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ABSTRACT

We introduce a new low-rank graph adapter, GConv-Adapter, that leverages a
two-fold normalized graph convolution and trainable low-rank weight matrices to
achieve state-of-the-art (SOTA) and near-SOTA performance in GNN fine-tuning
for standard message-passing neural networks (MPNNs) and graph transformers
(GTs) in both inductive and transductive learning. We motivate our design by
deriving an upper bound on the adapter’s Lipschitz constant for δ-regular random
(expander) graphs, and we compare it against previous methods which we show
to be unbounded.

1 INTRODUCTION

Low-rank adapters (LoRAs) (Hu et al., 2022a) were originally introduced to fine-tune large lan-
guage models (LLMs) under constrained computational budgets. While current graph neural net-
work (GNN) models are smaller than leading LLMs, they are expected to grow in size as graph
foundation models continue to evolve (Liu et al., 2023; Mao et al., 2024). Recently, LoRA-type
adapters specialized for GNNs have been proposed, notably AdapterGNN (Li et al., 2024) and G-
Adapter (Gui et al., 2024), which, like standard LoRAs, can be trained with a small number of
parameters using low-rank matrix factorization. Although these techniques represent an important
first step, they still have limitations. Specifically, we show that AdapterGNN is insensitive to input
graph features, while G-Adapter can lead to unstable learners for certain extremal graphs. Motivated
by these shortcomings, we introduce the GConv-Adapter. Specifically, our GConv-Adapter is capa-
ble of capturing second-hop interactions in the graph (Proposition 3) and produces stable learners
with a bounded Lipschitz constant for graphs with sufficient connectivity (Theorem 1). We validate
our framework across a large number of GNN benchmarks in Section 4.

2 PRELIMINARIES AND RELATED WORK

Graphs A graph can be defined as the tuple G = (V, E), where V is the set of nodes, and E ⊆
(V×V) is the set of edges in the graph. An edge between nodes vi, vj ∈ V is denoted by (vi, vj) ∈ E .
The one-hop neighborhood of a node vi, denoted as N (vi) = {vj | (vi, vj) ∈ E}, includes all nodes
directly connected to vi and thus defines the local connectivity around the node. The connectivity
of a graph with N = |V| nodes can be represented by an adjacency matrix A ∈ RN×N , where Aij

indicates the connection strength between nodes vi and vj .

Definition 1 (δ-Regular Graphs). A graph G = (V, E) on N vertices (or nodes) is said to be δ-
regular if every vertex has the same degree, namely deg(v) = δ, ∀ v ∈ V.
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In this case, the minimal degree, maximal degree, and average degree are all equal to δ. Conse-
quently, any bound or property of the graph that might otherwise depend on the degree becomes
uniform across all vertices; this observation is relevant to Section 3 and Appendix A.
Definition 2 (Expander Graphs). A family of graphs {GN}N∈N, where each GN = (VN , EN ) has
|VN | = N , is called an expander family if there exists a constant ε > 0 independent of N such that
for every GN and every subset S ⊆ VN with |S| ≤ N

2 , the edge boundary ∂S satisfies |∂S| ≥ ε |S|.
Here, ∂S is defined as the set of edges with one endpoint in S and the other in VN \ S.

An alternative spectral characterization involves the graph Laplacian L = D −A, where D is the
degree matrix (Di,i = deg(vi)). For a δ-regular graph, if λ2 denotes the second smallest eigenvalue
of L (the algebraic connectivity), then the graph is an expander if there exists a constant c > 0 such
that λ2 ≥ c. Many constructions of expander graphs yield δ-regular (or nearly regular) graphs, in
which case the Lipschitz constant bound for the GConv-Adapter becomes degree-independent (as
we will see in Theorem 7). However, the notion of an expander is broader and can include irregular
graphs that nevertheless exhibit strong connectivity.

Message Passing Neural Networks (MPNNs) and Graph Transformers (GTs). For graphs with
node features, such as those considered in this work, each node vi has an associated feature vector
xi ∈ R1×D, where D is the feature space dimension. By stacking these vectors along the row di-
mension, they form a feature matrix X ∈ RN×D. Message Passing Neural Networks (MPNNs) are
a foundational class of GNNs that operate by exchanging messages between node neighborhoods
to iteratively refine their feature representations. Following (Bronstein et al., 2021), in layer l of
an MPNN (excluding edge-level features for simplicity), the updated feature representation x

(l+1)
i

for node vi is: x
(l+1)
i = ϕ

(
x
(l)
i ,

⊕
j∈N (vi)

ψ
(
x
(l)
i ,x

(l)
j

))
. Here, ψ is a message function,

⊕
denotes a permutation-invariant aggregation function, such as summation, mean, or max, and ϕ is
an update or readout function. Both ψ and ϕ are typically parameterized by neural networks, such
as Multi-Layer Perceptrons (MLPs), and are learned during training. This update process is local to
each node’s one-hop neighborhood, meaning that each node communicates only with its immediate
neighbors at each layer. On the other hand, GTs are a class of models that adapt the Transformer
architecture (Vaswani et al., 2017), originally designed for natural language processing (NLP), to
the domain of graph representation learning. GTs treat nodes as analogous to tokens in a sequence,
with the self-attention mechanism facilitating the exchange of information across the entire graph.
This allows every node to attend to every other node within each layer, effectively treating the graph
as fully connected (Bronstein et al., 2021). While this facilitates capturing long-range dependencies,
it discards the locality inductive bias inherent in graph data, which can be crucial in low-data reg-
imens. Additionally, one of the significant challenges with GTs is their computational complexity,
particularly for large-scale graphs, where the self-attention mechanism has a quadratic complexity
in the number of nodes O(N2) (Ying et al., 2021; Rampášek et al., 2022; Borde et al., 2024).

Pre-training and Fine-tuning Graph Neural Networks. Let a GNN encoder, either an MPNN
or a GT, denoted as fΘ, encode a graph G into a feature embedding H = fΘ(X,A,E) ∈
RN×DH , where Θ represents the model parameters. Pre-training aims to initialize Θpre by
minimizing a loss function LS over a large, generic dataset DS , with the objective: Θpre =

argmin
Θ

∑
(GS

i ,YS
i )∈DS

LS

(
gΨ ◦ fΘ(GS

i ),Yi

)
, where, for instance, Yi represents the labels asso-

ciated with graph GS
i ∈ DS . Specifically, YS

i = Yi ∈ RN×1 is a set of node labels in the
case of node-level classification, while YS

i = yi ∈ N denotes the label for the entire graph
in graph-level classification. Other tasks such as link prediction, and regression are also possi-
ble. The function gΨ is a task-specific classifier parameterized by Ψ which is composed with
the GNN encoder fΘ to yield the final output. Note that in practice Θ and Ψ are optimized con-
currently. Full fine-tuning begins with the model initialized with the pre-trained weights Θpre
and updates these weights to Θpre + ∆Θ using LT over a smaller, task-specific dataset DT :
∆Θ∗ = argmin

∆Θ

∑
(GT

j ,YT
j )∈DT

LT

(
g′Ψ ◦ fΘpre+∆Θ(GT

j ),YT
j

)
, where in general, the loss LT may

be different from LS , the labels in DT could be at a different level (graph, node, edge) as compared
to the original dataset DS , and g′Ψ can also be a different classifier. One of the main drawbacks
of full fine-tuning is that for each downstream task, a different set of parameters ∆Θ is learned,
where the total parameter count |∆Θ| equals that of the original model |Θpre|. This means that if
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the pre-trained GNN model is large, retraining, storing, and deploying multiple fine-tuned models
can become challenging, particularly in resource-constrained environments. Although current GNN
models are not as large as the leading LLMs, there is an expectation that they will continue to in-
crease in size with the development of graph foundation models (Liu et al., 2023; Mao et al., 2024).
Consequently, this work establishes a foundation for addressing these forthcoming challenges, en-
suring that the methods developed today will remain effective as GNN models become larger.

