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ABSTRACT

Mesh deformation plays a pivotal role in many 3D vision tasks including dynamic
simulations, rendering, and reconstruction. However, defining an efficient discrep-
ancy between predicted and target meshes remains an open problem. A prevalent
approach in current deep learning is the set-based approach which measures the
discrepancy between two surfaces by comparing two randomly sampled point-
clouds from the two meshes with Chamfer pseudo-distance. Nevertheless, the
set-based approach still has limitations such as lacking a theoretical guarantee for
choosing the number of points in sampled point-clouds, and the pseudo-metricity
and the quadratic complexity of the Chamfer divergence. To address these issues,
we propose a novel metric for learning mesh deformation. The metric is defined
by sliced Wasserstein distance on meshes represented as probability measures that
generalize the set-based approach. By leveraging probability measure space, we
gain flexibility in encoding meshes using diverse forms of probability measures,
such as continuous, empirical, and discrete measures via varifold representation.
After having encoded probability measures, we can compare meshes by using
the sliced Wasserstein distance which is an effective optimal transport distance
with linear computational complexity and can provide a fast statistical rate for
approximating the surface of meshes. To the end, we employ a neural ordinary
differential equation (ODE) to deform the input surface into the target shape by
modeling the trajectories of the points on the surface. Our experiments on cortical
surface reconstruction demonstrate that our approach surpasses other competing
methods in multiple datasets and metrics.

1 INTRODUCTION

Mesh deformation is a fundamental task in 3D computer vision and computer graphics. A wide
range of shape reconstruction tasks (Chen & Zhang, 2019; Jiang et al., 2020; Mescheder et al.,
2019; Niemeyer et al., 2020; Park et al., 2019; Sun et al., 2023; Yariv et al., 2020) and shape
registration (Ashburner, 2007; Dalca et al., 2018; Balakrishnan et al., 2019; Le et al., 2024; Krebs
et al., 2019; Dalca et al., 2019; Han et al., 2024; Sun et al., 2022; Han et al., 2023) leverages
state-of-the-art mesh deformation methodology. One popular approach for mesh deformation is
to estimate the vertex displacement vectors (3D offsets) while keeping their connectivity (Wang
et al., 2019; Bongratz et al., 2022). However, displacement-based methods cannot guarantee the
manifoldness of the resulting mesh and often produce self-intersecting faces. To address this issue,
diffeomorphic transformation (Ruelle & Sullivan, 1975; Arsigny, 2004) is one effective way to
deform a mesh while preserving its topology. As an instance of diffeomorphic surface deformation,
Neural Mesh Flow (NMF) (Gupta, 2020) learns a sequence of diffeomorphic flows between two
meshes and models the trajectories of the mesh vertices as ordinary differential equations (ODEs).
However, these methods have limited shape representation capacity and struggle to perform well on
complex manifolds. To overcome this limitation, several diffeomorphic mesh deformation models
have been proposed, such as CortexODE (Ma et al., 2022) and CorticalFlow (Lebrat et al., 2022),
which aim to handle hard manifolds, such as the cortical surface. While CorticalFlow (Lebrat et al.,
2022) introduces diffeomorphic mesh deformation (DMD) modules to learn a series of stationary
velocity fields, CortexODE (Ma et al., 2022) encodes spatial information of the MRI images along
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Figure 1: 2D deformation toy example. We deform a (a) template circle to a (b) target polygon via
an optimization-based setting. (c) Points are uniformly sampled from the two contours. CD loss is
easily trapped at local minima, i.e. the green points are not uniformly distributed on the target contour
as desired. In contrast, (e) SWD loss can find the optimal transport plan among discrete probability
measures, i.e. the resulting points are distributed more uniformly along the contour. More details
about this toy example can be found in the Appendix B.

with vertices features using an MLP model and employs neural ODEs (Chen et al., 2018) to model
the trajectories of the points. Nonetheless, these approaches often rely on Chamfer distance as the
objective function, which might have disadvantages.

Selecting an appropriate metric to evaluate the dissimilarity between two meshes is a crucial step
in learning deformation mesh models. Recent literature favors the approach of using set-based
comparison due to its simplicity. In particular, the set-based approach first samples two sets of points
on the surface meshes, and then use Chamfer distance (CD) (Deng et al., 2018; Duan et al., 2019;
Groueix et al., 2018) to compare two meshes and optimize them. However, the CD loss tends to
get trapped in local minima easily (Achlioptas et al., 2018; Nguyen et al., 2021b; 2023; 2024a),
failing to distinguish bad samples from the true ones, as demonstrated by our toy example in Fig. 1.
Although a weighted CD has been proposed to prioritize fitting local regions with high curvatures
in Vox2Cortex (Bongratz et al., 2022), the issue is only alleviated but not resolved completely,
still resulting in suboptimal assignments between two sets of points. Therefore, we propose novel
approaches to transform a mesh into a probability measure that generalizes the set-based approach.
Furthermore, by relying on the probability measure approach, we can employ geometric measure
theory to represent mesh as an oriented varifold (Almgren, 1966; Vaillant & Glaunes, 2005; Glaunès
et al., 2008) and get a better approximation of the mesh compared to the random sampling approach.
After that, we adopt efficient optimal transport to compare these measures since optimal transport
distances are naturally fitted to compare disjoint-support measures.

Wasserstein distance (Peyré & Cuturi, 2019; Villani, 2009) has been widely recognized as an effective
optimal transport metric to compare two probability measures, especially when their supports
are disjointed. Despite having a lot of appealing properties, the Wasserstein distance has high
computational complexity. In particular, when dealing with discrete probability measures that have at
most m supports, the time and memory complexities of the Wasserstein distance are O(m3 logm)
and O(m2), respectively. The issue becomes more problematic when the Wasserstein distance is
computed on different pairs of measures as in mesh applications, namely, each mesh can be treated as
a probability measure.

