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ABSTRACT 
In this paper, we introduce a large scale multi-objective ranking 
system for recommending what video to watch next on an indus-
trial video sharing platform. The system faces many real-world 
challenges, including the presence of multiple competing ranking 
objectives, as well as implicit selection biases in user feedback. To 
tackle these challenges, we explored a variety of soft-parameter 
sharing techniques such as Multi-gate Mixture-of-Experts so as to 
efciently optimize for multiple ranking objectives. Additionally, 
we mitigated the selection biases by adopting a Wide & Deep frame-
work. We demonstrated that our proposed techniques can lead to 
substantial improvements on recommendation quality on one of 
the world’s largest video sharing platforms. 

CCS CONCEPTS 
• Information systems → Retrieval models and ranking; Rec-
ommender systems; • Computing methodologies → Rank-
ing; Multi-task learning; Learning from implicit feedback. 
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1 INTRODUCTION 
In this paper, we describe a large-scale ranking system for video 
recommendation. That is, given a video which a user is currently 
watching, recommend the next video that the user might watch and 
enjoy. Typical recommendation systems follow a two-stage design 
with a candidate generation and a ranking [10, 20]. This paper 
focuses on the ranking stage. In this stage, the recommender has a 
few hundred candidates retrieved from the candidate generation 
(e.g. matrix factorization [45] or neural models [25]), and applies 
a sophisticated large-capacity model to rank and sort the most 
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for proft or commercial advantage and that copies bear this notice and the full citation 
on the frst page. Copyrights for third-party components of this work must be honored. 
For all other uses, contact the owner/author(s). 

promising items. We present experiments and lessons learned from 
building such a ranking system on a large-scale industrial video 
publishing and sharing platform. 

Designing and developing a real-world large-scale video recom-
mendation system is full of challenges, including: 

• There are often diferent and sometimes conficting objec-
tives which we want to optimize for. For example, we may 
want to recommend videos that users rate highly and share 
with their friends, in addition to watching. 

• There is often implicit bias in the system. For example, a user 
might have clicked and watched a video simply because it 
was being ranked high, not because it was the one that the 
user liked the most. Therefore, models trained using data 
generated from the current system will be biased, causing a 
feedback loop efect [33]. How to efectively and efciently 
learn to reduce such biases is an open question. 

To address these challenges, we propose an efcient multitask 
neural network architecture for the ranking system, as shown in 
Figure 1. It extends the Wide & Deep [9] model architecture by 
adopting Multi-gate Mixture-of-Experts (MMoE) [30] for multitask 
learning. In addition, it introduces a shallow tower to model and 
remove selection bias. We apply the architecture to video recom-
mendation as a case study: given what user currently is watching, 
recommend the next video to watch. We present experiments of our 
proposed ranking system on an industrial large-scale video pub-
lishing and sharing platform. Experimental results show signifcant 
improvements of our proposed system. 

Specifcally, we frst group our multiple objectives into two cate-
gories: 1) engagement objectives, such as user clicks, and degree 
of engagement with recommended videos; 2) satisfaction objec-
tives, such as user liking a video on YouTube, and leaving a rating 
on the recommendation. To learn and estimate multiple types of 
user behaviors, we use MMoE to automatically learn parameters 
to share across potentially conficting objectives. The Mixture-of-
Experts [21] architecture modularizes input layer into experts, each 
of which focuses on diferent aspects of input. This improves the 
representation learned from complicated feature space generated 
from multiple modalities. Then by utilizing multiple gating net-
works, each of the objectives can choose experts to share or not 
share with others. 

To model and reduce the selection bias (e.g., position bias) from 
biased training data, we propose to add a shallow tower to the 
main model, as shown in the left side of Figure 1. The shallow 

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark tower takes input related to the selection bias, e.g., ranking order 
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Figure 1: Model architecture of our proposed ranking system. It consumes user logs as training data, builds Multi-gate Mixture-
of-Experts layers to predict two categories of user behaviors, i.e., engagement and satisfaction. It corrects ranking selection 
bias with a side-tower. On top, multiple predictions are combined into a fnal ranking score. 
architecture factorizes the label in training data into two parts: 
the unbiased user utility learned from the main model, and the 
estimated propensity score learned from the shallow tower. Our 
proposed model architecture can be treated as an extension of the 
Wide & Deep model, with the shallow tower representing the Wide 
part. By directly learning the shallow tower together with the main 
model, we have the beneft of learning the selection bias without 
resorting to random experiments to get the propensity score [41]. 

