four domains, Amazon
(A), Webcam (W), DSLR (D) and Synthetic (S), with 31
classes in each domain. For every client, we divide the data
into three parts: a training set (80%), and a testing set (20%).
Following OfficeHome, we view each sub-dataset as a client
and choose three sub-datasets as sources while the rest serves
as the target client. We evaluate our and other methods on
ModernOffice31 in a similar way to OfficeHome.

Brain tumor (BT) is a public Kaggle dataset, which has four
different classes, namely glioma tumor, meningioma tumor,
no tumor, and pituitary tumor1. The training set is composed
of 2,870 samples, while the test set has 394 samples. We
randomly split the training set into three clients, and each
client’s data is then divided into two subsets: a training set
(80%), a validation set (10%), and a testing set (10%). Finally,
we evaluated the global model using the original testing set.

Multi-source skin cancer (SC). We build this dataset
from three sources: a kaggle public dataset, HAM10000, and
ISIC2019 [36]–[38]. Since ISIC2019 lacks a test set, we
divided it into two parts, one for training and the other for
testing, with a ratio of 8:2. We selected the common classes
for this dataset: actinic keratosis (AK), basal cell carcinoma

1https://www.kaggle.com/dsv/1183165

(BCC), dermatofibroma (DF), melanoma (MEL), nevus (NV),
pigmented benign keratosis (PBK), and vascular lesion (VL).
For each client, we divide the data into two parts: a training
set (80%) and a testing set (20%).

HyperKvasir (HK). To further evaluate our model, we use
the largest gastrointestinal dataset [39], comprising 10,662
labeled images with 23 classes. We randomly divide the
dataset into four clients with the same number of samples,
and we use three clients for training and employ the rest for
testing. For each client in training, we split the data into two
parts: a training set (70%) and a testing set (30%).

A detailed description of the number of samples in each
client, for all datasets, is provided in Table I.

TABLE II: The computation overhead (all client’s local train-
ing time per communication round) and the communication
overhead (transmitted parameters per round). Σ, Σf , Σfc and
Σfam are the parameter amount in the CLIP backbone, the
CLIP without last layer, the fully-connection layer and the
FAM, respectively. Σprompt is the parameter amount in prompt
learner.

Computation (mins) Communication

OfficeHome ModernOffice31 BT SC Param./round

FedAVG 0.63 1.01 0.34 2.06 2× Σ
FedProx 0.75 1.12 0.39 2.25 2× Σ
MOON 0.74 1.18 0.41 2.21 2× Σ

LoRAr=3 0.60 0.98 0.32 2.03 2× 0.98%× Σ
PromptFL 0.49 0.87 0.15 2.05 2× Σprompt

FedCLIP 0.44 0.79 0.16 2.05 2× Σfam

Ours 0.52 0.93 0.23 2.06 2× Σfam

B. Implementation details

We adopted the pre-trained ViT-B/32 model as backbone
for the image encoder in our CLIP-based framework. Our
light-weight FAM for adaptation is composed of five layers:
a first linear layer, a batch normalization layer, a LeakyReLU
layer, a second linear layer, and a softmax activation function.
The domain classifier D comprises eight layers: a first linear
layer, a batch normalization layer, a ReLU layer, a second
linear layer, a batch normalization layer, a ReLU layer, a third
linear layer and a sigmoid activation function. During training,
we keep the CLIP encoders frozen and only optimize the
parameters of the FAM and local domain classifier Di using
the Adam optimizer with betas set to 0.9 and 0.98, a weight
decay of 0.02, a fixed learning rate of 5×10−5, an epsilon of
1×10−6, and a batch size of 32 [40], [41]. For all datasets,
the hyperparameter λ is set to 0.5 in Eq. (6).

