
Under review as a conference paper at ICLR 2022

BIT-WISE TRAINING OF NEURAL NETWORK WEIGHTS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose an algorithm where the individual bits representing the weights of
a neural network are learned. This method allows training weights with integer
values on arbitrary bit-depths and naturally uncovers sparse networks, without
additional constraints or regularization techniques. We show better results than
the standard training technique with fully connected networks and similar perfor-
mance as compared to standard training for residual networks. By training bits
in a selective manner we found that the biggest contribution to achieving high
accuracy is given by the first three most significant bits, while the rest provide
an intrinsic regularization. As a consequence we show that more than 90% of a
network can be used to store arbitrary codes without affecting its accuracy. These
codes can be random noise, binary files or even the weights of previously trained
networks.

1 INTRODUCTION

Many challenging areas of computer science have found very good solutions by using powerful tech-
niques such as deep neural networks. Their applications range now from computer vision, speech
recognition, natural language processing, game playing engines, natural sciences such as physics,
chemistry, biology and even to automated driving. Their success is largely due to the increase in
computing power of dedicated hardware which supports massive parallel matrix operations. This
enabled researchers to build ever growing models with intricate architectures and millions or even
billions of parameters, with impressive results.

However, despite their effectiveness, many aspects of deep neural networks are not well understood.
One such aspect is why over-parameterized models are able to generalize well. One of the important
avenues of research towards a better understanding of deep learning architectures is neural network
sparsity. Frankle & Carbin (2019) showed a simple, yet very effective magnitude based pruning
technique capable of training neural networks in very high sparsity regimes while retaining the per-
formance of the dense counterparts. This sparked new interest in parameter pruning and a large body
of work on the topic has since been published. The techniques for weight pruning can be broadly cat-
egorized as follows: pruning after training, before training and pruning during training. The work
of Frankle & Carbin (2019) falls in the first category because the method relies on removing the
weights which reach small magnitudes after they have been trained. In the second kind of approach,
such as (Lee et al., 2019; Wang et al., 2020), neural networks are pruned before training in order to
avoid expensive computations at training time. The end goal is to remove connections such that the
resulting network is sparse and the weights are efficiently trainable after the pruning procedure. The
third kind of approach is to use dynamical pruning strategies (Dai et al., 2019; Mostafa & Wang,
2019) which train and remove weights at the same time.

The main goal behind these pruning strategies is to find sparse neural networks which can be trained
to large degrees of accuracy. However, it has been shown by Zhou et al. (2019) that there exist
pruning masks which can be applied to an untrained network such that its performance is far bet-
ter than chance. Furthermore, Ramanujan et al. (2019) developed an algorithm for finding good
pruning masks for networks with fixed, random weights. Theoretical works (Malach et al., 2020;
Orseau et al., 2020) even proved that within random neural networks there exist highly efficient sub-
networks, which can be found just by pruning. Orseau et al. (2020) advance the hypothesis that the
main task of gradient descent is to prune the networks while on the second place is the fine-tuning
of the weights.

1

Under review as a conference paper at ICLR 2022

2 MOTIVATION

A key issue we want to emphasize is that, in all these works, the way in which the networks are
pruned in practice is by forcing them, through some criteria, to set a fraction of the weights to
zero. Since it has been shown that sparse networks perform as well as their dense counterpart, or
sometimes even better, the natural question that arises is: why doesn’t gradient descent itself prune
the weights during training? Why hasn’t pruning been spontaneously observed in practice? One
possible explanation is that, at least for classification tasks, the usual cross–entropy loss without ad-
ditional regularization techniques are not well suited for this. Other factors such as the stochasticity
of the data batches, optimization algorithm, weights initialization etc. might also play a role.

However, we approach this question from a different perspective. We hypothesize that an important
reason for weights not being set to zero is because this is a particular state where the bits representing
a weight must all equal zero. This is highly unlikely since weights are usually represented on 32
bits. The probability of a single weight being set to exactly zero is 2−31, the sign bit not playing a
role. Therefore the chances that a significant number of weights is set to zero decreases very rapidly.
If weights would be represented on a lower bit depth, then the chance that the optimizer sets them
to zero should increase.

In order to test the degree to which this hypothesis is true we experiment with neural networks for
image classification where, instead of training the weights themselves, we train the individual bits
representing the weights. This might allow gradient descent to reach stable states where all bits in
a set of weights are zero and the loss function is around a local minimum. If our hypothesis is true
then we expect a strong dependency between sparsity and bit-depth.

By encoding weights on arbitrary precision we also touch upon the topic of network quantization
and show that particular cases of this training technique result in algorithms developed in previous
works which we will describe in Section 8. Moreover, we show that weight quantization naturally
leads to weight pruning and sparse networks without additional constraints such a regularizations,
additional loss terms, architectural changes or other tricks usually involved in engineering low bit
quantized networks.