To evaluate our proposed ranking system, we design and con-
duct ofine and live experiments to verify the efectiveness of: 1) 
multitask learning, and 2) removing a common type of selection 
bias, namely, position bias. Comparing with state-of-the-art base-
line methods, we show signifcant improvements of our proposed 
framework. We use YouTube, one of the largest video sharing plat-
forms, to conduct our experiments. 

In summary, our contributions are as follows: 

• We introduce an end-to-end ranking system for video rec-
ommendations. 

• We formulate the ranking problem as a multi-objective learn-
ing problem and extend the Multi-gate Mixture-of-Experts 
architecture to improve performance on all objectives. 

• We propose to apply a Wide & Deep model architecture to 
model and mitigate position bias. 

• We evaluate our approach on a real-world large-scale video 
recommendation system and demonstrate signifcant im-
provements. 

The rest of this paper is organized as follows: In Section 2, we 
describe related work in building real-world recommendation rank-
ing systems. In Section 3, we provide problem descriptions for both 
the candidate generation and ranking. Next, we talk about our pro-
posed approach in two aspects, multitask learning and removing 
selection bias. In Section 5, we describe how we design ofine and 
live experiments to evaluate our proposed framework. Finally, we 
conclude with our fndings in Section 6. 

2 RELATED WORK 
The problem of recommendation can be formulated as returning a 
number of high-utility items given a query, a context, and a list of 
items. For example, a personalized movie recommendation system 
can take a user’s watch history as a query, a context such as Friday 
night on a tablet at home, a list of movies, and return a subset of 
movies that this user is likely to watch and enjoy. In this section, 
we discuss related work under three categories: industrial case stud-
ies on recommendation systems, multi-objective recommendation 
systems, and understanding biases in training data. 

2.1 Industrial Recommendation Systems 
To design and develop a successful ranking system empowered by 
machine-learned models, we need large quantities of training data. 
Most recent industrial recommendation systems rely heavily on 
large amount of user logs for building their models. One option is to 
directly ask users for their explicit feedback on item utility. However, 
due to its cost, the quantity of explicit feedback can hardly scale 
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up. Therefore, ranking systems commonly utilize implicit feedback 
such as clicks and engagement with the recommended items. 

Most recommendation systems [10, 20, 42] contain two stages: 
candidate generation and ranking. For candidate generation, multi-
ple sources of signals and models are used. For example, [26] used 
co-occurrences of items to generate candidates, [11] adopted a col-
laborative fltering based method, [14] and [19] applied a random 
walk on (co-occurrence) graph, [42] learned content representation 
to flter items to candidates, and [10] described a hybrid approach 
using mixture of features. 

For ranking, machine learning algorithms using a learning-to-
rank framework are widely adopted. For example, [26] explored 
both point-wise and pair-wise learning to rank framework with 
linear models and tree based methods. [16] used a linear scoring 
function and a pair-wise ranking objective. [20] applied Gradient 
Boosted Decision Tree (GBDT [24]) for a point-wise ranking ob-
jective. [10] employed a neural network with a point-wise ranking 
objective to predict a weighted click. 

One main challenge of these industrial recommendation systems 
is scalability. Therefore, they commonly adopt a combination of 
infrastructure improvements [11, 14, 19, 26] and efcient machine 
learning algorithms [14, 16, 17, 42]. To make a tradeof between 
model quality and efciency, a popular choice is to use deep neural 
network-based point-wise ranking models [10]. 

In this paper, we frst identify a critical issue in industrial ranking 
systems: the misalignment between user implicit feedback and true 
user utility on recommended items. Subsequently, we introduce a 
deep neural network-based ranking model which uses multitask 
learning techniques to support multiple ranking objectives, each of 
which corresponds to one type of user feedback. 

2.2 Multi-objective Learning for 
Recommendation Systems 

Learning and predicting user behaviors from training data is chal-
lenging. There are diferent types of user behaviors, such as click-
ing [22], rating, and commenting etc. However, each one does not 
independently refect true user utility. For example, a user can click 
an item but end up not liking it; users can only provide ratings to 
clicked and engaged items. Our ranking system needs to be able to 
learn and estimate multiple types of user behaviors and utilities ef-
fectively, and subsequently combines these estimations to compute 
a fnal utility score for ranking. 

