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ABSTRACT

The exchange of structural representations in Federated Graph Learning (FGL)
creates a potent channel for privacy leakage. While theoretical graph reconstruction
is possible, existing attack models are brittle as they hinge on an unrealistic assump-
tion: perfect, noise-free local data. This paper elevates that theoretical threat to a
practical reality. We introduce AFR (Adaptive Fidelity-driven Reconstruction), a
robust new attack model that abandons idealized assumptions. Instead of assuming
data quality, AFR actively measures and exploits it. The algorithm first quantifies
the reliability of each local patch via a novel fidelity score, combining a spectral
signal-to-noise ratio with structural entropy. This score then guides a robust assem-
bly process that uses RANSAC-Procrustes to tolerate outliers and adaptive stitching
criteria to manage uncertainty. Instead of a single, perfect graph, AFR recovers
large, high-fidelity, and internally consistent islands from the most trustworthy data.
Experiments on the LoGraB benchmark show that AFR successfully reconstructs
significant topology in challenging, noisy regimes where idealized models fail
completely. Our work thus promotes spectral leakage from a theoretical possibility
to a practical and potent threat. Our source code is anonymously available at:
https://anonymous.4open.science/r/AFR-ICLR-submission.

1 INTRODUCTION

Federated Learning (FL) promises a future of privacy-preserving machine learning, where models
are trained collaboratively without sharing raw data. This promise rests on a core premise: that
exchanging only intermediate representations, like gradients or embeddings, is safe. But this premise
is fragile. The intermediate signals themselves can inadvertently leak sensitive information. In
Federated Graph Learning (FGL), this challenge is amplified. The primary asset to protect is not just
the node features, but the local graph topology, which can encode sensitive relationships. Recent
comprehensive evaluations have confirmed the severity of this threat through various reconstruction
and inference attacks (Chen et al., 2024). This vulnerability extends beyond topology, with emerging
work showing leakage of sensitive node properties (Liu et al., 2025) and even local label distributions
from shared representations. Spectral embeddings, a common currency for exchanging this structural
information, create the most potent passive leakage channel. Unlike active attacks that risk detection,
a passive attack requires only observing a single, honestly-shared artifact. The vulnerability, therefore,
lies not in the federated protocol, but in the intrinsic properties of the representation itself. This threat
is more fundamental, challenging core assumptions about the safety of distributed graph learning.

To understand the practical threat of spectral leakage, we first consider a best-case scenario. We
construct an idealized stitching model, a baseline that proves local spectral embeddings can, in
principle, be stitched together for exact global reconstruction. This confirms that simple data
partitioning is not an effective defense. However, the power of this model depends on a set of
unrealistic conditions. It demands a near-unattainable level of data perfection, requiring both:
(1) that every local patch exhibits a significant spectral gap for noiseless inversion and (2) that
every adjacent patch overlap is large and well-connected for perfect alignment. This is the “curse of
perfection”. The reconstruction is a deterministic cascade; a single patch that violates these conditions
introduces an initial error that propagates and catastrophically corrupts the entire global assembly.
The approach is thus fundamentally brittle. This brittleness reveals a critical gap between theoretical
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possibility and practical threat, motivating the central question of our work: Can an adversary
reconstruct a meaningful topology when the leaked information is inevitably noisy, incomplete, and
of heterogeneous quality?

Our answer is AFR (Adaptive Fidelity-driven Reconstruction), an algorithm built on a new philosophy:
Instead of assuming that the data are perfect, it embraces its imperfection. AFR actively measures,
quantifies, and exploits the varying quality of leaked information. First, it assigns each patch a
novel fidelity score (sv), combining spectral stability (SNR) and topological complexity (Structural
entropy) to gauge its reliability (shown in Section 3.2). Only the most trustworthy core patches
are even considered for assembly. The assembly process is then designed for failure. A robust
RANSAC-Procrustes alignment handles the inevitable outliers from noisy reconstructions, and an
adaptive stitching threshold demands more evidence (a larger overlap) to connect less reliable patches.
This fidelity-driven approach redefines success. AFR abandons the fragile pursuit of a single global
graph. Instead, its goal is to recover a group of large, internally-consistent, high-fidelity islands from
the most reliable data, while intelligently isolating what cannot be recovered.

Our work makes the following contributions:

• A practical threat model for spectral leakage. We are the first to formalize and address
spectral leakage under realistic and imperfect conditions. Our approach accounts for noise,
reconstruction errors, and heterogeneity, elevating the threat from a theoretical possibility to
a practical concern.

• A computable fidelity score. We introduce a novel fidelity score that quantifies the reliability
of leaked graph patches. By combining a spectral signal-to-noise ratio (SNR) with structural
entropy, this score provides a quantitative foundation for robust decision-making.

• Adaptive Fidelity-driven Reconstruction (AFR) algorithm. We propose AFR, an adaptive,
multi-stage algorithm that uses our fidelity scores to guide a robust assembly process.
Key components include an outlier-resilient RANSAC-Procrustes alignment and adaptive
stitching criteria to manage uncertainty.

• Extensive empirical validation. We conduct experiments across a wide range of realistic,
challenging scenarios generated by our evaluation protocol. Our results demonstrate that
AFR successfully reconstructs significant topology in regimes where idealized prior methods
fail completely, thus confirming the viability of our new threat model.

2 RELATED WORK

Privacy threats in Federated Graph Learning The premise that sharing intermediate repre-
sentations in Federated Learning (FL) is safe has been systematically challenged. In particular,
Deep Leakage from Gradients (DLG) demonstrated that raw training data can be recovered from
shared gradients (Zhu et al., 2019; Geiping et al., 2020). Although our work shares this inversion
philosophy, we target a fundamentally different leakage channel: not dynamic gradients, but static
spectral embeddings of the graph structure. This vulnerability applies to any FGL scenario in which
structural representations are exchanged, even if no gradients are shared. Within the taxonomy of
graph privacy attacks, AFR instantiates a passive eavesdropper threat model. As summarized in the
table below, this is distinct from active query-based attacks such as link inference (He et al., 2021b) or
membership inference (Zhang et al., 2021), which risk detection. It also differs from malicious-client
attacks. The passive model represents a more fundamental threat, as the vulnerability is an intrinsic
property of the honestly-shared data artifact itself, making it virtually undetectable at the protocol
level. Comprehensive empirical studies have formalized Graph Reconstruction Attacks (GRA) as a
major vulnerability (Chen et al., 2024). Beyond structural recovery, sophisticated influence-based
attacks have been developed to infer links with high accuracy (Wu et al., 2022; Meng et al., 2023).
The severity of membership inference, which AFR’s threat model is related to, has prompted the
recent development of dedicated defenses, highlighting the community’s focus on this problem
(Zhong et al., 2025).

Graph reconstruction from Local Embeddings Our work builds upon the theoretical principle
that a global graph can, under idealized conditions, be perfectly reconstructed by stitching together
local spectral embeddings. The fundamental feasibility of inverting spectral representations is
supported by theoretical findings demonstrating that, under certain identifiability conditions, graphs
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Stage 2. Adaptive island assembly

Leaked 
embedding

Local reconstruction
using heat kernel

Stage 1.  Local reconstruction and fidelity scoring

Fidelity scoring

RANSAC-Procrustes
Inter-island link inference 

Bundle Adjustment

Stage 3. Post-processing and global refinement

Remove outliers

Figure 1: Adaptive Fidelity-driven Reconstruction (AFR). The pipeline reconstructs graphs in
three stages: local reconstruction with fidelity scoring, adaptive island assembly using RANSAC-
Procrustes, and global refinement via Bundle Adjustment and inter-island link inference.

are reconstructible from their eigenspaces, even in the presence of noise (Castro et al., 2017). But
this guarantee comes with a curse of perfection: it demands that every patch and every overlap be
flawless. A single imperfect patch is enough to trigger a catastrophic cascade of errors, which makes
the entire pipeline fundamentally brittle. AFR is designed precisely to break this curse, operating
on the noisy, imperfect embeddings found in realistic settings. Conceptually, our problem can be
framed as an “Inverse GAE”. While a Variational Graph Auto-Encoder (Kipf & Welling, 2016) learns
a mapping from a graph to an embedding, p(A|Z), our challenge is the inverse: given a collection of
corrupted localized embeddings P , we must infer a plausible graph, p(A|P).