To have a comprehensive comparison, we include four re-
cent FL approaches in our experiments: FedAVG [5], FedProx
[14], MOON [16], LoRA [42], PromptFL [23] and FedCLIP
[11]. The same experimental setting described above is used
for all tested methods. In the case of FedProx, the parameter
µProx is set to 1e−2/2, while for MOON, we set µMOON as
1. For LoRA, we set the low rank as 3 (r = 3). Moreover,
we fixed the random seed in PyTorch as 0 to eliminate
the variation caused by different seeds. For the OfficeHome

https://www.kaggle.com/dsv/1183165
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Fig. 3: Testing accuracy (ACC), balanced accuracy (BACC) and macro-F1 for each communication epoch using skin cancer
(SC) dataset for FAA-CLIP, FedProx, FedAVG, FedCLIP, LoRAr=3, PromptFL and MOON.

60
70
80
90

10
0

50
60
70
80
90

70
75
80
85
90

AVG

Cglo C3

C2

C1

SC HK

AVG

Cglo C3

C2

C1

AVG

Cglo C3

C2

C1

 FedCLIP  FedProx  FedAVG  MOON  LoRAr=3  PromptFL  Ours

BT

Fig. 4: Testing accuracy of baselines and FAA-CLIP for BT,
SC and HK datasets.

dataset, the results of all baselines except MOON are based
on [11].

For FL, we set the number of global training rounds to
50 for all datasets. For each round, we perform a single
epoch of local training and aggregate the parameters of all
clients. For image pre-processing, we resized the images
to 224 × 224, and normalized their intensity using z-score
normalization for both the training and testing phases. The
testing environment used for the experiments is based on the
Windows 11 operating system, and features an Intel 13900KF
CPU with 128 GB of RAM and an RTX 4090 GPU. We
use PyTorch 1.13.1 with Python 3.8. The scikit-learn library2

was used to calcuate all metrics. We evaluated performance
using the top-1 classification accuracy (ACC) as the primary
metric. Furthermore, for the SC, Dermnet and HK datasets,
we also consider balanced accuracy (BACC) (average of recall
obtained on each class) and macro F1 score (average of F1
obtained on each class) as metrics due to the class imbalance
in these datasets.

C. Results

Communication and computational costs. We record the
time cost of each round for each method and the commu-
nication overhead in each round on OfficeHome ({ACPR}),
ModernOffice31 ({ADSW}), BT and SC, as reported in Table
II. As illustrated, FAA-CLIP is training efficient compared
to traditional FL techniques such as FedAVG, FedProx, and
MOON, while it indicates lower computational costs compared
to LoRA. Furthermore, the communication costs for our

2https://scikit-learn.org/stable/modules/model evaluation.html#
classification-metrics

TABLE III: Accuracy(%) in the OfficeHome dataset. Bold
means the best.

Source Target
Avg

A C P R

FedCLIP 78.35 68.38 87.94 87.79 80.61
FedProx 70.93 68.73 77.73 75.42 73.20
FedAVG 70.93 68.73 77.73 75.42 73.20
MOON 67.42 69.30 76.32 75.81 72.21
LoRAr=3 73.75 83.80 90.62 83.80 82.99
PromptFL 77.50 83.22 90.97 85.48 84.29
Ours 78.76 76.98 90.64 88.11 83.62

C P R A

FedCLIP 68.61 87.37 88.06 78.00 80.51
FedProx 64.38 79.14 78.76 65.60 71.97
FedAVG 64.38 79.14 78.76 65.60 71.97
MOON 69.87 78.02 79.56 65.60 73.26
LoRAr=3 84.26 90.74 86.34 69.96 82.83
PromptFL 82.75 92.13 87.73 71.88 83.62
Ours 76.98 90.87 88.86 78.20 84.49

A P R C

FedCLIP 78.97 87.60 87.60 63.69 79.46
FedProx 73.81 80.38 80.48 57.64 73.08
FedAVG 73.81 80.38 80.48 57.64 73.08
MOON 70.93 80.38 80.83 52.94 71.27
LoRAr=3 76.04 90.51 86.57 62.71 78.96
PromptFL 78.75 92.71 87.27 66.66 81.35
Ours 81.44 91.65 90.58 66.39 82.51

A C R P

FedCLIP 78.56 68.50 87.37 87.52 80.49
FedProx 69.07 66.21 77.79 71.64 71.18
FedAVG 69.07 66.21 77.79 71.64 71.18
MOON 71.55 67.70 79.33 71.21 72.45
LoRAr=3 75.62 84.49 86.00 85.42 82.88
PromptFL 77.71 80.79 88.31 85.19 83.0
Ours 81.03 75.49 90.81 89.34 84.29

approach are comparable with FedCLIP (∼ 5 × 105), while
is 3× lower than LoRA (∼ 1.5× 106).

