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Abstract

We present Orientation-anchored Gaussian Splatting (OriGS), a novel frame-
work for high-quality 4D reconstruction from casually captured monocular videos.
While recent advances extend 3D Gaussian Splatting to dynamic scenes via various
motion anchors, such as graph nodes or spline control points, they often rely on
low-rank assumptions and fall short in modeling complex, region-specific deforma-
tions inherent to unconstrained dynamics. OriGS addresses this by introducing a
hyperdimensional representation grounded in scene orientation. We first estimate
a Global Orientation Field that propagates principal forward directions across
space and time, serving as stable structural guidance for dynamic modeling. Built
upon this, we propose Orientation-aware Hyper-Gaussian, a unified formulation
that embeds time, space, geometry, and orientation into a coherent probabilistic
state. This enables inferring region-specific deformation through principled con-
ditioned slicing, adaptively capturing diverse local dynamics in alignment with
global motion intent. Experiments demonstrate the superior reconstruction fidelity
of OriGS over mainstream methods in challenging real-world dynamic scenes.

1 Introduction

Videos offer a window into the continuous flow of forms, light, and transformations that weave
our experience of space and time. Among various sources, casually captured monocular videos
stand as the most ubiquitous and accessible. These videos are typically recorded by smartphones,
handheld cameras, or consumer drones, spanning a broad spectrum of everyday scenes with diverse
object compositions and unconstrained motion patterns. Recovering the underlying dynamic reality
from such inputs remains a foundational pursuit in computer graphics and 3D vision [33], boosting
applications in autonomous driving [72, 21], robotics [30, 53], and virtual/augmented reality [81, 10].

At its core, 4D reconstruction aims to recover the time-varying geometry, appearance, and motion
of real-world environments from videos [82], bridging visual observations with underlying scene
dynamics. 3D Gaussian Splatting (3DGS) [37] has recently emerged as a powerful solution for
static scene reconstruction, offering a compact and expressive point-based representation that enables
high-fidelity modeling and real-time rendering. Building on its success, substantial efforts have been
devoted to extending 3DGS to dynamic scenes [49, 76, 71, 64]. These methods primarily capture
temporal evolution by applying per-Gaussian deformations, such as translation and rotation, across
time. Recent works are further pursuing robust reconstruction from casually captured videos by
modeling deformation through various motion anchors. Representative approaches include learning
motion bases and weighting coefficients [67], constructing discrete 3D node graphs [48, 39, 44], and
employing continuous cubic Hermite splines with sparse control points [77, 54].

Yet, reconstructing scene dynamics from casually captured monocular videos remains challenging
due to the complexity of local motion. Regions within the scene often exhibit diverse motion
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patterns, influenced by object articulation, interaction context, or progression through different action
stages [61]. Although recent approaches incorporate explicit, structured deformation fields, they
largely reduce complex dynamics to low-rank motion anchors, assuming that neighboring regions
exhibit similar motion. While effective for smooth or rigid transformations, such deformation anchors
are inherently fragile under unconstrained dynamics in real-world scenarios, where motion patterns
may vary significantly across regions. Consequently, these formulations often struggle to capture
complex local dynamics, resulting in spatial drift, structural fragmentation, or temporal inconsistency.

To address these challenges, we are motivated by the perspective that the diversity of local motion
often reflects more than just positional or geometric variation; it suggests an underlying regularity
in how different regions evolve over time. Intuitively, local deformations are not solely determined
by spatial position or object shape, but also by how each part of a scene is expected to move within
a broader dynamic context. Fortunately, while casual monocular videos lack explicit multi-view
supervision, they do preserve object-centric motion cues that implicitly reflect these region-specific
motion tendencies. Among them, we focus our exploration on a natural and grounded signal:
orientation. In the physical world, while absolute position is sensitive to noise and scale ambiguity,
orientation evolves under the smoother governance of local angular momentum and inertia [16, 27].
This makes it a more stable proxy for how motion is expected to unfold in complex dynamic scenes,
indicating the forward tendencies across regions. In this work, we embrace orientation as a dynamic
anchor for 4D reconstruction. Our key insight is to treat orientation as a structural signal that organizes
how different parts of the scene deform and interact, thereby capturing coherent evolution.

Building on this perspective, we introduce Orientation-anchored Gaussian Splatting (OriGS),
a novel framework for high-quality 4D reconstruction from casual monocular videos. Our OriGS
comprises two synergistic components for dynamic modeling. @ We first construct a Global
Orientation Field that captures long-range scene evolution by estimating and propagating principal
forward directions over time via localized structure alignment. This orientation field provides stable
oriented anchors that extend across space and time, which help organize diverse motion patterns in
different regions. @ On top of this structured foundation, we propose Orientation-aware Hyper-
Gaussian, a hyperdimensional representation to model complex local dynamics throughout the scene.
We associate each Gaussian primitive with a unified probabilistic state defined over a structured
manifold of time, space, geometry, and orientation. By conditioning this representation on the scene’s
evolving orientation field, we infer region-specific deformations through a principled conditioned
slicing strategy. This allows OriGS to adaptively model how different parts of the scene deform over
time and how their motions evolve in alignment with the underlying dynamic intent. Together, these
two components enable OriGS to robustly reconstruct dynamic scenes from casual videos, bridging
global coherence and local motion diversity in a unified and principled manner.