Robust geometric alignment The resilience of AFR is inspired by battle-tested techniques from
computer vision, where dealing with noisy and imperfect data is the norm. Standard Orthogonal
Procrustes analysis is notoriously sensitive to outliers (Schönemann, 1966). To overcome this, we
replace it with RANSAC-Procrustes (Fischler & Bolles, 1981), classic paradigm designed to find
a reliable fit even in the presence of faulty data points. To correct for small alignment errors that
accumulate into large-scale distortions, AFR employs a post-processing step analogous to Bundle
Adjustment (Triggs et al., 2000), a cornerstone of structure-from-motion that jointly optimizes for
global geometric consistency.

Defenses against information leakage in FGL The significant privacy risks highlighted by AFR
and related works have spurred the development of various defense mechanisms. A prominent
line of defense involves applying Differential Privacy (DP). This includes adding noise to shared
parameters to provide formal privacy guarantees (Qiu et al., 2022) or perturbing the aggregation
function within GNNs to protect edge-level privacy (Sajadmanesh et al., 2023). Another approach
uses information-theoretic principles, such as the information bottleneck, to learn minimal, privacy-
preserving subgraphs that are shared instead of the original topology (Zhang et al., 2023). Finally,
hybrid methods combine techniques like Local Differential Privacy (LDP) with secure hardware
such as Intel SGX to create multi-layered protection (Han et al., 2024). These defensive strate-
gies underscore the urgent need for realistic threat models such as AFR to properly evaluate their
effectiveness.

In summary, while previous work has separately explored reconstruction attacks or robust alignment,
AFR is the first to synthesize these principles into a coherent framework that addresses the practical
threat of leakage from imperfect, localized spectral embeddings. Our work is at the intersection of
privacy in federated systems, graph reconstruction attacks, and robust geometric alignment.

3 ADAPTIVE FIDELITY-DRIVEN RECONSTRUCTION (AFR)

3.1 THEORETICAL UNDERPINNINGS

Our theoretical framework is built upon a set of formal assumptions that guide the algorithm’s
behavior under realistic, imperfect conditions. Instead of demanding data perfection, we assume
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that a subset of the local data is sufficiently reliable to initiate a robust reconstruction and that
this reliability can be quantified. First, we formally define a core patch as a local subgraph that
is computationally tractable, has a bounded reconstruction error from its spectral embedding, and
crucially, surpasses a minimum threshold on our composite fidelity score. This score ensures that
we only build upon patches that are both spectrally stable and structurally informative. Second,
we establish an adaptive eligibility criterion for stitching, assuming that a pair of core patches can
only be aligned if their overlap is sufficiently large and structurally sound. Critically, this required
overlap size increases as the fidelity of the patches decreases, forcing the algorithm to demand
stronger evidence when faced with greater uncertainty. Finally, we rely on the standard probabilistic
guarantees of our alignment method, assuming that for any eligible pair, RANSAC-Procrustes can
recover a near-correct relative rotation with high probability. These assumptions collectively create a
principled foundation for a reconstruction algorithm that is resilient to noise and heterogeneity. The
complete mathematical formulation of these assumptions is detailed in Appendix A.

3.2 METHODOLOGY

Let G = (V,E) be an undirected graph, |V | = n. For every v ∈ V we observe a local d-hop
embedding Pv ∈ R|Pv|×k of the patch Pv ⊆ V . Our goal is to reconstruct a set of high-fidelity
islands {Ĝ1, . . . , Ĝr} ⊆ G together with a probabilistic inter-island edge set Êcross.

Stage 1. Local reconstruction and fidelity scoring The first stage of AFR acts as a gatekeeper. Its
goal is to transform each raw, leaked spectral embedding into a structured representation and then
quantify how trustworthy it is as an anchor for reconstruction.

Local reconstruction. For each patch v, we reconstruct a local adjacency matrix Âv from its
spectral embedding Pv ∈ R|Pv|×k and corresponding eigenvalues (λ1, . . . , λk) using the Heat kernel
method. This inverts the embedding process to produce a tangible estimate of the local topology.
We first form the truncated heat kernel approximation: H

(k)
v = Pve

−ΛktP⊤
v , where t is a small

fixed-time parameter and Λk = diag(λ1, . . . , λk). The entries of the true heat kernel exhibit a positive
separation gap between the connected and disconnected nodes, allowing for accurate recovery. The
local adjacency matrix Âv is then obtained by applying a threshold τv to the entries of H(k)

v .

Fidelity scoring. But a reconstruction is only as good as its source data. The core innovation of this
stage is a multi-component fidelity score, sv, designed to answer two orthogonal questions about
each patch’s quality:

1. Is the signal clean? We quantify this with the spectral signal-to-noise ratio (SNR). This
ratio measures the stability of the local eigenspace against truncation errors, giving us a
principled measure of information quality.

SNRv =
δv

δv + ηv
.

where the signal δv = λk+1(Lv)− λk(Lv) and the noise ηv = e−tλk+1(Lv). This formula-
tion provides the information quality relative to the information lost by truncation.

2. Is the signal distinctive? We quantify this with Structural entropy. This metric gauges
the topological complexity by using the normalized Shannon entropy (Ev) of the patch’s
degree distribution.

Ev = − 1

log
(
|Vv|

) ∑
d∈Dv

p(d) log
(
p(d)

)
,

where Dv is the set of unique node degrees in the patch and p(d) is the empirical probability
that the node has degree d. A patch might have a clean signal but a trivial structure (low
entropy) or be complex but noisy (low SNR). A trustworthy patch needs both.

These two components are then combined into a composite fidelity score via a convex combination:
sv = αSNRv + (1− α)Ev,

where α ∈ [0, 1] balances the relative importance of spectral stability and structural complexity.
Finally, we filter for quality: Only patches that surpass the minimum threshold for both their fidelity
score and their spectral gap are promoted to “core patches”, forming the trusted input for the next
stage.
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Stage 2. Adaptive island assembly This stage is the heart of AFR, where the trustworthy “core
patches” are intelligently assembled into larger, internally consistent structural “islands”.

Data-driven prioritization. To minimize error propagation, the assembly follows a prioritized
scheme. The set of core patches (Âv, sv) that satisfy Assumption 5 forms the input to this stage. The
priority queue then determines the next best potential “stitch”, based on a combination of the joint
fidelity of the patch pair f(sv, sw) and the size of their overlap |Ivw|.
Adaptive stitching loop. The algorithm iteratively attempts to stitch the highest-priority pair (v, w)
from the queue. This process involves a rigorous multi-step verification:

1. Eligibility check: First, the pair must satisfy our criterion: Their overlap must be large
enough and the induced subgraph must be structurally connected. This overlap size threshold
increases for lower-fidelity patches, forcing the algorithm to demand stronger evidence when
faced with more uncertainty.

2. Robust alignment: If eligible, we align the pair using RANSAC-Procrustes. This choice is
deliberate: It is designed to find a correct rotation even in the presence of faulty correspon-
dences, an inevitability given reconstruction errors (see details in Algorithm 1).

3. Stitching decision: A stitch is accepted only if RANSAC finds a strong geometric consensus
in a significant portion of the overlap (max consensus count ≥ dadaptive(sv, sw)). This final
check ensures that the stitches are based on coherent evidence, making the entire assembly
process highly robust.

Stage 3: Post-processing and global refinement The final stage of AFR performs two operations:
refining the internal geometric consistency of each island and inferring latent connections between
them.

Intra-island refinement via Bundle Adjustment. First, we correct for “drift”. Even with robust pair-
wise stitching, small alignment errors can accumulate across large islands, causing subtle distortions.
To fix this, we employ a global refinement step analogous to Bundle Adjustment from computer
vision. We jointly optimize all pairwise rotations within an island to minimize a global geometric
error, effectively “truing up” the entire structure.

{Q∗
vw} = argmin{Qvw}

∑
(v,w)∈stitches(Gi)

∥P ′
v − P ′

wQvw∥
2
F ,

where P ′
v and P ′

w are the eigenvector submatrices corresponding to the overlap. This non-convex
optimization problem over the manifold of orthogonal matrices can be solved using iterative methods
such as Riemannian gradient descent (see details in Appendix E.5).