To improve the computational complexities of the Wasserstein distance, by adding entropic regular-
ization and using the Sinkhorn algorithm (Cuturi, 2013), an ϵ-approximation of Wasserstein distance
can be obtained in O(m2/ϵ2). However, this approach cannot reduce the memory complexity of
O(m2) due to the storage of the cost matrix. Moreover, the entropic regularization approach cannot
lead to a valid metric between probability measures since the resulting discrepancy does not satisfy
the triangle inequality. A more efficient approach based on the closed-form solution of Wasserstein
is sliced Wasserstein distance (SWD) (Bonneel et al., 2015), which is computed as the expectation
of the Wasserstein distance between random one-dimensional push-forward measures from two
original measures. SWD can be solved inO(m logm) time complexity while having a linear memory
complexity O(m).

In this paper, we propose a learning-based Diffeomorphic mesh Deformation framework via an
efficient Optimal Transport metric, dubbed DDOT, that learns continuous dynamics to smoothly
deform an initial mesh towards an intricate shape based on volumetric input. Specifically, given a
3D brain MRI volume, we aim to reconstruct the highly folded white matter surface region. We first
extract the initial surface from the white matter segmentation mask of the brain MRI image, then
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we deform the initial surface to the target surface by modeling its vertices trajectory via neural ODE
(Chen et al., 2018). Our deformation model is optimized via sliced Wasserstein distance loss by
encoding the mesh as a probability measure. We further represent mesh as an oriented varifold and
empirically show that our approach surpasses other related works on multiple datasets and metrics,
namely, almost self-intersection-free while maintaining high geometric accuracy. It is worth noting
that although our DDOT is developed within the scope of cortical surface reconstruction (CSR), the
underlying concepts can be extended to other 3D deformation networks.

Contribution. In summary, our contributions are as follows:

1. We propose to represent triangle meshes as probability measures that generalize the common
set-based approach in a learning-based deformation network. Specifically, we present three
forms of mesh as probability measure: continuous, empirical, and discrete measure via an
oriented varifold.

2. We propose a new metric for learning mesh deformation. Our metric utilizes the sliced
Wasserstein distance (SWD), which operates on meshes represented as probability measures.
We demonstrate that sliced Wasserstein distance (SWD) is a valid computationally fast
metric between probability measures and provide the approximation bound between the
SWD between empirical probability measures and the SWD between continuous probability
measures.

3. We conduct extensive experiments on white matter reconstruction by employing neural
ODE (Chen et al., 2018) to deform the initial surface to the target surface. Our experiments
on multiple brain datasets demonstrate that our method outperforms existing state-of-the-art
related works in terms of geometric accuracy, self-intersection ratio, and consistency.

Organization. The paper’s structure is as follows. We first provide background about the set-
based approach for comparing two meshes and the definition of Wasserstein distance as well as
diffeomorphic flows for deforming meshes in Section 2. In Section 3, we propose probability measure
encoding to represent mesh and further employ SWD as an objective function for diffeomorphic
deformation framework as well as analyze their relevant theoretical properties. Section 4 presents
our experiments on reconstructing cortical surface and provides quantitative results compared to
state-of-the-art methods. In Section 5, we identify the limitations of our approach and outline potential
avenues for future research. We then draw concluding remarks in Section 6. Finally, we defer the
proofs of key results, supplementary materials, and discussion on related works to Appendices.

Notations. For any d ≥ 2, we denote Sd−1 := {θ ∈ Rd | ||θ||22 = 1} and U(Sd−1) as the unit hyper-
sphere and its corresponding uniform distribution. We denote θ♯µ as the push-forward measures
of µ through the function f : Rd → R that is f(x) = θ⊤x. Furthermore, we denote δx as Dirac
distribution at a location x, and Pp(Rd) is the set of probability measures over Rd that has finite
p-moment. By abuse of notations, we use capitalized letters for both random variables and sets.

2 BACKGROUND

In this section, we first review the set-based approach for comparing two meshes. After that, we
review the definition of Wasserstein distance and diffeomorphic flows for deforming meshes.

2.1 THE SET-BASED APPROACH: MESH TO POINT-CLOUD

Mesh to a point-cloud. To sample a point p from a mesh, a face f = (x1, x2, x3) is first sampled
with the probability proportional to the area of the face. Then, the position p can be sampled by
setting p := w1x1 + w2x2 + w3x3, where w1 + w2 + w3 = 1 are random barycentric coordinates
which are uniformly distributed over a triangle (Ravi et al., 2020; Wang et al., 2019). The process is
repeated until getting the desired number of points.

Comparing two point-clouds. After having representative point-clouds from meshes, a discrepancy
in the space of point-clouds (sets) is used. The most widely used discrepancy for point-cloud is the
set-based Chamfer pseudo distance (Barrow et al., 1977). For any two point-clouds X and Y , the
Chamfer distance is:

CD(X,Y ) =
1

|X|
∑
x∈X

min
y∈Y
∥x− y∥22 +

1

|Y |
∑
y∈Y

min
x∈X
∥x− y∥22, (1)

where |X| denotes the number of points in X .
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2.2 WASSERSTEIN DISTANCE

We now review the definition of the Wasserstein distance for comparing two probability measures
µ ∈ Pp(Rd) and ν ∈ Pp(Rd). The Wasserstein-p (Villani, 2003) distance between µ and ν as
follows:

Wp
p(µ, ν) := inf

π∈Π(µ,ν)

∫
Rd×Rd

∥x− y∥ppdπ(x, y), (2)

where Π(µ, ν) is the set of joint distributions that have marginals are µ and ν respectively. A benefit
of Wasserstein distance is that it can handle two measures that have disjointed supports.

