

Recommending What Video to Watch Next: A Multitask
Ranking System

Zhe Zhao, Lichan Hong, Li Wei, Jilin Chen, Aniruddh Nath, Shawn Andrews, Aditee Kumthekar,
Maheswaran Sathiamoorthy, Xinyang Yi, Ed Chi

Google, Inc.
{zhezhao,lichan,liwei,jilinc,aniruddhnath,shawnandrews,aditeek,nlogn,xinyang,edchi}@google.com

ABSTRACT
In this paper, we introduce a large scale multi-objective ranking
system for recommending what video to watch next on an indus-
trial video sharing platform. The system faces many real-world
challenges, including the presence of multiple competing ranking
objectives, as well as implicit selection biases in user feedback. To
tackle these challenges, we explored a variety of soft-parameter
sharing techniques such as Multi-gate Mixture-of-Experts so as to
efciently optimize for multiple ranking objectives. Additionally,
we mitigated the selection biases by adopting a Wide & Deep frame-
work. We demonstrated that our proposed techniques can lead to
substantial improvements on recommendation quality on one of
the world’s largest video sharing platforms.

CCS CONCEPTS
• Information systems → Retrieval models and ranking; Rec-
ommender systems; • Computing methodologies → Rank-
ing; Multi-task learning; Learning from implicit feedback.

KEYWORDS
Recommendation and Ranking, Multitask Learning, Selection Bias
ACM Reference Format:
Zhe Zhao, Lichan Hong, Li Wei, Jilin Chen, Aniruddh Nath, Shawn Andrews,
Aditee Kumthekar, Maheswaran Sathiamoorthy, Xinyang Yi, Ed Chi. 2019.
Recommending What Video to Watch Next: A Multitask Ranking System. In
Thirteenth ACM Conference on Recommender Systems (RecSys ’19), September
16–20, 2019, Copenhagen, Denmark. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3298689.3346997

1 INTRODUCTION
In this paper, we describe a large-scale ranking system for video
recommendation. That is, given a video which a user is currently
watching, recommend the next video that the user might watch and
enjoy. Typical recommendation systems follow a two-stage design
with a candidate generation and a ranking [10, 20]. This paper
focuses on the ranking stage. In this stage, the recommender has a
few hundred candidates retrieved from the candidate generation
(e.g. matrix factorization [45] or neural models [25]), and applies
a sophisticated large-capacity model to rank and sort the most

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

promising items. We present experiments and lessons learned from
building such a ranking system on a large-scale industrial video
publishing and sharing platform.

Designing and developing a real-world large-scale video recom-
mendation system is full of challenges, including:

• There are often diferent and sometimes conficting objec-
tives which we want to optimize for. For example, we may
want to recommend videos that users rate highly and share
with their friends, in addition to watching.

• There is often implicit bias in the system. For example, a user
might have clicked and watched a video simply because it
was being ranked high, not because it was the one that the
user liked the most. Therefore, models trained using data
generated from the current system will be biased, causing a
feedback loop efect [33]. How to efectively and efciently
learn to reduce such biases is an open question.

To address these challenges, we propose an efcient multitask
neural network architecture for the ranking system, as shown in
Figure 1. It extends the Wide & Deep [9] model architecture by
adopting Multi-gate Mixture-of-Experts (MMoE) [30] for multitask
learning. In addition, it introduces a shallow tower to model and
remove selection bias. We apply the architecture to video recom-
mendation as a case study: given what user currently is watching,
recommend the next video to watch. We present experiments of our
proposed ranking system on an industrial large-scale video pub-
lishing and sharing platform. Experimental results show signifcant
improvements of our proposed system.

Specifcally, we frst group our multiple objectives into two cate-
gories: 1) engagement objectives, such as user clicks, and degree
of engagement with recommended videos; 2) satisfaction objec-
tives, such as user liking a video on YouTube, and leaving a rating
on the recommendation. To learn and estimate multiple types of
user behaviors, we use MMoE to automatically learn parameters
to share across potentially conficting objectives. The Mixture-of-
Experts [21] architecture modularizes input layer into experts, each
of which focuses on diferent aspects of input. This improves the
representation learned from complicated feature space generated
from multiple modalities. Then by utilizing multiple gating net-
works, each of the objectives can choose experts to share or not
share with others.

To model and reduce the selection bias (e.g., position bias) from
biased training data, we propose to add a shallow tower to the
main model, as shown in the left side of Figure 1. The shallow

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark tower takes input related to the selection bias, e.g., ranking order
© 2019 Copyright held by the owner/author(s). decided by the current system, and outputs a scalar serving as a ACM ISBN 978-1-4503-6243-6/19/09.
https://doi.org/10.1145/3298689.3346997 bias term to the fnal prediction of the main model. This model

43

https://doi.org/10.1145/3298689.3346997
https://doi.org/10.1145/3298689.3346997
mailto:zhezhao,lichan,liwei,jilinc,aniruddhnath,shawnandrews,aditeek,nlogn,xinyang,edchi}@google.com
https://doi.org/10.1145/3298689.3346997
https://doi.org/10.1145/3298689.3346997
mailto:zhezhao,lichan,liwei,jilinc,aniruddhnath,shawnandrews,aditeek,nlogn,xinyang,edchi}@google.com

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark Zhao, et al.