3 BINARY DECOMPOSITION

We approximate weights on k bits by using the sign and magnitude representation, due to its sim-
plicity. A weight tensor of a layer l can be decomposed as:

θlk =

(
k−2∑
i=0

ali · 2i+αl

)
· (−1)a

l
k−1 (1)

with al ∈ {0, 1} representing the binary coefficients and k the number of bits. The summation
encodes the magnitude of the number while the second factor encodes the sign: this way we obtain
numbers in a symmetric interval around zero. We add a negative constant αl to the exponent in
order to allow the representation of fractional numbers (see Table 1). Additionally, this term controls
the magnitude of the numbers and, therefore, the width of the weights distribution within a layer.
Choosing αl < −k + 1 the weights are guaranteed to be less than 1 in magnitude. In order to
constrain a to take binary values we use auxiliary floating point variables x ∈ R (virtual bits) passed
through a unit step function: a = H(x) = 0 if x ≤ 0, otherwise 1.

The weight initialization for the k bit training technique is as follows: for a fully connected layer the
weight matrix is expanded into a 3D tensor of shape (k, nl−1, nl) with k representing the number
of bits and nl−1, nl the number of nodes in the previous and current layer, respectively. Figure 1
illustrates a simple example of a (3, 4, 3) bit-tensor. For convolutional layers, where a weight tensor
is in higher dimension, the procedure is analogous to the fully connected case and the bit-tensor
is now of shape (k, sx, sy, nl−1, nl) with sx, sy representing the kernel sizes in x and y direction.
The value for each bit is chosen randomly with equal probability of being either 0 or 1 (x ≤ 0
in the first case and x > 0 in the second). We ensure the weights sampled in this manner are
not initialized at exactly zero, because this would mean pruning the network from the start and
invalidate our hypothesis. Hence we obtain a uniform weight distribution without zeros. We adopt

2

Under review as a conference paper at ICLR 2022

1

1

1

0

1

0

1

0

1

0

0

0

0

1

0

1

0

1

0

0

0

0

0

0

1

1

1

1

0

1

0

1

1

0

1

1

Nodes in layer V

Nodes in layer U

Bits

Figure 1: 3D bit-tensor connecting two dense layers, U and V, with 4 and 3 nodes, respectively.

the Kaiming He (He et al., 2015a) initialization technique for each layer’s weights, which means
the standard deviation is

√
2/nl−1, where nl−1 is the number of nodes in the previous layer. We

have determined αl algorithmically via a simple binary search such that this condition is fulfilled for
the weight distribution of each layer. This term is a fixed parameter in each layer and depends only
on the structure of the network. The virtual bits, x, are chosen from a normal distribution which
also satisfies the Kaiming He condition on its variance. For the particular situation where k = 2
the weights have only two values and the standard deviation is exactly 2α. Ramanujan et al. (2019)
refer to this distribution as the Signed Kaiming Constant.

During training, the feed-forward step is performed as usual, with the weights being calculated
according to Eq. (1). The backpropagation phase uses the straight through estimator (STE) (Hinton,
2012; Bengio, 2013) for the step function introduced in the weight’s binary decomposition. The
derivative of a hard threshold function such as the Heaviside step function is zero everywhere except
at zero (more specifically it is the Dirac delta function). Since the values of the weights are passed
through this step function are almost never exactly zero, the gradients during backpropagation will
almost always be zero. This situation leads to a stagnant network which never updates its weights
and never learns. To avoid this, during the backpropagation phase the gradient of the step function
is replaced by the gradient of a different function which is non-zero on a domain larger than for the
step function. Such functions are usually referred to as proxy functions and can take many forms.
Yin et al. (2019); Shekhovtsov & Yanush (2020) provide in-depth discussions on the properties of
STEs. Throughout this work we adopt the method first proposed by Hinton (2012) which treats the
gradient of a hard threshold function as if it were the identity function. This method has been shown
to work very well in practice (Liu et al., 2018; Bulat et al., 2019; 2021; Bethge et al., 2019; Alizadeh
et al., 2019)

Notice that in Eq.(1) the additive constant αl can be factored out of the sum. The resulting weights
are in the form θlk = 2αl · Θl

k, where Θl
k contains only integer numbers on k bits. The ReLU

activation function has the property that σ(α · x) = α · σ(x) for any α > 0. It can be shown that for
a ReLU network of depth L, scaling the weights of each layer by a factor αl, with l ∈ [0, 1, . . . L−1]

representing the layer index, is equivalent to scaling just a single layer with α =
∏L−1

l=0 αl, including
the input layer. This means that we can gather all factors αl into a single α, scale the input images
with that factor and train the network with just integer numbers represented on k bits. At inference
time, for classification tasks α is not relevant because the output nodes are all scaled by the same
coefficient and argmax(α · x) = argmax(x) for any α > 0.

4 EXPERIMENTS

We have performed an extensive set of experiments where networks were trained on bit-depths
ranging from 2 to 32. Figure 2 summarises the performance of LeNet and ResNet-18 (LeCun et al.,
1998; He et al., 2015b) trained on MNIST and CIFAR10 (LeCun & Cortes, 2010; Krizhevsky,
2009). Each experiment was repeated 15 times. Each data point represents the best accuracy/sparsity
obtained from all runs and are displayed as violin plots. They show via the kernel density estimation
the minimum, mean, maximum and the spread of the repeated runs. The right-most violin shows
the performance of the standard 32-bit training technique, the horizontal black line its mean and the
shaded area the minimum and maximum accuracy.