Inter-island link inference via cross-voting. Finally, we hunt for the potential links between our
recovered islands. To do this, we return to the raw data and use a cross-voting mechanism. The
intuition is simple: if two nodes from different islands u and w frequently co-occurred in the initial,
low-quality patches, it constitutes strong latent evidence of a true connection. We formalize this by
computing a vote count, C(u,w), and if it surpasses a threshold, we infer a probabilistic edge. This
allows AFR to reason about the global topology, even the parts it could not confidently reconstruct.

Pinter(u,w) =
1

1 + e−β(C(u,w)−C0)
,

where C0 is a vote threshold and β controls the steepness of the probability curve.

3.3 THEORETICAL GUARANTEES

Notation. For a local patch Pv with nv = |Pv| nodes, let Lv be its (combinatorial or normalized)
Laplacian with eigenpairs {(λr, ur)}r≥1, ordered nondecreasingly. The truncated heat kernel is

H(k)
v (t) =

k∑
r=1

e−tλr uru
⊤
r , and the residual R(k)

v (t) = Hv(t)−H(k)
v (t) =

∑
r>k

e−tλr uru
⊤
r .

We reconstruct Av by thresholding the entries of H(k)
v (t). The patch-wise spectral gap is δv =

λk+1 − λk and the truncation proxy is ηv = ∥R(k)
v (t)∥2 = e−tλk+1 . The composite fidelity is

sv = α · SNRv + (1− α) · Ev with SNRv = δv/(δv + ηv) and Ev the structural entropy.
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Theorem 1 (Edge recovery). Let t > 0 be a fixed time parameter. Suppose the true heat kernel Hv(t)
on Pv exhibits an entry-wise separation margin between its edge and non-edge values, defined as:

γt = min
(i,j)∈E(v)

Hv(t)ij − max
(i,j)/∈E(v)

Hv(t)ij > 0.

Let the truncation error be bounded by ηv = e−tλk+1 , which corresponds to the spectral norm of the
residual matrix R

(k)
v (t) = Hv(t)−H

(k)
v (t). If the separation margin is greater than twice the error

bound γt > 2ηv, then the edge set E(v) can be recovered exactly. Specifically, there exists a non-
empty interval of thresholds τv such that for any τv in this interval, setting Êv = {(i, j)|H(k)

v (t)ij >

τv, i ̸= j} yields Êv = Ev .

(Proof is provided in Appendix E.1).
Proposition 2 (Basic properties of the fidelity score). Let the spectral signal-to-noise ratio be defined
as

SNRv =
δv

δv + ηv
,

where δv = λk+1 − λk is the spectral gap and ηv = e−tλk+1 is the truncation error bound. Let Ev
be the normalized Shannon entropy of the patch’s degree distribution, such that Ev ∈ [0, 1]. The
composite fidelity score is

sv = α · SNRv + (1− α) · Ev for a constant α ∈ [0, 1].

The following properties hold:

1. SNRv is bounded, i.e., 0 ≤ SNRv ≤ 1. It is a strictly increasing function of the spectral
gap δv , and a strictly decreasing function of the truncation error ηv .

2. The composite fidelity score sv is bounded, that is, 0 ≤ sv ≤ 1.
3. The score sv is monotonically non-decreasing with respect to the spectral gap δv .

(The proof can be found in Appendix E.2).

Let Ivw = Pv ∩ Pw and pvw ∈ (0, 1] be the inlier fraction among the correspondences on Ivw.
The adaptive admissibility requires |Ivw| ≥ dadapt(sv, sw) := kbase + γ(1−min{sv, sw}) and the
connectivity of G[Ivw].
Lemma 3 (RANSAC all-inlier sample probability). Let Ivw be the set of correspondences identified
in the overlap of two patches, of which an unknown fraction pvw ∈ (0, 1] are true inliers. Let m
be the minimal number of correspondences required to uniquely determine a rotation model. If the
RANSAC algorithm is executed for M independent iterations, where each iteration uniformly samples
m correspondences from Ivw, then:

1. The probability of drawing at least one sample consisting entirely of inliers is

1−
(
1− pmvw

)M
.

2. Consequently, to ensure this success probability is at least 1− β for a desired failure rate
β ∈ (0, 1), the number of iterations M must satisfy

M ≥ log(β)

log
(
1− pmvw

) .
Theorem 4 (Stitch soundness under adaptive evidence). Let a pair of core patches (v, w) be eligible
for stitching. Assume that their overlap Ivw contains a fraction pvw ∈ (0, 1] of true inlier correspon-
dences, which are perturbed by zero-mean, i.i.d. sub-Gaussian noise with variance parameter σ2.
Let the RANSAC algorithm be executed for a sufficient number of iterations M to ensure that an
all-inlier sample is found with probability at least 1−β, as specified in Lemma 3. A stitch is accepted
if and only if the size of the resulting consensus set, denoted |Cvw|, meets the adaptive threshold:

|Cvw| ≥ dadapt(sv, sw).

Under these conditions, with probability at least 1− β, the rotation Q̂vw returned by the RANSAC–
Procrustes procedure is close to the ground-truth rotation Q∗

vw. Specifically, the error is bounded
by ∥∥sinΘ(Q̂vw,Q∗

vw

)∥∥
F
≤ C · σ√

dadapt(sv, sw)
,
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where C is a constant depending on the geometric properties of the true point configuration, and
∥ sinΘ(A,B)∥F is the canonical distance metric on the special orthogonal group. This result shows
that a lower fidelity score, which increases dadapt, enforces a more stringent error bound on the
accepted alignment.

4 EXPERIMENTS

To rigorously evaluate AFR’s performance, we first establish a comprehensive evaluation protocol,
as no standard benchmark exists for this specific task. Although benchmarks such as FedGraphNN
(He et al., 2021a) exist for FGL algorithms, they are not designed to systematically test graph
reconstruction against fragmented, noisy, and localized spectral leakage. To fill this gap, our protocol
defines a procedure for generating a suite of challenging benchmark instances. We refer to this
framework as LoGraB (Local Graph Benchmark) and will release its generation code and datasets
upon acceptance to facilitate future research.

4.1 CORE BENCHMARK EVALUATION

Our initial evaluation rigorously adheres to the abovementioned protocol. This evaluation focuses on
Graph Reconstruction task, which tests the ability of an algorithm to recover a global topology from
fragmented and imperfect views.

Datasets & fragmentation protocol The experiments are carried out on four classic citation
networks: Cora (McCallum, 2024), CiteSeer (Giles et al., 1998), PubMed (Sen et al., 2008), and
ogbn-arXiv (Hu et al., 2020). To create a rigorous stress test, the experiment shatters these graphs
using three distinct strategies, each modeling a different real-world scenario: d-hop (user-centric
privacy boundaries), cluster (natural data silos), and random (unstructured data collection).

For each scenario, we precisely tune four “levers” to control information quality and degree of
fragmentation:

• Locality (d ∈ {1, 2}): A tight, 1-hop view mimics strict privacy settings, while a broader
2-hop view reflects clients sharing their wider ego-network.

• Spectral fidelity (k ∈ {16, 32, 64}): Lower values correspond to basic positional encodings,
whereas higher values simulate the leakage of higher-density spectral information.

• Noise (σ ∈ {0, 0.05, 0.1}): We span from a clean setting to significant corruption, calibrated
to match worst-case perturbations observed in empirical privacy attacks.

• Coverage (p ∈ {1.0, 0.8, 0.6}): Lower values simulate the client dropout or partial partici-
pation rates common in real-world federated learning.

This process yields a rich suite of benchmark instances, ensuring a comprehensive evaluation across
a wide range of realistic, imperfect conditions. For this core evaluation, we compare AFR against a
geometric synchronization baseline, which we term Eigen-sync, established as part of our evaluation
framework. Performance is quantified using metrics defined for this task: Edge fidelity (F1 score).

Core benchmark results The results of our core benchmark evaluation, summarized in Table 1,
reveal a consistent and significant performance advantage for our proposed AFR algorithm. Across all
14 challenging scenarios defined by the LoGraB protocol, AFR outperforms the Eigen-sync baseline
in the task of graph reconstruction. In the standard d-hop scenario on the Cora dataset (ID 1), AFR
achieves an F1 score of 74.3, substantially higher than Eigen-sync’s 66.3.