We validate the effectiveness of OriGS on a range of casual monocular videos, including DAVIS [59],
OpenAl SORA [6], YouTube-VOS [74], and the DyCheck benchmark [19]. OriGS consistently
recovers sharper geometry and more coherent motion compared to recent state-of-the-art methods,
demonstrating its superior reconstruction fidelity in real-world dynamic scenes.

2 Related Works

Dynamic 3D Representations. Dynamic scene modeling has been widely studied by extending
static 3D representations with deformation mechanisms [20, 9]. Neural Radiance Fields (NeRF) [51]
represent scenes as volumetric functions, and are adapted to dynamic settings by learning deformation
fields that warp canonical points over time [55, 60, 56, 17, 34, 70]. Later works introduce temporal
embeddings [57, 40], or hybrid representations for faster rendering [2, 18, 8, 62]. However, their
implicit volumetric nature limits real-time inference and structure-aware modeling. Recently, 3D
Gaussian Splatting (3DGS) [37] has emerged as a powerful alternative for scene representation
[4, 82]. Dynamic extensions incorporate deformation fields [49, 71, 76, 15, 3, 31], apply trajectory
interpolation [41, 38, 77], or directly embed time into Gaussian primitives [14, 75]. Yet, lacking
explicit guidance from underlying structures, these methods are generally incapable of faithfully
recovering complex motion in real-world dynamic scenes.

Hyperdimensional Gaussians. Recent work has enhanced the expressiveness of Gaussian represen-
tations by embedding auxiliary signals into higher-dimensional spaces. 4DGS [75, 14] incorporates
time to model spatio-temporal volumes, while N-DG [1 1] generalizes to a latent space embedding po-



sition, view direction, and material cues. To capture view-dependent effects, 6DGS [22, 24] integrates
angular information and modulates opacity and color accordingly, and 7DGS [23] further extends
this with temporal modeling. In this work, we explore hyperdimensional Gaussians as structured
probabilistic states, modeling space, time, geometry, and orientation in a unified representation.

4D Reconstruction from Casual Monocular Videos. Recovering dynamic representations from
casually captured monocular videos is highly ill-posed. Early efforts enhance NeRFs by specialized
deformation fields [60, 55, 56], long-range feature aggregation [43], or point trajectory prediction [66].
While accounting for scene changes, they predominantly consider controlled settings with teleporting
cameras or quasi-static scenes [19]. Recent advances shift toward Gaussian-based representations,
leveraging 2D priors to enable reconstruction in the wild. Methods like Shape-of-Motion [67],
Gaussian Marbles [64], MoSca [39], and MoDGS [46] guide per-Gaussian deformation through
various motion anchors. Others adopt compact motion models, such as spline interpolation [54] or
hierarchical structures [44], to trace temporal trajectories. Nonetheless, their reliance on low-rank
motion priors limits the capacity to capture the complex, spatially varying dynamics present in real-
world environments. In contrast, we propose to organize deformation within a global orientation field
and condition dynamic modeling on a unified hyperdimensional representation, enabling coherent
reconstruction under diverse motion patterns.

3 Preliminaries

3D Gaussian Splatting. 3DGS [37] represents scenes as a set of explicit 3D Gaussian primitives,
each specified by a spatial center p, € R? and an anisotropic covariance matrix 3 € R3%3:

60) = exp (- (x = ap) T ). m

where x € R3 denotes a 3D spatial location. To ensure positive semi-definiteness, X is factorized
as ¥ = RSSTR in practice, where S is a diagonal scaling matrix and R is a rotation matrix
aligning the Gaussian with the global coordinate system. Moreover, each 3D Gaussian associates an
opacity value ¢ € R and a color vector ¢ € R3. During rendering, contributions from all Gaussians
overlapping a pixel are composited via alpha blending to provide the final color.

In this work, we adopt 3DGS as a differentiable and compact representation for dynamic scenes,
which can be efficiently rendered into images with a rasterization pipeline.

3D Trajectories from Monocular Videos. Given a monocular video of T" frames, our first step toward
4D reconstruction is recovering long-range 3D trajectories of scene points over time. Each trajectory
is defined as a sequence {7!}._,, where 7! € R? denotes the 3D position at frame ¢. However,
estimating such trajectories from monocular inputs is inherently ill-posed due to depth ambiguity
from 3D-to-2D projection. To mitigate this, we combine metric depth estimation [28, 29, 58] with
long-range pixel tracking [12, 36, 73]. We predict per-frame depth maps d’ : R? — R and extract
2D trajectory {u’}7_,, where u’ € R? denotes the pixel location at frame ¢. Consistent with common
practices [64, 73, 39], we then lift each 2D trajectory into 3D world space, aided by the depth priors:

= Wing! (u’,d'(u")), )
where 7k (+) denotes the projection function from camera to image space defined by intrinsics K,

and W is the camera pose at frame t. When camera parameters are unavailable, we estimate them
via bundle adjustment [45, 39].