Existing works on behavior aware and multi-objective recom-
mendation either can only be applied at candidate generation stage 
[3, 28, 31, 40, 45], or are not suitable for large-scale online ranking 
[13, 15, 38, 44]. 

For example, some recommendation systems [31, 45] extend 
collaborative fltering or content based systems to learn user-item 
similarity from multiple user signals. These systems are efciently 
used to generate candidates. But compared to ranking models based 
on deep neural network, they are not as efective in providing the 
fnal recommendations [10]. 

On the other hand, many existing multi-objective ranking sys-
tems are designed for specifc types of features and applications, 
such as text [38] and vision [13]. It would be challenging to extend 
these systems to support feature spaces from multiple modalities, 
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e.g., text from video titles, and visual feature from thumbnails. Mean-
while, other multi-objective ranking systems that consider multiple 
modalities of input features cannot scale up, due their limitation in 
efciently sharing model parameters for multiple objectives [15, 44]. 

Outside the recommendation system research area, deep neu-
ral network based multitask learning has been widely studied and 
explored on many traditional machine learning applications for 
representation learning, e.g., natural language processing [12], and 
computer vision [27]. While many multitask learning techniques 
proposed for representation learning are not practical for construct-
ing ranking systems, some of their building blocks inspire our 
design. In this paper, we describe a DNN based ranking system de-
signed for real-world recommendations and apply an extension of 
Mixture-of-Experts layers [21] to support multitask learning [30]. 

2.3 Understanding and Modeling Biases in 
Training Data 

User logs, which are used as our training data, capture user be-
haviors and responses to recommendations from the current pro-
duction system. The interactions between users and the current 
system create selection biases in the feedback. For example, a user 
may have clicked an item because it was selected by the current 
system, even though it was not the most useful one of the entire 
corpus. Therefore, new models trained on data generated from the 
current system will be biased towards the current system, causing 
a feedback loop efect. How to efectively and efciently learn to 
reduce such biases for ranking systems is an open question. 

Joachims et al. [22] frst analyzed position bias and presentation 
bias in implicit feedback data for training learning to rank models. 
By comparing click data with explicit feedback of relevance, they 
found that position bias exists in click data and can signifcantly 
afect learning to rank models in estimating relevance between 
query and document. Following this fnding, many approaches 
have been proposed to remove such selection biases, especially 
position bias [23, 34, 41]. 

A commonly used practice is to inject position as an input fea-
ture in model training and then removing the bias through abla-
tion at serving. In probabilistic click models, position is used to 
learn P(relevance |pos). One method to remove position bias is in-
spired by [8], where Chapelle et al. evaluated a CTR model using 
P(relevance |pos = 1), under the assumption of no position bias 
efect for evaluation at position 1. Subsequently, to remove position 
bias, we can train a model using position as an input feature, and 
serve by setting position feature to 1 (or other fxed value such as 
missing value). 

Other approaches try to learn a bias term from position and apply 
it as a normalizer or regularizer [23, 34, 41]. Usually, to learn a bias 
term, some random data needs to be used to infer the bias term 
(referred to as ‘global bias’, ‘propensity’, etc.) without considering 
relevance [34, 41]. In [23], inverse propensity score (IPS) is learned 
using a counter-factual model where no random data is needed. It 
is used as a regularization term in training a Rank-SVM. 

In real-world recommendation systems, especially social media 
platforms such as Twitter [19] and YouTube [10], user behaviors 
and item popularities can change signifcantly every day. Therefore, 
instead of IPS based approaches, we need to have an efcient way 
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to adapt to training data distribution change in modeling selection 
biases while we are training the main ranking model. 

3 PROBLEM DESCRIPTION 
In this section, we frst describe our problem of recommending 
video to watch next, then we introduce the two-stage setup of 
candidate generation and ranking. The rest of the paper will focus 
on the ranking system. 

Besides the above-mentioned challenges for building ranking 
systems trained with implicit feedback, for real-world large-scale 
video recommendation problems, we need to consider the following 
additional factors: 

• Multimodal feature space. In a context-aware personalized 
recommendation system, we need to learn user utility of 
candidate videos with feature space generated from multi-
ple modalities, e.g., video content, thumbnail, audio, title 
and description, user demographics. Learning representa-
tion from multimodal feature space for recommendation is 
uniquely challenging compared to other machine learning 
applications. It cuts across two difcult issues: 1) bridging 
the semantic gap from low-level content features for content 
fltering; 2) learning from sparse distribution of items for 
collaborative fltering. 