Related Work Approaches that reduce trainable parameters during fine-tuning while preserving
performance are known as Parameter-Efficient Fine-Tuning (PEFT). (He et al., 2022; Pfeiffer et al.,
2020; Ding et al., 2022; Yu et al., 2022; Han et al., 2024). Such approaches assume a relatively
mild distribution shift between the original dataset LS and the fine-tuning dataset LT , which is gen-
erally the case in the context of language. Based on this assumption, PEFT methods conjecture
that retraining only a small subset of parameters will be sufficient to adapt the model to new tasks.
A prominent example within PEFTs is the Adapter framework (Houlsby et al., 2019), which oper-
ates by injecting a set of new trainable layers either sequentially or in parallel to a Transformer’s
Multi-Head Attention (MHA) or MLPs. Fine-tuning only these new layers, the adapters, results in
relatively inexpensive retraining of the overall network. AdapterDrop (Rücklé et al., 2021) prunes
adapter blocks in lower layers. AdapterFusion (Pfeiffer et al., 2021) enhances multi-task learning
by facilitating knowledge sharing across tasks through a two-stage process. Compacter and Com-
pacter++ (Mahabadi et al., 2021) further reduce the proportion of trainable parameters by leveraging
techniques like the Kronecker product and weight-sharing. Additional works in this line of research
include those by Wang et al. (2021); Karimi Mahabadi et al. (2021); Fu et al. (2022); Wang et al.
(2022). On the other hand, LoRA (Hu et al., 2022a; Zhu et al., 2024) leverages the insight that up-
dates required during fine-tuning often have a low intrinsic rank (Aghajanyan et al., 2021). Rather
than adding new trainable layers, LoRA fine-tunes only a small number of parameters by introduc-
ing two low-rank matrices that approximate the changes in the query and value weight matrices
within the Transformer’s MHA mechanism. Similarly, BitFit (Ben Zaken et al., 2022) reduces the
parameter footprint even further by updating only the bias terms of the model, offering a highly
parameter-efficient solution. Also, combining multiple PEFT techniques has been a growing area of
research: (Hu et al., 2022b; Mao et al., 2022; Chen et al., 2023; Jiang et al., 2023) explore hybrid
mechanisms, and He et al. (2022) offers a comprehensive review. While PEFT has been exten-
sively explored in NLP, its application to GNNs is still in its early stages. Two recent efforts are
AdapterGNN (Li et al., 2024), for MPNNs, and G-Adapter (Gui et al., 2024), which targets GTs.

3 METHODOLOGY

An effective GNN fine-tuning framework must address key desiderata: leveraging geometric priors
to utilize new graph structures and avoid data inefficiency; maintaining the lightweight nature of
PEFTs; ensuring integrability across GNN variants such as MPNNs, and GTs.

3.1 ON THE THEORETICAL LIMITATIONS OF ADAPTERGNN AND G-ADAPTER

For proofs regarding the theoretical considerations discussed in this section refer to Appendix A.

AdapterGNN. AdapterGNN injects an adapter layer with learnable parameters parallel to the
GNN’s MLP layers (please refer to Figure 3 in Li et al. (2024)):

AAdapterGNN(X|G,Wdown,Wup) = BN (σ (XWdown)Wup) , (1)

where X ∈ RN×D is the node feature matrix, Wdown ∈ RD×r and Wup ∈ Rr×D are the down-
projection and up-projection matrices with r ≪ D, σ(·) is a nonlinear activation function (e.g.,
ReLU), and BN denotes batch normalization. Notably, AdapterGNN does not utilize the adjacency
matrix A, thus ignoring the graph’s structural information during fine-tuning. This lack of structural
integration may hinder performance on tasks where the graph topology is crucial. Next, this inability
to detect and process a graph’s structure is formalized by the following proposition.
Proposition 1 (AdapterGNN is graph-agnostic). Let r,N,D ∈ N+, with r ≤ D, σ be any activation
function, and fix (low) rank r-matrices Wdown ∈ RD×r and Wup ∈ Rr×D. For any graphs G,G′

on N vertices the following graph agnosticism property holds
AAdapterGNN(X|G,Wdown,Wup) = AAdapterGNN(X|G′,Wdown,Wup) (∀X ∈ RN×D). (2)
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G-Adapter. G-Adapter incorporates the graph’s structure by applying a single graph convolution
using the adjacency matrix within the adapter. The transformation can be written as:

AG-Adapter(X|G,Wdown,Wup)
def.
= LN

(
X′ + σ

(
ÃX′ Wdown Wup

))
, X′ = LN (X) , (3)

where Ã = A + IN , with A = A(G) ∈ RN×N which is the (unnormalized) adjacency matrix
derived from the graph G, Wdown and Wup are as before, σ(·) is a nonlinear activation function,
and LN denotes layer normalization. While G-Adapter explicitly introduces graph structure, it does
not use the normalized adjacency matrix, which can lead to numerical instabilities and overempha-
size nodes with high degrees. Moreover, the single application of the adjacency matrix limits the
adapter’s ability to capture higher-order neighbourhood information or complex dependencies in the
graph. This static and shallow integration may restrict the model’s flexibility in leveraging task-
specific structural information. In short, although the G-Adapter incorporates the graph’s topology
into its predictions, the way in which it does so fails to produce adapters which are stable with re-
spect to their input feature matrices. This is shown by the following lower bound on the Lipschitz
regularity (linear stability with respect to its inputs) for certain random expander graph inputs.
Proposition 2 (The G-Adapter can have a diverging Lipschitz constant). Let σ = ReLU,N, δ ∈ N+

with δ ≤ N − 1, let G be any δ-regular random (expander) graph on N -vertices, and replace LN by
the identity in equation 3, i.e., X 7→ X + ReLU

(
ÃXWdown Wup

)
. Then, there are D, r ∈ N+

with r ≤ N , N+, rank r matrices Wdown ∈ RD×r and Wup ∈ Rr×D such that

Lip
(
AG-Adapter(·|G,Wdown,Wup)

)
≥ (δ + 2) a.s. (4)

In particular, if N − 1 = δ → ∞ then, Lip
(
AG-Adapter(·|G,Wdown,Wup)

)
∈ Θ(N).

3.2 GCONV-ADAPTER

To address the limitations of previous approaches, we propose GConv-Adapter:

AG-Conv(X|G,Wdown,Wup)
def.
= X+ α · Normalization

(
Âσ

(
ÂXWdown

)
Wup

)
, (5)

where X ∈ RN×D is the input node feature matrix, Â = D̃−1/2Ã D̃−1/2 is the symmetri-
cally normalized adjacency matrix (using the degree matrix) with self-loops (hence the tildes), and
Wdown ∈ RD×r, Wup ∈ Rr×D are the learnable projection matrices with r ≪ D. The non-linear
activation σ(·), Normalization (LayerNorm or BatchNorm), and learnable scaling factor α together
modulate the impact of the adapter-modified features relative to the original parameters. Recall that
AdapterGNN cannot detect graph structure; this is not the case for the GConv-Adapter.
Proposition 3 (GConv-Adapter is not graph-agnostic). Let σ = ReLU and Normalization(Z) = Z
for all Z ∈ RN×D. There exists r,N,D ∈ N+ with r ≤ D, and rank r matrices Wdown ∈ RD×r,
Wup ∈ Rr×D and α > 0 such that: there exist N -vertex graphs G,G′ and a feature matrix X ∈
RN×D N such that: AG-Conv distinguishes G and G′; i.e.

AG-Conv(X|G,Wdown,Wup) ̸= AG-Conv(X|G′,Wdown,Wup). (6)

We now show that it can achieve an improved Lipschitz regularity compared to the G-Adapter.
Namely, its Lipschitz constant is bounded for all regular (expander) graphs independently of the
graph degree while that of the G-Adapter diverged as the graph degree and its number of nodes
increased. In particular, note that while the next result permits normalization layers, we can set nor-
malization to the identity, as in Proposition equation 2, to ensure a fair, apples-to-apples comparison.
Theorem 1 (GConv-Adapter’s Lipschitz constant is degree-independent for expanders). Let
Lσ, α ≥ 0, δ, r,N,D ∈ N+, with r ≤ D, σ be a Lσ-Lipschitz activation function, and
Normalization be a 1-Lipschitz normalization (identity). For any δ-regular random (expander)
graph G on N -vertices and any (low) rank r-matrices Wdown ∈ RD×r and Wup ∈ Rr×D we
have

Lip
(
AG-Conv(·|G,Wdown,Wup)

)
≤ 1 + αLσ∥Wdown∥op∥Wup∥op a.s. (7)

If, instead, G is an arbitrary connected random graph then the right-hand side of equation 7 is at-
most 1 + αLσ

(1+ρ(A))2∥Wdown∥op∥Wup∥op

(1+deg−(G))2 a.s., where ρ(A) is the spectral radius of the adjacency
matrix, and deg−(G) is the minimal degree of the graph.
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Hence, unlike G-Adapter, our GConv-Adapter is degree-independent and remains bounded for
“graphs that are connected enough”. The use of the symmetrically normalized adjacency matrix,
as in GCNs (Kipf & Welling, 2017), ensures that feature propagation is properly scaled and prevents
numerical instabilities from repeated adjacency matrix multiplications. Importantly, GConv-Adapter
can be seamlessly integrated into classical GNN architectures, such as MPNNs and GTs, making it a
versatile solution for a range of models. Only the projection matrices and scaling factor are trainable,
maintaining the low parameter count typical of PEFTs. Moreover, by applying graph convolution
before and after the non-linearity, GConv-Adapter allows nodes to aggregate information from their
two-hop neighborhoods, enabling the model to capture higher-order structural patterns. We ana-
lyze the computational complexity of GConv-Adapter assuming a graph G = (V, E) with N = |V|
nodes, E = |E| edges, input feature dimension D, and low-rank dimension r ≪ D.