The resulting sequence {7¢}7_; provides a 3D trajectory across the scene. We further extract principal
forward directions from these trajectories to construct oriented anchors, which provide structured and
temporally coherent guidance for dynamic modeling in our framework.

4 Method

We introduce Orientation-anchored Gaussian Splatting (OriGS), a novel framework for 4D
reconstruction from casual videos. OriGS is built upon two synergistic components: (i) a Global
Orientation Field (Section 4.1) that captures long-range scene evolution via propagated orientation
cues; and (ii) an Orientation-aware Hyper-Gaussian (Section 4.2) that models complex region-
specific dynamics via orientation-conditioned inference in a unified hyperdimensional representation.
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Figure 1: Illustration of Global Orientation Field. Given 3D trajectories recovered from monocular video, we
extract a structured set of oriented anchors. (Left) Anchors’ positions are initialized along tracked points across
frames. (Middle) We estimate initial principal orientations by applying PCA over short temporal windows,
reflecting the dominant forward direction per anchor. (Right) These initial orientations are then propagated over
time via localized Procrustes alignment, producing a temporally coherent orientation field across the scene.

4.1 Global Orientation Field

Initial Principal Orientation Estimation. Given the recovered 3D trajectory {7}~ ; of scene
points (Section 3), we convert these raw translation paths into a structured set of oriented anchors,
each carrying a spatial position and an associated local orientation. These anchors serve as the basis
for constructing our Global Orientation Field.

To initialize orientation, we estimate the principal direction of each anchor by analyzing the dominant
motion in the early portion of its trajectory. Concretely, we unfold each trajectory and extract the first
W frames as a temporal window, forming {7*}}V,. We center the points using the temporal mean

7 =& 2, 7, and define 7 = 7 — 7. We then compute the covariance matrix of the centered
points and apply principal component analysis (PCA) to extract the dominant direction:

w
1 Ala
PCA(C) = [v1,va,vs], where C = W ;zl FLptT, 3)

The leading eigenvector v; reflects the dominant motion axis, which we assign as the anchor’s
forward direction to construct its initial local orientation O € SO(3).

Temporal Orientation Propagation. To extend the initial principal orientation across time, we
estimate a time-varying orientation sequence {O}X_; for each anchor, capturing its evolving motion
direction throughout the scene. This can be formulated as a Procrustes alignment problem [26, 25]. At
each time step ¢, we identify a local neighborhood {T,ﬁ}szl around each anchor based on Euclidean
distance and align it to its reference configuration by optimizing:

; “

K
: t =t t1 =1
min ™ —7)—-T" (1 — T
i Dk =)~ Tt = )

where 7! and 7! are spatial centroids of the anchor set, and T? represents the rotation transformation.

This alignment is solved by applying singular value decomposition (SVD) to the covariance matrix
of the localized anchor set. The optimal rotation transformation is then given by T** = VUT,
where V and U are obtained from SVD. As a correction step, we adjust the last column based on the
sign of its determinant. Finally, we compute the anchor’s orientation O? by composing the optimal
transformation with the initial principal orientation:

o =Tt . 0. 3)

Repeating this process yields temporally coherent orientations {O?}7_;. These propagated orienta-
tions constitute our Global Orientation Field, which encodes motion tendencies across the scene and
provides stable anchors for modeling complex dynamics. We illustrate this process in Figure 1, where

AQ!~! = (0!, ) (O, 1)~ denotes the relative anchor transformation in SFE(3) across time.

4.2 Orientation-aware Hyper-Gaussian

Dynamic scenes often exhibit complex, region-specific motion that cannot be fully explained by
position or geometry alone. While casual monocular videos lack multi-view supervision, they retain
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Figure 2: Illustration of Orientation-aware Hyper-Gaussian. We model complex dynamics using high-
dimensional Gaussians defined over a structured manifold spanning time, space, geometry, and orientation.
Given a target time ¢’ and its local orientation o" (interpolated from the Global Orientation Field via SO(3)
blending), we perform conditioned slicing on the hyper-Gaussian to infer the expected dynamic states. The
predicted ficond modulates 3D Gaussian primitives, which is then compatible with the 3DGS pipeline.

coherent orientation cues that implicitly reveal how different regions are expected to move. We lever-
age this structural signal and introduce Orientation-aware Hyper-Gaussian, a hyperdimensional
representation that models local dynamics over a unified manifold spanning time, space, geome-
try, and orientation. By conditioning on the evolving orientation field, this formulation facilitates
principled deformation inference aligned with the dynamic intent.