Wasserstein distance between continuous measures. Computing the Wasserstein distance ac-
curately between continuous measures is still an open question (Korotin et al., 2021) due to the
non-optimality and instability of the minimax optimization for continuous functions which are the
Kantorovich potentials (Arjovsky et al., 2017). Hence, discrete representations of the continuous
measures are often used as proxies to compare them. i.e., the plug-in estimator (Bernton et al., 2019).
In particular, let X1, . . . , Xm

i.i.d∼ µ and Y1, . . . , Ym
i.i.d∼ ν, the Wasserstein distance Wp(µ, ν) is ap-

proximated by Wp(µ̂m, ν̂m) with µ̂m = 1
m

∑m
i=1 δXi

and ν̂m = 1
m

∑m
i=1 δYi

are the corresponding
empirical measures. However, the convergence rate of the Wasserstein distance isO(m−1/d) (Mena &
Weed, 2019). Namely, we have E [|Wp(µ̂m, ν̂m)−Wp(µ, ν)|] ≤ Cm−1/d for an universal constant
C, where µ̂m = 1

m

∑m
i=1 δXi

is the corresponding empirical measure. Therefore, the Wasserstein
distance suffers from the curse of dimensionality i.e., the Wasserstein distance needs more samples
to represent the true measure well when dealing with high-dimensional measures. In the setting of
comparing meshes, the Wasserstein distance will be worse if we use more features for meshes e.g.,
normals, colors, and so on.

Wasserstein distance between discrete measures. When µ and ν are two discrete probability
measures that have at most m supports, the time complexity and memory complexity to compute the
Wasserstein distance areO(m3logm) andO(m2) respectively. Therefore, using the plug-in estimator
requires expensive computation since it requires a relative large value of m to the dimension.

2.3 DIFFEOMORPHIC FLOWS

Diffeomorphic flows can be established by dense point correspondences between source and target
surfaces. Given an input surface, the trajectories of the points can be modeled by an ODE, where
the derivatives of the points are parameterized by a deep neural network (DNN). Specifically, let
Φ(p, t) : Ω ⊂ R3 × [0, 1] 7→ Ω ⊂ R3 be a continuous hidden state of the neural network that defines
a trajectory from source position p = Φ(p, 0) to the target position p′ = Φ(p, 1), and Fϕ be a DNN
with parameters ϕ. An ordinary differential equation (ODE) with the initial condition is defined as:

∂Φ(p, t)

∂t
= Fϕ(Φ(p, t), t) s.t. Φ(p, 0) = p, (3)

If Fϕ is Lipschitz, a solution to Eq. 3 exists and is unique in the interval [0, 1], which provides a theo-
retical guarantee that any two deformation trajectories do not intersect with each other (Coddington
& Levinson, 1984).

3 DIFFEOMORPHIC MESH DEFORMATION VIA AN EFFICIENT OPTIMAL
TRANSPORT METRIC

In this section, we generalize the set-based mesh representation by proposing three ways of trans-
forming mesh into probability measure encoding. We further employ sliced Wasserstein distance as
an objective function in the diffeomorphic flow model for cortical surface reconstruction task.

3.1 THE MEASURE-APPROACH: MESH TO PROBABILITY MEASURE

We now discuss the approach that we rely on to compare meshes via probability metrics. In particular,
we consider transforming a mesh into a probability measure.

Mesh to a continuous and hierarchical probability measure. Let a mesh M have a set
of faces FM = {fM

1 , . . . , fM
N } (N > 0) where a face f is represented by its vertices
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Ver(f) = {x1, . . . , xvf } (vf ≥ 3). We now can define a probability measure over faces, namely,
µM(f) =

∑N
i=1

Vol(fM
i )∑N

j=1 Vol(fM
j )

δfM
i

is the categorical distribution over the faces that has the weights

proportional to the areas of the faces (volume of the convex hull of vertices). For example, in the
case of triangle meshes, we have Ver(f) = (x1, x2, x3) and Vol(f) = 1

2∥(x2 − x1)× (x3 − x1)∥.
Given a face f , the conditional distribution for a point in the space is µM(x|f) = 1

Vol(f) ,∀x ∈
ConvexHull(Ver(f)). Therefore, the marginal distribution for a point in the space induced by a mesh
M is µM(x) =

∑N
i=1 µ

M(x|fM
i )µM(fM

i ). It is worth noting that given two meshes M1 and
M2, their corresponding probability measures µM1 and µM2 are likely to have disjoint supports.
Therefore, the optimal transport distances are natural metrics for comparing them.

Mesh to an empirical probability measure. As discussed in the background, the most computa-
tionally efficient and stable approach to approximate the Wasserstein distance is through the plugin
estimator (Bernton et al., 2019). In particular, let x1, . . . , xm be a set of points that are independently
identically sampled from µM1 and y1, . . . , ym be a set of points that are independently identically
sampled from µM2 . After that, we can define µ̂M1

m = 1
m

∑m
i=1 δxi

and µ̂M2
m = 1

m

∑m
i=1 δyi

as the
represented empirical probability measure of the two meshesM1 andM2 respectively. Finally, the
discrete Wasserstein distance is computed between µ̂M1

m and µ̂M2
m as the final discrepancy.

Mesh to a discrete probability measure. To have a richer representation of mesh, we consider the
discrete probability measure representation through varifold. Let M be a smooth submanifold of
dimension 2 embedded in the ambient space of Rn, e.g. n = 3 for surface, with finite total volume
Vol(M) < ∞. For every point p ∈ M , there exists a tangent space TpM be a linear subspace
of Rn. To establish an orientation of M , it is essential to orient the tangent space TpM for every
p ∈ M . This ensures that each oriented tangent space can be represented as an element of an
oriented Grassmannian. Inspired from previous works (Glaunes et al., 2004; Vaillant & Glaunes,
2005; Charon & Trouvé, 2013; Kaltenmark et al., 2017), M can be associated as an oriented varifold
µ̃M , i.e. a distribution on the position space and tangent space orientation Rn × Sn−1, as follows:
µ̃M =

∫
M

δ(p,n⃗(p))dVol(p), where n⃗(p) is the unit oriented normal vector to the surface at p. Once
established the oriented varifold for a smooth surface, an oriented varifold for triangular meshM
that approximates smooth shape M can be derived as follows:

µ̃M =

|F |∑
i=1

µ̃fi =

|F |∑
i=1

∫
fi

δ(pi,n⃗(pi))dVol(p) ≈
|F |∑
i=1

αiδ(pi,n⃗(pi)), (4)

where pi is the barycenter of the vertices of face fi and αi := Vol(fi) is the area of the triangle. To
ensure that µ̃M possesses the characteristic of a discrete measure, we normalize αis’ such that they
sum up to 1. Note that provided the area of triangular is sufficiently small, µ̃M gives an acceptable
approximation of the discrete meshM in terms of oriented varifold (Kaltenmark et al., 2017).