3

Under review as a conference paper at ICLR 2022

97.6

97.8

98.0

98.2

98.4

Te
st

Ac

cu
ra

cy
bitwise uniform 32bit baseline

323130292827262524232221201918171615141312111098765432
Bit-depth

0
25
50
75

100

%
 o

f n
on

-z
er

o
 w

ei
gh

ts

MNIST

84
85
86
87
88
89
90

Te
st

Ac

cu
ra

cy

bitwise uniform 32bit baseline

323130292827262524232221201918171615141312111098765432
Bit-depth

0
25
50
75

100

%
 o

f n
on

-z
er

o
 w

ei
gh

ts

CIFAR10

Figure 2: Classification accuracy and sparsity as a function of the weights bit-depth with LeNet
(left) and ResNet (right). The right-most data point indicates the performance of the standard 32-bit
training technique. Lower panels indicate the amount of non-zero weights remaining after training.
Black dots show the probability that a certain percentage of weights is set to zero by random chance.

The networks were trained with the following setup. For LeNet the learning rate starts at 9 · 10−4

and is divided by 10 at epoch 40 and 80. We have also experimented with a single, fixed learning
rate but in that case the standard training technique on 32bits reached a maximum accuracy of only
97.7%, while bit-wise weight training did not suffer any noticeable penalty. For ResNet the learning
rate starts at 6 · 10−4 and is divided by 10 at epoch 150 and 170. In both cases we used the Adam
optimizer (Kingma & Ba, 2017).

For LeNet (left panels in Figure 2) this training technique consistently achieves higher mean ac-
curacies than the baseline while at the same time pruning the network significantly. Moreover, as
the bit depth decreases there seems to be a slight increase in the mean classification accuracy. This
indicates that the additional bits available for the weights impede the ability of the gradient descent
to converge to better solutions. The right panels in Figure 2 show the results of ResNet-18 trained
on CIFAR10. Here we observe a degradation in terms of classification accuracy compared to the
standard training technique of about 1.7 percentage points (we will show in Section 5 how to miti-
gate this issue). The network sparsity is higher than in the case of LeNet, somewhere in the range
of 25-35%, for bit depths 2 to 16. Note that the sparsity plots are also represented as violins, but
their height is smaller relative to the scale of the entire curve due to the very small variations in the
sparsity achieved at the end of training.

For both LeNet and ResNet there is a strong dependency between the bit depth and the amount of
zero weights found by the network. This is in line with our hypothesis that gradient descent does not
naturally uncover sparse networks when training weights represented on 32bits. This also explains
why currently used pruning techniques require external mechanisms which force the network to set
weights to zero while training. In essence, they bypass the weight’s whole bit structure, effectively
setting all bits to zero at once.

The black dots in Figure 2 indicate the percentage of weights set to zero by random chance. We
observe that for high bit-depths (k > 24) the chance that gradient descent sets a certain amount of
weights to zero is almost the same as random chance. However, for lower bit-depths gradient descent
is much more likely to set weights to zero due to the much smaller search space of the weight’s bit
structure.

0.08 0.04 0.00 0.04 0.08100

101

102

103

104

Fr
eq

ue
nc

y

bitwise - 2 bits

0.12 0.06 0.00 0.06 0.12100

101

102

103

104
bitwise - 4 bits

0.08 0.00 0.08100

101

102

103

104
bitwise - 8 bits

0.08 0.00 0.08100

101

102

103

104
bitwise - 16 bits

0.16 0.08 0.00 0.08 0.16100

101

102

103

104
standard - 32 bits

0.08 0.04 0.00 0.04 0.08100

101

102

103

104

Fr
eq

ue
nc

y

0.12 0.06 0.00 0.06 0.12100

101

102

103

104

0.08 0.00 0.08100

101

102

103

104

0.08 0.00 0.08100

101

102

103

104

1.0 0.5 0.0 0.5 1.0100

101

102

103

104

Figure 3: Weight distribution of the second LeNet layer before and after training.

Figure 3 shows the histogram of (float) weight distribution of the second hidden layer in LeNet
before and after training. Bit-wise weight learning moves a significant amount of weights either
to exactly zero or to the maximum value representable on k bits. The frequency of intermediary

4

Under review as a conference paper at ICLR 2022

values is significantly reduced, in some cases by one order of magnitude. Although this technique
has no special regularization nor an external weight pruning mechanism, it naturally uncovers sparse
networks. This comes in stark contrast with the standard training technique, right most panels. Here,
the distribution of the weights after training is much more spread out than the initial one and has a
large peak towards zero, but the weights are never exactly zero.

5 SELECTIVE BIT TRAINING

In Section 4 we have presented experiments where all weight bits are simultaneously trained to-
gether. Our algorithm, however, also allows us to train specific bits only, while keeping others fixed
as they were originally initialized. We can encode as a string mask of 0’s and 1’s which bit is train-
able and which not, e.g. for a 4-bit mask 0001 we initialize all bits randomly but we train only the
least significant bit, while for 1000 we train only the sign bit and leave the rest unchanged. See Table
1 for an example of a weight represented as a 16-bit number.