Multivariate Modeling of Dynamic States. To reflect complex motion patterns across space and
time, we represent each region of the scene with a multivariate dynamic state that jointly encodes
temporal progression and structural changes. Specifically, let p¢ € R? denote the position of a point
at time ¢. We define its local dynamic state as:

£ = (Ap,Ag,t,0) e M, (6)

where Ap and Ag represent deviations in position and geometry (e.g., scale and rotation), O € SO(3)
is the orientation derived from our Global Orientation Field, and M denotes a manifold spanning
time, space, geometry, and orientation.

This formulation captures the intrinsic interdependence among these factors in dynamic scenes,
treating them as jointly evolving rather than isolated variables. To model their correlations in a
unified and flexible manner, we then represent each dynamic state £ as a probabilistic entity with a
multivariate Gaussian over M:

where p¢ is the canonical dynamic state, and 3¢ captures intra- and inter-correlations. By grounding
this probabilistic state in the evolving global orientation field, our model is able to learn region-specific
variability that aligns with the scene’s underlying dynamic intent.

Hyper-Gaussian Representation. To realize our formulation, we build upon 3D Gaussian Splat-
ting [37] and equip each primitive with the multivariate Gaussian distribution defined in Eq. (7). This
results in a dynamic representation that encodes the localized motion and geometric variability within
a unified probabilistic entity.

Specifically, we begin by initializing a set of 3D Gaussians {G, } across the scene, each parameterized
by its position Hp rotation R, scale S;, opacity o, and color c¢; (Section 3). To enable dynamic
modeling, we associate each G; with a state mean p1¢ and covariance X¢:

TE(AP.,Ag) Y (Ap,Ag),(1,0) @)

- b ) ) b 2 = b
te = (Hap, BAg, Kty HO) €= B0y ah0) S0

where pap € R? represents the spatial offset, pag € Ri x SO(3) describes local variations in
scale and rotation, y; € R is the temporal coordinate, and po € SO(3) represents the orientation
within the global field. The covariance matrix captures both intra- (e.g., temporal or geometric) and
cross-group (e.g., spatial-orientational) dependencies to model complex dynamics.

For numerical stability, we parameterize 3¢ via Cholesky decomposition [11, 22, 23]: 3¢ = Lg¢ Lg,

where L is a lower-triangular matrix. Both p1¢ and L¢ are treated as learnable parameters and jointly
optimized with other Gaussian attributes. More details are provided in the supplementary materials.

Conditioned Slicing for Dynamic State Inference. Given the hyper-Gaussian representation, we
seek to infer concrete dynamic behavior by conditioning on local motion context. Our core intuition



is that each part of the scene undergoes diverse localized deformation in response to how the region
is expected to evolve under temporal and orientational cues.

Specifically, we define a query (', O'') € R x SO(3), representing the target time and its associated
orientation. Given the probability P(&) = N (ue, X¢), we derive the conditional distribution over
the spatial and geometric subspace:

P(Ap, Ag | t/, Otl) = N(Nconda z:cond)v (9)
with conditional mean and covariance given by Gaussian slicing rules:

Hecond = ()U’Apv )U’Ag) + Z:(Ap,Ag),(t,O)Z:(_,g}())(t/ — Ht, Ot/ S /1'0)7 (10)
Yeond = X(ap,ag) — E(Ap,Ag),(t,O)2&}0)E(t70),(Ap,Ag)7 (11

where © denotes the relative rotation operator in SO(3). Practically, rather than sampling (Ap, Ag)
from the conditional distribution, which may introduce optimization instability, we adopt the
maximum-likelihood estimation principle and use the conditional mean ficong as the determinis-
tic prediction:

fucons = E[Ap, Ag | ,0"] = prcona. (12)
This inferred local dynamic state captures the expected position and geometry variations given
temporal and orientation contexts. Through this slicing process, the hyper-Gaussian can be adaptively
projected onto various scene regions, enabling temporally and spatially coherent reconstruction.

Modulation of Hyper-Gaussian Attributes. To integrate our dynamic modeling into the efficient
and differentiable rendering pipeline, we modulate 3D Gaussian primitives based on the inferred
dynamic state. For a target time ¢’ and local orientation o , We can obtain ficonq from the conditioned
distribution using Eq. (12) and apply it to the 3D Gaussian parameters accordingly:

lli) = l"’ﬁ) + I'AI’Apv St =S+ ﬂASa Rt = Rt D ﬂARa (13)
where finp, fias, fiar denote the inferred variations in position, scale, and rotation, respectively,
and @ is quaternion-based rotation composition. In parallel, we modulate each primitive’s opacity

based on its proximity to the canonical state in both time and orientation. This confidence-weighted
visibility is defined as:

At t' 1 —1/y 2 t’ T -1 t
o =o' exp (=5 ST~ ) +(o @uo) ) (0 @uo) L4

Together, these modulations encourage each hyper-Gaussian to adaptively express geometry and
appearance consistent with the temporal and orientational cues, while suppressing noisy contributions
from out-of-support regions.