• Scalability. Scalability is extremely important since we are 
building a recommendation system for billions of users and 
videos. The model must be efective at training and efcient 
at serving. Even though ranking system scores only hun-
dreds of candidates per query, real-world scenarios require 
scoring to be done in real-time, because some query and con-
text information are only available online. Therefore, ranking 
system needs to not only learn representations of billions of 
items and users, but also be efcient during serving. 

Recall that the goal of our recommendation system is to pro-
vide a ranked list of videos, given currently watching video and 
context. To deal with multimodal feature spaces, for each video, 
we extract features such as video meta-data and video content sig-
nals as its representation. For context, we use features such as user 
demographics, device, time, and location, etc. 

To deal with scalability, similar to what was described in [10], 
our recommendation system has two stages, namely, candidate 
generation and ranking. At the candidate generation stage, we re-
trieve a few hundred candidates from a a huge corpus. Our ranking 
system provides a score for each candidate and generates the fnal 
ranked list. 

3.1 Candidate Generation 
Our video recommendation system uses multiple candidate gener-
ation algorithms, each of which captures one aspect of similarity 
between query video and candidate video. For example, one al-
gorithm generates candidates by matching topics of query video. 
Another algorithm retrieves candidate videos based on how often 
the video has been watched together with the query video. We con-
struct a sequence model similar to [10] for generating personalized 
candidate given user history. We also use techniques mentioned 
in [25] to generate context-aware high recall relevant candidates. 

Zhao, et al. 

At the end, all candidates are pooled into a set and subsequently 
scored by the ranking system. 

3.2 Ranking 
Our ranking system generates a ranked list from a few hundred 
candidates. Diferent from candidate generation, which tries to flter 
the majority of items and only keep relevant ones, ranking system 
aims to provide a ranked list so that items with highest utility to 
users will be shown at the top. Therefore, we apply most advanced 
machine learning techniques using a neural network architecture in 
ranking system, in order to have sufcient model expressiveness for 
learning association of features and their relationship with utility. 

4 MODEL ARCHITECTURE 
In this section, we describe our proposed ranking system in detail. 
We frst provide an overview of the system, including its problem 
formulation, objectives, and features. Then we discuss our multi-
objective setup for learning multiple types of user behaviors. We 
talk about how we apply and extend a state-of-the-art multitask 
learning model architecture called Multi-gate Mixture-of-Experts 
(MMoE) for learning multiple ranking objectives. At last, we talk 
about how we combine MMoE with a shallow tower to learn and 
reduce selection bias, especially position bias in the training data. 

4.1 System Overview 
Our ranking system learns from two types of user feedback: 1) 
engagement behaviors, such as clicks and watches; 2) satisfaction 
behaviors, such as likes and dismissals. Given each candidate, the 
ranking system uses features of the candidate, query and context 
as input, and learns to predict multiple user behaviors. 

For problem formulation, we adopt the learning-to-rank frame-
work [6]. We model our ranking problem as a combination of classi-
fcation problems and regression problems with multiple objectives. 
Given a query, candidate, and context, the ranking model predicts 
the probabilities of user taking actions such as clicks, watches, likes, 
and dismissals. 

This approach of making predictions for each candidate is a point-
wise approach [6]. In contrast, pair-wise or list-wise approaches 
learn to make predictions on ordering of two or multiple candidates. 
Pair-wise or list-wise approaches can be used to potentially improve 
the diversity of the recommendations. However, we opt to use 
point-wise ranking mainly based on serving considerations. At 
serving time, point-wise ranking is simple and efcient to scale 
to a large number of candidates. In comparison, pair-wise or list-
wise approaches need to score pairs or lists multiple times in order 
to fnd the optimal ranked list given a set of candidates, thereby 
limiting their scalability. 