Table 1: Sign and magnitude representation of a number. Left-most bit gives the sign while
right-most is the least significant bit. Using Eq. (1) and choosing α = 0 results in a 16-bit signed
integer while for α = −15 results in a floating point number with a magnitude less than 1.

Bit index 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Bit value 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0
Trainable 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1

Significance sign magnitude
W (α = 0) -4744

W (α = −15) -0.144775390625

Figure 4 show the results achieved by LeNet with all possible selective training patterns for 2, 4
and 8 bits. Training with weights encoded on 2 bits (top-left panel) results in 3 possible scenarios:
’01’ trains the magnitude, ’10’ trains the sign and ’11’ trains the sign as well as the magnitude
of the weights. Training with weights encoded on 4 bits, pattern ’1000’ corresponds to training
just the sign and keeping the magnitudes random, ’0111’ corresponds to training the magnitudes
and keeping the sign fixed and ’1111’ corresponds to training all bits. Similarly for 8 bits (bottom
panel). The baseline accuracy is shown as the right-most data-point in each graph.

01 10 11 baseline
97.6
97.8
98.0
98.2
98.4
98.6

Te
st

 A
cc

ur
ac

y

0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111baseline
97.6
97.8
98.0
98.2
98.4
98.6

Te
st

 A
cc

ur
ac

y

00
00

00
01

00
00

01
00

00
00

01
11

00
00

10
10

00
00

11
01

00
01

00
00

00
01

00
11

00
01

01
10

00
01

10
01

00
01

11
00

00
01

11
11

00
10

00
10

00
10

01
01

00
10

10
00

00
10

10
11

00
10

11
10

00
11

00
01

00
11

01
00

00
11

01
11

00
11

10
10

00
11

11
01

01
00

00
00

01
00

00
11

01
00

01
10

01
00

10
01

01
00

11
00

01
00

11
11

01
01

00
10

01
01

01
01

01
01

10
00

01
01

10
11

01
01

11
10

01
10

00
01

01
10

01
00

01
10

01
11

01
10

10
10

01
10

11
01

01
11

00
00

01
11

00
11

01
11

01
10

01
11

10
01

01
11

11
00

01
11

11
11

10
00

00
10

10
00

01
01

10
00

10
00

10
00

10
11

10
00

11
10

10
01

00
01

10
01

01
00

10
01

01
11

10
01

10
10

10
01

11
01

10
10

00
00

10
10

00
11

10
10

01
10

10
10

10
01

10
10

11
00

10
10

11
11

10
11

00
10

10
11

01
01

10
11

10
00

10
11

10
11

10
11

11
10

11
00

00
01

11
00

01
00

11
00

01
11

11
00

10
10

11
00

11
01

11
01

00
00

11
01

00
11

11
01

01
10

11
01

10
01

11
01

11
00

11
01

11
11

11
10

00
10

11
10

01
01

11
10

10
00

11
10

10
11

11
10

11
10

11
11

00
01

11
11

01
00

11
11

01
11

11
11

10
10

11
11

11
01

ba
se

lin
e

Trainable bit pattern

97.6
97.8
98.0
98.2
98.4
98.6

Te
st

 A
cc

ur
ac

y

Figure 4: LeNet trained with all bit patterns for 2 (left), 4 (right) and 8 bits (bottom panel).

Figure 5 shows the same experiments for ResNet. An interesting phenomenon appears when train-
ing bits selectively. Several strong discontinuities in the accuracy curve are visible when training
weights encoded on 4 and 8 bits. They appear at very specific bit patterns which we will address
next. First, we highlight the extreme situations of (a) training just the sign bit and (b) only the mag-
nitude bits. In Figures 4 and 5 these refer to the central data points with trainable bit patterns ’10’,
’1000’, ’10000000’ for sign training and ’01’, ’0111’, ’01111111’ for magnitude training.

When training just the sign bit, LeNet outperforms the baseline network, as shown in Figure 5. Our
weight initialization procedure avoids initializing magnitudes to zero. For the particular case when
quantizing weights on k = 2 bits it means that the magnitude bit is always 1. In this situation
training only the sign bit is therefore equivalent to training a binary network with Θ ∈ {−1, 1}. For

5

Under review as a conference paper at ICLR 2022

01 10 11 baseline85
86
87
88
89
90
91

Te
st

 A
cc

ur
ac

y

0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111baseline85
86
87
88
89
90
91