4 EXPERIMENTS

In the following section, we empirically validate our framework. We provide fine-grained results in
Table 1 and Table 2 in the main text, as well as summary results in Tables 5 and 6 in Appendix D,
accompanied by a more extensive discussion on performance comparison. Additionally, we also
specify implementation details in Appendix C, and perform additional ablations to verify the differ-
ent components of our adapter in Appendix E. The base configuration of GConv-Adapter follows the
definition given in equation 5, the position of the adapters is sequential (before and after the GNN
layers of the original model), for normalization we use BatchNorm for MPNNs and LayerNorm for
GTs, and α, the learnable scaling parameter, is initialized to 1 at the beginning of training.

Inductive Learning Results GConv-Adapter consistently improves regression performance over
full fine-tuning, see Table 1. For example, on ESOL it achieves an RMSE of 1.341 (a 3.73% im-
provement over full fine-tuning’s 1.393), on FreeSolv an RMSE of 2.058 (14.49% improvement
over 2.407), and on Lipophilicity an RMSE of 0.833 (4.90% improvement over 0.876). Overall,
the average RMSE is reduced from 1.559 to 1.411 (a 9.49% improvement). Compared to other
graph-specific PEFT methods, GConv-Adapter outperforms G-Adapter and is competitive with
AdapterGNN. Similarly, GConv-Adapter also shows consistent improvements in classification. It
achieves a ROC-AUC of 84.288% on Tox21 (1.80% higher than full fine-tuning’s 82.795), 82.641%
on SIDER (0.19% higher), and 97.558% on ClinTox (0.15% higher). Notably, on BACE, MUV, and
HIV, it improves by 8.36%, 1.74%, and 3.13% respectively, leading to an overall average ROC-AUC
of 81.142% versus 79.352% for full fine-tuning. Furthermore, GConv-Adapter outperforms other
graph-specific PEFT methods—surpassing G-Adapter by 3.05% and AdapterGNN by 0.81%—and
achieves substantial gains over classical PEFT techniques.

Transductive Learning Results Table 2 compares fine-tuning methods for node classification
on the Cora, Citeseer, and PubMed networks using pre-trained NodeFormer (Wu et al., 2022) and
DIFFormer-s (Wu et al., 2023) GT models pre-trained on ogbn-Arxiv (Hu et al., 2020a) (a larger
citation network). For NodeFormer, our GConv-Adapter achieves the best accuracy on PubMed
(89.162%) and competitive results on Cora and Citeseer, outperforming full fine-tuning and most
PEFT baselines. On DIFFormer-s, GConv-Adapter delivers robust performance,achieving accura-
cies of 82.841% on Cora, 78.967% on Citeseer, and 88.615% on PubMed, substantially surpassing
other graph-specific methods. Overall, these results demonstrate that GConv-Adapter effectively
adapts pre-trained GTN models for node classification.
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Table 1: Inductive Learning: Molecular Prediction Tasks. Results are reported as mean ± standard
deviation of evaluation metrics (RMSE for regression tasks and ROC-AUC for classification tasks).
Best, second-best, and third-best in red, blue, and brown.

Tuning Method Pre-trained Model Regression (RMSE ↓) Classification (ROC-AUC ↑)

ESOL FreeSolv Lipophilicity Avg. Tox21 SIDER ClinTox BACE MUV HIV Avg.

Full Fine-tuning

GCN 1.256±0.012 1.522±0.266 0.808±0.006 1.195 84.905±0.045 82.613±0.124 98.090±0.088 73.118±3.883 72.634±2.503 73.010±0.204 80.728
GraphSAGE 1.267±0.041 2.169±0.193 0.824±0.007 1.420 85.346±0.120 83.357±0.301 97.270±0.089 62.586±3.758 75.054±0.766 73.862±0.525 79.579

GAT 1.897±0.012 3.323±0.052 1.135±0.011 2.118 75.159±0.524 80.782±0.144 97.333±0.104 60.894±0.242 67.750±1.334 67.722±0.924 74.940
GIN 1.153±0.011 2.612±0.883 0.737±0.011 1.501 85.770±0.295 83.811±0.165 96.923±0.112 76.566±2.037 73.713±0.952 76.186±0.855 82.162
Avg. 1.393 2.407 0.876 82.795 82.481 97.404 68.291 72.288 72.695

Surgical Fine-tuning

GCN 1.390±0.007 3.178±0.253 0.995±0.008 1.854 81.532±0.142 81.120±0.081 97.470±0.666 64.876±1.460 70.518±1.251 72.126±0.796 77.940
GraphSAGE 1.521±0.073 2.885±0.016 0.987±0.019 1.798 82.660±0.072 82.157±0.257 97.568±0.065 57.915±4.329 70.418±2.510 69.428±1.291 76.691

GAT 1.931±0.016 3.460±0.013 1.163±0.001 2.185 74.486±0.055 80.476±0.026 97.354±0.123 61.798±0.670 65.239±1.482 64.869±0.420 74.037
GIN 1.454±0.007 2.967±0.066 1.028±0.001 1.816 81.456±0.111 81.640±0.207 97.093±0.213 60.575±3.048 70.799±1.667 66.913±1.475 76.413
Avg. 1.574 3.123 1.043 80.034 81.348 97.371 61.291 69.244 68.334

BitFit

GCN 2.334±0.001 5.122±0.182 1.205±0.002 2.887 67.288±0.417 79.081±0.056 96.646±0.336 50.803±8.271 48.057±8.621 59.732±3.433 66.934
GraphSAGE 2.250±0.010 4.931±0.013 1.184±0.000 2.788 70.976±0.817 79.411±0.143 97.107±0.438 56.042±6.886 54.508±2.026 59.649±1.109 69.615

GAT 2.333±0.016 5.405±0.296 1.204±0.000 2.981 67.956±0.713 79.043±0.013 96.721±0.103 62.198±2.310 56.732±1.654 49.217±3.051 68.645
GIN 2.346±0.017 4.927±0.043 1.199±0.004 2.824 68.127±0.229 79.100±0.230 95.968±0.526 44.045±1.595 51.592±2.444 63.013±4.886 66.974
Avg. 2.316 5.096 1.198 68.587 79.159 96.611 53.272 52.722 57.903

LoRA

GCN 1.479±0.134 2.360±0.073 0.803±0.018 1.547 83.210±0.161 79.837±0.249 97.480±0.591 74.213±3.068 50.998±0.470 71.286±2.080 76.171
GraphSAGE 1.280±0.032 2.255±0.369 0.731±0.006 1.422 85.034±0.555 83.295±0.373 96.416±0.173 67.240±3.416 62.411±1.783 72.624±1.113 77.837

GAT 1.921±0.033 3.095±0.203 1.149±0.011 2.055 74.211±0.394 80.356±0.152 97.404±0.294 59.804±4.146 60.201±0.536 65.160±2.832 72.856
GIN 1.248±0.013 2.700±1.075 0.719±0.011 1.556 85.760±0.444 83.438±0.443 96.833±0.346 78.241±1.238 66.208±1.499 74.017±1.771 80.749
Avg. 1.482 2.603 0.851 82.054 81.731 97.033 69.874 59.954 70.772

Adapter

GCN 1.228±0.023 1.459±0.064 0.778±0.022 1.155 85.123±0.282 81.884±0.312 97.179±0.413 73.483±2.375 70.782±0.507 72.511±1.703 80.160
GraphSAGE 1.316±0.038 2.456±0.314 0.802±0.018 1.525 85.044±0.086 82.954±0.274 96.919±0.068 60.946±5.595 68.705±3.002 69.805±0.792 77.395

GAT 1.906±0.033 3.419±0.062 1.118±0.030 2.148 75.237±0.313 80.369±0.092 97.483±0.096 62.812±2.439 64.208±1.669 62.096±3.325 73.701
GIN 1.208±0.025 3.058±1.288 0.749±0.012 1.672 85.510±0.504 83.401±0.270 96.686±0.062 73.054±1.761 72.698±4.015 73.754±1.184 80.850
Avg. 1.414 2.598 0.862 82.728 82.152 97.067 67.574 69.098 69.541

G-Adapter

GCN 1.254±0.095 1.807±0.314 0.739±0.012 1.267 85.811±0.220 82.764±0.697 96.679±0.259 77.366±3.524 69.243±2.863 73.950±0.842 80.969
GraphSAGE 1.240±0.046 1.939±0.444 0.735±0.021 1.305 86.107±0.156 83.253±0.995 96.977±0.434 77.314±1.329 66.958±3.040 74.646±0.806 80.876

GAT 1.769±0.038 3.196±0.083 1.117±0.004 2.027 76.334±0.209 80.227±0.152 97.688±0.174 66.296±1.195 60.421±1.650 54.194±0.670 72.527
GIN 1.233±0.055 2.550±0.279 0.731±0.003 1.505 85.119±0.846 83.611±0.229 97.131±0.510 75.239±1.903 68.768±1.236 73.623±0.855 80.582
Avg. 1.374 2.373 0.835 83.343 82.464 97.119 74.054 66.347 69.103