4.2 Ranking Objectives 
We use user behaviors as training labels. Since users can have dif-
ferent types of behaviors towards recommended items, we design 
our ranking system to support multiple objectives. Each objective 
is to predict one type of user behavior related to user utility. For de-
scription purposes, in the following we separate our objectives into 
two categories: engagement objectives and satisfaction objectives. 
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Figure 2: Replacing shared-bottom layers with MMoE. 
Engagement objectives capture user behaviors such as clicks and 

watches. We formulate the prediction of these behaviors into two 
types of tasks: binary classifcation task for behaviors such as clicks, 
and regression task for behaviors related to time spent. Similarly, 
for satisfaction objectives, we formulate the prediction of behaviors 
related to user satisfactions into either binary classifcation task or 
regression task. For example, behavior such as clicking like for a 
video is formulated as a binary classifcation task, and behavior such 
as rating is formulated as regression task. For binary classifcation 
tasks, we compute cross entropy loss. And for regression tasks, we 
compute squared loss. 

Once multiple ranking objectives and their problem types are de-
cided, we train a multitask ranking model for these prediction tasks. 
For each candidate, we take the input of these multiple predictions, 
and output a combined score using a combination function in the 
form of weighted multiplication. The weights are manually tuned 
to achieve best performance on both user engagements and user 
satisfactions. 

4.3 Modeling Task Relations and Conficts 
with Multi-gate Mixture-of-Experts 

Ranking systems with multiple objectives commonly use a shared-
bottom model architecture [7, 10]. However, such hard-parameter 
sharing techniques sometimes harm the learning of multiple objec-
tives when correlation between tasks is low [30]. To mitigate the 
conficts of multiple objectives, we adopt and extend a recently pub-
lished model architecture, Multi-gate Mixture-of-Experts (MMoE) 
[30]. 

MMoE is a soft-parameter sharing model structure designed to 
model task conficts and relations. It adapts the Mixture-of-Experts 
(MoE) structure to multitask learning by having the experts shared 
across all tasks, while also having a gating network trained for each 
task. The MMoE layer is designed to capture the the task diferences 
without requiring signifcantly more model parameters compared 
to the shared-bottom model. The key idea is to substitute the shared 
ReLu layer with the MoE layer and add a separate gating network 
for each task. 

For our ranking system, we propose to add experts on top of 
a shared hidden layer, as shown in Figure 2b. This is because a 
Mixture-of-Experts layer can help to learn modularized informa-
tion from its input [21]. It can better model multimodal feature 
space when being used directly on top of input layer or lower hid-
den layers. However, directly applying MoE layer on input layer 

will signifcantly increase model training and serving cost. This is 
because usually the dimensionality of input layer is much higher 
than those of hidden layers. 

Our implementation of the expert networks is identical to multi-
layer perceptrons with ReLU activations [30]. Given task k , the 
prediction yk , and the last hidden layer hk , the MMoE layer with n 
experts output for task k : f k (x), can be expressed in the following 
equation: 

yk = hk (f k (x)), 
nÕ 

kwhere f k (x) = д
(i)(x)fi (x) (1) 

i=1 

And x ∈ Rd is a lower-level shared hidden embedding, дk is 
kthe gating network for task k , дk (x) ∈ Rn , д
(i)(x) is the ith entry, 

and fi (x) is the ith expert. The gating networks are simply linear 
transformations of the input with a softmax layer. 

дk (x) = softmax(Wдk x), (2) 

where Wдk ∈ Rn×d are free parameters for the linear transfor-
mation. In contrast to the sparse gating network mentioned in [32], 
where the number of experts can be large and each of the training 
examples only utilizes the top experts, we use a relatively small 
number of experts. This is set up to encourage sharing of experts 
by multiple gating networks and for training efciency. 

4.4 Modeling and Removing Position and 
Selection Biases 

Figure 3: Adding a shallow side tower to learn selection bias 
(e.g., position bias). 
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Implicit feedback has been widely used to train learning to rank 
models. With a large amount of implicit feedback extracted from 
user logs, complicated deep neural network based model can be 
trained. However, implicit feedback is biased due to the fact that it 
is generated from the existing ranking system. Position bias, and 
many other types of selection biases, are studied and verifed for 
existence in diferent ranking problems [2, 23, 41]. 

In our ranking system, where the query is a video currently 
being watched and candidates are relevant videos, it is common 
that users are inclined to clicking and watching videos displayed 
closer to the top of the list, regardless of their actual user utility 
- both in terms of relevance to the watched video as well as the 
users’ preferences. Our goal is to remove such a position bias from 
the ranking model. Modeling and reducing selection biases in our 
training data or during model training can result in model quality 
gain and break the feedback loop resulted from the selection biases. 