Figure 1: Model architecture of our proposed ranking system. It consumes user logs as training data, builds Multi-gate Mixture-
of-Experts layers to predict two categories of user behaviors, i.e., engagement and satisfaction. It corrects ranking selection
bias with a side-tower. On top, multiple predictions are combined into a fnal ranking score.
architecture factorizes the label in training data into two parts:
the unbiased user utility learned from the main model, and the
estimated propensity score learned from the shallow tower. Our
proposed model architecture can be treated as an extension of the
Wide & Deep model, with the shallow tower representing the Wide
part. By directly learning the shallow tower together with the main
model, we have the beneft of learning the selection bias without
resorting to random experiments to get the propensity score [41].

To evaluate our proposed ranking system, we design and con-
duct ofine and live experiments to verify the efectiveness of: 1)
multitask learning, and 2) removing a common type of selection
bias, namely, position bias. Comparing with state-of-the-art base-
line methods, we show signifcant improvements of our proposed
framework. We use YouTube, one of the largest video sharing plat-
forms, to conduct our experiments.

In summary, our contributions are as follows:

• We introduce an end-to-end ranking system for video rec-
ommendations.

• We formulate the ranking problem as a multi-objective learn-
ing problem and extend the Multi-gate Mixture-of-Experts
architecture to improve performance on all objectives.

• We propose to apply a Wide & Deep model architecture to
model and mitigate position bias.

• We evaluate our approach on a real-world large-scale video
recommendation system and demonstrate signifcant im-
provements.

The rest of this paper is organized as follows: In Section 2, we
describe related work in building real-world recommendation rank-
ing systems. In Section 3, we provide problem descriptions for both
the candidate generation and ranking. Next, we talk about our pro-
posed approach in two aspects, multitask learning and removing
selection bias. In Section 5, we describe how we design ofine and
live experiments to evaluate our proposed framework. Finally, we
conclude with our fndings in Section 6.

2 RELATED WORK
The problem of recommendation can be formulated as returning a
number of high-utility items given a query, a context, and a list of
items. For example, a personalized movie recommendation system
can take a user’s watch history as a query, a context such as Friday
night on a tablet at home, a list of movies, and return a subset of
movies that this user is likely to watch and enjoy. In this section,
we discuss related work under three categories: industrial case stud-
ies on recommendation systems, multi-objective recommendation
systems, and understanding biases in training data.

2.1 Industrial Recommendation Systems
To design and develop a successful ranking system empowered by
machine-learned models, we need large quantities of training data.
Most recent industrial recommendation systems rely heavily on
large amount of user logs for building their models. One option is to
directly ask users for their explicit feedback on item utility. However,
due to its cost, the quantity of explicit feedback can hardly scale

44

Praveen Kolli

Recommending What Video to Watch Next: A Multitask Ranking System

up. Therefore, ranking systems commonly utilize implicit feedback
such as clicks and engagement with the recommended items.

Most recommendation systems [10, 20, 42] contain two stages:
candidate generation and ranking. For candidate generation, multi-
ple sources of signals and models are used. For example, [26] used
co-occurrences of items to generate candidates, [11] adopted a col-
laborative fltering based method, [14] and [19] applied a random
walk on (co-occurrence) graph, [42] learned content representation
to flter items to candidates, and [10] described a hybrid approach
using mixture of features.

For ranking, machine learning algorithms using a learning-to-
rank framework are widely adopted. For example, [26] explored
both point-wise and pair-wise learning to rank framework with
linear models and tree based methods. [16] used a linear scoring
function and a pair-wise ranking objective. [20] applied Gradient
Boosted Decision Tree (GBDT [24]) for a point-wise ranking ob-
jective. [10] employed a neural network with a point-wise ranking
objective to predict a weighted click.

One main challenge of these industrial recommendation systems
is scalability. Therefore, they commonly adopt a combination of
infrastructure improvements [11, 14, 19, 26] and efcient machine
learning algorithms [14, 16, 17, 42]. To make a tradeof between
model quality and efciency, a popular choice is to use deep neural
network-based point-wise ranking models [10].

In this paper, we frst identify a critical issue in industrial ranking
systems: the misalignment between user implicit feedback and true
user utility on recommended items. Subsequently, we introduce a
deep neural network-based ranking model which uses multitask
learning techniques to support multiple ranking objectives, each of
which corresponds to one type of user feedback.

2.2 Multi-objective Learning for
Recommendation Systems

Learning and predicting user behaviors from training data is chal-
lenging. There are diferent types of user behaviors, such as click-
ing [22], rating, and commenting etc. However, each one does not
independently refect true user utility. For example, a user can click
an item but end up not liking it; users can only provide ratings to
clicked and engaged items. Our ranking system needs to be able to
learn and estimate multiple types of user behaviors and utilities ef-
fectively, and subsequently combines these estimations to compute
a fnal utility score for ranking.

Existing works on behavior aware and multi-objective recom-
mendation either can only be applied at candidate generation stage
[3, 28, 31, 40, 45], or are not suitable for large-scale online ranking
[13, 15, 38, 44].

For example, some recommendation systems [31, 45] extend
collaborative fltering or content based systems to learn user-item
similarity from multiple user signals. These systems are efciently
used to generate candidates. But compared to ranking models based
on deep neural network, they are not as efective in providing the
fnal recommendations [10].

On the other hand, many existing multi-objective ranking sys-
tems are designed for specifc types of features and applications,
such as text [38] and vision [13]. It would be challenging to extend
these systems to support feature spaces from multiple modalities,

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

e.g., text from video titles, and visual feature from thumbnails. Mean-
while, other multi-objective ranking systems that consider multiple
modalities of input features cannot scale up, due their limitation in
efciently sharing model parameters for multiple objectives [15, 44].