Te
st

 A
cc

ur
ac

y

00
00

00
01

00
00

01
00

00
00

01
11

00
00

10
10

00
00

11
01

00
01

00
00

00
01

00
11

00
01

01
10

00
01

10
01

00
01

11
00

00
01

11
11

00
10

00
10

00
10

01
01

00
10

10
00

00
10

10
11

00
10

11
10

00
11

00
01

00
11

01
00

00
11

01
11

00
11

10
10

00
11

11
01

01
00

00
00

01
00

00
11

01
00

01
10

01
00

10
01

01
00

11
00

01
00

11
11

01
01

00
10

01
01

01
01

01
01

10
00

01
01

10
11

01
01

11
10

01
10

00
01

01
10

01
00

01
10

01
11

01
10

10
10

01
10

11
01

01
11

00
00

01
11

00
11

01
11

01
10

01
11

10
01

01
11

11
00

01
11

11
11

10
00

00
10

10
00

01
01

10
00

10
00

10
00

10
11

10
00

11
10

10
01

00
01

10
01

01
00

10
01

01
11

10
01

10
10

10
01

11
01

10
10

00
00

10
10

00
11

10
10

01
10

10
10

10
01

10
10

11
00

10
10

11
11

10
11

00
10

10
11

01
01

10
11

10
00

10
11

10
11

10
11

11
10

11
00

00
01

11
00

01
00

11
00

01
11

11
00

10
10

11
00

11
01

11
01

00
00

11
01

00
11

11
01

01
10

11
01

10
01

11
01

11
00

11
01

11
11

11
10

00
10

11
10

01
01

11
10

10
00

11
10

10
11

11
10

11
10

11
11

00
01

11
11

01
00

11
11

01
11

11
11

10
10

11
11

11
01

ba
se

lin
e

Trainable bit pattern

85
86
87
88
89
90
91

Te
st

 A
cc

ur
ac

y

Figure 5: ResNet trained with all bit patterns for 2 (left), 4 (right) and 8 bits (bottom panel).

ResNet, Figure 5, training the weight’s sign leads to a performance drop of 2–4 percentage points,
depending on the quantization size. It shows that this particular network can be trained reasonably
well only by changing the sign of the weights and never updating their magnitudes.

Training only the magnitude bits results in a very small performance penalty for LeNet as compared
to the baseline, and about 1–3 percentage points for ResNet. Training all bits simultaneously leads
to the average performance between the two extreme cases. This phenomenon is valid for both
ResNet and LeNet, although less visible for the latter. We have performed experiments for bit
depths ranging from 2 to 32, where we train only the sign and only the magnitude bits in ResNet.
Figure 6 summarizes the test accuracy and sparsity obtained in these two cases. Notice there is little
to no correlation between accuracy and bit-depth above 8, whereas sparsity is strongly influenced
by it, particularly above 14. For bit-depths lower than 5, magnitude only training rather decreases
in performance, while sign only training increases. For the extreme k = 2 bits quantization, their
accuracy ordering is inverted and in this case training both the sign bit and the magnitude bit results
in a ternary network with Θ ∈ {−1, 0, 1}.

84.0

85.5

87.0

88.5

90.0

Te
st

Ac

cu
ra

cy

Magnitude only Sign only Sign and magnitude 32bit baseline

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Bit-depth

0
25
50
75

100

%
 o

f n
on

-z
er

o
 w

ei
gh

ts

Figure 6: ResNet test accuracy and sparsity after bit-wise training: only the magnitude bits (blue),
only the sign bit (red), all bits (green). Baseline indicated by right-most data point.

The second important observation refers to the cases where the sign and the next one or two bits
are trained, while the following remain randomly initialized. These situations correspond to the
trainable bit patterns ’1100’, ’1110’, ’11000000’ and ’11100000’ in Figures 4 and 5. In all these
cases the bit-wise training technique reaches an accuracy above the baseline (LeNet) or similarly to it
(ResNet). This behaviour indicates that a fraction of the untrainable (and less significant) magnitude
bits act as a regularizer, increasing the accuracy of the network as compared to the case when they
are also trained. We investigated how many trainable bits would be sufficient to reach the accuracy
of the baseline. To this end we perform bit-wise training on ResNet with 32, 16, 8, 6, 4 and 2 bits
encoding for the weights and gradually decrease the number of trainable bits. More specifically, we
expand Eq. (1) in the following way:

6

Under review as a conference paper at ICLR 2022

θlk = 2αl

p−1∑
i=0

ali︸︷︷︸
untrainable

2i +

k−2∑
j=p

alj︸︷︷︸
trainable

2j

 · (−1)a
l
k−1︸ ︷︷ ︸

trainable

(2)

where k represents the weight’s bit-depth and p the number of untrainable bits. For p = 0 all bits
are trainable and for p = k − 2 only the sign is trainable.

86

87

88

89

90

Te
st

Ac

cu
ra

cy

16 bits encoding
8 bits encoding

6 bits encoding
4 bits encoding

2 bits encoding
32 bits encoding

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Trainable bits

0
25
50
75

100

%
 o

f n
on

-z
er

o
 w

ei
gh

ts

Figure 7: ResNet accuracy as a function of number of trainable bits, counting from the sign bit.
Colors represent the bit-depth of the weights. The baseline, 32bit floating point weights, is shown
as the right-most gray data point.

We summarize the results of these experiments in Figure 7. The blue data points represent the test
accuracy of ResNet as a function of the number of trainable bits, with weights encoded as 32bit
integers. Training more than 17 bits results in a test accuracy of about 88%. As the number of
trainable bits decreases the accuracy improves and reaches the level of the baseline when training
only the first 3 bits. A similar behaviour is seen when encoding weights on lower bit-depths. The
best performance is obtained when weights are encoded on more than 6 bits and we train the sign
and the next two most significant magnitude bits. The rest of the available bits do not contribute to
the network’s performance, rather they hinder the capacity of the network to converge well.