Our proposed model architecture is similar to the Wide & Deep 
model architecture. We factorize the model prediction into two 
components: a user-utility component from the main tower, and 
a bias component from the shallow tower. Specifcally, we train a 
shallow tower with features contributing to selection bias, such as 
position feature for poistion bias, then add it to the fnal logit of the 
main model, as shown in Figure 3. In training, the positions of all 
impressions are used, with a 10% feature drop-out rate to prevent 
our model from over-relying on the position feature. At serving 
time, position feature is treated as missing. The reason why we 
cross position feature with device feature is that diferent position 
biases are observed on diferent types of devices. 

5 EXPERIMENT RESULTS 
In this section, we describe how we conduct experiments of our 
proposed ranking system to recommend what video to watch next 
on one of the largest video sharing platforms, YouTube. Using 
user implicit feedback provided by YouTube, we train our ranking 
models, and conduct both ofine and live experiments. 

The scale and complexity of YouTube makes it a perfect test-
bed for our ranking system. YouTube is the largest video sharing 
platform, with 1.9 billion monthly active users 1. The website creates 
hundreds of billions of user logs everyday in the form of user 
activities interacting with recommended results. A key product of 
YouTube provides the functionality of recommending what to watch 
next given a watched video, as shown in Figure 4. Its user interface 
provides multiple ways for users to interact with recommended 
videos, such as clicks, watches, likes, and dismissals. 

5.1 Experiment Setup 
As described in Section 3.1, our ranking system takes a few hun-
dred candidates from multiple candidate generation algorithms. We 
use TensorFlow 2 to build the training and serving of the model. 
Specifcally, we use Tensor Processing Units (TPUs) to train our 
model and serve it using TFX Servo [4] 3. 

1https://www.youtube.com/yt/about/press 
2https://www.tensorfow.org 
3https://www.tensorfow.org/tfx/guide/serving 
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Figure 4: Recommending what to watch next on YouTube. 

We train both our proposed model and baseline models sequen-
tially. This means that we train our models by going through train-
ing data of past days following a temporal order and keep running 
our trainer to consume newly arriving training data. By doing so, 
our models adapt to the most recent data. This is critical for many 
real-world recommendation applications, where data distribution 
and user patterns change dynamically over time. 

For ofine experiments, we monitor AUC for classifcation task 
and squared error for regression tasks. For live experiments, we 
conduct A/B testing comparing with production system. We use 
both ofine and live metrics to tune hyper-parameters such as 
learning rate. We examine multiple engagement metrics such as 
time spent at YouTube, and satisfaction metrics such as rate of 
dismissals, user survey responses, etc. In addition to live metrics, 
we also care about the computation cost of the model at serving time, 
since YouTube responds a substantially large number of queries 
per second. 

5.2 Multitask Ranking With MMoE 
To evaluate the performance of adopting MMoE for multitask rank-
ing, we compare with baseline methods and conduct live experi-
ments on YouTube. 

5.2.1 Baseline Methods. Our baseline methods use the shared-
bottom model architecture mentioned in Figure 2a. As a proxy, we 
measure model complexity by the number of multiplications inside 
each model architecture, because this is the main computation 
cost for serving the model. When comparing a MMoE model and a 
baseline model, we use the same model complexity. Due to efciency 
concerns, our MMoE layer shares one bottom hidden layer (as 
shown in Figure 2b), which uses a lower dimensionality than that 
of the input layer. 

5.2.2 Live Experiment Results. The live experiment results on YouTube 
are shown in Table 1. We report results on both the engagement 
metric which captures user time spent on watching recommended 
videos, and the satisfaction metric which captures user survey re-
sponses with rating scores. We compare shared-bottom model with 
MMoE model, using either 4 or 8 experts. From the table, we see that 
using the same model complexity, MMoE signifcantly improves 
both engagement and satisfaction metrics. 
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Model Architecture Number of Multiplications Engagement Metric Satisfaction Metric 
Shared-Bottom 3.7M / / 
Shared-Bottom 6.1M +0.1% + 1.89% 

MMoE (4 experts) 3.7M +0.20% + 1.22% 
MMoE (8 Experts) 6.1M +0.45% + 3.07% 

Table 1: YouTube live experiment results for MMoE. 
5.2.3 Gating Network Distribution. To further understand how 
MMoE helps multi-objective optimization, we plot the accumu-
lated probability in the softmax gating network for each task on 
each expert, as shown in Figure. 5. We see that some engagement 
tasks share multiple experts with other engagement tasks. And 
satisfaction tasks tend to share a small subset of experts with high 
utilization, as measured by the probability of using these experts. 