Outside the recommendation system research area, deep neu-
ral network based multitask learning has been widely studied and
explored on many traditional machine learning applications for
representation learning, e.g., natural language processing [12], and
computer vision [27]. While many multitask learning techniques
proposed for representation learning are not practical for construct-
ing ranking systems, some of their building blocks inspire our
design. In this paper, we describe a DNN based ranking system de-
signed for real-world recommendations and apply an extension of
Mixture-of-Experts layers [21] to support multitask learning [30].

2.3 Understanding and Modeling Biases in
Training Data

User logs, which are used as our training data, capture user be-
haviors and responses to recommendations from the current pro-
duction system. The interactions between users and the current
system create selection biases in the feedback. For example, a user
may have clicked an item because it was selected by the current
system, even though it was not the most useful one of the entire
corpus. Therefore, new models trained on data generated from the
current system will be biased towards the current system, causing
a feedback loop efect. How to efectively and efciently learn to
reduce such biases for ranking systems is an open question.

Joachims et al. [22] frst analyzed position bias and presentation
bias in implicit feedback data for training learning to rank models.
By comparing click data with explicit feedback of relevance, they
found that position bias exists in click data and can signifcantly
afect learning to rank models in estimating relevance between
query and document. Following this fnding, many approaches
have been proposed to remove such selection biases, especially
position bias [23, 34, 41].

A commonly used practice is to inject position as an input fea-
ture in model training and then removing the bias through abla-
tion at serving. In probabilistic click models, position is used to
learn P(relevance |pos). One method to remove position bias is in-
spired by [8], where Chapelle et al. evaluated a CTR model using
P(relevance |pos = 1), under the assumption of no position bias
efect for evaluation at position 1. Subsequently, to remove position
bias, we can train a model using position as an input feature, and
serve by setting position feature to 1 (or other fxed value such as
missing value).

Other approaches try to learn a bias term from position and apply
it as a normalizer or regularizer [23, 34, 41]. Usually, to learn a bias
term, some random data needs to be used to infer the bias term
(referred to as ‘global bias’, ‘propensity’, etc.) without considering
relevance [34, 41]. In [23], inverse propensity score (IPS) is learned
using a counter-factual model where no random data is needed. It
is used as a regularization term in training a Rank-SVM.

In real-world recommendation systems, especially social media
platforms such as Twitter [19] and YouTube [10], user behaviors
and item popularities can change signifcantly every day. Therefore,
instead of IPS based approaches, we need to have an efcient way

45

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

to adapt to training data distribution change in modeling selection
biases while we are training the main ranking model.

3 PROBLEM DESCRIPTION
In this section, we frst describe our problem of recommending
video to watch next, then we introduce the two-stage setup of
candidate generation and ranking. The rest of the paper will focus
on the ranking system.

Besides the above-mentioned challenges for building ranking
systems trained with implicit feedback, for real-world large-scale
video recommendation problems, we need to consider the following
additional factors:

• Multimodal feature space. In a context-aware personalized
recommendation system, we need to learn user utility of
candidate videos with feature space generated from multi-
ple modalities, e.g., video content, thumbnail, audio, title
and description, user demographics. Learning representa-
tion from multimodal feature space for recommendation is
uniquely challenging compared to other machine learning
applications. It cuts across two difcult issues: 1) bridging
the semantic gap from low-level content features for content
fltering; 2) learning from sparse distribution of items for
collaborative fltering.

• Scalability. Scalability is extremely important since we are
building a recommendation system for billions of users and
videos. The model must be efective at training and efcient
at serving. Even though ranking system scores only hun-
dreds of candidates per query, real-world scenarios require
scoring to be done in real-time, because some query and con-
text information are only available online. Therefore, ranking
system needs to not only learn representations of billions of
items and users, but also be efcient during serving.

Recall that the goal of our recommendation system is to pro-
vide a ranked list of videos, given currently watching video and
context. To deal with multimodal feature spaces, for each video,
we extract features such as video meta-data and video content sig-
nals as its representation. For context, we use features such as user
demographics, device, time, and location, etc.

To deal with scalability, similar to what was described in [10],
our recommendation system has two stages, namely, candidate
generation and ranking. At the candidate generation stage, we re-
trieve a few hundred candidates from a a huge corpus. Our ranking
system provides a score for each candidate and generates the fnal
ranked list.

3.1 Candidate Generation
Our video recommendation system uses multiple candidate gener-
ation algorithms, each of which captures one aspect of similarity
between query video and candidate video. For example, one al-
gorithm generates candidates by matching topics of query video.
Another algorithm retrieves candidate videos based on how often
the video has been watched together with the query video. We con-
struct a sequence model similar to [10] for generating personalized
candidate given user history. We also use techniques mentioned
in [25] to generate context-aware high recall relevant candidates.

Zhao, et al.

At the end, all candidates are pooled into a set and subsequently
scored by the ranking system.

3.2 Ranking
Our ranking system generates a ranked list from a few hundred
candidates. Diferent from candidate generation, which tries to flter
the majority of items and only keep relevant ones, ranking system
aims to provide a ranked list so that items with highest utility to
users will be shown at the top. Therefore, we apply most advanced
machine learning techniques using a neural network architecture in
ranking system, in order to have sufcient model expressiveness for
learning association of features and their relationship with utility.

4 MODEL ARCHITECTURE
In this section, we describe our proposed ranking system in detail.
We frst provide an overview of the system, including its problem
formulation, objectives, and features. Then we discuss our multi-
objective setup for learning multiple types of user behaviors. We
talk about how we apply and extend a state-of-the-art multitask
learning model architecture called Multi-gate Mixture-of-Experts
(MMoE) for learning multiple ranking objectives. At last, we talk
about how we combine MMoE with a shallow tower to learn and
reduce selection bias, especially position bias in the training data.