Results for OfficeHome. Table III reports the best testing
accuracy, including baselines and our method for the Office-
Home dataset. As can be seen, our method achieved the best
average performance with an improvement of 1.29% (target
is R) compared with the second-best method (PromptFL).
Improvements are particularly notable for domain R.

Results for Multi-OF. Table VI reports the accuracy of the

https://scikit-learn.org/stable/modules/model_evaluation.html##classification-metrics
https://scikit-learn.org/stable/modules/model_evaluation.html##classification-metrics
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TABLE IV: Accuracy(%) in the ModernOffice31 dataset. Bold
means the best.

Source Target
Avg

A D S W

FedCLIP 91.82 94.94 65.00 88.42 85.04
FedProx 82.41 81.82 74.03 79.49 79.43
FedAVG 59.07 69.38 59.67 64.53 63.16
MOON 84.01 81.82 74.68 83.14 80.91
LoRAr=3 94.32 94.95 93.23 91.54 93.51
PromptFL 90.05 78.79 79.52 68.23 79.15
Ours 95.38 98.99 82.74 91.95 92.26

D S W A

FedCLIP 95.95 65.32 88.05 90.06 84.84
FedProx 89.90 59.52 90.57 66.88 76.71
FedAVG 88.89 49.19 91.19 42.81 68.02
MOON 95.96 65.81 91.19 66.92 79.97
LoRAr=3 97.98 93.87 98.74 76.28 91.72
PromptFL 81.82 76.13 83.65 68.93 77.63
Ours 100 80.32 94.34 92.19 91.71

S W A D

FedCLIP 64.67 86.16 91.82 89.15 82.95
FedProx 73.55 90.57 81.53 89.36 83.75
FedAVG 76.94 93.08 82.59 92.17 86.19
MOON 75.00 92.45 87.39 85.74 85.14
LoRAr=3 92.58 96.23 93.43 93.54 93.95
PromptFL 79.68 77.99 90.41 67.71 78.95
Ours 81.93 93.71 95.38 95.98 91.75

W A D S

FedCLIP 87.42 91.47 95.95 54.77 82.40
FedProx 91.82 81.17 89.90 46.45 77.33
FedAVG 95.60 80.46 97.98 45.87 79.97
MOON 94.34 82.06 89.90 54.77 80.27
LoRAr=3 97.48 95.56 98.99 48.93 85.24
PromptFL 81.76 88.45 85.86 32.49 72.14
Ours 96.23 94.85 98.99 57.10 86.79

TABLE V: BACC (%) and F1 score (%) in SC and HK
datasets. Bold means the best.

Source Target
Avg

C1 C2 C3 Cglo

SC

FedCLIP 56.79 53.52 51.98 40.21 56.33 41.91 53.74 41.09 54.71 44.18
FedProx 54.46 50.09 49.51 40.29 55.75 42.41 50.63 40.50 52.59 43.32
FedAVG 55.93 50.38 50.61 39.33 56.82 43.95 51.38 39.97 53.68 43.41
MOON 56.22 51.38 51.79 39.84 56.73 43.97 50.78 39.75 53.88 43.73
LoRAr=3 83.73 81.34 72.05 63.98 81.71 71.96 74.23 63.54 77.93 70.2
PromptFL 60.43 61.98 53.93 54.72 59.94 59.91 59.88 59.50 58.55 59.03
Ours 82.14 79.01 70.95 58.60 81.63 66.35 73.15 61.22 76.97 66.29