As mentioned above, our MMoE layer shares one bottom hidden 
layer, and its gating networks take input from the shared hidden 
layer. This could potentially make the MMoE layer harder to mod-
ularize input information than constructing MMoE layer directly 
from input layer. Alternatively, we let the gating networks directly 
take input from the input layer instead of the shared hidden layer, so 
that input features can be directly used to select experts. However, 
live experiment results show no substantial diferences compared to 
the MMoE layer of Figure 2b. This suggests that the MMoE’s gating 
networks of Figure 2b can efectively modularize input information 
into experts for task relation and confict modeling. 

Figure 5: Expert utilization for multiple tasks on YouTube. 
5.2.4 Gating Network Stability. When training neutral network 
models using multiple machines, distributed training strategies can 
cause models to diverge frequently. An example of divergences 
is Relu death [1]. In MMoE, the softmax gating networks have 
been reported [32] to have imbalanced expert distribution problem, 
where gating networks converge to have most zero-utilization on 
experts. With distributed training, we observe 20% chance of this 
gating network polarization issue in our models. Gating network 
polarization harms model performance on tasks using polarized 
gating networks. To solve this problem, we apply drop-out on the 
gating networks. By applying a 10% probability of setting utilization 
of experts to 0 and re-normalizing the softmax outputs, we eliminate 
the gating network polarization for all gating networks. 

5.3 Modeling and Reducing Position Bias 
One major challenge of using user implicit feedback as training 
data is the difculty to model the gap between implicit feedback 
and true user utility. Using multiple types of implicit signals and 
multiple ranking objectives, we have more knobs to tune at serving 
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time to capture the transformation from model predictions to user 
utility in item recommendation. However, we still need to model 
and reduce biases which generally exist in implicit feedback, e.g., 
selection biases caused by the interaction between users and current 
recommendation system. 

Here we evaluate how we model and reduce one type of se-
lection biases, i.e., position bias, with our proposed light-weight 
model architecture. Our solution avoids paying the cost of random 
experiments or complicated computation [41]. 

5.3.1 Analysis of User Implicit Feedback. To verify that position 
bias exists in our training data, we conduct an analysis of click 
through rates (CTR) for diferent positions. Figure 6 shows the 
distribution of CTR in relative scale for position 1 to 9. As expected, 
we see a signifcantly lower CTR as position gets lower and lower. 
The higher CTRs at higher positions are due to a combination efect 
of recommending more relevant items and position bias. Using our 
proposed approach which employs a shallow tower, we demonstrate 
in the following that it can separate the learning of user utility and 
position bias. 

Figure 6: CTR for position 1 to 9. 

Figure 7: Learned position bias per position. 

5.3.2 Baseline Methods. To evaluate our proposed model architec-
ture, we compare it with the following baseline methods. 

• Directly using position feature as an input feature: This 
simple approach has been widely adopted in industrial rec-
ommendation systems to eliminate position bias, mostly for 
linear learning to rank models. 

• Adversarial learning: Inspired by the broad adoption of ad-
versarial learning in domain adaptation [37] and machine 
learning fairness [5], we use a similar technique to introduce 
an auxiliary task which predicts position shown in train-
ing data. Subsequently, during the back propagation phase, 
we negate the gradient passed into the main model, to en-
sure that the prediction of the main model does not rely on 
position feature. 
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5.3.3 Live Experiment Results. Table 2 shows the live experiment 
results of our proposed method and baseline methods. We see that 
our proposed method signifcantly improves engagement metrics 
by modeling and reducing the position bias. 

5.3.4 Learned Position Biases. Figure 7 shows learned position 
bias for each position. From the fgure, we see that the learned 
bias is smaller for a lower position. The learned biases estimate the 
propensity scores using biased implicit feedback. Running through 
model training with enough training data enables us to learn to 
reduce position biases efectively. 

Method Engagement Metric 
Input Feature -0.07% 

Adversarial Loss +0.01% 
Shallow Tower +0.24% 

Table 2: YouTube live experiment results for modeling posi-
tion bias. 