4.1 System Overview
Our ranking system learns from two types of user feedback: 1)
engagement behaviors, such as clicks and watches; 2) satisfaction
behaviors, such as likes and dismissals. Given each candidate, the
ranking system uses features of the candidate, query and context
as input, and learns to predict multiple user behaviors.

For problem formulation, we adopt the learning-to-rank frame-
work [6]. We model our ranking problem as a combination of classi-
fcation problems and regression problems with multiple objectives.
Given a query, candidate, and context, the ranking model predicts
the probabilities of user taking actions such as clicks, watches, likes,
and dismissals.

This approach of making predictions for each candidate is a point-
wise approach [6]. In contrast, pair-wise or list-wise approaches
learn to make predictions on ordering of two or multiple candidates.
Pair-wise or list-wise approaches can be used to potentially improve
the diversity of the recommendations. However, we opt to use
point-wise ranking mainly based on serving considerations. At
serving time, point-wise ranking is simple and efcient to scale
to a large number of candidates. In comparison, pair-wise or list-
wise approaches need to score pairs or lists multiple times in order
to fnd the optimal ranked list given a set of candidates, thereby
limiting their scalability.

4.2 Ranking Objectives
We use user behaviors as training labels. Since users can have dif-
ferent types of behaviors towards recommended items, we design
our ranking system to support multiple objectives. Each objective
is to predict one type of user behavior related to user utility. For de-
scription purposes, in the following we separate our objectives into
two categories: engagement objectives and satisfaction objectives.

46

Recommending What Video to Watch Next: A Multitask Ranking System RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

Figure 2: Replacing shared-bottom layers with MMoE.
Engagement objectives capture user behaviors such as clicks and

watches. We formulate the prediction of these behaviors into two
types of tasks: binary classifcation task for behaviors such as clicks,
and regression task for behaviors related to time spent. Similarly,
for satisfaction objectives, we formulate the prediction of behaviors
related to user satisfactions into either binary classifcation task or
regression task. For example, behavior such as clicking like for a
video is formulated as a binary classifcation task, and behavior such
as rating is formulated as regression task. For binary classifcation
tasks, we compute cross entropy loss. And for regression tasks, we
compute squared loss.

Once multiple ranking objectives and their problem types are de-
cided, we train a multitask ranking model for these prediction tasks.
For each candidate, we take the input of these multiple predictions,
and output a combined score using a combination function in the
form of weighted multiplication. The weights are manually tuned
to achieve best performance on both user engagements and user
satisfactions.

4.3 Modeling Task Relations and Conficts
with Multi-gate Mixture-of-Experts

Ranking systems with multiple objectives commonly use a shared-
bottom model architecture [7, 10]. However, such hard-parameter
sharing techniques sometimes harm the learning of multiple objec-
tives when correlation between tasks is low [30]. To mitigate the
conficts of multiple objectives, we adopt and extend a recently pub-
lished model architecture, Multi-gate Mixture-of-Experts (MMoE)
[30].

MMoE is a soft-parameter sharing model structure designed to
model task conficts and relations. It adapts the Mixture-of-Experts
(MoE) structure to multitask learning by having the experts shared
across all tasks, while also having a gating network trained for each
task. The MMoE layer is designed to capture the the task diferences
without requiring signifcantly more model parameters compared
to the shared-bottom model. The key idea is to substitute the shared
ReLu layer with the MoE layer and add a separate gating network
for each task.

For our ranking system, we propose to add experts on top of
a shared hidden layer, as shown in Figure 2b. This is because a
Mixture-of-Experts layer can help to learn modularized informa-
tion from its input [21]. It can better model multimodal feature
space when being used directly on top of input layer or lower hid-
den layers. However, directly applying MoE layer on input layer

will signifcantly increase model training and serving cost. This is
because usually the dimensionality of input layer is much higher
than those of hidden layers.

Our implementation of the expert networks is identical to multi-
layer perceptrons with ReLU activations [30]. Given task k , the
prediction yk , and the last hidden layer hk , the MMoE layer with n
experts output for task k : f k (x), can be expressed in the following
equation:

yk = hk (f k (x)),
nÕ

kwhere f k (x) = д
(i)(x)fi (x) (1)

i=1

And x ∈ Rd is a lower-level shared hidden embedding, дk is
kthe gating network for task k , дk (x) ∈ Rn , д
(i)(x) is the ith entry,

and fi (x) is the ith expert. The gating networks are simply linear
transformations of the input with a softmax layer.

дk (x) = softmax(Wдk x), (2)

where Wдk ∈ Rn×d are free parameters for the linear transfor-
mation. In contrast to the sparse gating network mentioned in [32],
where the number of experts can be large and each of the training
examples only utilizes the top experts, we use a relatively small
number of experts. This is set up to encourage sharing of experts
by multiple gating networks and for training efciency.

4.4 Modeling and Removing Position and
Selection Biases

Figure 3: Adding a shallow side tower to learn selection bias
(e.g., position bias).

47

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

Implicit feedback has been widely used to train learning to rank
models. With a large amount of implicit feedback extracted from
user logs, complicated deep neural network based model can be
trained. However, implicit feedback is biased due to the fact that it
is generated from the existing ranking system. Position bias, and
many other types of selection biases, are studied and verifed for
existence in diferent ranking problems [2, 23, 41].

In our ranking system, where the query is a video currently
being watched and candidates are relevant videos, it is common
that users are inclined to clicking and watching videos displayed
closer to the top of the list, regardless of their actual user utility
- both in terms of relevance to the watched video as well as the
users’ preferences. Our goal is to remove such a position bias from
the ranking model. Modeling and reducing selection biases in our
training data or during model training can result in model quality
gain and break the feedback loop resulted from the selection biases.