3.2 EFFECTIVE AND EFFICIENT MESH COMPARISON WITH SLICED WASSERSTEIN

Sliced Wasserstein distance. The sliced Wasserstein distance (Bonneel et al., 2015) (SWD) between
two probability measures µ ∈ Pp(Rd) and ν ∈ Pp(Rd) is defined as:

SWp
p(µ, ν) = Eθ∼U(Sd−1)[W

p
p(θ♯µ, θ♯ν)], (5)

The benefit of SW is that Wp
p(θ♯µ, θ♯ν) has a closed-form solution which is

∫ 1

0
|F−1

θ♯µ(z)−F
−1
θ♯ν(z)|pdz

with F−1 denotes the inverse CDF function. The expectation is often approximated by Monte Carlo
sampling, namely, it is replaced by the average from θ1, . . . , θL (L is the number of projections) that
are drawn i.i.d from U(Sd−1). In particular, we have:

ŜW
p

p(µ, ν) =
1

L

L∑
l=1

Wp
p(θl♯µ, θl♯ν). (6)

The computational complexity and memory complexity of the Monte Carlo estimation of SW are
O(Lm logm) and O(Lm) (Nguyen & Ho, 2024) respectively when µ and ν are discrete measures
with at most m supports. Therefore, the SW is naturally suitable for large-scale mesh comparison.
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Convergence rate. We now discuss the non-asymptotic convergence of the Monte Carlo estimation
of the sliced Wasserstein between two empirical probability measures to the sliced Wasserstein
between the corresponding two continuous probability measures on surface meshes.

Theorem 1. For any two meshes M1 and M2, let X1, . . . , Xm
i.i.d∼ µM1(x), Y1, . . . , Ym

i.i.d∼
µM2(x), µ̂M1

m (x) = 1
m

∑m
i=1 δXi

and µ̂M2
m (x) = 1

m

∑m
i=1 δYi

be the corresponding empirical
distribution. Assume that µM1 and µM2 have compact supports with the diameters that are at most
R, we have the following approximation error :

E
[∣∣∣ŜW

p

p(µ̂
M1
m , µ̂M2

m ;L)− SWp
p(µ

M1 , µM2)
∣∣∣] ≤ RCp,R

√
(d+ 1) logm

m

+
1√
L
E
[
Var
[
Wp

p(θ♯µ̂
M1
m , θ♯µ̂M2

m )
]1/2 |X1:m, Y1:m

]
,

for an universal constant Cp,R > 0. The variance is with respect to θ ∼ U(Sd−1).

Theorem 1 suggests that when using empirical probability measure to approximate meshes, the error
between the Monte Carlo estimation of sliced Wasserstein distance between empirical distributions
over two sampled point-clouds and sliced Wasserstein distance between two continuous distributions
on meshes surface is bounded by the rate of m−1/2 and L−1/2. It means that, when increasing the
number of points and the number of projections, the error reduces by the square root of them. This
rate is very fast since it does not depend exponentially on the dimension, hence, it is scalable to
meshes with high-dimensional features at vertices, such as normals, colors, and so on. Leveraging the
scaling property and the approximation of varifold to meshMmentioned in Sec 3.1, we can represent
meshes as discrete measures µ̃M and optimize ŜW

p

p(µ̃
M1 , µ̃M2 ;L) as the objective function. The

proof of Theorem 1 is given in Appendix C. It is worth noting that a similar property is not able to be
derived for Chamfer since it is a discrepancy on sets that cannot be generalized to compare meshes.

3.3 SLICED WASSERSTEIN DIFFEOMORPHIC FLOW FOR CORTICAL SURFACE
RECONSTRUCTION

Diffeomorphic deformation framework for reconstructing cortical surfaces. In this section,
we present DDOT that incorporates diffeomorphic deformation and sliced Wasserstein distance to
reconstruct the cortical surface. Specifically, our goal is to derive a high-resolution, 2D manifold of
the white matter that is topologically accurate from a 3D brain MR image. Let I ∈ RD×W×H be a
MRI volume andM = (V,F) be a 3D triangle mesh. The corresponding vertices of the mesh are
represented by v ∈ R3. Firstly, we train a U-Net model to automatically predict the white matter
segmentation mask from I. Then, a signed distance function (SDF) is extracted from the binary
mask before employing Marching Cubes (Lorensen & Cline, 1987) to get the initial surface. After
getting the initial surfaceM0, the trajectory of each coordinate v0 is modeled via the ODE with
initial condition from Eq. 3. Inspired from (Ma et al., 2021; 2022), we concatenate the point features
with the corresponding cube features sampling from I as a new feature vector. The new feature is
passed through a multilayer perceptron Fϕ to learn the deformation. More implementation settings
are included in the Appendix D.

Sliced Wasserstein distance as a loss function. To train the DDOT model, we minimize the distance
between predicted mesh M̂ and the ground truth meshM∗. We adopt a novel way of transforming
mesh into a probability measure and leveraging sliced Wasserstein distance (SWD) as a loss function
to optimize two discrete meshes. As discussed, the SW is a valid metric on the space of distribution
and can guarantee the convergence of the probability measure. Moreover, as shown in Theorem 1, the
sample complexity of the SW is bounded with a parametric rate, hence, it is suitable to use the SW to
compare empirical probability measures as the proxy for the continuous mesh probability measure.
Therefore, we sample points on M̂ andM∗ as probability measures and compute SWD loss between
these two measures without regularization terms. Additionally, we can represent mesh as discrete
probability measures, i.e. oriented varifold, and utilize the same objective function. Based on our
observations, the varifold representation has shown better performance compared to encoding using
empirical probability measures, which we provide a more detailed comparison in our ablation study
in Sec. 4.3. As a result, we assume that our experiments in the following sections will be conducted
using the oriented varifold approach unless otherwise specified.
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Table 1: Quantitative results of white matter surface reconstruction in terms of earth mover’s
distance (EMD), sliced Wasserstein distance (SWD), average symmetric surface distance (ASSD),
Chamfer normals (CN), and self-intersection face ratio (SI) on ADNI and OASIS datasets. Best
values are highlighted. EMD, SWD, ASSD results are in mm. All results are listed in the format
“mean value ± standard deviation”. DDOT represents the reconstruction results from our proposed
approach. While ↓ means smaller metric value is better, ↑ indicates a larger metric value is better.