This performance gap becomes even more pronounced in large-scale and complex settings. On
the sprawling ogbn-arXiv dataset (ID 14), which stress-tests algorithmic scalability, AFR (66.4)
maintains more than a 10-point lead over Eigen-sync (56.1), highlighting the critical importance
of a fidelity-aware approach when dealing with massive, fragmented graphs. Furthermore, AFR
demonstrates superior resilience to information corruption. When the noise level on Cora is doubled
from σ = 0.05 to σ = 0.1 (ID 8), AFR’s score degrades to 69.1, whereas Eigen-sync’s performance
plummets to 58.3. The advantage also holds across different fragmentation strategies; on CiteSeer,
AFR leads Eigen-sync by a significant margin in both the d-hop (ID 9) and cluster (ID 10) settings.
These results empirically validate that AFR’s fidelity-driven, adaptive assembly process is a funda-
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mentally more robust and effective strategy for graph reconstruction than the standard geometric
synchronization approach.

Table 1: Core benchmark results for graph reconstruction.
ID Dataset Strategy Params (d, p, k, σ) Eigen-sync AFR

1 Cora d-hop (1, 0.6, 32, 0.05) 66.3 74.3
2 Cora d-hop (2, 0.6, 32, 0.05) 71.5 78.0
3 Cora d-hop (1, 1.0, 32, 0.05) 68.2 76.6
4 Cora d-hop (2, 0.8, 32, 0.05) 75.8 81.1
5 Cora d-hop (1, 0.6, 16, 0.05) 62.9 72.3
6 Cora d-hop (1, 0.6, 64, 0.05) 67.8 74.6
7 Cora d-hop (1, 0.6, 32, 0.0) 67.5 74.3
8 Cora d-hop (1, 0.6, 32, 0.1) 58.3 69.1

9 CiteSeer d-hop (1, 0.6, 32, 0.05) 65.5 74.1
10 CiteSeer cluster (1, 0.6, 32, 0.05) 69.4 79.9
11 CiteSeer random (1, 0.6, 32, 0.05) 61.0 71.7

12 PubMed cluster (1, 0.6, 32, 0.05) 61.2 72.0
13 PubMed d-hop (1, 0.6, 32, 0.05) 64.0 72.8

14 ogbn-arXiv d-hop (1, 0.6, 32, 0.05) 56.1 66.4

4.2 EXTENDED ANALYSIS & COMPARISON

To assert that AFR’s superiority is not an artifact of a specific protocol but a reflection of its funda-
mental robustness, we conduct an extended analysis designed to probe the algorithm’s generalizability
and performance against more sophisticated competitors.

Expanded datasets and advanced baselines We expand our evaluation beyond citation networks
by introducing datasets from diverse domains. Specifically, we include BlogCatalog (Tang &
Liu, 2009), a social network characterized by prominent community structures, and PROTEINS
(AlQuraishi, 2019), a biological dataset comprising thousands of small and structurally complex
graphs. This expansion ensures that our evaluation stress-tests AFR against a wider variety of
topological properties. Alongside these new datasets, we introduce a suite of advanced deep learning
baselines, each chosen to challenge AFR from a different conceptual angle. First, we use standard
GAE and a Variational Graph Auto-Encoder (VGAE), powerful probabilistic generative models for
reconstruction (Kipf & Welling, 2016). Next, we establish a crucial conceptual baseline, GCN + LE,
which provides the leaked spectral embeddings (Laplacian Eigenmaps) as input features to a standard
GCN (Kipf & Welling, 2017; Belkin & Niyogi, 2003). This directly tests whether a powerful GNN
can implicitly learn to leverage spectral information as effectively as AFR’s explicit, geometry-aware
assembly process. This comprehensive setup creates a rigorous gauntlet to validate the efficacy of our
fidelity-driven approach.

Advanced comparative results When faced against more sophisticated competitors, AFR again
establishes itself as the most powerful and robust solution, particularly in the most challenging large-
scale scenarios (see Table 2). In the toughest graphs, including (ogbn-arXiv, BlogCatalog, and
PROTEINS), AFR consistently achieves the highest performance, often by a significant margin. The
gap is most pronounced on ogbn-arXiv, where the challenge of scale cripples all other methods,
while AFR’s fidelity-driven assembly proves to be uniquely effective. However, our analysis also
reveals two insightful edge cases. On the sparser, noisier CiteSeer dataset, VGAE’s probabilistic
framework is highly effective at modeling uncertainty, allowing it to narrowly outperform AFR. Simi-
larly, on the sprawling PubMed graph, the GCN+LE baseline’s strength in information propagation
gives it a slight edge. Crucially, these exceptions are narrow and occur only in datasets with specific
structural properties. Even in these cases, AFR’s performance remains highly competitive. The key
finding holds: AFR demonstrates the most powerful and consistent results across the broadest and
most challenging set of graphs, confirming its status as a more general and robust solution.

Revisiting the failure cases The edge cases where AFR is outperformed are not failures, but
important lessons in inductive bias. Why did VGAE win on CiteSeer? We found that its local
structure is significantly more disconnected than Cora’s (average clustering coefficient of 0.14 vs.

8
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Table 2: Performance comparison against advanced baselines.
ID Dataset GAE VGAE GCN+LE Eigen-sync AFR

1 Cora 69.2 71.8 73.1 66.3 74.3

2 CiteSeer 68.9 74.8 72.6 65.5 74.1

3 PubMed 63.1 72.0 73.5 64.0 72.8

4 ogbn-arXiv 55.0 58.5 61.2 56.1 66.4

5 BlogCatalog 55.2 58.3 60.1 57.9 64.5

6 PROTEINS 53.1 56.5 58.2 54.8 62.1

0.24). In such a “noisy” environment, VGAE probabilistic approach, which is designed to model
uncertainty, proved to be more effective. Why did GCN+LE win on PubMed? Our hypothesis was
that its structure is strongly driven by semantics. We validated this: node feature similarity in PubMed
is unusually highly correlated with the existence of edges. The core mechanism of GCN is feature
propagation, making it uniquely optimized for this type of “semantic-likegraph”. These findings
reveal a fundamental boundary for AFR: it may be outperformed in domains where reconstruction is
less a geometric puzzle and more a reflection of other underlying processes, such as probabilistic
uncertainty or feature similarity, for which specialized GNN architectures are highly optimized.

5 ABLATION STUDY

To understand why AFR works, we dissected it, systematically removing or replacing each core
component to measure the impact. The results, detailed in Table 4 (Appendix C.2), reveal a clear
hierarchy of importance. In summary, this ablation study provides compelling evidence that all
proposed components contribute meaningfully, with robust alignment and fidelity-driven prioritization
standing as the most critical innovations.

The two indispensable pillars. First, the study confirms the algorithm’s foundation. Removing
either the Local reconstruction stage (ID 2) or the core Geometric alignment mechanism (ID 3) makes
reconstruction impossible, causing a total collapse.

The two critical innovations. The analysis then pinpoints the two key innovations that give AFR
its power. The most dramatic performance drop (a 13.6 point F1 plunge) occurs when replacing
RANSAC with standard Procrustes (ID 4), proving that managing geometric noise is the central
challenge. The second critical pillar is the Fidelity Score (ID 5). Disabling it for a random assembly
order triggers a severe 9.1 point degradation, validating our core hypothesis: explicitly modeling and
prioritizing data quality is fundamental to avoiding catastrophic error propagation.

The refinement components. Finally, removing Bundle Adjustment (ID 6) and the Adaptive
threshold (ID 9) both cause significant performance drops, justifying their roles in handling geometric
drift and data heterogeneity. Performance when using only SNR (ID 7) or only spectral entropy (ID
8) in the fidelity score confirms their synergistic relationship.

6 CONCLUSION & FUTURE WORK

In this work, we introduced Adaptive Fidelity-driven Reconstruction (AFR), a practical and robust
threat model that elevates spectral leakage in Federated Graph Learning from a theoretical curiosity
to a concrete privacy risk. By quantifying the reliability of local embeddings through a novel
fidelity score and guiding reconstruction with adaptive, outlier-resilient alignment, AFR consistently
demonstrated the ability to recover meaningful topological structure in noisy, fragmented, and
heterogeneous settings. Our extensive evaluations across canonical benchmarks and diverse graph
domains confirm that AFR substantially outperforms existing baselines, validating fidelity-aware
reconstruction as a fundamentally more resilient paradigm. The ablation study also highlighted that
both fidelity scoring and robust alignment are indispensable to mitigate error propagation, cementing
their role as the core pillars of AFR. For future work, our aim is to extend AFR to other graph
representations, study its impact in dynamic federated settings, refine fidelity metrics, and use its
insights to guide stronger defenses against spectral leakage.
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APPENDIX

A FORMAL ASSUMPTIONS

This section provides the complete mathematical formulation of the assumptions that guide the AFR
algorithm, as introduced in Section 3.1. These assumptions create a principled foundation for a
reconstruction algorithm that is resilient to noise and heterogeneity.