6 POST-TRAINING BIT ANALYSIS

Training bits selectively uncovers the fact that only a few of the most significant bits contribute to
achieving a high accuracy, while the others provide regularization. In contrast, standard training
does not reveal which weights or bits contribute most to the network’s performance. In order to
understand this we conduct experiments where we convert the weights learned in the standard way
into weights expressed according to Eq. (1). More precisely, we start by training a standard network,
and after training, for each layer we divide all weights by the magnitude of the smallest non-zero
weight within that layer and round to the nearest integer. Therefore we obtain integer weights which
we can then decompose into binary form and gain access to each bit. To be as close as possible to the
original weights we encode the integer weights on 32 bits, even though in most situations weights
do not require that many. Thus we convert a network trained in the standard way, weights as 32bit
floating point values, into a network with integer weights on 32 bits.

Next, we start changing the first p less significant magnitude bits and leave the next 32 − p bits
unchanged, similar to Eq. (2). In this way we can investigate the impact of each bit on the final
accuracy. Note that different layers require a different number of bits to represent the weights and
generally, but not necessarily, depends on the number of weights within that layer. If we start
changing more bits than a layer requires, the pre-trained structure is destroyed and the network
looses its properties. In order to avoid this, we compute the maximum number of bits required for
the weights in each layer, ml. We impose that the maximum number of changed bits for each layer
is pmax

l = ml − 3.

Figure 8 shows the accuracy and sparsity of a standard, pre-trained LeNet and a 6 layer VGG-like
network, Conv6, (same as Frankle & Carbin (2019); Zhou et al. (2019); Ramanujan et al. (2019))

7

Under review as a conference paper at ICLR 2022

0 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9
97.95
98.00
98.05
98.10
98.15
98.20
98.25
98.30

Te
st

 A
cc

ur
ac

y
random
ones
zeros

0 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9
of changed bits

60
70
80
90

100

%
 n

on
ze

ro
 w

ei
gh

ts
0 10 11 12 13 14 15 16 17 18 19191 20 21 22 23 24 252 3 4 5 6 7 8 9

80
82
84
86
88
90

Te
st

 A
cc

ur
ac

y

random
ones
zeros

0 10 11 12 13 14 15 16 17 18 19191 20 21 22 23 24 252 3 4 5 6 7 8 9
of changed bits

60
70
80
90

100

%
 n

on
ze

ro
 w

ei
gh

ts

Figure 8: Test accuracy for LeNet (left) and Conv6 (right) as a function of the number of changed
bits after training. Red points correspond to setting bits to 1; green correspond to 0; blue violins
correspond to setting bits randomly to either 0 or 1. Bottom panels indicate sparsity.

as a function of the number of changed bits. We have experimented with three scenarios: all bits
are changed randomly, all bits are set to 0, all bits are set to 1. The first data point in each graph,
p = 0, represents the performance of the unmodified network with 32 bit floating point weights, as
no bits are changed. The following entries indicate the performance of the network as we gradually
increase the amount of changed bits. LeNet extends up to 16 bits (the maximum allowed for the
first layer in this particular network) and Conv6 extends up to 25 (the maximum allowed for the first
dense layer within this network). Setting all p bits to zero (or one) leads to a single possible set of
weights. Setting p bits randomly leads to more possible outcomes. This difference is illustrated in
Figure 8 by the way the data-points are represented: a single dot when setting bits to zero/one and a
violin when setting bits randomly.

One can observe that also weights trained in a standard 32 bit floating point format do not make full
use of high precision bits. The first 6 bits do not play a significant role for the final accuracy, as they
can be modified post-training to any value. These results are in line with our initial hypothesis that
gradient descent does not prune networks due to the large amount of bits available for the weights.
Additionally, we found that the most important contribution to the performance of a network is
the sign bit, followed by the next two most significant magnitude bits. This suggests that gradient
descent might find a local optimum based only on these three bits while the rest are used to perform
fine-tuning. However, this appears to be less successful, since a large fraction of the bits might be
set to zero, one or left randomly initialized, perhaps due to the stochasticity of the training algorithm
(batch training) or the noise present in the data itself.

7 MESSAGE ENCODING IN WEIGHTS

We have shown so far that 29 out of the 32 bits available for the weights of ResNet have an overall
regularization behaviour and can remain randomly initialized and never trained. This leads to the
idea that they could be used to encode arbitrary messages while the trainable bits are sufficient to
train the network to high degrees of accuracy. To test this hypothesis we have performed several
experiments in which we embedded various types of messages in the first 29 untrainable bits of a
neural network’s weights and train only the next 3. The results are summarized in Figure 9. Each
experiment was repeated 10 times.