Anchor-Guided Deformation and Conditioning. Recall that to query the hyper-Gaussian via
conditioned slicing defined by Eq. (9), we must first estimate each Gaussian’s local motion context,
including its position and orientation under the evolving scene. We achieve this through anchor-driven
deformation within our Global Orientation Field, drawing inspiration from Embedded Deformation
Graphs [65, 69] and their extensions in dynamic modeling [5, 13, 44, 39, 52, 83].

Specifically, each Gaussian G, is softly associated with a set of K nearby oriented anchors via skinning
weights {w;; } computed from spatial proximity. Each anchor i carries a time-varying pair (Of, 7}),

i '
representing its orientation and position at time ¢. We express the relative anchor transformation
in SE(3) across time as: AQ!™" = (O!, 7} )(0},7})~!, which is further converted into a

1—t’
7

dual quaternion q € D. To deform G, towards any target time t', we aggregate the relative
Al—ot’

transformations of its neighboring anchors using a weighted dual quaternion blend [52]: q;

Blendp, ({wij, q}ﬂt/ fil) , which then yields the updated attributes:
'ty _ Alot'pl 1
(Rjalipj)—(lj_> (Rj7l'l’pj)' (15)

Importantly, this deformation scheme provides access to the local orientation o required for state
conditioning in Eq. (9). However, this requires additional care since the deformed Gaussian may not

coincide with any specific anchor. Therefore, we interpolate 0! from surrounding anchors:

0" = Blendso(s) ({wij Of 1, ) . (16)
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Figure 3: Visual comparisons of training sequence reconstruction and novel view synthesis on in-the-wild
videos. Please & zoom in for more details.

This produces a smoothly varying orientation field that respects both the global structure and local
dynamics. By grounding the conditioned slicing on these anchor-driven estimates, our hyper-Gaussian
representation can adaptively capture complex motion across different regions.

5 Experiments

5.1 Experimental Protocol

Datasets. We evaluate the 4D reconstruction and novel view synthesis performance of our OriGS
on a diverse set of in-the-wild monocular videos, emphasizing scenes with complex motion and
object interactions. Our primary evaluation includes videos from DAVIS [59], OpenAl SORA [6],
and YouTube-VOS [74], which reflect the casual and unconstrained nature of our target setting.
For quantitative benchmarking, we additionally report results on the DyCheck dataset [19], which
contains seven scenes with multi-camera captures for novel view synthesis evaluation.

Evaluation. For in-the-wild videos, where ground-truth novel views are inherently unavailable, we
conduct qualitative evaluations to assess the visual fidelity of reconstructed scenes. For the DyCheck
dataset [ 19], which provides multi-camera setups for quantitative assessment, we evaluate our method
using standard image quality metrics: Peak Signal-to-Noise Ratio (PSNR), Structural Similarity
Index Measure (SSIM) [68], and Learned Perceptual Image Patch Similarity (LPIPS) [78]. The
DyCheck dataset uses three synchronized cameras: one hand-held mobile view and two stationary
references. Following [19], we measure reconstruction quality from the reference viewpoints.

5.2 Experimental Results

In-the-wild. We qualitatively evaluate OriGS on a range of casually captured monocular videos
that exhibit diverse motion patterns. Figure 3 presents side-by-side comparisons with MoSca [39],
a recent state-of-the-art system for automatic 4D reconstruction in real-world scenarios. Across



Table 1: Quantitative comparisons of novel view synthesis on DyCheck. We report PSNR, SSIM, and LPIPS
metrics across seven scenes. Markers o and e denote with and without ground-truth camera pose, respectively.

The best, second best , and third best results are highlighted.

Apple Block Paper Windmill Space Out
Method PSNRtT SSIMT LPIPS| PSNR?T SSIM{ LPIPS| PSNRfT SSIM?T LPIPS| PSNRfT SSIMT LPIPS|
> T-NeRF [19] 17.43  0.728 0.508 17.52  0.669 0.346 17.55 0.367 0.258 17.71  0.591 0.377
o NSFF [42] 1647 0.754 0414 1471 0.606 0.438 1494 0.272 0.348 17.65 0.636  0.341
o Nerfies [55] 17.54 0.750 0.478 16.61 0.639 0.389 17.34  0.378 0.211 17.79 0.622  0.303

o HyperNeRF [56] 17.64 0.743  0.478 17.54 0.670 0.331 17.38 0.382  0.209 17.93 0.605 0.320
e RoDynRF [47] 1873 0.722 0.552 1873 0.634 0513 16.71 0.321 0.482 18.56 0.594 0413
o DynPoint [80] 17.78  0.743 - 17.67  0.667 - 17.32 0.366 - 17.78  0.603 -