H
K

FedCLIP 50.86 45.46 53.03 45.26 50.63 45.04 49.62 46.73 51.03 45.62
FedProx 57.13 51.06 56.24 52.22 57.35 53.09 52.66 48.33 55.84 51.17
FedAVG 56.05 50.63 57.33 51.71 56.51 52.83 53.01 50.11 55.72 51.32
MOON 55.94 51.82 56.53 52.68 57.70 52.55 54.65 50.73 56.20 51.94
LoRAr=3 60.08 57.29 60.45 56.20 59.14 56.90 56.23 55.17 58.98 56.39
PromptFL 48.35 47.78 45.70 44.39 47.25 45.72 44.74 42.77 46.51 45.16
Ours 62.40 53.59 58.02 50.49 57.38 50.51 53.48 49.51 57.82 51.02

test sets for the baselines and our method. As illustrated, fine-
tuning the entire CLIP model can achieve feasible test ACC in
local clients (e.g., 83.85% ACC using FedProx in C6), while
indicates lower ACC in unseen domain (e.g., 83.48% accuracy
in domain R using FedAVG). Concerning training efficient
methods such as LoRA, PromptFL, FedCLIP and ours, the
use of deeper FAM and DA in FAA-CLIP can lead to a higher
ACC test in domain R (87.52%) compared to LoRA (81.23%)
and PromptFL (44.55%). Surprisingly, FAA-CLIP provides the
highest test ACC in C11 to C15, demonstrating the potential
of FAA-CLIP in FL.

Results for ModernOffice31. As reported in Table IV,

FAA-CLIP also achieves comparable performance compared
to LoRA in {ADSW} (92.26% Avg vs 93.51% Avg) and
{DSWA} (91.71% Avg vs 91.72% Avg), while indicates the
highest average test ACC (86.79%) in {WADS} for the Mod-
ernOffice31 dataset. Notably, FAA-CLIP gives remarkable
performance in domain S, showing its potential for synthetic
data.

Results for BT. Once more, our method obtains the best
average performance (88.18%) for the BT dataset (Figure 4).
In particular, our method reaches a test ACC above 80% in
Cglo, outperforming the second-best FL approach by over ∼
10%.

Results for SC. The performance of the compared approaches
for the SC dataset is summarized in Figure 4 and Table V. For
ACC and BACC, FAA-CLIP outperforms FedCLIP by over
10%. Furthermore, our method achieves an F1 score near 61%,
largely outperforming approaches like FedCLIP which only
reach about 41%. Moreover, a prompt-tuning technique such
as PromptFL indicates less effective compared to FAA-CLIP in
skin cancer classification (e.g., 71.18% AVG vs 77.37% AVG
for ACC). In addition, FAA-CLIP can provide similar perfor-
mance compared to LoRA with less communication costs as
reported in Table II. Figure 3 shows the test ACC, BACC
and macro F1 for different communication epochs in each
client. As illustrated, FAA-CLIP achieves a fast convergence,
reaching a high classification ACC in a few epochs.

Results for HK. As reported in Figure 4 and Table V,
our method achieves an ACC, BACC and macro F1 score
comparable to MOON and FedProx for this dataset, while
having lower resource costs than these approaches. Our ap-
proach outperforms FedCLIP by a large margin (>8%) in
ACC. However, due to the class imbalance in the HK data
set, FAA-CLIP indicates a lower performance (e.g., BACC)
compared to LoRA (57.82% Avg vs 58.98% Avg).

AUC-ROC analysis. Figure 5 shows the receiver operator
characteristics (ROC) curve with corresponding area under the
curve (AUC) values for SC dataset. For simplicity, we used the
one-vs-all method to measure the ROC and AUC and report
the averaging curves/values for all classes. These curves show
the more robust performance of our method for the medical
datasets used in experiments.

Decision curve analysis. We further validate our method for
clinical practice using a decision curve analysis (DCA) [43]
on SC dataset. Typically, the best prediction to maximize net
benefit is the one with the highest curve at any given threshold
probability. Our experimental datasets are multi-class, thus we
verify our method against existing FL methods using averaged
net benefits (the average value of each class). As can be seen in
Figure 5, our method provides a greater net benefit than other
models, especially in the Client1. This finding is consistent
with the higher AUC-ROC values obtained by our approach.