The first data point shows the baseline accuracy of ResNet trained with the standard method (32bit
floating point representation of weights). For the second experiment we assigned random values
to the untrainable bits of each layer. In the third experiment we embedded random passages of
Shakespeare’s Hamlet. In the fourth experiment we trained until convergence 29 ResNets with bit-
depth 1 and embedded each of them into a new, 32bit ResNet, training in a bit-wise fashion the sign
and the next two most significant magnitude bits. The test accuracy obtained by the 1bit ResNet is
shown as the last violin. We observe that embedding either random noise, structured data or a set of
previously learned weights does not impact the accuracy with respect to the baseline ResNet in any
significant way.

8

Under review as a conference paper at ICLR 2022

32bit baseline 29 random bits Hamlet passages 29x 1bit ResNet 1bit ResNet87.0

88.5

90.0

91.5

Te
st

 A
cc

ur
ac

y

Figure 9: Test accuracy with various messages embedded in the first 29 untrainable bits of ResNet.

8 CONNECTION WITH OTHER WORKS

Our weight initialization procedure described in Section 3 ensures that weights are never set to zero
before training. For the particular case where k = 2 bits this means that the magnitude bit is always
1 while the sign bit can be either 1 or 0. Training only the sign bit is therefore equivalent to training
a binary network. This is similar to BinaryConnect, BinaryNet (Courbariaux et al., 2015; 2016) and
XNOR-Net (Rastegari et al., 2016) where weights are constrained to −1 and 1. When training with
bit pattern ’01’ (magnitude only) or ’11’ (sign and magnitude) results in a ternary network (Li &
Liu, 2016; Zhu et al., 2017) because the magnitude is now also allowed to change, leading to some
weights being set to zero.

Training only the magnitude bit the behaviour of our algorithm is effectively very similar in nature
and performance to the edge-popup algorithm developed by Ramanujan et al. (2019) which finds
pruning masks for networks with weights randomly sampled from the Signed Kaiming Constant
distribution. Encoding weight on arbitrary bit depths and training just the sign bit we obtain the
sign-flipping algorithm first shown by Ivan & Florian (2020).

Wang et al. (2021) found in a recent study that it is possible to embed 36.9MB of malware into the
dense layers of a pretrained 178MB Alex-Net model with a 1% accuracy degradation and without
being detected by antivirus programs. Our method can store arbitrary code in any layer of a network
(dense as well as convolutional) and could drastically increase the viral amount without damaging
the network’s performance, at the same time raising no suspicion on the presence of the malware.

9 SUMMARY

Motivated by the question of why gradient descent does not naturally prune neural connections
during training, we developed a method to directly train the bits representing the weights. From this
perspective we show that an important factor is the over-parametrization in terms of number of bits
available for weight encoding. This also sheds some light into why networks with large amounts of
weights are able to generalize well.

Our algorithm enables weight quantization on arbitrary bit-depths and can be used as a tool for
bit level analysis of weight training procedures. We show that gradient descent effectively uses
only a small fraction of the most significant bits, while the less significant ones provide an intrinsic
regularization and their exact values are not essential for reaching a high classification accuracy.
A consequence of this property is that, by using 32 bits for the weight representation, more than
90% of a ResNet can be used to store a large variety of messages, ranging from random noise to
structured data, without affecting its performance.

10 REPRODUCIBILITY

The code used for the experiments carried out in this work will be made public at:
https://github.com/iclr2022-2798/bit-wise-training

9

https://github.com/iclr2022-2798/bit-wise-training

Under review as a conference paper at ICLR 2022

REFERENCES

Milad Alizadeh, Javier Fernández-Marqués, Nicholas D. Lane, and Yarin Gal. A systematic study of
binary neural networks’ optimisation. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=rJfUCoR5KX.

Yoshua Bengio. Estimating or propagating gradients through stochastic neurons, 2013. URL http:
//arxiv.org/abs/1305.2982.

Joseph Bethge, Haojin Yang, Marvin Bornstein, and Christoph Meinel. Back to simplicity: How to
train accurate bnns from scratch?, 2019.

Adrian Bulat, Georgios Tzimiropoulos, Jean Kossaifi, and Maja Pantic. Improved training of binary
networks for human pose estimation and image recognition, 2019.

Adrian Bulat, Brais Martinez, and Georgios Tzimiropoulos. High-capacity expert binary net-
works. In International Conference on Learning Representations, 2021. URL https://
openreview.net/forum?id=MxaY4FzOTa.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. BinaryConnect: Training deep neural
networks with binary weights during propagations, 2015. URL http://arxiv.org/abs/
1511.00363. Conference paper NIPS 2015.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to +1
or -1, 2016.

Xiaoliang Dai, Hongxu Yin, and Niraj K. Jha. NeST: A neural network synthesis tool based on a
grow-and-prune paradigm. IEEE Transactions on Computers, 68(10):1487–1497, 2019. ISSN
2326-3814. URL http://dx.doi.org/10.1109/TC.2019.2914438.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks, 2019. URL https://arxiv.org/abs/1803.03635. Conference paper ICLR.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on ImageNet classification. IEEE International Conference on Com-
puter Vision (ICCV), pp. 1026–1034, 2015a. https://arxiv.org/abs/1502.01852.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition, 2015b. URL http://arxiv.org/abs/1512.03385. Conference CVPR 2016.

Geoffrey Hinton. Neural networks for machine learning. Coursera video lectures, 2012.