o PGDVS [79] 16.66 0.721 0.411 16.38 0.601 0.293 17.19 0.386 0.277 1649 0.592 0.326
o DyBIuRF [7] 18.00 0.737 0.488 17.47 0.665 0.349 18.19 0.405 0.301 18.83  0.643 0.326

o CTNeRF [50] 19.53  0.691 - 19.74  0.626 - 17.66  0.346 0.346 18.11  0.601 -

oDyn. GS [49] 7.65 - 0.766 7.55 - 0.684 6.24 - 0.729 6.79 - 0.733
04DGS [71] 15.41 - 0.450 11.28 - 0.633 15.60 - 0.297 14.60 - 0.372
o D-NPC [35] 16.83  0.752 0.469 15.53 0.632 0.350 18.01 0.432 0.209 18.69 0.640 0.246
e Marbles [64] 16.50 - 0.499 16.11 - 0.363 16.19 - 0.454 15.97 - 0.437
o SoM [67] - - - - - - - - - - - -

® MoSca [39] 1599 0.705 0.503 1820 0.665 0.324 21.37 0.645 0.175 22.57 0.750 0.198

@ OriGS (Ours) 17.21  0.739  0.428 18.67 0.676 0.317 21.48 0.646 0.171 22778 0.754 0.194
o OriGS (Ours) 19.46 0.807 0.341 18.76  0.690 0.319 2246 0.751 0.152 20.87 0.672 0.249

Spin Teddy Wheel Average
Method PSNR7T SSIMT LPIPS| PSNR{T SSIMT LPIPS| PSNR{ SSIMT LPIPS| PSNRT SSIMT LPIPS|
o T-NeRF [19] 19.16 0.567 0.443 13.71  0.570 0.429 15.65 0.548 0.292 16.96 0.577 0.379
o NSFF [42] 17.26  0.540 0.371 12.59 0.537 0.527 1459 0.511 0.331 1546 0.551 0.396
o Nerfies [55] 18.38  0.585 0.309 13.65 0.557 0.372 13.82 0458 0.310 16.45 0.570 0.339

oHyperNeRF [56] 19.20 0.561  0.325 13.97 0.568 0.350 13.99 0455 0310 16.81 0.569 0.332
o RoDynRF [47] 17.41 0484 0.570 1433 0.536 0.613 1520 0449 0478 17.10  0.534 0.517
o DynPoint [80] 19.04  0.564 - 13.95 0.551 - 1472 0.515 - 16.89 0.573 -

o PGDVS [79] 18.49 0.590 0.247 1329 0.516  0.399 12.68 0.429 0.429 15.88  0.548 0.340
o DyBIuRF [7] 18.20 0.541 0.400 14.61 0.572 0435 16.26  0.575 0.325 17.37  0.591 0.373

o CTNeRF [50] 19.79 0.516 - 14.51  0.509 - 14.48  0.430 - 17.69 0.531 -

oDyn. GS [49] 8.08 - 0.651 7.41 - 0.690 7.28 - 0.593 7.29 - 0.692
04DGS [71] 14.42 - 0.339 12.36 - 0.466 11.79 - 0.436 13.64 - 0.428
o D-NPC [35] 17.78 0.585 0.309 12.19 0.536  0.503 13.27 0.549 0.349 16.04 0.589 0.348
® Marbles [64] 17.51 - 0.424 13.68 - 0.443 14.58 - 0.389 15.79 - 0.428
oSoM [67] - - - - - - - - - 17.32 0.598 0.296
® MoSca [39] 20.71 0.677 0.229 15.54 0.624 0.356 17.74  0.667 0.238 18.84 0.676 0.289

@ OriGS (Ours) 2092 0.670 0.215 16.11 0.639 0.334 17.92  0.670 0.233 19.30 0.685 0.270
0 OriGS (Ours) 21.62 0.759 0.177 16.45 0.649 0.325 18.19 0.684 0.226 19.69 0.716 0.256

both training sequence reconstruction and novel view synthesis, OriGS consistently recovers cleaner
geometry and preserves structural integrity under complex dynamics. Notably, our method remains
robust in challenging scenarios, such as fast movement (e.g., the spinning pig and the parrot). These
results demonstrate that OriGS generalizes effectively to complex real-world videos, enabling faithful
4D reconstruction and compelling view synthesis without relying on multi-view constraints.

DyCheck. We compare OriGS against recent state-of-the-art methods, including NeRF-based [19, 42,
55,56,47,7,50, 80, 79] and 3DGS-based [49, 71, 35, 64, 67, 39]. Table 1 reports quantitative results
across all seven scenes using PSNR, SSIM, and LPIPS. We indicate whether ground-truth camera
poses are used by markers o (with) and e (without). Our OriGS achieves superior reconstruction
fidelity, especially in scenes involving rotational deformation (e.g., the “Apple” and “Paper Windmill”
scenes), where prior methods tend to produce artifacts. Notably, OriGS outperforms all baselines in
the average across all three metrics, even without access to ground-truth camera pose. When provided
with accurate poses, performance is further improved in most scenes, demonstrating the effectiveness
of our framework. A minor exception is the “Space Out” scene, which is limited by inaccurate pose
metadata provided in the dataset, as previously observed in [67].