ADNI dataset Left WM Right WM

Method EMD (mm) ↓ SWD (mm) ↓ ASSD (mm) ↓ CN ↑ SI (%) ↓ EMD (mm) ↓ SWD (mm) ↓ ASSD (mm) ↓ CN ↑ SI (%) ↓
DeepCSR 1.368 ±.721 1.357 ±1.178 .390 ±.162 .934 ±.016 \ 1.350 ±.350 1.357 ±.589 .388 ±.172 .936 ±.014 \
Vox2Cortex 1.051 ±.173 .823 ±.351 .346 ±.073 .926 ±.011 .719 ±.214 1.048 ±.134 .811 ±.294 .335 ±.061 .927 ±.010 .745 ±.199
CFPP .912 ±.435 .525 ±.265 .271 ±.071 .936 ±.009 .058 ±.032 .821 ±.169 .473 ±.286 .268 ±.073 .933 ±.009 .067 ±.032
CortexODE .803 ±.136 .436 ±.403 .234 ±.064 .938 ±.010 .013 ±.011 .782 ±.081 .384 ±.259 .231 ±.052 .939 ±.019 .004 ±.005
Ours .728 ±.013 .420 ±.273 .202 ±.043 .945 ±.012 < 10−4 .702 ±.068 .365 ±.223 .205 ±.056 .938 ±.012 < 10−4

OASIS dataset Left WM Right WM

Method EMD (mm) ↓ SWD (mm) ↓ ASSD (mm) ↓ CN ↑ SI (%) ↓ EMD (mm) ↓ SWD (mm) ↓ ASSD (mm) ↓ CN ↑ SI (%) ↓
DeepCSR .887 ±.787 1.020 ±.392 .312 ±.124 .941 ±.010 \ .900 ±.740 1.072 ±.419 .344 ±.158 .941 ±.011 \
Vox2Cortex .594 ±.236 .876 ±.053 .302 ±.037 .928 ±.008 .994 ±.193 .574 ±.256 .872 ±.062 .303 ±.042 .929 ±.009 1.022 ±.186
CFPP .511 ±.222 .841 ±.059 .225 ±.038 .937 ±.007 .054 ±.060 .473 ±.224 .840 ±.071 .227 ±.046 .935 ±.008 .076 ±.068
CortexODE .425 ±.193 .785 ±.047 .183 ±.036 .943 ±.007 .032 ±.025 .434 ±.256 .787 ±.065 .182 ±.052 .943 ±.008 .022 ±.020
Ours .418 ±.192 .779 ±.055 .161 ±.040 .949 ±.005 < 10−4 .429 ±.250 .770 ±.059 .160 ±.046 .949 ±.008 < 10−4

4 EXPERIMENTS

Within this section, we first provide detailed settings and conduct extensive experiments on multiple
datasets. Furthermore, we also give a comprehensive ablation study to validate our findings.

4.1 EXPERIMENTAL SETTINGS

Datasets. We conduct experiments on three publicly available datasets: ADNI dataset (Jack Jr
et al., 2008), OASIS dataset (Marcus et al., 2007), and TRT dataset (Maclaren et al., 2014). The
pseudo-ground truth surfaces are obtained from Freesurfer v5.3 (Fischl, 2012). We want to emphasize
that using pseudo-ground truth as a reference is a standard practice in brain image analysis, adopted
by all of the methods we have included in our comparison (Cruz et al., 2021; Bongratz et al., 2022;
Santa Cruz et al., 2022; Ma et al., 2022). Therefore, using pseudo-ground truth does not limit
the significance of our contributions within the context of this paper. Regarding data split, we
carefully stratified (at the patient-level) each dataset into train, valid, and test sets. We select the best
checkpoint based on train and validation set, subsequently reporting the outcomes on the unseen test
set. Additional dataset details are available in Appendix E.

Baselines. We reproduce all competing methods using their official implementations and recom-
mended experimental settings based on our split for a fair comparison. Specifically, we reproduce
DeepCSR (Cruz et al., 2021) in both the occupancy field and signed distance function (SDF) and
report SDF results due to better performance. For Vox2Cortex (Bongratz et al., 2022), we use the
authors’ suggestion with a high-resolution template with ≈ 168, 000 vertices for each structure to
get the best performance. Regarding CorticalFlow (Lebrat et al., 2021), we reproduce with their
improved version settings CFPP (Santa Cruz et al., 2022). Finally, we retrain CortexODE (Ma et al.,
2022) with default settings.

Metrics. We employ various metrics including earth mover’s distance (EMD), sliced Wasserstein
distance (SWD), average symmetric surface distance (ASSD), Chamfer normals (CN), and self-
intersection faces ratio (SI). We sample 100K points over the predicted and target surface to compute
EMD, SWD, ASSD, and CN. Due to the large number of sampled points, we estimate EMD using
entropic regularization and the Sinkhorn algorithm from (Feydy et al., 2019). Furthermore, we
determine SI faces using PyMesh (Zhou, 2019) library.

4.2 RESULTS & DISCUSSION

4.2.1 RESULTS

Geometric accuracy. As shown in Tab. 1, our DDOT provides more geometrically accurate surfaces
than other competing methods in multiple metrics. Qualitative results from Fig. 2 also indicate that
our proposed method is closer to the ground truth than competing methods.
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Figure 2: Qualitative results of white matter surface reconstruction. The color represents the
point-to-face distance, i.e., the darker color is, the further the predicted mesh to the pseudo-ground
truth. More visualization is given in Appendix F and the video supplementary.