AdapterGNN

GCN 1.240±0.016 1.214±0.139 0.738±0.010 1.064 85.862±0.251 81.428±0.336 96.793±0.740 79.354±1.518 76.247±0.886 73.337±1.520 82.170
GraphSAGE 1.239±0.024 1.552±0.030 0.729±0.011 1.173 84.980±0.126 82.981±0.143 96.964±0.389 72.045±2.303 75.736±1.045 75.326±1.320 81.339

GAT 1.913±0.038 2.392±0.039 0.916±0.033 1.740 79.017±0.487 80.723±0.243 97.542±0.273 64.290±2.107 67.814±0.846 68.798±2.821 76.364
GIN 1.229±0.023 1.594±0.174 0.737±0.001 1.187 86.048±0.448 82.826±0.225 97.243±0.196 76.508±1.358 75.397±0.065 74.467±1.478 82.082
Avg. 1.405 1.688 0.780 83.977 81.989 97.136 73.049 73.799 72.982 80.489

GConv-Adapter (ours)

GCN 1.216±0.012 2.044±0.541 0.769±0.031 1.343 86.212±0.105 81.159±1.321 97.390±0.565 73.926±1.122 75.982±1.882 76.048±0.185 81.786
GraphSAGE 1.182±0.024 2.095±0.013 0.738±0.018 1.338 86.119±0.240 83.330±0.123 97.459±0.041 73.631±1.765 73.700±0.980 76.136±0.155 81.729

GAT 1.828±0.013 2.871±0.009 1.106±0.038 1.935 78.101±0.290 80.959±0.085 97.935±0.029 67.275±1.826 67.516±2.329 71.159±0.589 77.157
GIN 1.138±0.009 1.223±0.051 0.717±0.010 1.026 86.721±0.628 84.474±0.120 97.448±0.029 81.177±1.469 77.002±0.135 76.554±0.390 83.896
Avg. 1.341 2.058 0.833 84.288 82.641 97.558 74.002 73.550 74.974

5 CONCLUSION

Table 2: Transductive Learning: Node Classifica-
tion on Citation Networks. Best, second-best, and
third-best accuracy (mean ± standard dev) in red,
blue, and brown.

Tuning
Method

Pre-trained
Model

Accuracy (↑)
Cora Citeseer PubMed

Full Fine-tuning NodeFormer 85.180±0.847 77.071±1.666 87.897±0.150
DIFFormer-s 83.187±5.035 79.254±4.812 89.943±3.721

Surgical Fine-tuning NodeFormer 78.336±1.328 75.510±2.220 87.809±0.474
DIFFormer-s 81.798±5.335 77.965±4.923 87.632±3.845

BitFit NodeFormer 78.237±0.921 74.630±2.410 87.857±0.564
DIFFormer-s 81.418±5.481 77.589±5.102 87.247±3.956

LoRA NodeFormer 85.327±0.766 76.230±1.424 87.492±0.083
DIFFormer-s 78.943±6.162 75.210±5.843 84.676±4.275

Adapter NodeFormer 78.582±1.343 74.590±2.605 87.945±0.502
DIFFormer-s 81.403±5.380 77.572±5.015 87.234±3.862

G-Adapter NodeFormer 83.653±0.707 74.390±2.257 89.094±0.292
DIFFormer-s 67.897±17.506 64.523±16.842 73.271±15.378

AdapterGNN NodeFormer 78.730±1.206 74.910±2.095 88.283±0.531
DIFFormer-s 80.093±6.692 76.288±5.987 85.898±4.523

GConv-Adapter
(ours)

NodeFormer 81.339±0.982 76.631±2.014 89.162±0.342
DIFFormer-s 82.841±5.023 78.967±4.756 88.615±3.589

We have introduced a novel low-rank graph
adapter that combines normalized graph con-
volution with trainable low-rank weight matri-
ces, achieving performance competitive with
SOTA fine-tuning methods for GNNs, includ-
ing MPNNs and GTs. Our theoretical analysis
highlights two key advantages over other con-
current methods: our adapter is sensitive to the
input graph’s structure (allowing it to capture
second-hop interactions) and maintains a sta-
ble Lipschitz constant for graphs with sufficient
connectivity, as described in Theorem 1. As
the parameter count of GNN models grows and
with the advent of graph foundation models,
we expect fine-tuning methods to become more
prevalent in graph representation learning. We
hope our framework serves as a first step toward
developing reliable methods for this purpose.
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Bengio. Graph Attention Networks. International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJXMpikCZ.

Ruize Wang, Duyu Tang, Nan Duan, zhongyu wei, Xuanjing Huang, Jianshu Ji, Guihong Cao, Daxin
Jiang, and Ming Zhou. K-adapter: Infusing knowledge into pre-trained models with adapters,
2021. URL https://openreview.net/forum?id=CLnj31GZ4cI.

Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Has-
san Awadallah, and Jianfeng Gao. AdaMix: Mixture-of-adaptations for parameter-efficient
model tuning. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of
the 2022 Conference on Empirical Methods in Natural Language Processing, pp. 5744–5760,
Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.emnlp-main.388. URL https://aclanthology.org/2022.
emnlp-main.388.

Qitian Wu, Wentao Zhao, Zenan Li, David Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2022.

Qitian Wu, Chenxiao Yang, Wentao Zhao, Yixuan He, David Wipf, and Junchi Yan. Difformer:
Scalable (graph) transformers induced by energy constrained diffusion. In International Confer-
ence on Learning Representations (ICLR), 2023.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018. URL https:
//arxiv.org/abs/1810.00826.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? In Thirty-Fifth
Conference on Neural Information Processing Systems, 2021. URL https://openreview.
net/forum?id=OeWooOxFwDa.

Bruce X.B. Yu, Jianlong Chang, Lingbo Liu, Qi Tian, and Chang Wen Chen. Towards a unified view
on visual parameter-efficient transfer learning. arXiv preprint arXiv:2210.00788, 2022.

Jiacheng Zhu, Kristjan Greenewald, Kimia Nadjahi, Haitz Sáez de Ocáriz Borde, Rickard Brüel
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A PROOFS

Proof of Proposition 1. By definition of the Adapter GNN, in equation 1, we directly see that

AAdapterGNN(X|G,Wdown,Wup) = BN (σ (XWdown)Wup) (8)

= AAdapterGNN(X|G′,Wdown,Wup), (9)

which completes our proof.

Proof of Proposition 2. Let N,D, r ∈ N+, set r = N , and D = 1 (we henceforth identify matrices
in RN×1 with vectors in RN ). Let G be any δ-regular graph on N vertices. Let Wdown = Wup

def.
=

IN (identity), and σ = ReLU. We would like a lower bound on the Lipschitz constant L def.
=

Lip
(
AG-Adapter(X|G,Wdown,Wup)

)
of AG-Adapter(X|G,Wdown,Wup)

L
def.
= sup

X̸=X′

X,X′∈RN×D

∥∥AG-Adapter(X|G,Wdown,Wup)−AG-Adapter(X
′|G,Wdown,Wup)

∥∥
∥X−X′∥

≥
∥∥AG-Adapter(1N |G,Wdown,Wup)−AG-Adapter(0N |G,Wdown,Wup)

∥∥
∥X−X′∥

,

(10)

where 1N is the vector in RN with all entries equal to 1 and 0N is the zero vector in RN .

Next, note that the adjacency matrix A is such that: each row of A has exactly δ entries equal to 1
and all other entries equal to 0. Therefore, by definition of the G-Adapted (ignoring layer norms),
in equation 3, we have that:

AG-Adapter(0N |G,Wdown,Wup) = 0N + σ
(
Ã 0NWdown Wup

)
= 0N . (11)

In contrast, when processing 1N we have, considering that Ã = A+ IN :

AG-Adapter(1N |G,Wdown,Wup) = 1N +ReLU
(
Ã 1NININ

)
(12)

= 1N +ReLU ((1 + δ)1N ) (13)
= 1N + (1 + δ)1N (14)
= (2 + δ)1N . (15)

Upon combining the computations in equation 12-equation 15 with those in equation 11, and with
the lower-bound on the Lipschitz constant L of the G-Adapter in equation 10, we find that

L ≥
∥∥AG-Adapter(1N |G,Wdown,Wup)−AG-Adapter(0N |G,Wdown,Wup)

∥∥
∥X−X′∥

(16)

=
∥0N − (2 + δ)1N∥

∥0N − 1N∥
(17)

=
(2 + δ)∥1N∥
∥0N − 1N∥

(18)

= (2 + δ). (19)

Thus, concluding our proof.

In terms of its asymptotic behavior, in the particular case when δ = N − 1 (the complete graph
scenario), as N → ∞ we have

Lip(f) ∈ Θ(N).

That is, the Lipschitz constant diverges linearly with the number of vertices N .