Our proposed model architecture is similar to the Wide & Deep
model architecture. We factorize the model prediction into two
components: a user-utility component from the main tower, and
a bias component from the shallow tower. Specifcally, we train a
shallow tower with features contributing to selection bias, such as
position feature for poistion bias, then add it to the fnal logit of the
main model, as shown in Figure 3. In training, the positions of all
impressions are used, with a 10% feature drop-out rate to prevent
our model from over-relying on the position feature. At serving
time, position feature is treated as missing. The reason why we
cross position feature with device feature is that diferent position
biases are observed on diferent types of devices.

5 EXPERIMENT RESULTS
In this section, we describe how we conduct experiments of our
proposed ranking system to recommend what video to watch next
on one of the largest video sharing platforms, YouTube. Using
user implicit feedback provided by YouTube, we train our ranking
models, and conduct both ofine and live experiments.

The scale and complexity of YouTube makes it a perfect test-
bed for our ranking system. YouTube is the largest video sharing
platform, with 1.9 billion monthly active users 1. The website creates
hundreds of billions of user logs everyday in the form of user
activities interacting with recommended results. A key product of
YouTube provides the functionality of recommending what to watch
next given a watched video, as shown in Figure 4. Its user interface
provides multiple ways for users to interact with recommended
videos, such as clicks, watches, likes, and dismissals.

5.1 Experiment Setup
As described in Section 3.1, our ranking system takes a few hun-
dred candidates from multiple candidate generation algorithms. We
use TensorFlow 2 to build the training and serving of the model.
Specifcally, we use Tensor Processing Units (TPUs) to train our
model and serve it using TFX Servo [4] 3.

1https://www.youtube.com/yt/about/press
2https://www.tensorfow.org
3https://www.tensorfow.org/tfx/guide/serving

Zhao, et al.

Figure 4: Recommending what to watch next on YouTube.

We train both our proposed model and baseline models sequen-
tially. This means that we train our models by going through train-
ing data of past days following a temporal order and keep running
our trainer to consume newly arriving training data. By doing so,
our models adapt to the most recent data. This is critical for many
real-world recommendation applications, where data distribution
and user patterns change dynamically over time.

For ofine experiments, we monitor AUC for classifcation task
and squared error for regression tasks. For live experiments, we
conduct A/B testing comparing with production system. We use
both ofine and live metrics to tune hyper-parameters such as
learning rate. We examine multiple engagement metrics such as
time spent at YouTube, and satisfaction metrics such as rate of
dismissals, user survey responses, etc. In addition to live metrics,
we also care about the computation cost of the model at serving time,
since YouTube responds a substantially large number of queries
per second.

5.2 Multitask Ranking With MMoE
To evaluate the performance of adopting MMoE for multitask rank-
ing, we compare with baseline methods and conduct live experi-
ments on YouTube.

5.2.1 Baseline Methods. Our baseline methods use the shared-
bottom model architecture mentioned in Figure 2a. As a proxy, we
measure model complexity by the number of multiplications inside
each model architecture, because this is the main computation
cost for serving the model. When comparing a MMoE model and a
baseline model, we use the same model complexity. Due to efciency
concerns, our MMoE layer shares one bottom hidden layer (as
shown in Figure 2b), which uses a lower dimensionality than that
of the input layer.

5.2.2 Live Experiment Results. The live experiment results on YouTube
are shown in Table 1. We report results on both the engagement
metric which captures user time spent on watching recommended
videos, and the satisfaction metric which captures user survey re-
sponses with rating scores. We compare shared-bottom model with
MMoE model, using either 4 or 8 experts. From the table, we see that
using the same model complexity, MMoE signifcantly improves
both engagement and satisfaction metrics.

48

https://3https://www.tensorflow.org/tfx/guide/serving
https://2https://www.tensorflow.org
https://1https://www.youtube.com/yt/about/press

Recommending What Video to Watch Next: A Multitask Ranking System

Model Architecture Number of Multiplications Engagement Metric Satisfaction Metric
Shared-Bottom 3.7M / /
Shared-Bottom 6.1M +0.1% + 1.89%

MMoE (4 experts) 3.7M +0.20% + 1.22%
MMoE (8 Experts) 6.1M +0.45% + 3.07%

Table 1: YouTube live experiment results for MMoE.
5.2.3 Gating Network Distribution. To further understand how
MMoE helps multi-objective optimization, we plot the accumu-
lated probability in the softmax gating network for each task on
each expert, as shown in Figure. 5. We see that some engagement
tasks share multiple experts with other engagement tasks. And
satisfaction tasks tend to share a small subset of experts with high
utilization, as measured by the probability of using these experts.

As mentioned above, our MMoE layer shares one bottom hidden
layer, and its gating networks take input from the shared hidden
layer. This could potentially make the MMoE layer harder to mod-
ularize input information than constructing MMoE layer directly
from input layer. Alternatively, we let the gating networks directly
take input from the input layer instead of the shared hidden layer, so
that input features can be directly used to select experts. However,
live experiment results show no substantial diferences compared to
the MMoE layer of Figure 2b. This suggests that the MMoE’s gating
networks of Figure 2b can efectively modularize input information
into experts for task relation and confict modeling.