Self-intersection. Compared to GNN deformation-based methods such as Vox2Cortex with no
SI-free theoretical guarantee, diffeomorphic deformation-based methods such as CFPP, CortexODE,
and our proposed approach has much less SI. However, despite the nice property of existence and
uniqueness of the solution of ODE models, CFPP and CortexODE still introduce a certain amount
of SI faces since they both rely on the optimization of Chamfer divergence on discretized vertices
of the mesh. Our approach, on the other hand, represents mesh as probability measures and has
strong theoretical optimization support by employing efficient optimal transport metric, thus can
approximate the mesh much better with almost no SI faces, i.e. less than 10−4%. It is worth noting
that DDOT is 100× better in terms of SIF score compared to CortexODE, the current SOTA in CSR
task. DeepCSR introduces no SI thanks to Marching Cubes (Lorensen & Cline, 1987) from the
implicit surface but often has other artifacts and requires extensive topology correction.

Figure 3: Running time comparison.
The diagram indicates the scalability of
three presented losses. The lines imply
the losses computed between two sets of
points in 3D-coordinate, the dashed lines
with dots represent the loss computed
between two varifolds. OV denotes ori-
ented varifold, Reg denotes regulariza-
tion.

Consistency. We compare the consistency of our DDOT,
Vox2Cortex, CortexODE (which are all trained on OA-
SIS), and FreeSurfer on the TRT dataset. We reconstruct
white matter cortical surfaces from MRI images of the
same subject on the same day and evaluated the EMD,
SWD, and ASSD of the resulting reconstructions. The
expectation is that the brain morphology of two consec-
utive scans taken on the same day should be similar to
each other, except for the variations caused by the imaging
process. To align pairs of images, we utilized the iterative
closest-point algorithm (ICP) following (Cruz et al., 2021).
As presented in Tab. 2, we outperform in both EMD and
ASSD, and only Freesurfer (Fischl, 2012) result has the
better performance in SWD score than us.

4.2.2 RUNNING TIME ANALYSIS

We compare the running time of CD loss, CD loss with
regularization, and SWD loss, as shown in Fig. 3. The
regularization of CD loss includes mesh edge loss, normal
consistency, and Laplacian smoothing, which are com-
monly employed in mesh deformation frameworks (Bon-
gratz et al., 2022; Santa Cruz et al., 2022). Firstly, as
the number of supports increases, SWD loss consistently
exhibits significantly faster performance compared to CD losses. This empirical finding further
substantiates our assertion regarding the theoretical running time complexities of SWD (O(m logm))
and CD (O(m2)), with m denotes the number of supports. Secondly, regarding high-dimensional
measures, e.g. varifolds, while the CD losses rigorously scale w.r.t. the dimension of the supports,
SWD loss shows minimal variation as the number of supports increases, further support Theorem 1.
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In conclusion, our proposed metric is scalable w.r.t. both the number of supports and the dimension
of those supports, thus demonstrating the efficiency of our methods in learning-based frameworks.

4.3 ABLATION STUDY

Table 2: White matter surface
reconstruction consistency com-
parison in terms of EMD, SWD,
ASSD on TRT dataset.

Method EMD SWD ASSD

Vox2Cortex .886 ±.130 .485 ±.176 .263 ±.112
CortexODE .799 ±.038 .444 ±.201 .241 ±.040
FreeSurfer .859 ±.213 .358 ±.275 .286 ±.156
Ours .780 ±.032 .403 ±.184 .229 ±.010

Setups. We evaluate the individual optimization design choices
and report the WM surface reconstruction on ADNI dataset.
For fair comparisons, we conduct ablation studies on the same
initial surface and the same number of supports, i.e. the number
of faces on mesh. We train all of them for 300 epochs and get
the best checkpoints on the validation set. The result is reported
in Tab. 3 on the holdout test set.

Comparisons. To begin with, we conduct experiments where
we independently identically sample points on the surface and
used SWD loss to optimize two sets of points. The results
showed that this approach did not perform as well as optimizing
SWD on oriented varifold representation. This indicates that the varifold method provides better
mesh approximation compared to using random points on the surface. In the second part of our
ablations, we use CD to optimize two oriented varifolds. Our results show that SWD loss outperforms
CD on varifold, which further supports our Theorem 1. Finally, we employ the Sinkhorn divergence,
implemented by (Séjourné et al., 2019), as the loss function to optimize two oriented varifolds. It is
worth noting that Sinkhorn divergence is the approximation of Wasserstein distance, but cannot lead
to a valid metric between probability measures since the resulting discrepancy does not satisfy the
triangle inequality. Experiments on both left and right WM show that our SWD loss outperforms
Sinkhorn in both metrics.

5 LIMITATIONS AND FUTURE WORKS

Table 3: Ablation Study in terms of
EMD and SWD metric. P.S. and O.V.
are short for point sampling and ori-
ented varifold representation, respec-
tively. Best values are highlighted.

Left WM Right WM

EMD SWD EMD SWD

SWD on P.S. .850 ±.134 .450 ±.132 .832 ±.052 .420 ±.123
CD on O.V. .874 ±.121 .499 ±.343 .848 ±.077 .529 ±.209
Sinkhorn on O.V. 1.023 ±.109 .578 ±.307 1.002 ±.071 .568 ±.178
SWD on O.V. .728 ±.013 .420 ±.273 .702 ±.068 .365 ±.232

Our work is the first learning-based deformation approach
that tackles the local optimality problem of Chamfer dis-
tance on mesh deformation by employing efficient optimal
transport theory on meshes as probability measures. Yet,
it is not without its limitations, which present intriguing
avenues for future exploration. Unlike the set-based ap-
proach that predefines the number of sampling supports,
our optimization settings work best on the deterministic
supports correlated with the mesh resolution, thus intro-
ducing stochastic memory during training. Our future
work will focus on mitigating this issue by either employ-
ing remeshing techniques or ensuring a consistent cutoff number of supports for both the predicted
mesh and the target mesh. Secondly, though the underlying proposed techniques have potential
applications in other deformation tasks beyond CSR, within the context of this paper, we only focus
on this task. It is intriguing to explore the potential applications of our approach in diverse domains.