Note that the proof above follows for any δ-regular graph, not just for expander graphs. δ-regular
graphs are expanders with high probability. Even expanders, which are known to have favorable
structural properties due to their strong connectivity and robust spectral properties, can lead to a
diverging Lipschitz constant when the unnormalized adjacency matrix is used.
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Proof of Proposition 3. To establish the negation of the graph-agnosticism of the GConv-Adapter,
it is enough to exhibit a single case where equation 6 holds. To this end, let r = N = D, α = 1,
Wdown

def.
= Wup = I2, and X = (1, 0) ∈ R2. Let G = ({0, 1}, ∅) be the graph on two vertices with

no edges and G′ = ({0, 1}, {(0, 1)}) = K2 be the complete graph on two vertices. Under these
specification, for both G̃ ∈ {G,G′} we have

AG-Conv(X|G̃,Wdown,Wup) = X+
(
ÂG̃ ReLU(ÂG̃ X)

)
, (20)

where ÂG̃ denotes the normalized adjacency matrix of the graph G̃.

Let us simplify the right-hand side of equation 20 in the case where G̃ = G. First, we note that the
degree matrix of G (with self-loops) is D̃G

i,i = 1, i.e. D̃G = I2, and its adjacency matrix AG is the
2× 2 zero matrix 02. Whence, its normalized adjacency matrix ÂG is

ÂG = I
−1/2
2 (I2 + 02)I

−1/2
2 = I2. (21)

Using the fact that ReLU(x) = x for all x ≥ 0, equation 20 and equation 21 imply that

AG-Conv(X|G,Wdown,Wup) = X+
(
ÂG ReLU(ÂG X)

)
(22)

= (1, 0)⊤ +
(
ReLU(1, 0)⊤

)
(23)

= (2, 0)⊤. (24)

Now, in the case where G̃ = G′ = K2, we see that the degree matrix with self-loops D̃G′
= 2I2,

while this time, the adjacency matrix AG′
of G′ is the permutation matrix

AG′
=

(
0 1
1 0

)
.

Consequently, the normalized adjacency matrix of G′ is

ÂG′
=

1√
2
I2(I2 +AG′

)
1√
2
I2 =

1

2

(
1 1
1 1

)
. (25)

Now, incorporating equation 25 into the right-hand side of equation 20, and again using the fact that
the ReLU activation function acts as the identity on [0,∞) we find that

AG-Conv(X|G̃,Wdown,Wup) = (1, 0)⊤ +
1

2

(
1 1
1 1

)
ReLU

(
1

2

(
1 1
1 1

)
(1, 0)⊤

)
(26)

= (1, 0)⊤ +
1

4

(
1 1
1 1

)
(1, 1)⊤ (27)

= (1, 0)⊤ +
1

4
(2, 2)⊤ (28)

= (1.5, 0.5)⊤. (29)

Comparing the computations in equation 22-equation 24 with those in equation 26-equation 29
yields the conclusion.

Proof of Proposition 1.
Let G be any δ-regular graph (including self-loops) and let Â = ÂG be its respective symmetrically
normalized adjacency matrix. We also have Wdown ∈ RD×r, Wup ∈ Rr×D, the low rank learnable
matrices. Let us upper-bound the Lipschitz constant of the AG-Conv(·|G,Wdown,Wup). Thus, we
fix X,X′ ∈ RN×D and we compute∥∥∥AG-Conv(X|G,Wdown,Wup)−AG-Conv(X

′|G,Wdown,Wup)
∥∥∥ (30)

≤
∥∥∥X+ α · Normalization

(
Âσ

(
ÂXWdown

)
Wup

)
(31)

−X′ + α · Normalization
(
Âσ

(
ÂX′ Wdown

)
Wup

)∥∥∥ (32)

12
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≤∥X−X′∥+ α
∥∥∥Normalization

(
Âσ

(
ÂXWdown

)
Wup

)
(33)

− Normalization
(
Âσ

(
ÂX′ Wdown

)
Wup

)∥∥∥ (34)

≤∥X−X′∥+ α
∥∥∥(Âσ

(
ÂXWdown

)
Wup

)
−

(
Âσ

(
ÂX′ Wdown

)
Wup

)∥∥∥ (35)

≤∥X−X′∥+ α∥Â∥op Lσ ∥Â∥op
∥∥∥XWdownWup −X′ WdownWup

∥∥∥ (36)

≤∥X−X′∥+ α∥Â∥op Lσ ∥Â∥op
∥∥∥X−X′

∥∥∥ ∥Wdown∥op∥Wup∥op (37)

=∥X−X′∥+ ∥Â∥2opαLσ∥Wdown∥op∥Wup∥op
∥∥∥X−X′

∥∥∥ (38)

≤(1 + ∥Â∥2opαLσ∥Wdown∥op∥Wup∥op)
∥∥∥X−X′

∥∥∥. (39)

Consequentially, Lip
(
AG-Conv(·|G,Wdown,Wup)

)
is Lipschitz with constant at-most

Lip
(
AG-Conv(·|G,Wdown,Wup)

)
≤ 1 + ∥Â∥2opαLσ∥Wdown∥op∥Wup∥op. (40)

If G is δ-regular, then D̃i,i = D̃j,j = δ + 1 for every i, j ∈ {1, . . . , N}; otherwise, D̃i,i ≥
1 + deg−(G), where deg−(G) refers to the minimal degree of G. In particular, when G is δ-regular,
D̃ equals to the scalar matrix D̃ = (δ + 1)IN and otherwise, it is a diagonal matrix. Whence, the
operator norm of Â reduces to

∥Â∥op =
∥∥D̃−1/2ÃD̃−1/2

∥∥
op

(41)

≤
∥∥((1 + deg−(G))IN )−1/2Ã((1 + deg−(G))IN )−1/2

∥∥
op

(42)

=
1√

(1 + deg−(G))
∥∥Ã∥∥

op

1√
(1 + deg−(G))

(43)

≤ 1

(1 + deg−(G))
(
1 + ∥A∥op

)
(44)

where A is the adjacency matrix of G without self-loops. The last inequality is based on the triangle
inequality and on the fact that the operator norm of the identity matrix is 1. Also, since the adjacency
matrix is symmetric, then, the Spectral Theorem, see e.g. (Horn & Johnson, 1990, Theorem 2.5.6),
implies that all eigenvalues of A are real and, moreover, ∥A∥op equals to the absolute maximal
eigenvalue of A, i.e. the spectral radius ρ(A) of A. The δ-regularity of A implies that, by the
simple spectral bound in (Brualdi et al., 2018, equation 3.3), we have

ρ(A) ≤ deg+(G) ≤
{
δ if G is δ-regular
1 else.

(45)

In the above, deg+(G) denotes the maximal degree of G. Furthermore, in the case where G is δ-
regular the above inequalities become equalities by (Brualdi et al., 2018, Theorem 3.2.3). Thus, we
find that

∥Â∥op ≤ 1

1 + deg−(G)
(
1 + ∥A∥op

)
=

1

1 + deg−(G)
(
1 + ρ(A)

)
=


1+deg+(G)
1+deg−(G) =

1+δ
1+δ = 1, if G is δ-regular,

1+ρ(A)
1+deg−(G) , otherwise.

(46)

Note that for arbitrary connected graphs with significant degree variability, the minimal degree can
be much lower than the spectral radius: consider for instance star graphs.

Finally, the right-hand side of equation 40 yields the desired bound since

Lip
(
AG-Conv

)
≤ 1 + αLσ∥Wdown∥op∥Wup∥op ×

{
1 if G is δ-regular

(1+ρ(A))2

(1+deg−(G))2 else.
(47)
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Given that our analysis holds for any δ-regular graph, the Lipschitz bound applies to every δ-regular
graph, including those produced randomly: the derivation did not depend on any additional assump-
tions regarding the topology of G.

B COMPLEXITY ANALYSIS

We provide a detailed comparison of the time and space complexity of GConv-Adapter against other
graph-specific PEFT methods, namely AdapterGNN (Li et al., 2024) and G-Adapter (Gui et al.,
2024).

Computational Complexity Overview. Let |V| = N nodes and |E| = E edges, and let D be
the input feature dimension. The GConv-Adapter consists of two sparse-dense multiplications
with the normalized adjacency matrix Â and two dense linear projections via the low-rank ma-
trices Wdown ∈ RD×r and Wup ∈ Rr×D. This yields an overall per-layer time complexity of
O(ED + Er + NDr). In practice, since r ≪ D, the O(Er) term becomes negligible compared
to the O(ED) term. As a result, the overall complexity simplifies to O(ED + NDr), where the
first term accounts for the sparse graph convolutions and the second captures the cost of the dense
low-rank projections. The space complexity is dominated by the trainable parameters, which scale
as O(Dr), significantly smaller than the O(D2) complexity incurred by full fine-tuning. This con-
firms that GConv-Adapter remains lightweight and scalable even for large-scale graphs. We provide
detailed matrix-level derivations of the time and space complexity next.