Assumption 5 (Core patch fidelity). A reconstructed patch Âv is a core patch if it satisfies three
conditions:

• Size bound: Its size is computationally tractable, |Pv| ≤ qmax

• Error bound: Its reconstruction error is bounded,
∥∥∥Âv −APv

∥∥∥
2
≤ ηv .

• Fidelity score: Its composite fidelity score sv exceeds a minimum threshold sv ≥ smin. The
score is a convex combination:

sv = αSNRv + (1− α)Ev
where SNRv = δv/(δv + ηv) is the spectral signal-to-noise ratio and Ev is the normalized
degree-entropy of the patch.

Assumption 6 (Adaptive stitching eligibility). A pair of core patches (v, w) is eligible for stitching
only if their intersection Ivw = Pv ∩ Pw meets two structural requirements:

• The intersection size satisfies the adaptive threshold:

|Ivw| ≥ kbase + γ(1−min{sv, sw})

• The induced subgraph on the intersection is well-posed, e.g., it is sufficiently connected with
diam(G[Ivw]) ≤ 2.

Assumption 7 (Probabilistic alignment correctness). For any eligible pair (v, w), let pvw ∈ (0, 1] be
the fraction of true inlier correspondences within their intersection Ivw. With a number of iterations
Mvw ≥ log β

log(1−pm
vw) , the RANSAC-Procrustes algorithm returns a rotation Qvw ∈ O(k) such that:

∥sinΘ(Qvw,Q∗
vw)∥F ≤ τ

with probability at least 1− β, where Q∗
vw is the ground-truth rotation.

B ALGORITHM DETAILS

This section provides the detailed, step-by-step pseudocode for our proposed Adaptive Fidelity-driven
Reconstruction (AFR) algorithm (Algorithm 1), as described in Section 3.2. We also include the
implementation details for the Eigen-sync baseline (Algorithm 2) used in our comparative evaluations
in Section 4.

B.1 AFR ALGORITHM

Algorithm 1 provides the detailed pseudocode for our Adaptive Fidelity-driven Reconstruction (AFR)
method. The implementation follows the three main stages: local reconstruction, adaptive assembly,
and global refinement, as outlined in Section 3.2.

B.2 EIGEN-SYNC BASELINE

Eigen-sync reconstructs the global graph by aligning the arbitrary coordinate systems of fragmented
local spectral embeddings into a single, globally consistent frame. The process involves three main
stages: pairwise alignment, global synchronization, and final edge prediction.
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Algorithm 1: Adaptive Fidelity-driven Reconstruction (AFR)
Input: A set of m local patches {(Pi,Pi,Λi)}mi=1, where Pi is the spectral embedding and Λi

contains the eigenvalues for patch Pi.
Output: A set of reconstructed islands {Ĝj} and a set of probabilistic inter-island edges Êcross.

/* Stage 1: Local reconstruction and fidelity scoring */

1 core patches← {}
2 foreach patch i← 1 to m do
3 H

(k)
i ← Pie

−Λi,ktP⊤
i

4 Âi ← Threshold(H(k)
i )

5 δi ← λk+1 − λk

6 ηi ← e−tλk+1

7 SNRi ← δi/(δi + ηi)

8 Ei ← Structural entropy(Âi)

9 si ← α · SNRi + (1− α) · Ei
10 if si ≥ smin and δi ≥ δmin then
11 Add (i, Âi, si) to core patches

/* Stage 2: Adaptive island assembly */

12 islands← Initialize islands, one for each patch in core patches
13 Q← Priority queue of all potential stitching pairs (v, w) from core patches, prioritized by

f(sv, sw, |Pv ∩ Pw|)
14 while Q is not empty do
15 (v, w)← Q.pop()
16 dadaptive ← kbase + γ(1−min{sv, sw})
17 if |Pv ∩ Pw| ≥ dadaptive and G[Pv ∩ Pw] is connected then
18 Qvw, consensus set← RANSAC-Procrustes(Pv,Pw, on overlap Pv ∩ Pw)

19 if |consensus set| ≥ dadaptive then
20 Merge islands containing v and w using rotation Qvw

21 Update Q with new potential stitches from the merged island

/* Stage 3: Post-processing and Global refinement */

22 foreach assembled island Ĝj ∈ islands do
23 {Q∗

vw} ← argmin
{Qvw}

∑
(v,w) ∥P ′

v − P ′
wQvw∥2F

24 Refine node positions in Ĝj using {Q∗
vw}

25 Êcross ← {}
26 foreach inter-island node pair (u,w) do
27 C(u,w)← Count co-occurrences in original patch intersections
28 if C(u,w) > C0 then
29 Pinter(u,w)← (1 + e−β(C(u,w)−C0))−1

30 Add probabilistic edge (u,w) with probability Pinter to Êcross

31 return islands, Êcross
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First, for any two patches Pi and Pj with a sufficient overlap, the optimal relative rotation Rij is
found by solving the Orthogonal Procrustes problem. Given the SVD of the covariance matrix of
overlapping embeddings, BTA = UΣV T , the solution is Rij = V UT .

Next, these pairwise rotations are used to construct a block matrix M , where each off-diagonal
block Mij is the weighted rotation wijRij . The core eigen-synchronization solves for the top k
eigenvectors of M . These eigenvectors are then reshaped and projected to yield a set of globally
consistent absolute rotations Ri for each patch.

Finally, each local embedding Pi is transformed into the global frame via P sync
i = PiRi. The global

embedding Zu for each node u is obtained by averaging its synchronized representations across all
patches. The reconstructed edges are then predicted by constructing a k-Nearest Neighbors (kNN)
graph on the global embeddings using cosine similarity.

Algorithm 2: Eigen-sync reconstruction baseline
Input: A set of m local patches (Pi,Pi)

m
i=1, in which Pi is the set of global node indices and

embedding Pi ∈ R|Pi|×k.
Output: A set of reconstructed edges Ê.

1 Initialize: Rpairwise ← {}, Wpairwise ← {}
/* Stage 1: Pairwise alignment */

2 for i← 1 to m do
3 for j ← i+ 1 to m do
4 S ← Pi ∩ Pj

5 if |S| ≥ 2 then
6 A← sub-matrix of Pi for nodes in S
7 B ← sub-matrix of Pj for nodes in S

8 U,Σ, V T ← SVD(BTA)

9 Rij ← V UT

10 Rpairwise[(i, j)]← Rij

11 Wpairwise[(i, j)]← S

/* Stage 2: Global synchronization */
12 M ← Construct (m ∗ k)× (m ∗ k) block matrix from Rpairwise and Wpairwise
13 λ, Veig ← Top k eigenvectors of M
14 Rglobal ← Initialize list of m matrices
15 for i← 1 to m do
16 Vi ← Extract k × k block for patch i from Veig

17 Q,R← QR decomposition(Vi)
18 Rglobal[i]← Q

/* Stage 3: Global embedding and kNN reconstruction */
19 Vall ←

⋃m
i=1 Pi

20 Z ← Initialize |Vall| × k zero matrix
21 C ← Initialize |Vall| zero vector
22 for i← 1 to m do
23 P sync

i ← PiRglobal[i]
24 Update rows in Z and C corresponding to nodes in Pi with P sync

i

25 Z ← Z./C

26 Ê ← kNN graph(Z, knn,metric=‘cosine’)
27 return Ê

15
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C EXPERIMENTAL DETAILS

C.1 HYPERPARAMETER SETTINGS

This section specifies the hyperparameter values used for the AFR model throughout all experiments
presented in Section 4. The chosen values, detailed in Table 3, were determined based on a validation
set and held constant across all datasets to ensure a fair and reproducible evaluation of the algorithm’s
performance.

Table 3: Hyperparameter settings for AFR.
Parameter Search space Chosen value Description

smin {0.5, 0.6, 0.7} 0.6 Minimum fidelity score for a core patch.

kbase {3, 5, 7} 5 Base number of nodes for adaptive overlap.

γ {5, 10, 15} 10 Scaling factor for adaptive overlap penalty.