Figure 4 showcases the qualitative advantages of OriGS in novel view synthesis. Compared to
mainstream methods, our OriGS can produce sharper surface boundaries and more coherent geometry
under challenging motion. For example, in the “Paper Windmill” scene (top row), other methods
typically struggle with blurred or broken structures due to the rapid spinning motion. In contrast, our
OriGS, by anchoring complex dynamics to a coherent orientation field, maintains the integrity of
the rotating blades. Compared to OriGS, baseline results often exhibit severe ghosting artifacts and



Figure 4: Visual comparisons of novel view synthesis on DyCheck. Markers o and e denote with and without
ground-truth camera pose, respectively. Our OriGS can recover sharper geometry and more coherent motion.

rigid-body distortion in scenes with hand-object occlusion (e.g., the “Block” scene (bottom row)),
further emphasizing the superiority of our method in handling complex motion.

5.3 Ablation Study

To analyze the impact of each design component in OriGS, we conduct a progressive ablation study
from a minimal baseline to our full model. Table 2 reports quantitative results on the “Apple” scene
from DyCheck [19] using the provided

camera pose, and Figure 5 presents Table 2: Ablation study on OriGS variants on the “Apple”
qualitative comparisons on the “Libby” scene from DyCheck [19].

scene from DAVIS [59] ) We follow Method ‘ PSNRT SSIMT LPIPS]
the same experimental setting for novel
view synthesis as in Section 5.2. (i) We

(i) 3DGS-MLP (Baseline) 13.47 0.532 0.586

L0 ) . (ii) Deform w/ GOF 1628  0.69 0476
Ev%%?e Z;gﬁ%%sa 111\;[:;;1)1 ai&?&?‘fshgei (iii) Hyper-Gaussian w/ ¢ | 1871 0750  0.393
p P~ (iv) OriGS (Full) 19.46  0.807  0.341

dated individually across time using a
shared deformation MLP, without explicit motion modeling. This baseline can only capture simple
movement and struggles with structural coherence. (ii) Next, we consider Deform w/ GOF, which
replaces the MLP with anchor-driven deformation guided by our Global Orientation Field. This
variant enables Gaussian primitives to capture global motion, yet lacks the expressiveness to model
complex dynamics across regions. (iii) To enable localized, time-adaptive behavior, we augment
the model with Hyper-Gaussian w/ ¢, where each Gaussian encodes a probabilistic state over time,
space, and geometry (i.e., & = (Ap,Ag,t) ). The deformation is inferred by conditioning this
hyper-Gaussian on the target time step, enabling smoother and temporally adaptive reconstruction.
(iv) Finally, our OriGS further incorporates orientation as a conditioning signal. By anchoring local
dynamics to both temporal and orientational cues, it enables the model to capture direction-sensitive
motion patterns and better preserve coherent evolution across regions with diverse dynamics.

Original 3DGS-MLP Deform w/ GOF  Hyper-Gaussian w/ ¢ OriGS

Figure 5: Ablation study on OriGS variants on the “Libby” scene from DAVIS [59]. We show a frame from
the original input video (leftmost) and zoomed-in novel view synthesis results from different ablated variants.

The main region of interest is the dog behind the pillar , which exhibits fast movement and heavy occlusion.



6 Conclusion

In this work, we presented Orientation-anchored Gaussian Splatting (OriGS), a novel framework
for 4D reconstruction from casually captured monocular videos. Our core insight is to embrace
orientation as a dynamic anchor that organizes how different parts of the scene deform and interact.
By introducing a Global Orientation Field and a Hyper-Gaussian representation, OriGS models
long-range evolution and local motion variation in a unified and principled manner, thereby capturing
coherent dynamics across the scene. Extensive experiments demonstrate the superiority of our OriGS,
enabling high-fidelity reconstruction and view synthesis under challenging real-world scenarios.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction accurately reflect the contributions
of the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to supplementary materials.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please refer to Section 5.1 and supplementary materials.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The code will be released publicly.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please refer to supplementary materials.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Error bars are not reported because it would be too computationally expensive.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Please refer to supplementary materials.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research conducted in this paper adheres to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Please refer to supplementary materials.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All external assets such as datasets and code libraries used in the research are
properly credited, and their licenses are respected and clearly mentioned.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,

or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Evaluation on Point Tracking

Following the DyCheck benchmark [19] and prior works [64, 39], we perform a quantitative evalua-
tion on point tracking accuracy. We compare with both tracking and reconstruction methods. Results
shown in Table 3 indicate the superiority of our OriGS.