Calibration analysis. For each sample of a specific class,
the prediction model gives a confidence score that reflects the
actual probability of the sample belonging to that class [44].
For example, calibration of the classification model ensures
that the predicted probabilities match the actual probabilities.
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TABLE VI: Accuracy (%) of test samples of OfficeHome based on the Dirichlet distribution (non-IID). The client domains
are A (C1 to C5), C (C6 to C10) and P (C11 to C15), while the global domain is R. Bold means the best.

Source Target AVG
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 R

FedAVG 72.92 83.33 80.21 81.25 75.00 82.81 84.38 80.21 88.28 82.50 88.75 89.06 92.50 83.59 92.97 83.48 83.83
FedProx 73.96 85.42 81.25 83.33 78.12 83.85 85.42 85.42 88.28 85.62 88.75 90.10 91.88 85.16 92.19 83.36 85.13
MOON 76.04 83.33 79.17 83.33 75.00 81.77 85.42 79.17 86.72 83.12 88.12 86.98 91.25 85.94 95.31 83.07 83.98

LoRAr=3 65.62 85.42 72.92 77.08 67.19 80.73 83.85 78.12 88.28 79.38 88.75 94.79 91.88 84.38 96.09 81.23 82.23
PromptFL 53.12 82.29 71.88 69.79 60.94 69.27 67.19 61.46 81.25 74.38 86.88 84.38 88.12 78.91 87.50 44.55 72.62
FedCLIP 71.88 83.33 77.08 80.21 75.00 69.79 71.35 67.71 78.12 73.75 86.88 86.98 92.50 78.91 93.75 87.04 79.64

Ours 71.88 85.42 78.12 83.33 76.56 77.60 74.48 70.83 80.47 75.62 90.62 91.15 92.50 86.72 96.09 87.52 82.43
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Fig. 5: The ROC curves and DCA of FAA-CLIP, FedCLIP, FedAVG, FedProx and MOON in skin cancer (SC) dataset. The
ROC can measure the performance of classifiers, while DCA can assess the net benefit for clinical practices. The left part is
the ROC curves, while the right part is the DCA.

TABLE VII: Accuracy (%) in OfficeHome, BT and SC. Bold
means the best.

Source Target
Avg

OfficeHome A C P R

Ours 78.76 76.98 90.64 88.11 83.62
w/ deeper FAM 80.00 79.04 90.98 88.09 84.53
w/o shared BN 78.76 76.97 90.64 88.11 83.62
w/ shared D 78.97 76.74 90.64 88.16 83.63

BT C1 C2 C3 Cglo

Ours 91.16 90.47 89.36 81.73 88.18
w/ deeper FAM 87.07 89.28 89.94 79.44 86.43
w/o shared BN 85.71 89.28 85.18 78.42 84.65
w/ shared D 90.47 90.47 89.36 80.20 87.62

SC C1 C2 C3 Cglo

w/o DA 79.94 71.49 81.02 71.50 75.99

Following [44], the expected calibration error (ECE) metric is
used to evaluate the calibration effects. Figure 8 and Figure
10 illustrate the reliability plot with the ECE value for FAA-
CLIP and FedCLIP using the OfficeHome ({ACPR}) and SC
datasets. For natural images, FAA-CLIP provides a lower ECE
value in the local client (3.12% vs 4.13%) while maintaining a
similar ECE value in the global compared to FedCLIP (1.16%
vs 0.59%). However, for medical images, FAA-CLIP reduces
the ECE value ∼ 11% on the local client and ∼ 2% on global

set compared to FedCLIP, highlighting its potential for the
medical domain.
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Fig. 6: Testing accuracy (ACC), balanced accuracy (BACC)
and macro-F1 for each epoch using SC for FAA-CLIP (with
DA and without (w/o) DA).
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TABLE VIII: Accuracy (%) in OfficeHome and BT dataset. Bold means the best.