B.1 TIME COMPLEXITY

Table 3 summarizes the time complexity of the core operations in each method. For GConv-Adapter,
the cost arises from two rounds of sparse graph convolution, followed by low-rank projections and
normalization. G-Adapter performs a single sparse aggregation before projection. AdapterGNN, by
contrast, does not involve any graph-aware operation within the adapter itself.

Table 3: Time complexity of graph-specific PEFT methods

Operation AdapterGNN G-Adapter GConv-Adapter
Graph Convolution – O(ED) O(ED + Er)
Down-Projection O(NDr) O(NDr) O(NDr)
Up-Projection O(NDr) O(NDr) O(NDr)
Activation O(Nr) O(ND) O(Nr)
Normalization O(ND) O(ND) O(ND)

Total O(NDr) O(ED +NDr) O(ED + Er +NDr)

In practice, since r ≪ D, the O(Er) term in GConv-Adapter is dominated by the O(ED) term.
This allows us to simplify the total complexity to O(ED+NDr), where the first term accounts for
sparse graph convolutions and the second for dense low-rank projections.

B.2 SPACE COMPLEXITY

Table 4 compares the number of additional parameters introduced by each method. All methods
rely on a pair of projection matrices for dimensionality reduction and expansion, with optional
normalization and scaling parameters. GConv-Adapter retains the same parameter efficiency as
AdapterGNN and G-Adapter while adding structural awareness.

Here, α denotes the learnable scaling factor (where applicable), while γ and β are the scale and shift
parameters of the normalization layers. Despite its added structural processing, GConv-Adapter
preserves the low space footprint characteristic of PEFT methods.
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Table 4: Space complexity of graph-specific PEFT methods

Method Learned Parameters Total Space Complexity

AdapterGNN Wdown ∈ RD×r,Wup ∈ Rr×D, α, γ, β O(Dr)
G-Adapter Wdown ∈ RD×r,Wup ∈ Rr×D, γ, β O(Dr)
GConv-Adapter Wdown ∈ RD×r,Wup ∈ Rr×D, α, γ, β O(Dr)

C IMPLEMENTATION DETAILS

Datasets and Evaluation Protocol For the inductive setting, we use nine molecular property pre-
diction datasets (Ramsundar et al., 2019): ESOL, FreeSolv, Lipophilicity, Tox21, SIDER, ClinTox,
BACE, MUV, and HIV. Among these, ESOL (1.1K graphs), FreeSolv (0.6K), BACE (1.5K), Clin-
Tox (1.4K), and SIDER (1.4K) are considered small-scale. Lipophilicity (4.2K) and Tox21 (7.8K)
represent medium-scale datasets, while HIV (41K) and MUV (93K) are large-scale datasets. Con-
sistent with prior work (Hu et al., 2020b), we use a scaffold split for HIV and random splits for
the others. RMSE is used to evaluate ESOL, FreeSolv, and Lipophilicity, while ROC-AUC is used
for the remaining datasets. For the transductive setting, we evaluate our approach on three standard
node classification datasets: Cora, Citeseer, and PubMed (Sen et al., 2008). These datasets consist
of citation networks, where nodes represent documents and edges correspond to citation links. We
use a standard random 50%/25%/25% split for train/val/test.

Experimental Setup All experiments were implemented using PyTorch (Paszke et al., 2019) and
PyG (Fey & Lenssen, 2019) on NVIDIA A100 GPUs. For the inductive setting, we maintained
consistency with the hyperparameters and training strategies used in previous work by Hu et al.
(2020c), ensuring reproducibility and comparability. Our results were obtained without any special
hyperparameter tuning for individual datasets. In the transductive setting, we used the same hyper-
parameters for fine-tuning as those applied during pre-training. The primary difference was that the
fine-tuning process was limited to 300 epochs, with early stopping triggered if the validation loss
did not improve for 20 consecutive epochs. The bottleneck dimension for all low-rank based PEFT
methods (LoRA, Adapter, AdapterGNN, G-Adapter, and GConv-Adapter) was set to 16 to maintain
consistency across experiments.

Pre-Trained Models: Inductive For the inductive learning experiments, we utilized pre-trained
models of four widely-adopted GNN architectures—GCN Kipf & Welling (2017), GraphSAGE
Hamilton et al. (2017), GAT Veličković et al. (2018), and GIN Xu et al. (2018). We applied
a two-stage pre-training process: self-supervised node-level pre-training, followed by supervised
graph-level property prediction pre-training, as in Hu et al. (2020c). Specifically, for node-level pre-
training, 2 million unlabeled molecules sampled from the ZINC15 database (Sterling & Irwin, 2015)
were used, while graph-level pre-training was conducted using the ChEMBL dataset (Mayr et al.,
2018; Gaulton et al., 2011), which contains 456K molecules and 1,310 diverse biochemical assays.
Pre-trained checkpoints from Hu et al. (2020c) were employed for all experiments, using context
prediction as the node-level pre-training strategy. This combination of context prediction and graph-
level supervised pre-training has been shown to mitigate the risk of negative transfer, thereby making
the models highly suitable for fine-tuning on downstream molecular property prediction tasks.

Pre-Trained Models: Transductive For the transductive learning experiments, we utilized the
NodeFormer (Wu et al., 2022) and DIFFormer-s (Wu et al., 2023) GT architectures. Both mod-
els were pre-trained using the ogbn-Arxiv dataset from the Open Graph Benchmark (OGB) Hu
et al. (2020a), a large-scale citation network of computer science arXiv papers, which contains over
169,000 nodes (papers) and more than 1.1 million edges (citation links). The choice of ogbn-Arxiv
for pre-training was motivated by its domain similarity to the target datasets (Cora, Citeseer, and
PubMed). Pre-training on this large and structurally rich dataset allows the models to learn effec-
tive node representations and capture important structural patterns in citation networks, improving
their ability to transfer knowledge when fine-tuned on the downstream tasks. In the case of Node-
Former, the model was configured with 64 hidden channels, 5 layers, and 1 attention head, utilizing
an identity transformation for the relational bias with a regularization weight of 0.1. The training
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process incorporated gumbel-softmax sampling for efficient message passing, batch normalization,
and residual connections. A learning rate of 0.01, no weight decay, and a batch size of 10,000 were
applied during the 1,000 epochs of training. Similarly, DIFFormer-s was pre-trained with 64 hid-
den channels and 5 layers, using 1 attention head and an alpha value of 0.5 to balance the residual
connections. Batch normalization and residual connections were enabled, along with the use of
graph positional embeddings. The model employed a simple kernel, where queries and keys were
normalized, and attention was computed using dot products between these normalized inputs. A
dropout rate of 0.2 and a weight decay of 0.01 were applied to regularize the training, with a learn-
ing rate of 0.001, a batch size of 10,000, and training for 1,000 epochs. For both NodeFormer and
DIFFormer-s, all other hyperparameters and architectural choices were kept consistent with their
original implementations as described in the respective papers (Wu et al., 2022; 2023).

Baselines As baselines, we include full fine-tuning and four commonly used PEFT methods: Sur-
gical Fine-tuning (Lee et al., 2023), BitFit (Ben Zaken et al., 2022), LoRA (Hu et al., 2022a), and
Adapter (Houlsby et al., 2019). Additionally, we evaluate two graph-specific PEFT approaches:
G-Adapter and AdapterGNN, which are extensively discussed in the main text.

D OVERALL PERFORMANCE COMPARISON

This appendix complements the discussion in Section 4. Here, we analyze average results from the
perspectives of both architectures and tasks.

Comparison across architectures First we compare average results for different architectures.
In regression tasks (Table 5), GConv-Adapter demonstrates particularly strong performance with
the GIN architecture, achieving the best RMSE of 1.026 among all methods and architectures.
Compared to full fine-tuning, GConv-Adapter shows substantial improvements across the differ-
ent architectures. With GIN, it improves upon full fine-tuning’s RMSE of 1.501 by 31.64%. For
GraphSAGE and GAT, while not achieving the best performance, GConv-Adapter still outperforms
full fine-tuning by 5.77% and 8.64% respectively (1.338 vs 1.420 and 1.935 vs 2.118). Only with
GCN does GConv-Adapter fall behind full fine-tuning (1.343 vs 1.195). When compared to other
graph-specific PEFT methods in regression tasks, GConv-Adapter shows competitive performance.
AdapterGNN achieves the best results on three out of four architectures (GCN: 1.064, GraphSAGE:
1.172, GAT: 1.740), leading to the best overall average of 1.291. G-Adapter, with an average RMSE
of 1.526, performs better than GConv-Adapter on GCN (1.267 vs 1.343) but falls behind on other
architectures. Despite not achieving the best average RMSE (1.411), GConv-Adapter’s strong per-
formance with GIN and consistent improvements over full fine-tuning demonstrate its effectiveness
as the second-best overall PEFT method. Compared to classical PEFT methods, GConv-Adapter
shows clear advantages. It outperforms the best classical PEFT method, Adapter (average RMSE:
1.625), by 13.16%. Other classical methods like LoRA (1.645), Surgical Fine-tuning (1.913), and
BitFit (2.870) show significantly higher RMSE values across all architectures.