5.4 Discussion 
In this section, we discuss a few insights and limitations which we 
have learned from the journey of developing and experimenting 
our ranking system. 

5.4.1 Neural Network Model Architecture for Recommendation and 
Ranking. Many recommendation system research papers [18, 43] 
extended model architectures originally designed for traditional 
machine learning applications, such as multi-headed attention for 
natural language processing and CNN for computer vision. How-
ever, we fnd that many of these model architectures, which are 
suitable for representation learning in specifc domains, are not 
directly applicable to our needs. This is due to: 

• Multimodal feature spaces. Our ranking system relies on mul-
tiple sources of features, such as content feature from query 
and items, and context features. These features span from 
sparse categorical space, to natural language and image, etc. 
It is challenging to learn from a mixture of feature spaces. 

• Scalability and multiple ranking objectives. Many model ar-
chitectures are designed to capture one type of information, 
such as feature crosses [39] or sequential information [35]. 
They generally improve one ranking objective but may hurt 
others. Additionally, applying a combination of complicated 
model architectures in our system can hardly scale up. 

• Noisy and locally sparse training data. Our system requires 
training embedding vectors for both items and queries. How-
ever, most of our sparse features follow a power-law distribu-
tion and have high variances on user feedback. For example, 
a user may or may not click a recommended item with same 
query given a slightly diferent context which cannot be 
captured in our system. This creates a great deal of difculty 
in optimizing embedding space for tail items. 

• Distributed training with mini-batch stochastic gradient de-
scent. We rely on a large neural network model with powerful 
expressiveness to fgure out the feature association. Since 
our model consumes a large amount of training data, we 
have to use distributed training, which itself comes with 
intrinsic challenges. 

Zhao, et al. 

5.4.2 Tradeof between Efectiveness and Eficiency. For real-world 
ranking systems, efciency afects not only serving cost, but also 
user experiences. An overly complicated model, which signifcantly 
increases the latency in generating recommended items, can de-
crease user satisfaction and live metrics. Therefore, we generally 
prefer a simpler and more straight-forward model architecture. 

5.4.3 Biases in Training Data. Besides position bias, there are many 
other types of biases. Some of these biases may be unknown and un-
predictable, for example, due to our system’s limitations in extract-
ing training data. How to automatically learn and capture known 
and unknown biases in training data is a longstanding challenge 
requiring more research. 

5.4.4 Evaluation Challenge. Since our ranking system uses mostly 
user implicit feedback, ofine evaluation indicating how well each 
of our prediction tasks performs does not necessarily transfer to 
live performance. In fact, often times we observe misalignment 
between ofine and online metrics. Therefore, it is preferable to 
choose an overall simpler model so that it can generalize better to 
online performance. 

5.4.5 Future Directions. In addition to MMoE and removal of se-
lection bias described above, we are improving our ranking system 
along the following directions: 

• Exploring new model architecture for multi-objective rank-
ing which balances stability, trainability and expressiveness. 
We have observed that MMoE increases multitask ranking 
performance by fexibly choosing which experts to share. 
There is more recent work which further improves model 
stability without hurting prediction performance [29]. 

• Understanding and learning to factorize. To model known 
and unknown biases, we want to explore model architectures 
and objectives which automatically identify potential biases 
from training data and learn to reduce them. 

• Model compression. Motivated by the need to reduce serving 
cost, we are exploring diferent types of model compression 
techniques for ranking and recommendation models [36]. 

6 CONCLUSION 
In this paper, we started with the description of a few real-world 
challenges in designing and developing industrial recommenda-
tion systems, especially ranking systems. These challenges include 
the presence of multiple competing ranking objectives, as well 
as implicit selection biases in user feedback. To tackle these chal-
lenges, we proposed a large-scale multi-objective ranking system 
and applied it to the problem of recommending what video to watch 
next. To efciently optimize multiple ranking objectives, we ex-
tended Multi-gate Mixture-of-Experts model architecture to utilize 
soft-parameter sharing. We proposed a light-weight and efective 
method to model and reduce the selection biases, especially posi-
tion bias. Furthermore, via live experiments on one of the world’s 
largest video sharing platforms, YouTube, we showed that our pro-
posed techniques have led to substantial improvements on both 
engagement and satisfaction metrics. 
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