Attention module layer OfficeHome BT SC

L1 L2 L3 L4 L5 A C P R C1 C2 C3 Cglo C1 C2 C3 Cglo

fea1 ✓ ✗ ✗ ✗ ✓ 79.38 73.38 89.51 87.35 77.51 90.47 81.91 64.21 62.43 57.35 66.62 59.21
fea2 ✓ ✓ ✗ ✗ ✓ 78.96 78.69 92.78 88.50 87.75 88.09 87.23 80.71 80.96 70.60 81.19 73.01
fea3 ✓ ✓ ✓ ✗ ✓ 79.38 81.09 91.77 87.33 86.39 85.71 85.11 80.96 79.94 71.64 81.96 74.15
fea4 ✓ ✗ ✓ ✓ ✓ 80.20 73.08 89.74 88.38 83.67 92.85 82.97 63.45 59.39 56.76 66.45 58.24
fea5 ✓ ✓ ✓ ✓ ✓ 78.76 76.98 90.64 88.11 91.16 90.47 89.36 81.73 81.22 71.95 82.26 74.07

L1: Linear layer; L2: Batch normalization layer; L3: LeakyReLU layer; L4: Linear layer; L5: Softmax layer.

D. Ablation studies

We perform several ablation studies to evaluate the different
components of our method. Except for the specific modules,
backbones, and parameters described in the following, the
configuration of our model is as described in Section IV-B.

Impact of the domain adaptation for homogeneous
client. As illustrated in Table III, the combination of FAM and
DA can provide feasible ACC for natural image classification
when the client data come from different domains. One con-
cern suggested in [45] is that if client data are from the same
domain (e.g., the contribution of DA is less), can FAA-CLIP
still exhibit remarkable ACC compared to SOTA methods?
Thus, the OfficeHome is used for experiments. For a specific
domain (e.g., C), following [20], practical and pathological
heterogeneity are adopted to allocate data for each client. For
practical purposes, data are partitioned into clients based on
the Dirichlet distribution. During pathological examination,
each client holds C/N (C: Number of classes, N: Number
of clients) non-overlapping classes. Then, a different domain
(e.g., R) is used for global model evaluation. In our exper-
iments, we use the scikit-learn library to generate Dirichlet
distribution randomly to allocate the data, and the number of
clients is set to 5 (client domain is R, global domain is C).
For pathological, each client holds 13 different classes (derived
from domain R), while the global server has three domain data
(ACP). Figure 9 shows the data distribution in each client,
while Table IX reports the ACC test for the FAA-CLIP and
SOTA methods. As illustrated, the usefulness of DA is limited
as FAA-CLIP indicates a similar ACC testing compared to
FedCLIP (e.g., 82.69% AVG vs 82.55% AVG). However,
FAA-CLIP still outperforms LoRA with large margins (e.g.,
82.69% AVG vs 80.54% AVG). For pathological, the use
of DA demonstrates lower effects for out-of-distribution data
(e.g., 73.54% ACC in domain {ACP}), while it can align local
data (e.g., 95.16% ACC in C3).

Influence of domain adaptation module. We validate the
usefulness of DA on the SC dataset. Table VII reports the
best testing ACC for each client. Furthermore, Figure 6 shows
the testing ACC, BACC and F1 of each client for each com-
munication round. As illustrated, model without DA achieves
a lower performance compared to the one using DA. This
demonstrates the need for DA to minimize data distribution
shifts across clients and global testing set.

Impact FAM architecture. We measured our model’s per-
formance when removing different layers within the FAM
(the first layer is defined as L1, and so on) to examine the

effectiveness of these layers. We used the OfficeHome (Source
{A,C,P}, Target R), BT and SC datasets for this experiment,
and report results in Table VIII. Removing the batch normal-
ization layer (L2) leads to a performance drop for Cglo ACC
in the BT and SC datasets. In the OfficeHome dataset, which
contains natural images, the impact of batch normalization
layers is less significant, and having a larger number of linear
layers may result in a performance degradation. It is thus
imperative to determine the optimal number of layers.