Table 5: Table comparing overall performance on molecular prediction regression tasks (ESOL,
FreeSolv, and Lipophilicity), with results reported as the average Root Mean Square Error (RMSE)
across all tasks (lower RMSE indicates better performance). The best result for each pre-trained
model is highlighted in bold.

Method GCN GraphSAGE GAT GIN Average
Full Fine-tuning 1.195 1.420 2.118 1.501 1.559
Surgical Fine-tuning 1.854 1.798 2.185 1.816 1.913
BitFit 2.887 2.788 2.981 2.824 2.870
LoRA 1.547 1.422 2.055 1.556 1.645
Adapter 1.155 1.525 2.148 1.672 1.625
G-Adapter 1.267 1.305 2.027 1.505 1.526
AdapterGNN 1.064 1.172 1.740 1.187 1.291
GConv-Adapter (ours) 1.343 1.338 1.935 1.026 1.411

In classification tasks (Table 6), GConv-Adapter demonstrates superior performance across multiple
architectures. It achieves the best ROC-AUC scores with three out of four architectures: Graph-
SAGE (81.729%), GAT (77.157%), and GIN (83.896%). Compared to full fine-tuning, these re-
sults represent improvements of 2.7%, 2.95%, and 2.11% respectively. With GCN, GConv-Adapter
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Table 6: Overall performance on molecular classification tasks (Tox21, SIDER, ClinTox, BACE,
MUV, and HIV), with results reported as the average ROC-AUC across all tasks (higher ROC-AUC
indicates better performance). The best result for each pre-trained model is highlighted in bold.

Method GCN GraphSAGE GAT GIN Average
Full Fine-tuning 80.728 79.579 74.940 82.162 79.352
Surgical Fine-tuning 77.940 76.691 74.037 76.413 76.270
BitFit 66.934 69.615 68.645 66.974 68.042
LoRA 76.171 77.837 72.856 80.749 76.903
Adapter 80.160 77.395 73.701 80.850 78.027
G-Adapter 80.969 80.876 72.527 80.582 78.739
AdapterGNN 82.170 81.339 76.364 82.082 80.489
GConv-Adapter (ours) 81.786 81.729 77.157 83.896 81.142

(81.786%) comes second to the best performance achieved by AdapterGNN (82.170%), while still
outperforms full fine-tuning by 1.31%. Against other graph-specific PEFT methods in classification
tasks, GConv-Adapter shows consistent advantages. It surpasses G-Adapter’s average performance
(78.739%) by 3.05% and AdapterGNN’s average (80.489%) by 0.81%, achieving the best overall
average ROC-AUC of 81.142%. This superior performance is particularly evident with GAT and
GIN architectures, where GConv-Adapter outperforms both G-Adapter and AdapterGNN by signif-
icant margins. When compared to classical PEFT methods in classification tasks, GConv-Adapter
demonstrates substantial improvements. It outperforms all classical approaches, including Adapter
(78.027%), LoRA (76.903%), Surgical Fine-tuning (76.270%), and BitFit (68.042%). The improve-
ment margins range from 3.99% over Adapter to 19.25% over BitFit.

Comparison across tasks We present a detailed analysis of the performance of GConv-Adapter
and other PEFT methods on regression and classification tasks, averaged across different architec-
tural choices. Table 7 summarizes the average results for each fine-tuning method across the ESOL,
FreeSolv, and Lipophilicity datasets.

Table 7: Average performance on molecular regression tasks (ESOL, FreeSolv, and Lipophilicity).
The results are presented as average Root Mean Square Error (RMSE), with lower values indicating
better performance. Each method’s performance is averaged across all pre-trained models for each
dataset, with the best result for each dataset highlighted in bold.

Method ESOL FreeSolv Lipophilicity Average
Full Fine-tuning 1.393 2.407 0.876 1.559
Surgical Fine-tuning 1.574 3.123 1.043 1.913
BitFit 2.316 5.096 1.198 2.870
LoRA 1.482 2.603 0.851 1.645
Adapter 1.414 2.598 0.862 1.625
G-Adapter 1.374 2.373 0.835 1.527
AdapterGNN 1.405 1.688 0.780 1.291
GConv-Adapter (ours) 1.341 2.058 0.833 1.411

GConv-Adapter demonstrates consistent improvements over full fine-tuning across all regression
tasks. On the ESOL dataset, GConv-Adapter achieves an RMSE of 1.341, outperforming full
fine-tuning (1.393) by 3.73%. For the FreeSolv dataset, GConv-Adapter (2.058) shows a substan-
tial improvement of 14.49% over full fine-tuning (2.407). Similarly, on the Lipophilicity dataset,
GConv-Adapter (0.833) improves upon full fine-tuning (0.876) by 4.90%. These consistent im-
provements across all datasets, with an average RMSE of 1.411 compared to full fine-tuning’s
1.559 (9.49% improvement), demonstrate GConv-Adapter’s effectiveness in adapting pre-trained
models for molecular property regression tasks. When compared to other graph-specific PEFT
methods, GConv-Adapter shows competitive performance. On the ESOL dataset, GConv-Adapter
(1.341) outperforms both G-Adapter (1.374) and AdapterGNN (1.405) by 2.40% and 4.55% re-
spectively. For the FreeSolv dataset, while AdapterGNN achieves the best performance (1.688),
GConv-Adapter (2.058) still outperforms G-Adapter (2.373) by 13.27%. On the Lipophilicity
dataset, GConv-Adapter (0.833) performs slightly better than G-Adapter (0.835) but trails behind
AdapterGNN (0.780) by 6.79%. Overall, while AdapterGNN shows the best average performance
(1.291), GConv-Adapter’s average RMSE of 1.411 represents strong performance, outperforming
G-Adapter (1.527) by 7.59%. Among classical PEFT methods, Adapter shows the strongest perfor-
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mance, with an average RMSE of 1.625. However, GConv-Adapter outperforms all classical PEFT
methods across all datasets, showing improvements ranging from 13.16% over Adapter to 50.83%
over BitFit.

Lastly, we provide a comprehensive evaluation of GConv-Adapter’s performance, along with the
other PEFT techniques, in the classification tasks. Table 8 summarizes the average results for each
fine-tuning method across the Tox21, SIDER, ClinTox, BACE, MUV, and HIV datasets.

Table 8: Average performance on molecular classification tasks (Tox21, SIDER, ClinTox, BACE,
MUV, and HIV). Results are reported as average ROC-AUC, where higher values indicate better
performance. Each method’s performance is averaged across all pre-trained models for each dataset,
with the best result for each dataset highlighted in bold. The evaluated methods include Full Fine-
tuning, Surgical Fine-tuning, BitFit, LoRA, Adapter, G-Adapter, AdapterGNN, and GConv-Adapter
(proposed method).

Method Tox21 SIDER ClinTox BACE MUV HIV Average
Full Fine-tuning 82.795 82.481 97.404 68.291 72.288 72.695 79.352
Surgical Fine-tuning 80.034 81.348 97.371 61.291 69.244 68.334 76.270
BitFit 68.587 79.159 96.611 53.272 52.722 57.903 68.042
LoRA 82.054 81.731 97.033 69.874 59.954 70.772 76.903
Adapter 82.728 82.152 97.067 67.574 69.098 69.541 78.027
G-Adapter 83.343 82.464 97.119 74.054 66.347 69.103 78.738
AdapterGNN 83.977 81.989 97.136 73.049 73.799 72.982 80.489
GConv-Adapter (ours) 84.288 82.641 97.558 74.002 73.550 74.974 81.142

Compared to full fine-tuning, GConv-Adapter demonstrates consistent improvements across most
classification tasks. For Tox21, GConv-Adapter achieves a ROC-AUC of 84.288%, surpassing full
fine-tuning (82.795%) by 1.80%. On SIDER, GConv-Adapter (82.641%) slightly outperforms full
fine-tuning (82.481%) by 0.19%. The improvement is similar on ClinTox, where GConv-Adapter
(97.558%) exceeds full fine-tuning (97.404%) by 0.15%. On BACE, GConv-Adapter shows substan-
tial improvement with 74.002% compared to full fine-tuning’s 68.291%, an increase of 8.36%. For
MUV, GConv-Adapter (73.550%) outperforms full fine-tuning (72.288%) by 1.74%. Similarly, on
HIV, GConv-Adapter (74.974%) shows a modest, but significant, improvement over full fine-tuning
(72.695%) of 3.13%. These consistent improvements lead to a higher overall average ROC-AUC
of 81.142% compared to full fine-tuning’s 79.352%, representing a 2.25% improvement. When
compared to other graph-specific PEFT methods, GConv-Adapter shows superior performance in
most cases. Against G-Adapter, GConv-Adapter shows improvements on five out of six datasets:
Tox21 (84.288% vs 83.343%), SIDER (82.641% vs 82.464%), ClinTox (97.558% vs 97.119%),
MUV (73.550% vs 66.347%), and HIV (74.974% vs 69.103%). Only on BACE does G-Adapter
perform marginally better (74.054% vs 74.002%). Compared to AdapterGNN, GConv-Adapter
achieves better performance on four datasets: Tox21 (84.288% vs 83.977%), SIDER (82.641% vs
81.989%), ClinTox (97.558% vs 97.136%), and HIV (74.974% vs 72.982%). AdapterGNN shows
slightly better performance on BACE and MUV. Overall, GConv-Adapter’s average ROC-AUC of
81.142% surpasses both G-Adapter (78.738%) and AdapterGNN (80.489%) by 3.05% and 0.81%
respectively. Compared to classical PEFT methods, GConv-Adapter demonstrates substantial im-
provements across all datasets. It outperforms the best classical PEFT method, Adapter (78.027%),
by 3.99%, with even larger improvements over LoRA (76.903%), Surgical Fine-tuning (76.270%),
and BitFit (68.042%).