Figure 5: Expert utilization for multiple tasks on YouTube.
5.2.4 Gating Network Stability. When training neutral network
models using multiple machines, distributed training strategies can
cause models to diverge frequently. An example of divergences
is Relu death [1]. In MMoE, the softmax gating networks have
been reported [32] to have imbalanced expert distribution problem,
where gating networks converge to have most zero-utilization on
experts. With distributed training, we observe 20% chance of this
gating network polarization issue in our models. Gating network
polarization harms model performance on tasks using polarized
gating networks. To solve this problem, we apply drop-out on the
gating networks. By applying a 10% probability of setting utilization
of experts to 0 and re-normalizing the softmax outputs, we eliminate
the gating network polarization for all gating networks.

5.3 Modeling and Reducing Position Bias
One major challenge of using user implicit feedback as training
data is the difculty to model the gap between implicit feedback
and true user utility. Using multiple types of implicit signals and
multiple ranking objectives, we have more knobs to tune at serving

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

time to capture the transformation from model predictions to user
utility in item recommendation. However, we still need to model
and reduce biases which generally exist in implicit feedback, e.g.,
selection biases caused by the interaction between users and current
recommendation system.

Here we evaluate how we model and reduce one type of se-
lection biases, i.e., position bias, with our proposed light-weight
model architecture. Our solution avoids paying the cost of random
experiments or complicated computation [41].

5.3.1 Analysis of User Implicit Feedback. To verify that position
bias exists in our training data, we conduct an analysis of click
through rates (CTR) for diferent positions. Figure 6 shows the
distribution of CTR in relative scale for position 1 to 9. As expected,
we see a signifcantly lower CTR as position gets lower and lower.
The higher CTRs at higher positions are due to a combination efect
of recommending more relevant items and position bias. Using our
proposed approach which employs a shallow tower, we demonstrate
in the following that it can separate the learning of user utility and
position bias.

Figure 6: CTR for position 1 to 9.

Figure 7: Learned position bias per position.

5.3.2 Baseline Methods. To evaluate our proposed model architec-
ture, we compare it with the following baseline methods.

• Directly using position feature as an input feature: This
simple approach has been widely adopted in industrial rec-
ommendation systems to eliminate position bias, mostly for
linear learning to rank models.

• Adversarial learning: Inspired by the broad adoption of ad-
versarial learning in domain adaptation [37] and machine
learning fairness [5], we use a similar technique to introduce
an auxiliary task which predicts position shown in train-
ing data. Subsequently, during the back propagation phase,
we negate the gradient passed into the main model, to en-
sure that the prediction of the main model does not rely on
position feature.

49

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

5.3.3 Live Experiment Results. Table 2 shows the live experiment
results of our proposed method and baseline methods. We see that
our proposed method signifcantly improves engagement metrics
by modeling and reducing the position bias.

5.3.4 Learned Position Biases. Figure 7 shows learned position
bias for each position. From the fgure, we see that the learned
bias is smaller for a lower position. The learned biases estimate the
propensity scores using biased implicit feedback. Running through
model training with enough training data enables us to learn to
reduce position biases efectively.

Method Engagement Metric
Input Feature -0.07%

Adversarial Loss +0.01%
Shallow Tower +0.24%

Table 2: YouTube live experiment results for modeling posi-
tion bias.

5.4 Discussion
In this section, we discuss a few insights and limitations which we
have learned from the journey of developing and experimenting
our ranking system.

5.4.1 Neural Network Model Architecture for Recommendation and
Ranking. Many recommendation system research papers [18, 43]
extended model architectures originally designed for traditional
machine learning applications, such as multi-headed attention for
natural language processing and CNN for computer vision. How-
ever, we fnd that many of these model architectures, which are
suitable for representation learning in specifc domains, are not
directly applicable to our needs. This is due to:

• Multimodal feature spaces. Our ranking system relies on mul-
tiple sources of features, such as content feature from query
and items, and context features. These features span from
sparse categorical space, to natural language and image, etc.
It is challenging to learn from a mixture of feature spaces.

• Scalability and multiple ranking objectives. Many model ar-
chitectures are designed to capture one type of information,
such as feature crosses [39] or sequential information [35].
They generally improve one ranking objective but may hurt
others. Additionally, applying a combination of complicated
model architectures in our system can hardly scale up.

• Noisy and locally sparse training data. Our system requires
training embedding vectors for both items and queries. How-
ever, most of our sparse features follow a power-law distribu-
tion and have high variances on user feedback. For example,
a user may or may not click a recommended item with same
query given a slightly diferent context which cannot be
captured in our system. This creates a great deal of difculty
in optimizing embedding space for tail items.

• Distributed training with mini-batch stochastic gradient de-
scent. We rely on a large neural network model with powerful
expressiveness to fgure out the feature association. Since
our model consumes a large amount of training data, we
have to use distributed training, which itself comes with
intrinsic challenges.

Zhao, et al.

5.4.2 Tradeof between Efectiveness and Eficiency. For real-world
ranking systems, efciency afects not only serving cost, but also
user experiences. An overly complicated model, which signifcantly
increases the latency in generating recommended items, can de-
crease user satisfaction and live metrics. Therefore, we generally
prefer a simpler and more straight-forward model architecture.

5.4.3 Biases in Training Data. Besides position bias, there are many
other types of biases. Some of these biases may be unknown and un-
predictable, for example, due to our system’s limitations in extract-
ing training data. How to automatically learn and capture known
and unknown biases in training data is a longstanding challenge
requiring more research.

5.4.4 Evaluation Challenge. Since our ranking system uses mostly
user implicit feedback, ofine evaluation indicating how well each
of our prediction tasks performs does not necessarily transfer to
live performance. In fact, often times we observe misalignment
between ofine and online metrics. Therefore, it is preferable to
choose an overall simpler model so that it can generalize better to
online performance.