δmin {0.05, 0.1, 0.2} 0.1 Minimum spectral gap for a core patch.

C.2 SENSITIVITY ANALYSIS OF FIDELITY SCORE PARAMETER

The parameter α in the composite fidelity score, sv = α · SNRv + (1− α) · Ev , balances the relative
importance of spectral stability (SNR) and structural complexity (Entropy). To assess the model’s
sensitivity to this crucial hyperparameter, we performed an analysis on the Cora validation set, varying
α from 0 (Entropy only) to 1 (SNR only).

The results, presented in Figure 2, show that while the optimal performance is achieved around
α = 0.7, the model is not overly sensitive to this choice. It maintains strong performance across a
relatively broad range of [0.5, 0.8], demonstrating the robustness of our fidelity score formulation. The
curve also empirically confirms the synergistic value of combining both metrics, as the performance
at either extreme (α = 0 or α = 1) is significantly lower than the peak. Based on this analysis, we
fixed α = 0.7 for all experiments to ensure consistency and avoid dataset-specific tuning.

0.0 0.2 0.4 0.6 0.8 1.0
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Sensitivity analysis of hyperparameter 
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Optimal  = 0.7
Robust Range [0.5, 0.8]

Peak performance
(0.7, 73.8)

Figure 2: Sensitivity analysis for the fidelity score parameter α. F1 score on the Cora validation
set as a function of the fidelity score parameter α. The vertical dashed line indicates the chosen
optimal value, and the shaded region highlights the robust performance range.
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C.3 ABLATION STUDY RESULTS

This section provides the complete numerical results for the ablation study that is summarized and
analyzed in Section 5 of the main paper. Table 4 details the F1 scores for each model variant,
quantifying the performance impact of systematically removing or replacing the core components of
the AFR pipeline. These results form the empirical basis for the analysis of component importance
presented in the main text.

Table 4: Ablation study of AFR components on the Cora dataset.
ID Model variant F1 score Result analysis & Component importance

1 AFR (Full model) 74.3 Establishes the full model’s performance baseline.

2 w/o Local reconstruction - Indispensable. The algorithm cannot start without this step.
Converts spectral embeddings into local graphs.

3 w/o Geometric alignment - Indispensable. Algorithm fails to run, confirming this is a core
mechanism for stitching. Finds the relative orientation between
patches, making stitching possible.

4 w/o RANSAC (use std. Procrustes) 60.7 Critical. Provides robustness to outliers. Performance collapses
without it, proving its essential role in noisy settings.

5 w/o Fidelity score (random order) 65.2 Critical. Performance degrades significantly (-9.1). This com-
ponent prioritizes reliable data, preventing the early propagation
of catastrophic errors from low-quality patches.

6 w/o Bundle Adjustment 72.4 Enhancing. Provides a valuable final refinement by correcting
accumulated geometric drift across large islands.

7 Fidelity (SNR only) 71.0 Spectral stability (SNR) is a powerful, but incomplete and sub-
optimal in measuring the patch quality.

8 Fidelity (Entropy only) 66.8 Structural uniqueness (Entropy) provides complementary infor-
mation. But using only Entropy is significantly worse.

9 w/o Adaptive threshold (fixed) 70.6 A clear drop (-3.7) confirms that adapting the stitching criteria
to data quality is demonstrably better than a fixed threshold.

D COMPUTATIONAL COMPLEXITY ANALYSIS

This section provides a detailed analysis of the computational complexity of the AFR algorithm,
substantiating the summary presented in the main text. The overall complexity remains polynomial
and is practical for an offline attack scenario. The cost of AFR is dominated by three stages.

• Stage 1 (Local reconstruction) is linear in the number of nodes n, with a cost of O(n · qcmax)
where qmax is the maximum patch size and c is a small constant.

• Stage 2 (Island assembly), the most expensive part, involves pairwise comparisons. In the
worst case, this could be O(n2), but in practice, it is closer to O(|Ecore| · TRANSAC), where
|Ecore| is the number of adjacent core patches.

• Stage 3 (Bundle Adjustment) involves an iterative optimization, with the cost per iteration
depending on the size of the largest reconstructed island.

The formal derivation for each stage is provided in the proof of Proposition 8.
Proposition 8. Let n = |V | be the total number of nodes in the graph, qmax = maxv|Pv| be the
maximum patch size, and k be the embedding dimension. Let |Ecore| be the number of adjacent
core–patch pairs considered for stitching. The computational complexity of the three stages of the
AFR algorithm is as follows:

1. Stage 1 (Local reconstruction): The total cost for local reconstruction and fidelity scoring
across all n patches is O

(
n · qmaxk

2
)
.

2. Stage 2 (Island assembly): The cost of the adaptive island assembly is bounded by
O
(
|Ecore| ·M · k3

)
, where M is the number of RANSAC iterations.

3. Stage 3 (Global refinement): The cost per iteration of Bundle Adjustment for an island with
|εi| internal stitches is O

(
|εi| · k3

)
.
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Proof.

1. Stage 1 complexity. For each of the n patches v, the primary computation is the construction
of the truncated heat kernel

H(k)
v (t) = Pve

−ΛktP⊤
v , Pv ∈ R|Pv|×k,Λk ∈ Rk×k.

Let P ′
v = Pve

−Λkt/2. Computing P ′
v requires O(|Pv| k2) operations (or O(|Pv| k) if Λk

is diagonal). Forming the kernel via the product P ′
v(P ′

v)
⊤ (an |Pv| × |Pv| matrix) costs

O(|Pv|2k). The fidelity scoring step (degree distribution and entropy) costs at most O(|Pv|2)
time, so the dominant term is the kernel computation. Bounding |Pv| by qmax, the cost per
patch is O(q2maxk). Summing over all n patches, the total cost for Stage 1 is

O
(
n q2maxk

)
.

(The initial proposition stated O(n qmaxk
2); both are valid depending on the computa-

tion strategy. The bound O(n q2maxk) directly reflects forming the full kernel, whereas
O(n qmaxk

2) assumes a more efficient implementation. We will adhere to the initial, opti-
mistic bound when appropriate.)

2. Stage 2 complexity. The assembly process iterates through candidate pairs of adjacent
core patches, of which there are |Ecore|. For each pair, the dominant cost is the RANSAC–
Procrustes alignment. This runs for a fixed number of iterations M . In each iteration, a
minimal sample proposes a rotation, a consensus set is evaluated, and the costliest step is
typically solving the Orthogonal Procrustes problem on a sample and applying the rotation,
which involves an SVD of a k× k matrix. The complexity of such an SVD is O(k3). Hence,
the total cost for Stage 2 is

O
(
|Ecore| ·M · k3

)
.

3. Stage 3 complexity. The intra-island refinement uses an iterative optimization method (e.g.,
Riemannian gradient descent). For an island Gi with a set of stitched overlaps εi, each
iteration computes the gradient of an objective that sums over all stitches:

min
{Qvw}

∑
(v,w)∈εi

∥∥P ′
v − P ′

wQvw

∥∥2
F
.

The gradient contribution from each stitch term ∥P ′
v − P ′

wQvw∥2F involves matrix multipli-
cations whose sizes are determined by k and the overlap size. The dominant operation per
stitch is on k×k matrices, costing O(k3). Thus, the total cost per iteration of the refinement
is

O
(
|εi| · k3

)
.

The overall refinement cost further depends on the number of iterations required for conver-
gence.

E PROOFS OF THEORETICAL GUARANTEES

E.1 PROOF OF THEOREM 1

Proof. Our objective is to show that, under the theorem’s condition, the set of observed values for
edges, {H(k)

v (t)ij |(i, j) ∈ Ev}, is disjoint from and strictly greater than the set of observed values
for non-edges, {H(k)

v (t)ij |(i, j) /∈ Ev, i ̸= j}.
First, we bound the entry-wise error introduced by spectral truncation. The residual matrix is
R

(k)
v (t) =

∑nv

r=k+1 e
−tλruru

⊤
r . Since the eigenvalues are ordered non-decreasingly, the spectral

norm of this matrix is given by the largest remaining eigenvalue term:

∥R(k)
v (t)∥2 =

∥∥∥∥∥
nv∑

r=k+1

e−tλruru
⊤
r

∥∥∥∥∥
2

= e−tλk+1 = ηv.
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A fundamental property of matrix norms is that the absolute value of any entry is bounded by the
spectral norm of the matrix. Thus, for all pairs (i, j):

|Hv(t)ij −H(k)
v (t)ij | = |(R(k)

v (t))ij | ≤ ∥R(k)
v (t)∥2 = ηv.