Table 3: Correspondence Evaluation on DyCheck with PCK-T @0.05%.
Method Nerfies [55] HyperNeRF [56] Dyn. GS [49] 4DGS [71]

PCK-T 1 0.400 0.453 0.079 0.073
Method CoTracker [36] Marbles [64] MoSca [39]  OriGS (Ours)
PCK-T 1 0.803 0.806 0.824 0.851

B Demo Videos

To further showcase the effectiveness of OriGS in real-world scenarios, we include additional video
demonstrations of in-the-wild 4D reconstruction in the supplementary material. Following the
same experimental setup as in the main paper, we present visualizations of both training sequence
reconstruction and novel view synthesis, comparing OriGS with the recent state-of-the-art 4D
reconstruction system. In addition, we provide video demonstrations of the OriGS variants designed
in our ablation study, illustrating how individual components affect reconstruction quality. These
results collectively highlight the temporal consistency and structural fidelity of OriGS across diverse
scenes and motion patterns.

C Implementation Details

Oriented Anchor Initialization. We follow a similar initialization pipeline provided in recent
open-source codebases of dynamic reconstruction frameworks [64, 39]. Specifically, we first extract
long-range 2D point trajectories using SpatialTracker [73] and obtain per-frame depth maps using
DepthCrafter [29]. These 2D correspondences are lifted into 3D space using estimated camera
parameters from bundle adjustment [39]. The resulting 3D trajectories are then converted into
oriented anchors, whose initial principal directions are estimated by applying PCA over early-frame
motion. In our experiments, we set the temporal window size W = 5. This step provides a stable
estimate of forward direction, which is then temporally propagated to form Global Orientation Field.

Hyper-Gaussian Parameterization. We adopt the 3D Gaussian Splatting (3DGS) [37] as the
base representation and extend each Gaussian primitive with a hyper-Gaussian parameterized by
a canonical state g and a Cholesky-decomposed covariance 3¢ = LELg, where L¢ is a lower-
triangular matrix [22, 23, 11, 24]. To improve computational efficiency, we avoid constructing the
full covariance matrix X¢. Instead, we further factor it into two learnable subcomponents: (i) a
marginal covariance 3 (; oy over temporal and orientational variables, which inherits the Cholesky-
decomposed parameterization to ensure positive semi-definiteness, and (ii) a cross-covariance term
3 (Ap,Ag),(t,0) that captures the correlation between dynamic geometry (Ap, Ag) and temporal-
orientational context. During training, we jointly optimize these covariance terms along with the
canonical mean p¢ and the original 3DGS parameters (position, scale, rotation, color, and opacity).
This factorization strategy circumvents the overhead of full matrix parameterization while retaining
the necessary statistical coupling for efficient conditioned slicing.

Optimization. We optimize the model using the differentiable rasterization-based rendering pipeline
from 3DGS [37], adapted to support high-dimensional slicing and dynamic modulation. The loss
function combines: (i) photometric loss [37], an RGB reconstruction loss between rendered and
ground-truth images, (ii) 2D correspondence loss, alignment to long-range 2D tracks and depth priors
from foundation models, as in [64, 39, 44, 54], and (iii) deformation regularization, an as-rigid-as-
possible constraint [73, 63, 1, 32] applied to anchor-guided transformations. For scalability and
high-fidelity reconstruction, we also design a pruning-and-densification scheme: Gaussian primitives
with low opacity are pruned, while spatial regions exhibiting high response gradients with respect
to pp and pap are densified through local duplication. All experiments are conducted on a single
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NVIDIA RTX A6000 GPU, and the full optimization of a typical scene takes approximately 0.5-2
hours, depending on video length and complexity.

D Limitations

While OriGS demonstrates promising results, it also presents certain limitations. (i) In scenes
dominated by simple motion, such as near-rigid translation along a fixed axis, orientation tends
to remain approximately constant over time. Consequently, conditioning on these orientational
cues may offer limited additional benefit, yet our framework still incurs unnecessary optimization
complexity of high-dimensional modeling. Future work could explore adaptive mechanisms that
modulate the use or dimensionality of orientation cues based on the complexity of motion in the
scene. (ii) OriGS leverages 2D priors such as point trajectories and depth from vision foundation
models to initialize and optimize the orientation field. The reliability of these priors can affect the
quality of 4D reconstruction. This reflects a deeper challenge tied to the development of reliable
visual priors, which has long been a cornerstone of progress in computer vision research.

E Broader Impacts

OriGS provides a unified framework for reconstructing dynamic scenes from casual monocular
videos, which can benefit various real-world applications. For instance, in virtual and augmented
reality, OriGS can reconstruct dynamic environments or actors from consumer-grade video input
alone, lowering the barrier to immersive content creation. Our work can also support robotics and
behavioral analysis, especially where low-cost monocular capture is the only viable option. However,
as with other scene reconstruction techniques, OriGS could potentially be misused for unauthorized
replication of environments or individuals. While our framework is not designed for such misconduct,
responsible usage should consider privacy and ethical concerns.
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