5.4.5 Future Directions. In addition to MMoE and removal of se-
lection bias described above, we are improving our ranking system
along the following directions:

• Exploring new model architecture for multi-objective rank-
ing which balances stability, trainability and expressiveness.
We have observed that MMoE increases multitask ranking
performance by fexibly choosing which experts to share.
There is more recent work which further improves model
stability without hurting prediction performance [29].

• Understanding and learning to factorize. To model known
and unknown biases, we want to explore model architectures
and objectives which automatically identify potential biases
from training data and learn to reduce them.

• Model compression. Motivated by the need to reduce serving
cost, we are exploring diferent types of model compression
techniques for ranking and recommendation models [36].

6 CONCLUSION
In this paper, we started with the description of a few real-world
challenges in designing and developing industrial recommenda-
tion systems, especially ranking systems. These challenges include
the presence of multiple competing ranking objectives, as well
as implicit selection biases in user feedback. To tackle these chal-
lenges, we proposed a large-scale multi-objective ranking system
and applied it to the problem of recommending what video to watch
next. To efciently optimize multiple ranking objectives, we ex-
tended Multi-gate Mixture-of-Experts model architecture to utilize
soft-parameter sharing. We proposed a light-weight and efective
method to model and reduce the selection biases, especially posi-
tion bias. Furthermore, via live experiments on one of the world’s
largest video sharing platforms, YouTube, we showed that our pro-
posed techniques have led to substantial improvements on both
engagement and satisfaction metrics.

50

Recommending What Video to Watch Next: A Multitask Ranking System

REFERENCES
[1] Abien Fred Agarap. 2018. Deep learning using rectifed linear units (relu). arXiv

preprint arXiv:1803.08375 (2018).
[2] Aman Agarwal, Ivan Zaitsev, Xuanhui Wang, Cheng Li, Marc Najork, and

Thorsten Joachims. 2019. Estimating Position Bias without Intrusive Interven-
tions. In Proceedings of the Twelfth ACM International Conference on Web Search
and Data Mining. ACM, 474–482.

[3] Deepak Agarwal, Bee-Chung Chen, and Bo Long. 2011. Localized factor models
for multi-context recommendation. In Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM, 609–617.

[4] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo, Zakaria
Haque, Salem Haykal, Mustafa Ispir, Vihan Jain, Levent Koc, et al. 2017. Tfx: A
tensorfow-based production-scale machine learning platform. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 1387–1395.

[5] Alex Beutel, Jilin Chen, Zhe Zhao, and Ed H Chi. 2017. Data decisions and
theoretical implications when adversarially learning fair representations. arXiv
preprint arXiv:1707.00075 (2017).

[6] Christopher Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole
Hamilton, and Gregory N Hullender. 2005. Learning to rank using gradient
descent. In Proceedings of the 22nd International Conference on Machine learning
(ICML-05). 89–96.

[7] Rich Caruana. 1997. Multitask learning. Machine learning 28, 1 (1997), 41–75.
[8] Olivier Chapelle and Ya Zhang. 2009. A dynamic bayesian network click model

for web search ranking. In Proceedings of the 18th international conference on
World wide web. ACM, 1–10.

[9] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. ACM, 7–10.

[10] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks
for YouTube Recommendations. In Proceedings of the 10th ACM conference on
recommender systems. ACM, 191–198.

[11] James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van Vleet,
Ullas Gargi, Sujoy Gupta, Yu He, Mike Lambert, Blake Livingston, et al. 2010.
The YouTube video recommendation system. In Proceedings of the fourth ACM
conference on Recommender systems. ACM, 293–296.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[13] Humaira Ehsan, Mohamed A Sharaf, and Panos K Chrysanthis. 2016. Muve:
Efcient multi-objective view recommendation for visual data exploration. In
2016 IEEE 32nd International Conference on Data Engineering (ICDE). IEEE, 731–
742.

[14] Chantat Eksombatchai, Pranav Jindal, Jerry Zitao Liu, Yuchen Liu, Rahul Sharma,
Charles Sugnet, Mark Ulrich, and Jure Leskovec. 2018. Pixie: A system for
recommending 3+ billion items to 200+ million users in real-time. In Proceedings
of the 2018 World Wide Web Conference on World Wide Web. International World
Wide Web Conferences Steering Committee, 1775–1784.

[15] Ali Mamdouh Elkahky, Yang Song, and Xiaodong He. 2015. A multi-view deep
learning approach for cross domain user modeling in recommendation systems. In
Proceedings of the 24th International Conference on World Wide Web. International
World Wide Web Conferences Steering Committee, 278–288.

[16] Antonino Freno. 2017. Practical Lessons from Developing a Large-Scale Recom-
mender System at Zalando. In Proceedings of the Eleventh ACM Conference on
Recommender Systems. ACM, 251–259.

[17] Florent Garcin, Boi Faltings, Olivier Donatsch, Ayar Alazzawi, Christophe Bruttin,
and Amr Huber. 2014. Ofine and online evaluation of news recommender
systems at swissinfo. ch. In Proceedings of the 8th ACM Conference on Recommender
systems. ACM, 169–176.

[18] Qi Gu, Ting Bai, Wayne Xin Zhao, and Ji-Rong Wen. 2018. A Neural Labeled Net-
work Embedding Approach to Product Adopter Prediction. In Asia Information
Retrieval Symposium. Springer, 77–89.

[19] Pankaj Gupta, Ashish Goel, Jimmy Lin, Aneesh Sharma, Dong Wang, and Reza
Zadeh. 2013. Wtf: The who to follow service at twitter. In Proceedings of the 22nd
international conference on World Wide Web. ACM, 505–514.