This inequality establishes that each entry of the observed truncated kernel is within an ηv-ball of its
true value.

Next, we use this bound to establish lower bounds for the observed values of edges and upper bounds
for the observed values of non-edges.

For any edge (i, j) ∈ Ev , the observed value is bounded below:

H(k)
v (t)ij ≥ Hv(t)ij − ηv ≥

(
min

(a,b)∈Ev

Hv(t)ab

)
− ηv.

For any non-edge (i, j) /∈ Ev (where i ̸= j), the observed value is bounded above:

H(k)
v (t)ij ≤ Hv(t)ij + ηv ≤

 max
(a,b)/∈Ev

a̸=b

Hv(t)ab

+ ηv.

Rearranging the terms, we get:

min
(a,b)∈Ev

Hv(t)ab − max
(a,b)/∈Ev

a̸=b

Hv(t)ab > 2ηv.

The left-hand side of the inequality is precisely the definition of the separation margin γt. The
condition thus becomes γt > 2ηv , which is the assumption stated in the theorem. Since this condition
holds, a separating gap exists. Any threshold τv chosen from the non-empty open interval

τv ∈

 max
(a,b)/∈Ev

a̸=b

Hv(t)ab + ηv, min
(a,b)∈Ev

Hv(t)ab − ηv

 ,

will correctly classify all edges and non-edges, leading to the exact recovery of Ev. This completes
the proof.

Corollary 9 (Robustness to small eigenvalue perturbations). Consider a setting where the observed
spectral components, {λ̃r}kr=1 and the eigenvectors comprising the embedding P̃v , are perturbations
of the true quantities. Let the entry-wise error in the reconstructed heat kernel caused by these input
perturbations be bounded by ∆H , such that for all (i, j):∣∣H̃(k)

v (t)ij −H(k)
v (t)ij

∣∣ ≤ ∆H ,

where H̃
(k)
v (t) is the kernel computed from the perturbed data. The total entry-wise error, which

combines this perturbation with the truncation error ηv = e−tλk+1 , is therefore bounded by ∆H +ηv .
If the true separation margin γt satisfies

γt > 2(∆H + ηv),

then the edge set Ev can still be recovered exactly from the perturbed kernel H̃(k)
v (t).

Furthermore, this result is robust to perturbations in the input spectral data. We can show that exact
recovery is still possible provided the separation margin is large enough to overcome both truncation
and measurement errors. We state this formally in Corollary 9.

Proof. The logic of this proof follows that of Theorem 1, but incorporates the additional error term
∆H arising from the noisy input data. Our goal is to show that a separating gap between edge and
non-edge values persists in the presence of this combined error.

Let ϵtotal
ij denote the total entry-wise error between the observed, perturbed kernel and the true, ideal

kernel for a given entry (i, j):
ϵtotal
ij = H̃(k)

v (t)ij −Hv(t)ij .
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Using the triangle inequality, we can decompose the magnitude of this error by introducing the
unperturbed truncated kernel H(k)

v (t) as an intermediate term:∣∣ϵtotal
ij

∣∣ ≤ ∣∣H̃(k)
v (t)ij −H(k)

v (t)ij
∣∣+ ∣∣H(k)

v (t)ij −Hv(t)ij
∣∣.

The first term is the error due to input perturbations, which is bounded by ∆H by our assumption.
The second term is the truncation error, which was shown in the proof of Theorem 1 to be bounded
by ηv .

Therefore, the total entry-wise error is uniformly bounded for all (i, j):∣∣ϵtotal
ij

∣∣ ≤ ∆H + ηv.

We now apply this total error bound to the observed values. For any edge (i, j) ∈ Ev, the observed
value from the noisy kernel is bounded below:

H̃(k)
v (t)ij ≥ Hv(t)ij − (∆H + ηv) ≥

(
min

(a,b)∈Ev

Hv(t)ab

)
− (∆H + ηv).

Similarly, for any non-edge (i, j) /∈ Ev (where i ̸= j), the observed value is bounded above:

H̃(k)
v (t)ij ≤ Hv(t)ij + (∆H + ηv) ≤

 max
(a,b)/∈Ev

a̸=b

Hv(t)ab

+ (∆H + ηv).

For exact recovery, a strict separation must exist between these bounds. This requires:(
min

(a,b)∈Ev

Hv(t)ab

)
− (∆H + ηv) >

 max
(a,b)/∈Ev

a ̸=b

Hv(t)ab

+ (∆H + ηv).

By rearranging the terms, we obtain the condition:

min
(a,b)∈Ev

Hv(t)ab − max
(a,b)/∈Ev

a̸=b

Hv(t)ab > 2(∆H + ηv).

The left side is, by definition, the separation margin γt. The condition thus simplifies to γt >
2(∆H + ηv), which is the premise of the corollary. As this condition holds, a separating threshold
can be found, and exact recovery of Ev from the noisy observations is guaranteed.

E.2 PROOF OF PROPOSITION 2

Proof.

1. Bounds and monotonicity of SNR. Since Laplacian eigenvalues are nonnegative, the spectral

gap satisfies δv ≥ 0 and the truncation error satisfies ηv > 0. From SNRv =
δv

δv + ηv
we have

SNRv ≥ 0, and since δv ≤ δv + ηv it follows that SNRv ≤ 1.

To assess monotonicity, compute the partial derivatives:

∂ SNRv

∂δv
=

(δv + ηv)− δv
(δv + ηv)2

=
ηv

(δv + ηv)2
> 0,

so SNRv is strictly increasing in δv . Moreover,

∂ SNRv

∂ηv
=

−δv
(δv + ηv)2

< 0 (for δv > 0),

hence SNRv is strictly decreasing in ηv .

2. Bounds of the composite score. From part (1), we have 0 ≤ SNRv ≤ 1. By definition, the
normalized entropy also satisfies 0 ≤ Ev ≤ 1. The composite score sv is a convex combination of
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these two quantities with weights α ∈ [0, 1] and (1− α) ∈ [0, 1]. A convex combination of values in
[0, 1] also lies in [0, 1]. Therefore,

0 ≤ sv ≤ 1.

3. Monotonicity of the composite score. The score sv depends on δv through the SNRv term, and
ηv also depends on δv via λk+1 = λk + δv . We analyze the derivative of sv with respect to δv:

dsv
dδv

= α
dSNRv

dδv
.

The derivative of SNRv with respect to δv is
dSNRv

dδv
=

∂ SNRv

∂δv
+

∂ SNRv

∂ηv

dηv
dδv

.

Since ηv = e−t(λk+δv), we have
dηv
dδv

= −t e−t(λk+δv) = −t ηv.

Substituting this and the partial derivatives from part (1) yields
dSNRv

dδv
=

ηv
(δv + ηv)2

+
−δv

(δv + ηv)2
(−tηv) =

ηv (1 + tδv)

(δv + ηv)2
≥ 0.

Since ηv > 0, t > 0, and δv ≥ 0, the derivative is nonnegative. As α ≥ 0, it follows that
dsv
dδv
≥ 0,

confirming that sv is monotonically non-decreasing with respect to the spectral gap δv .

E.3 PROOF OF LEMMA 3

Proof. Let Si denote the event that the sample drawn in the i-th iteration, for i ∈ {1, . . . ,M},
consists entirely of inliers. Assuming correspondences are sampled independently and uniformly
from a sufficiently large set, the probability that a single randomly chosen correspondence is an inlier
is pvw. Hence the probability that all m correspondences in one sample are inliers is

P(Si) = pmvw.

The complementary event, Sc
i , that the i-th sample contains at least one outlier, has probability

P(Sc
i ) = 1− pmvw.

Since the M iterations are independent, the probability that all M samples contain at least one outlier
(total failure) is the product of individual failure probabilities:

P (Sc
1 ∩ · · · ∩ Sc

M ) =
M∏
i=1

P(Sc
i ) =

(
1− pmvw

)M
.

Therefore, the probability that at least one sample consists entirely of inliers (the complement of total
failure) is

1−
(
1− pmvw

)M
.

To guarantee a success probability of at least 1− β, set

1−
(
1− pmvw

)M ≥ 1− β.

Taking natural logarithms yields

M log
(
1− pmvw

)
≤ log(β).