6 CONCLUSION

In this paper, we introduce a learning-based diffeomorphic deformation network that employs sliced
Wasserstein distance (SWD) as the objective function to deform an initial mesh to an intricate
mesh based on volumetric input. Different from previous approaches that use point-clouds for
approximating mesh, we represent a mesh as a probability measure that generalizes the common
set-based methods. By lying on probability measure space, we can further exploit statistical shape
analysis theory to approximate mesh as an oriented varifold. Our theorem shows that leveraging sliced
Wasserstein distance to optimize probability measures can have a fast statistical rate for approximating
the surfaces of the meshes. Finally, we extensively verify our proposed approach in the challenging
brain cortical surface reconstruction problem. Our experiment results demonstrate that our method
surpasses existing state-of-the-art competing works in terms of geometric accuracy, self-intersection
ratio, and consistency.
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because our model has solely undergone testing using the data discussed within this research, and we
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Supplement to “Diffeomorphic Mesh Deformation via Efficient Optimal
Transport for Cortical Surface Reconstruction”

In this supplementary, we first discuss some related works in Appendix A. Then, we provide
additional materials in Appendix B including the detailed setup and more insight about our toy
example mentioned in Fig. 1. Secondly, we demonstrate complete proof for the Theorem 1 in
Appendix C. Next, we delve into the implementation details in Appendix D and provide detailed
information about the datasets in Appendix E. Finally, we present additional visualization of our
experiment results in Appendix F.

A RELATED WORKS

Deformation network for surface reconstruction. 3D surface reconstruction can be obtained from
various approaches such as volumetric, implicit surfaces, and geometric deep learning methods.
While volumetric-based (Choy et al., 2016; Häne et al., 2017; Tatarchenko et al., 2017; Wang et al.,
2018b; Cruz et al., 2021) and implicit surface-based (Mescheder et al., 2019; Park et al., 2019;
Xu et al., 2019) methods can directly obtain surface by employing iso-surface extraction methods,
such as Marching Cubes (Lorensen & Cline, 1987), they often require extensive post-processing
to capture the high-quality resulting mesh. In contrast, geometric deep learning approaches use
mesh deformation to achieve the target mesh while maintaining vertex connectivity (Pan et al., 2019;
Smith et al., 2019; Wang et al., 2018a; Wickramasinghe et al., 2020; Nguyen et al., 2024b; Gupta,
2020; Bongratz et al., 2022). Among deformation-based approaches, diffeomorphic deformation
demonstrates its capability to perform well on complex manifolds while keeping the ‘manifoldness’
property (Gupta, 2020; Ma et al., 2022; Lebrat et al., 2021). However, those methods often use
Chamfer divergence as their objective optimization, which is sub-optimal, especially on intricate
manifolds such as cortical surfaces, i.e. as illustrated in Fig. 4. Therefore, in this work, we address the
problem by employing efficient optimal transport in optimizing mesh during training diffeomorphic
deformation models.

Mesh as varifold representation. Varifolds were initially introduced in the realm of geometric
measure theory as a practical approach to tackle Plateau’s problem (Almgren, 1966), which involves
determining surfaces with a specified boundary that has the least area. Specifically, varifolds provide a
convenient representation of geometric shapes, including rectifiable curves and surfaces, and serve as
an effective geometric measure for optimization-based shape matching problems (Charon & Trouvé,
2013; Charon, 2013; Kaltenmark et al., 2017; Hsieh & Charon, 2020; Rekik et al., 2016; Ma et al.,
2010). In this work, we focus on employing varifold as a discrete measure approximating the mesh.
To the best of our knowledge, we are the first to exploit oriented varifolds as discrete probability
measures in the learning-based deformation framework.

B TOY EXAMPLES

Setups. In this toy example, we aim to deform the template circle to the target polygon in an
optimization-based. We uniformly sample the template circle and the target polygon into 2D points.
The number of sampled points on both the template circle and target polygon are 678 points. To
optimize the position of predicted points and target points, we employ Chamfer loss implemented
by (Ravi et al., 2020), and the sliced Wasserstein distance with p = 2 approximated by Monte Carlo
estimation with 100 projections. We optimize the two sets of points with stochastic gradient descent
(SGD) optimizer with a learning rate of 1.0 and momentum of 0.9 for 1000 iterations.

Discussion. As shown in Fig. 5, we can see that the set of points optimized by Chamfer distance
often gets trapped in some specific region, e.g. the acute region of the polygon in this example. This
confinement occurs due to the nature of Chamfer distance, which primarily focuses on optimizing
nearest neighbors, inhibiting the points from escaping the local region during the optimization process.
To alleviate this issue, practitioners often introduce multiple losses as regularizers to aid Chamfer
distance in escaping local minima. However, determining the appropriate weights for each auxiliary
loss is a challenging task, as they tend to vary across different tasks, thus making the optimization
process harder. SWD loss, on the other hand, can find the optimal transport plan for the whole set of
points, thus resulting in a better solution when compared to Chamfer distance.
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Figure 4: Comparison between SWD loss (left) and CD loss (right). The mesh obtained through
probability measure representation and SWD optimization exhibits a more uniformly surfaced
appearance compared to the set-based approach that optimizes with CD loss.

Figure 5: Visualization of the optimization process of 2D toy example. The set of green points, i.e.
sampled points from the template circle, optimized by CD loss often concentrates around the acute
region of the polygon and easily gets trapped at some local regions. Nonetheless, the set of points
optimized by SWD loss distributes more uniformly along the edge of the polygon, thus making the
optimization process more robust.