We expect that if a careful hyperparameter search were performed for each dataset, GConv-Adapter
could achieve even better results.

E ABLATIONS

To assess the effectiveness of various architectural components, we conduct ablation studies whose
results are summarized in Tables 9, 10, 11, and 12. The base configuration for the ablations is based
on the definition given in equation 5, the position of the adapters is sequential (before and after the
GNN layers, as later discussed in this section), for normalization we use BatchNorm for MPNNs
and LayerNorm for GTs, and α is initialized to 1 for training.

18



Published as a workshop paper at SCOPE - ICLR 2025

Location First, we analyze the effect of inserting the GConv-Adapter at different stages within the
GNN architecture: we systematically vary the positions where the adapter is inserted. Specifically,
we explore three different insertion configurations: (1) before the GNN layers (pre), (2) after the
GNN layers (post), and (3) both before and after the GNN layers (pre & post). Each configuration
is evaluated in both sequential and parallel forms, where the former applies the adapter in a cas-
cade with the original GNN, and the latter applies the adapter in parallel to the GNN operations.
The results are presented in Table 9, comparing performance across both inductive and transductive
learning tasks. The pre & post-sequential configuration consistently delivers the best overall per-
formance, achieving the lowest RMSE on ESOL (1.165 ± 0.052) and Lipophilicity (0.720 ± 0.002),
along with high ROC-AUC scores on SIDER (83.656 ± 0.550) and MUV (73.632 ± 1.902). In the
transductive setting, it also achieves the highest accuracy on Cora (81.339 ± 1.290), Citeseer (75.310
± 2.378), and PubMed (89.006 ± 0.187).

Table 9: Ablation Study on Adapter Insertion Forms for Inductive and Transductive Learning Tasks.
The best results for each dataset are highlighted in bold.

(a) Inductive Learning Tasks

Positions Type ESOL (RMSE ↓) Lipo (RMSE ↓) SIDER (ROC-AUC ↑) MUV (ROC-AUC ↑)

pre sequential 1.178 ± 0.010 0.729 ± 0.018 83.552 ± 0.833 67.657 ± 0.386
parallel 1.312 ± 0.032 0.920 ± 0.048 82.332 ± 0.463 65.312 ± 0.944

post sequential 1.198 ± 0.012 0.727 ± 0.003 83.638 ± 0.737 69.950 ± 5.024
parallel 1.202 ± 0.014 0.734 ± 0.004 82.860 ± 0.442 71.336 ± 1.875

pre & post sequential 1.165 ± 0.052 0.720 ± 0.002 83.656 ± 0.550 73.632 ± 1.902
parallel 1.246 ± 0.030 0.814 ± 0.064 81.065 ± 0.281 61.649 ± 1.805

(b) Transductive Learning Tasks

Positions Type Cora (Accuracy ↑) Citeseer (Accuracy ↑) PubMed (Accuracy ↑)

pre sequential 78.533 ± 2.393 75.090 ± 2.097 88.695 ± 0.509
parallel 73.880 ± 1.433 72.629 ± 2.150 87.762 ± 0.454

post sequential 80.748 ± 1.267 74.910 ± 1.542 88.851 ± 0.412
parallel 77.302 ± 0.664 73.629 ± 1.690 88.323 ± 0.269

pre & post sequential 81.339 ± 1.290 75.310 ± 2.378 89.006 ± 0.187
parallel 72.994 ± 1.663 73.069 ± 1.486 87.208 ± 0.282

Normalization To evaluate the impact of normalization layers on model performance, we conduct
an ablation study by comparing two normalization strategies against a baseline with no normaliza-
tion. In the inductive setting, we compare models with no normalization versus those using Batch
Normalization; in the transductive setting, we compare no normalization with Layer Normalization.
The results are presented in Table 10. For inductive tasks, Batch Normalization significantly im-
proves performance by reducing the RMSE on FreeSolv from 2.346 ± 0.084 to 1.543 ± 0.260 and
increasing the ROC-AUC on Tox21 from 85.380% to 85.781%. Surprisingly, in transductive tasks,
the absence of normalization slightly outperforms LayerNorm. For the Cora dataset, no normaliza-
tion achieves 80.847% accuracy compared to 80.601% with LayerNorm. Similarly, in the Citeseer
dataset, no normalization reaches 75.510% accuracy versus 75.230% for LayerNorm. In the case of
PubMed, both approaches yield identical results, 89.006%.

Learnable scalar We conduct an ablation study to examine the impact of a learnable scalar pa-
rameter by comparing models with and without it on inductive and transductive tasks. As shown in
Table 11, enabling the learnable scalar improves performance for all datasets tested—for instance, in
the inductive setting, the ESOL RMSE is reduced from 1.177 ± 0.023 to 1.156 ± 0.021 and the HIV
ROC-AUC increases from 74.218 ± 0.926 to 74.441 ± 0.942, with similar improvements observed
on the transductive benchmarks.

Skip connection Table 12 shows that incorporating skip connections enhances performance sig-
nificantly across all datasets tested; for example, in the inductive setting, the FreeSolv RMSE de-
creases from 1.726 ± 0.230 to 1.543 ± 0.785 and the BACE ROC-AUC rises from 74.7643.307%
to 77.7843.032%, while in the transductive setting, accuracy on Cora improves dramatically from
29.7880.487% to 80.6011.334%.
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Table 10: Ablation study on normalization layers for inductive and transductive learning tasks. The
best result for each dataset is highlighted in bold.

(a) Inductive Learning Tasks

Normalization FreeSolv (RMSE ↓) Lipo (RMSE ↓) Tox21 (ROC-AUC ↑) HIV (ROC-AUC ↑)
None 2.346 ± 0.084 0.720 ± 0.002 85.380 ± 0.470 72.852 ± 1.637

Batch Normalization 1.543 ± 0.260 0.715 ± 0.016 85.781 ± 0.266 75.735 ± 1.014

(b) Transductive Learning Tasks

Normalization Cora (Accuracy ↑) Citeseer (Accuracy ↑) PubMed (Accuracy ↑)
None 80.847 ± 1.159 75.510 ± 2.209 89.006 ± 0.187

Layer Normalization 80.601 ± 1.489 75.230 ± 2.445 89.006 ± 0.187

Table 11: Ablation study on learnable scalar for inductive and transductive learning tasks. The best
results for each dataset are highlighted in bold.

(a) Inductive Learning Tasks

Learnable Scalar ESOL (RMSE ↓) Lipo (RMSE ↓) ClinTox (ROC-AUC ↑) HIV (ROC-AUC ↑)
False 1.177 ± 0.023 0.726 ± 0.014 96.677 ± 0.225 74.218 ± 0.926
True 1.156 ± 0.021 0.724 ± 0.008 96.730 ± 0.075 74.441 ± 0.942

(b) Transductive Learning Tasks

Learnable Scalar Cora (Accuracy ↑) Citeseer (Accuracy ↑) PubMed (Accuracy ↑)
False 80.551 ± 1.224 74.990 ± 2.678 89.006 ± 0.187
True 80.798 ± 1.398 75.070 ± 2.114 89.033 ± 0.157

Table 12: Ablation Study on Skip Connections for Inductive and Transductive Learning Tasks. The
best results for each dataset are highlighted in bold.

(a) Inductive Learning Tasks

Skip Connection FreeSolv (RMSE ↓) Lipo (RMSE ↓) BACE (ROC-AUC ↑) MUV (ROC-AUC ↑)
False 1.726 ± 0.230 0.761 ± 0.029 74.764 ± 3.307 68.853 ± 4.823
True 1.543 ± 0.785 0.723 ± 0.009 77.784 ± 3.032 71.445 ± 0.995

(b) Transductive Learning Tasks

Skip Connection Cora (Accuracy ↑) Citeseer (Accuracy ↑) PubMed (Accuracy ↑)
False 29.788 ± 0.487 22.529 ± 1.787 40.615 ± 0.427
True 80.601 ± 1.334 74.950 ± 2.223 89.040 ± 0.154
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