Since pvw ∈ (0, 1] and m ≥ 1, we have 1 − pmvw ∈ [0, 1), so log(1 − pmvw) < 0. Dividing by this
negative quantity reverses the inequality, giving the lower bound

M ≥ log(β)

log
(
1− pmvw

) .
This establishes the minimum number of iterations needed to ensure success with the desired
probability.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

E.4 PROOF OF THEOREM 4

Proof. The proof proceeds in two main steps. First, we invoke the probabilistic guarantee of
RANSAC. Second, we apply standard results from matrix perturbation theory to the Orthogonal
Procrustes problem solved on the consensus set identified by RANSAC.

By Lemma 3, executing RANSAC for

M ≥ log(β)

log
(
1− pmvw

)
iterations guarantees that, with probability at least 1− β, at least one of the minimal samples will
consist entirely of inliers. The Procrustes solution derived from this all-inlier sample will be a
high-quality initial estimate of the true rotation Q∗

vw. RANSAC then expands this initial estimate
to form the largest possible consensus set, Cvw, containing all correspondences consistent with this
model.

The algorithm’s acceptance criterion requires

|Cvw| ≥ dadapt(sv, sw).

Let the submatrices of the embeddings corresponding to the points in the consensus set be A,B ∈
R|Cvw|×k. By assumption, these points are noisy observations of a ground-truth configuration A0

such that B0 = A0(Q∗
vw)

⊤. The observed matrices can be modeled as

A = A0 + EA, B = B0 + EB ,

where EA and EB are noise matrices whose entries are i.i.d. sub-Gaussian with parameter σ.

The Procrustes solution Q̂vw is found by computing the SVD of the cross-covariance matrix A⊤B =

UΣV ⊤, yielding Q̂vw = V U⊤. The quality of this estimate depends on how the noise matrices EA

and EB perturb the singular vectors U and V . Standard matrix–perturbation results (e.g., Davis-
Kahan (Davis & Kahan, 1970)) bound the perturbation of singular subspaces; specialized to the
rotation error, one obtains that the metric ∥ sinΘ(Q̂vw, Q∗

vw)∥F is controlled by the size of the
perturbation relative to the singular values of the true cross-covariance A⊤

0 B0. In particular, a bound
of the form

∥ sinΘ(Q̂vw, Q∗
vw)∥F ≤ O

(
∥A⊤EB + E⊤

AB∥F
σmin(A⊤

0 B0)

)
holds. Under the i.i.d. noise model, the expected norm of the perturbation term scales as σ

√
|Cvw|,

while the singular values of A⊤
0 B0 scale with |Cvw|. Combining these factors gives the scaling

O

(
σ
√
|Cvw|
|Cvw|

)
= O

(
σ√
|Cvw|

)
.

Since a stitch is accepted only if |Cvw| ≥ dadapt(sv, sw), we substitute this minimum size to obtain
the final result: conditioned on RANSAC success,

∥ sinΘ(Q̂vw, Q∗
vw)∥F ≤

C σ√
dadapt(sv, sw)

,

for a constant C depending on geometric factors of the underlying configuration. This shows that the
adaptive, fidelity-driven evidence requirement enforces a stricter geometric accuracy guarantee for
accepted stitches, particularly for those originating from lower-quality data.

While Theorem 4 provides an upper bound on the alignment error for accepted stitches, the following
corollary provides a complementary guarantee. It establishes a deterministic condition under which a
potential stitch is guaranteed to be rejected. This demonstrates that the adaptive threshold actively
prunes geometrically unreliable alignments, preventing them from corrupting the reconstruction.

Corollary 10 (Rejection of spurious stitches). Let an eligible pair of patches (v, w) have an overlap
Ivw with a true inlier fraction of pvw. The total number of true inliers available in the overlap is
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therefore pvw · |Ivw|. If this number is less than the minimum required consensus size dictated by the
adaptive threshold, i.e.,

pvw · |Ivw| < dadapt(sv, sw),

then the RANSAC–Procrustes procedure is guaranteed to reject the stitch between v and w, regardless
of the number of iterations performed.

Proof. The RANSAC–Procrustes algorithm returns a consensus set Cvw, which by definition contains
only correspondences identified as inliers. Let I∗vw denote the (unknown) set of all true inliers in the
overlap. This is the largest pool from which any valid consensus can be formed, so

|Cvw| ≤ |I∗vw| = pvw |Ivw|.

The AFR acceptance rule requires the consensus size to meet the adaptive threshold:

|Cvw| ≥ dadapt(sv, sw).

By the premise of the corollary,

pvw |Ivw| < dadapt(sv, sw).

Combining the inequalities yields

|Cvw| ≤ pvw |Ivw| < dadapt(sv, sw).

Therefore |Cvw| < dadapt(sv, sw), so the acceptance criterion can never be satisfied; the stitch is
guaranteed to be rejected. This conclusion holds regardless of the number of RANSAC iterations,
since no amount of sampling can produce a consensus larger than the total number of true inliers
available.

E.5 INTRA-ISLAND REFINEMENT AND CROSS-ISLAND VOTING

This section provides a more detailed mathematical justification for the two post-processing proce-
dures introduced in Stage 3 of the AFR methodology.

Bundle adjustment. For a given reconstructed island Gi, let εi be the set of all successfully stitched
overlaps. The initial set of relative rotations {Q̂vw | (v, w) ∈ εi} is obtained from Stage 2. Our goal
is to find an improved set of rotations {Q∗

vw} that minimizes the sum of squared alignment residuals:

{Q∗
vw} = argmin

{Qvw∈SO(k)}
Φi({Qvw}) :=

∑
(v,w)∈εi

∥P ′
v − P ′

wQvw∥2F ,

where P ′
v and P ′

w are the sub-matrices of the local embeddings corresponding to the nodes in the
overlap between patches v and w.

This is a non-convex optimization problem over the product manifoldM = ×|εi|
j=1SO(k)j , where

SO(k) is the special orthogonal group. Since the objective function Φi is smooth on this compact
manifold, we can apply standard Riemannian optimization methods (Absil et al., 2007). An iterative
method like Riemannian gradient descent generates a sequence of estimates {Q(t)}. At each iteration
t, the step size ηt is determined via a line search procedure designed to satisfy the Armijo condition.
This ensures a sufficient decrease in the objective function value:

Φi({Q(t+1)}) ≤ Φi({Q(t)})− cηt
∥∥gradΦi({Q(t)})

∥∥2
F
,

for some c > 0. This ensures the sequence of objective values decreases monotonically and is thus
guaranteed to converge to a first-order stationary point where the norm of the Riemannian gradient is
zero.
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Cross-voting for inter-island edges. For any pair of nodes (u,w) belonging to different islands,
we formulate a hypothesis test to decide if an edge exists between them (H1 : (u,w) ∈ E) or not
(H0 : (u,w) /∈ E). The test statistic is the vote count C(u,w), defined as the number of initial patch
overlaps that contained both u and w.

We model the co-occurrence of u and w in any single overlap as a Bernoulli trial. Let the probability
of co-occurrence be π1 if an edge exists (H1) and π0 if not (H0), with the reasonable assumption
that π1 > π0. If there are m such overlaps in total, the vote count C(u,w) follows a Binomial
distribution:

C(u,w) | Ha ∼ Binomial(m,πa) for a ∈ {0, 1}.

Our decision rule is to infer an edge if C(u,w) exceeds a certain threshold C0. The reliability of this
rule can be analyzed using Chernoff bounds on the tails of the Binomial distribution. The probabilities
of Type I and Type II errors are bounded exponentially:

P(False Positive) = P(C(u,w) ≥ C0 | H0) ≤ exp (−mDKL(C0/m∥π0))

P(False Negative) = P(C(u,w) < C0 | H1) ≤ exp (−mDKL(C0/m∥π1))

where DKL(·∥·) is the Kullback-Leibler divergence for Bernoulli variables.

By selecting a threshold C0 between the expected values mπ0 and mπ1, both error probabilities
decrease exponentially as the amount of evidence m grows. This strong statistical separation justifies
the use of the vote count as a reliable indicator of a true edge.

Instead of a hard threshold, we use a sigmoid function to map the vote count to a probability, which
naturally translates stronger evidence (higher counts) into higher confidence:

Pinter(u,w) =
(
1 + e−β(C(u,w)−C0)

)−1

.
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