Impact of FAM depth. We examine the impact of having
a more complex feature adaptation module on performance
and efficiency. Thus, we change the FAM to have 8 layers
instead of 5: a first linear layer, a batch normalization layer, a
LeakyReLU layer, a second linear layer, a batch normalization
layer, a LeakyReLU layer, a third linear layer and a softmax
activation function. We use the OfficeHome and BT dataset
for testing. Table VII reports the highest test ACC for these
datasets. As can be seen, the new FAM achieves almost
identical average performance compared to the original results.
While the performance is higher in domain C, the number of
parameters of this deeper FAM is nearly 1.5× larger than the
original one, thereby increasing communication costs.

Impact of batch normalization. Experimental results in
[15] have shown the effectiveness of keeping local the batch
normalization parameters of each client (not aggregating them
in the server) in the context of CNN-based classification.
To verify these results, we updated the batch normalization
parameters of each client’s FAM independently, and used Of-
ficeHome and BT data sets to measure test performance. Table
VII gives the highest test ACC for this ablation experiment.
As reported, keeping the batch normalization parameters local
leads to a worse performance than sharing and aggregating
these parameters. This surprising result suggests that local
batch normalization is less helpful for FL with VLMs like
CLIP.

Impact of sharing domain classifier parameters. We stud-
ied the influence of aggregating domain classifier D parame-
ters on model performance. Table VII reports the highest test
ACC using the OfficeHome and BT datasets. By sharing the
parameters of the domain classifier, we gain in performance
for domains A and R in OfficeHome. However, for BT, we
observe an identical or lower performance compared with the
original results.

Impact of backbone. We replaced the ViT-B/32 backbone of
the image encoder with pretrained deeper architectures, ViT-
L/14 and ViT-L/14@336px, to verify the effectiveness of FAA-
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TABLE IX: Testing accuracy (%) in OfficeHome dataset with
non-IID under practical and pathological settings. Bold means
the best.

R → C C1 C2 C3 C4 C5 C AVG

Pr
ac

tic
al

FedAVG 82.72 87.50 87.21 81.77 80.12 60.11 79.91
FedProx 79.01 86.31 87.21 85.08 81.33 58.16 79.52
MOON 85.80 88.10 84.88 80.66 83.73 60.78 80.66

FedCLIP 81.48 86.90 83.72 92.27 87.95 62.98 82.55
LoRA 83.33 85.71 87.21 86.74 85.54 54.69 80.54

PromptFL 38.89 52.38 49.42 48.62 47.59 14.45 41.89
Ours 82.10 86.90 84.30 91.71 87.95 63.21 82.69

R → ACP C1 C2 C3 C4 C5 ACP AVG

Pa
th

ol
og

ic
al

FedAVG 95.03 96.17 93.55 90.45 89.44 64.28 88.15
FedProx 96.89 96.72 95.70 96.63 86.96 75.32 91.37
MOON 96.27 96.17 93.55 91.01 91.93 66.41 89.22

FedCLIP 96.27 96.72 94.09 97.19 91.93 74.04 91.71
LoRA 94.41 93.44 94.09 93.26 93.79 54.27 87.21

PromptFL 85.09 89.62 87.63 85.39 86.34 18.89 75.49
Ours 96.89 96.17 95.16 97.75 93.79 73.54 92.22

CLIP. We used the SC dataset for these experiments. Figure
7 shows the best test BACC and macro-F1 for each client and
the global server. While it incurs the same communication
cost, employing a larger backbones like ViT-L/14 or ViT-
L/14@336px leads to a better BACC and F1 score for all
clients.

V. DISCUSSIONS

As reported in [46], our results in Table III and Figure 4
indicate the poor performance of standard VLM fine-tuning
in FL. Instead of fine-tuning the whole model, our FAA-
CLIP employs a light-weight adaptation technique based on
the proposed FAM. This technique significantly reduces com-
putational needs (e.g., our FAM only needs to transmit nearly
105 parameters) in the case of VLMs like CLIP [46]. The
proposed FAM only needs 2.5MB of memory to store the
parameters, which is nearly 140× less than the CLIP encoders
with 345MB. Similar to FedCLIP, our FAM is a plug-and-play
technique that can be easily extended to other vision founda-
tion models or vision language models. As demonstrated in
Section IV-D, the proposed FAM can substantially improve
performance in medical imaging datasets, thus bridging the
gap with the more common natural image datasets. Further-
more, while sharing FAM paramters can alleviate the problem
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Fig. 8: Reliability diagram for FAA-CLIP (left column) vs
FedCLIP (right column) using the OfficeHome ({ACPR})
dataset. The first row represents the client A, while the second
row indicates the global R.
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Fig. 9: Example of data distribution in each client using kite
graph in OfficeHome dataset under practical and pathological
setting. C1 to C5 indicate clients while C 1 to C 65 represent
classes.