C PROOF OF THEOREM 1

Using the triangle inequality of the L1 norm, we obtain:
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[∣∣∣ŜW
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m )
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Now, we bound the first term E
[∣∣∣ŜW
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where the inequality is due to the Holder’s inequality. Using the fact that
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Now, we bound the second term E
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∣∣]. Using the Jensen

inequality, we obtain
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where the second inequality is due to Lemma 4 in (Goldfeld et al., 2022). We now show that:
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Following (Nguyen et al., 2021a; Nguyen & Ho, 2023), we have:
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where F−1
m,θ(z) is the inverse CDF of µ̂M1

m , F−1
θ (z) is the inverse CDF of µM1 . Using the assumption

that the diameter of µM1 is at most R, we have:

E
[

max
θ∈Rd|∥θ∥2≤1

∫ 1

0

|F−1
m,θ(z)− F−1

θ (z)|dz|X1:m, Y1:m

]
= E

[
max

θ∈Rd|∥θ∥2≤1

∫ ∞

−∞
|Fm,θ(y)− Fθ(y)|dy|X1:m, Y1:m

]
≤ RE

[
sup

y∈R,θ∈Rd|∥θ∥2≤1

|Fm,θ(y)− Fθ(y)|

]

= RE
[
sup
C∈B
|µ̂M1
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where B = {x ∈ Rd|θ⊤x ≤ y} is set of half spaces for θ and y. Since the Vapnik-Chervonenkis
(VC) dimension of B is upper bounded by d + 1 (Wainwright, 2019), applying the VC inequality
results:

E
[
sup
C∈B
|µ̂M1

m (C)− µM1(C)|
]
≤ C

√
(d+ 1) logm

m
,

for a constant C > 0. Absorbing constants, we obtain the final result. Therefore, we conclude the
proof.

D IMPLEMENTATION DETAILS

Network architecture. First of all, for the white matter segmentation model, we train a vanilla 3D
U-Net model with sequential 3D convolutional layers with kernel size 3 × 3 × 3. Secondly, for
the deformation network, for each v0 ∈ R3, we linearly transform it to a 128-dimensional feature
vector. For each v0, we find a corresponding cube size 5× 5× 5 on I. This process can be repeated
across multiple scales of I, resulting in the extraction of multiple cubes. Then, we apply a 3D
convolution layer followed by a linear layer to transform the spatial cubes to a 128-dimensional
feature vector, i.e. same as the feature of v0. Once having the v0’s features and its corresponding
spatial features, we concatenate them as a new feature before passing through an MLP, namely Fϕ, to
learn the deformation. As discussed, we represent the predicted mesh M̂ and the target meshM∗ as
probability measures µM̂ and µM∗

, respectively. In practice, we can substitute discrete probability
measures, e.g. oriented varifold, as µ̃M̂ and µ̃M∗

, respectively. The loss function is computed as
follows:

L(M̂,M∗) = ŜW
p

p(µ̃
M̂, µ̃M∗

) =
1

L

L∑
l=1

Wp
p(θl♯µ̃

M̂, θl♯µ̃
M∗

),

where Wp
p(θl♯µ̃

M̂, θl♯µ̃
M∗

) is the Wasserstein-p (Villani, 2003) distance between µ̃M̂ and µ̃M∗
. We

fix L = 100, p = 2 for all of our experiments. In terms of oriented varifold, for each support, we
concatenate the barycenter of vertices of the face and the unit normal vector as a single vector in R6.
The training procedure is described in Algo. 1.

Training details. We optimize both segmentation and deformation networks with Adam opti-
mizer (Kingma & Ba, 2014) with a fixed learning rate 10−4. We train the segmentation and the
deformation networks for 100 and 300 epochs, respectively, and get the best checkpoint on the
validation set. All experiments are implemented using Pytorch and executed on a system equipped
with an NVIDIA RTX A6000 GPU and an Intel i7-7700K CPU.

E DATASET INFORMATION

Dataset split. As discussed in Sec. 4.1, we employ three publicly available datasets: the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) dataset (Jack Jr et al., 2008), the Open Access Series of
Imaging Studies (OASIS) dataset (Marcus et al., 2007), and the test-retest (TRT) dataset (Maclaren

19



Published as a conference paper at ICLR 2024

Algorithm 1 Training cortical surface reconstruction with SWD distance

Input: MRI volume I, initial meshM0 = (V0,F), learning rate η, max iter T , number projections
L.
Initialization: Deformation network Fϕ(I,M0) .

while ϕ not converge or reach T do
∇ϕ ← 0 ▷ Zero gradient.
V̂ ← ODESolver(Fϕ,V0) ▷ Deform source vertices V0 to V̂ .
M̂ ← (V̂,F) ▷ Get predicted mesh.
µ̃M̂ ← ToMeasure(M̂); µ̃M∗ ← ToMeasure(M∗) ▷ Transform to discrete measures.
∇ϕ ← ∇ϕ + 1

L

∑L
l=1∇ϕW

p
p (θl♯µ̃

M̂, θl♯µ̃
M∗

) ▷ Update gradient.
ϕ← ϕ− η · ∇ϕ ▷ Update parameters.

end while
Return: ϕM→M∗

et al., 2014). A subset of the ADNI dataset (Jack Jr et al., 2008) is employed, consisting of 419
T1-weighted (T1w) brain MRI from subjects aged from 55 to 90 years old. The dataset is stratified
into 299 scans for training (≈ 70%), 40 scans for validation(≈ 10%), and 80 scans for testing
(≈ 20%). Regarding the OASIS dataset (Marcus et al., 2007), all 416 T1-weighted (T1w) brain
MRI images are included. We stratify the dataset into 292 scans for training (≈ 70%), 44 scans for
validation (≈ 10%), and 80 scans for testing (≈ 20%). As for the TRT dataset (Maclaren et al., 2014),
it consists of 120 scans obtained from three distinct subjects, with each subject undergoing two scans
within a span of 20 days.

Preprocess. We strictly follow the pre-processing pipeline from (Bongratz et al., 2022). Specifically,
we first register the MRIs to the MNI152 scan. After padding the input images to have shape
192× 208× 192, we resize them to 128× 144× 128. The intensity values are min-max-normalized
to the range [0, 1].

F VISUALIZATIONS

We provide more visualization of our work as in Fig. 6. We randomly select the prediction meshes
from the test set and compute the point-to-surface distance. The color is encoded as how far the
point is to the surface. The figures say that the darker color is, the further the predicted mesh to the
pseudo-ground truth.
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Figure 6: More examples of predicted mesh color-coded with the distance to the ground-truth surfaces
as shown in Fig. 2 of the main paper.
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