Cristian Ivan and Razvan Florian. Training highly effective connectivities within neural networks
with randomly initialized, fixed weights, 2020. URL https://arxiv.org/abs/2006.
16627.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
http://arxiv.org/abs/1412.6980. Conference paper ICLR 2015.

Alex Krizhevsky. Learning multiple layers of features from tiny images, 2009. URL https:
//www.cs.toronto.edu/˜kriz/learning-features-2009-TR.pdf.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database, 2010. URL http://yann.
lecun.com/exdb/mnist/.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S. Torr. SNIP: Single-shot network prun-
ing based on connection sensitivity, 2019. URL https://arxiv.org/abs/1810.02340.
Conference paper ICLR 2019.

Fengfu Li and Bin Liu. Ternary weight networks, 2016. URL http://arxiv.org/abs/
1605.04711. Workshop paper NIPS 2016.

10

https://openreview.net/forum?id=rJfUCoR5KX
http://arxiv.org/abs/1305.2982
http://arxiv.org/abs/1305.2982
https://openreview.net/forum?id=MxaY4FzOTa
https://openreview.net/forum?id=MxaY4FzOTa
http://arxiv.org/abs/1511.00363
http://arxiv.org/abs/1511.00363
http://dx.doi.org/10.1109/TC.2019.2914438
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/2006.16627
https://arxiv.org/abs/2006.16627
http://arxiv.org/abs/1412.6980
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1810.02340
http://arxiv.org/abs/1605.04711
http://arxiv.org/abs/1605.04711

Under review as a conference paper at ICLR 2022

Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-real
net: Enhancing the performance of 1-bit cnns with improved representational capability and
advanced training algorithm. Lecture Notes in Computer Science, pp. 747–763, 2018. ISSN
1611-3349. doi: 10.1007/978-3-030-01267-0 44. URL http://dx.doi.org/10.1007/
978-3-030-01267-0_44.

Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz, and Ohad Shamir. Proving the lottery ticket hy-
pothesis: Pruning is all you need. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learn-
ing Research, pp. 6682–6691. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.
press/v119/malach20a.html. https://arxiv.org/pdf/2002.00585.pdf.

Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural networks
by dynamic sparse reparameterization, 2019. URL https://arxiv.org/abs/1902.
05967. Conference paper ICML 2019, PMLR 97.

Laurent Orseau, Marcus Hutter, and Omar Rivasplata. Logarithmic pruning is all you need, 2020.
URL https://arxiv.org/abs/2006.12156. Conference paper NeurIPS 2020.

Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and Mohammad Raste-
gari. What’s hidden in a randomly weighted neural network?, 2019. URL https://arxiv.
org/abs/1911.13299. Conference paper CVPR 2020.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. XNOR-Net: ImageNet
classification using binary convolutional neural networks, 2016. URL https://arxiv.org/
abs/1603.05279. Conference paper ECCV 2016, Springer LNCS 9908, pp. 525–542.

Alexander Shekhovtsov and Viktor Yanush. Reintroducing straight-through estimators as principled
methods for stochastic binary networks, 2020.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by pre-
serving gradient flow, 2020. URL https://arxiv.org/abs/2002.07376. Conference
paper ICLR 2020.

Zhi Wang, Chaoge Liu, and Xiang Cui. EvilModel: Hiding malware inside of neural network
models, 2021. URL https://arxiv.org/abs/2107.08590. 26th IEEE Symposium on
Computers and Communications (ISCC 2021).

Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher, Yingyong Qi, and Jack Xin. Un-
derstanding straight-through estimator in training activation quantized neural nets, 2019. URL
https://arxiv.org/abs/1903.05662. Conference paper ICLR 2019.

Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstructing lottery tickets: Zeros,
signs, and the supermask. In Conference on Neural Information Processing Systems (NIPS), 2019.
URL http://arxiv.org/abs/1905.01067.

Chenzhuo Zhu, Song Han, Huizi Mao, and William J. Dally. Trained ternary quantization, 2017.
URL http://arxiv.org/abs/1612.01064. Poster ICLR 2017.

11

http://dx.doi.org/10.1007/978-3-030-01267-0_44
http://dx.doi.org/10.1007/978-3-030-01267-0_44
https://proceedings.mlr.press/v119/malach20a.html
https://proceedings.mlr.press/v119/malach20a.html
https://arxiv.org/pdf/2002.00585.pdf
https://arxiv.org/abs/1902.05967
https://arxiv.org/abs/1902.05967
https://arxiv.org/abs/2006.12156
https://arxiv.org/abs/1911.13299
https://arxiv.org/abs/1911.13299
https://arxiv.org/abs/1603.05279
https://arxiv.org/abs/1603.05279
https://arxiv.org/abs/2002.07376
https://arxiv.org/abs/2107.08590
https://arxiv.org/abs/1903.05662
http://arxiv.org/abs/1905.01067
http://arxiv.org/abs/1612.01064

	Introduction
	Motivation
	Binary Decomposition
	Experiments
	Selective bit training
	Post-training bit analysis
	Message encoding in weights
	Connection with other works
	Summary
	Reproducibility