of domain shifts among clients, using an explicit strategy for
DA can further improve the performance of models on unseen
domains (e.g., Cglo in SC). As stated in Section IV-D, it is
also important to maintain a balance between communication
costs and parameters. Furthermore, the findings of ROC-AUC
and DCA described in Secion IV-C suggest that our method
can achieve competitive AUC values with high net benefits,
highlighting its potential for clinical applications.

When applied to larger models such as ViT-L/14, our
approach achieves a classification F1 score that exceeds 72%
in a large-scale SC classification dataset, thereby providing
practical clinical value. However, as reported in our results,
sharing the domain classifier D can cause the local model to
lose its learned feature representation, thus reducing its per-
formance. This suggests that not all components are suitable
for global aggregation; instead, it is recommended to choose
the best strategy for aggregation. Experiments on the HK
dataset indicate that our method can achieve a comparable
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Fig. 10: Reliability diagram for FAA-CLIP (left column)
vs FedCLIP (right column) on SC dataset. The first row
represents the client C2, while the second row indicates the
global Cglo.

performance compared to fine-tuning the entire CLIP model,
with less computational costs. This promotes the development
of FL methods for gastrointestinal endoscopy. In addition,
FAA-CLIP, while not originally designed for calibration tasks,
shows potential for them by achieving a lower ECE value
compared to other SOTA methods. This indicates that the FAM
itself can be applied to various tasks beyond its initial design.

For future work, we intend to integrate FAA-CLIP into other
frameworks and investigate the benefit of having a separate
FAM for the text encoder. Exploring more powerful adaptation
methods could also improve the performance of our FAA-
CLIP model. In what follows, we highlight the strengths and
limitations of our approach.

Strengths and limitations. Our approach is easy to ex-
tend (e.g., FAM is easy to customize), and communication
efficient compared with traditional FL methods. Furthermore,
our method can consistently outperform other FL approaches
in commonly used datasets. It also has a faster convergence
rate (e.g., Figure 3 shows our method can achieve the same
performance with less communication epoch in SC) in medical
datasets compared to alternative approaches, demonstrating its
effectiveness.

This study used a simple yet effective technique for the
feature adaptation. Nevertheless, edge devices like mobile
phones may not be able to support the computational expenses
related to feature adaptation in other applications such as
remote monitoring [47]. We will explore more efficient DA
techniques as suggested in [48]. Furthermore, for the class
imbalance problem that occurs in the medical field, the ACC is
not consistent with the F1 score (e.g., >10% performance drop
for the F1 score). In the future, we will investigate a contrastive
learning strategy specifically designed for rare diseases such

as those described in [49] to solve this problem. In our
experiments, hyper-parameters of FAA-CLIP (e.g., learning
rate) were fixed consistently in the local training stage. Using
optimizer parameter adjustment (e.g., exponential learning rate
regularization) to tune these parameters may help get a better
performance.

VI. CONCLUSION

In this paper, we explored the usefulness of VLMs for image
classification in the context of FL. To reduce communication
costs in FL, we proposed a FAM adapter and only shared
the parameters of this module. Furthermore, we introduced
a domain adaptation strategy to reduce domain shifts among
clients. Experimental results on three natural image datasets
and three medical imaging datasets demonstrated the ef-
fectiveness of our method compared to state-of-the-art FL
approaches. In addition, we conducted a series of ablation
studies on various components and design choices, including
the FAM architecture and the influence of DA, to better guide
researchers in building FL frameworks with VLMs. Our study
can help bridge the gap in performance of VLMs in FL
scenarios related to medical imaging.
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