[20] Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi, Antoine
Atallah, Ralf Herbrich, Stuart Bowers, et al. 2014. Practical lessons from predicting
clicks on ads at facebook. In Proceedings of the Eighth International Workshop on
Data Mining for Online Advertising. ACM, 1–9.

[21] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, Geofrey E Hinton, et al.
1991. Adaptive mixtures of local experts. Neural computation 3, 1 (1991), 79–87.

[22] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, Filip Radlinski,
and Geri Gay. 2007. Evaluating the accuracy of implicit feedback from clicks and
query reformulations in web search. ACM Transactions on Information Systems
(TOIS) 25, 2 (2007), 7.

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

[23] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. 2017. Unbiased
learning-to-rank with biased feedback. In Proceedings of the Tenth ACM Interna-
tional Conference on Web Search and Data Mining. ACM, 781–789.

[24] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: A highly efcient gradient boosting
decision tree. In Advances in Neural Information Processing Systems. 3146–3154.

[25] Walid Krichene, Nicolas Mayoraz, Stefen Rendle, Li Zhang, Xinyang Yi, Lichan
Hong, Ed Chi, and John Anderson. 2018. Efcient training on very large corpora
via gramian estimation. arXiv preprint arXiv:1807.07187 (2018).

[26] David C Liu, Stephanie Rogers, Raymond Shiau, Dmitry Kislyuk, Kevin C Ma,
Zhigang Zhong, Jenny Liu, and Yushi Jing. 2017. Related pins at pinterest:
The evolution of a real-world recommender system. In Proceedings of the 26th
International Conference on World Wide Web Companion. International World
Wide Web Conferences Steering Committee, 583–592.

[27] Mingsheng Long and Jianmin Wang. 2015. Learning multiple tasks with deep
relationship networks. arXiv preprint arXiv:1506.02117 2 (2015).

[28] Yichao Lu, Ruihai Dong, and Barry Smyth. 2018. Why I like it: multi-task learning
for recommendation and explanation. In Proceedings of the 12th ACM Conference
on Recommender Systems. ACM, 4–12.

[29] Jiaqi Ma, Zhe Zhao, Jilin Chen, Ang Li, Lichan Hong, and Ed Chi. 2019. SNR:
Sub-Network Routing for Flexible Parameter Sharing in Multi-task Learning.
AAAI (2019).

[30] Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H Chi. 2018.
Modeling task relationships in multi-task learning with multi-gate mixture-of-
experts. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. ACM, 1930–1939.

[31] Xia Ning and George Karypis. 2010. Multi-task learning for recommender system.
In Proceedings of 2nd Asian Conference on Machine Learning. 269–284.

[32] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le,
Geofrey Hinton, and Jef Dean. 2017. Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer. arXiv preprint arXiv:1701.06538 (2017).

[33] Ayan Sinha, David F Gleich, and Karthik Ramani. 2016. Deconvolving feedback
loops in recommender systems. In Advances in Neural Information Processing
Systems. 3243–3251.

[34] Adith Swaminathan and Thorsten Joachims. 2015. Batch learning from logged
bandit feedback through counterfactual risk minimization. Journal of Machine
Learning Research 16, 1 (2015), 1731–1755.

[35] Jiaxi Tang, Francois Belletti, Sagar Jain, Minmin Chen, Alex Beutel, Can Xu,
and Ed H Chi. 2019. Towards Neural Mixture Recommender for Long Range
Dependent User Sequences. arXiv preprint arXiv:1902.08588 (2019).

[36] Jiaxi Tang and Ke Wang. 2018. Ranking distillation: Learning compact ranking
models with high performance for recommender system. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
ACM, 2289–2298.

[37] Eric Tzeng, Judy Hofman, Kate Saenko, and Trevor Darrell. 2017. Adversar-
ial discriminative domain adaptation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 7167–7176.

[38] Nan Wang, Hongning Wang, Yiling Jia, and Yue Yin. 2018. Explainable recommen-
dation via multi-task learning in opinionated text data. In The 41st International
ACM SIGIR Conference on Research & Development in Information Retrieval. ACM,
165–174.

[39] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep & cross network
for ad click predictions. In Proceedings of the ADKDD’17. ACM, 12.

[40] Shanfeng Wang, Maoguo Gong, Haoliang Li, and Junwei Yang. 2016. Multi-
objective optimization for long tail recommendation. Knowledge-Based Systems
104 (2016), 145–155.

[41] Xuanhui Wang, Michael Bendersky, Donald Metzler, and Marc Najork. 2016.
Learning to rank with selection bias in personal search. In Proceedings of the 39th
International ACM SIGIR conference on Research and Development in Information
Retrieval. ACM, 115–124.

[42] Andrew Zhai, Dmitry Kislyuk, Yushi Jing, Michael Feng, Eric Tzeng, Jef Donahue,
Yue Li Du, and Trevor Darrell. 2017. Visual discovery at pinterest. In Proceedings
of the 26th International Conference on World Wide Web Companion. International
World Wide Web Conferences Steering Committee, 515–524.

[43] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep learning based rec-
ommender system: A survey and new perspectives. ACM Computing Surveys
(CSUR) 52, 1 (2019), 5.

[44] Xiaojian Zhao, Guangda Li, Meng Wang, Jin Yuan, Zheng-Jun Zha, Zhoujun Li,
and Tat-Seng Chua. 2011. Integrating rich information for video recommendation
with multi-task rank aggregation. In Proceedings of the 19th ACM international
conference on Multimedia. ACM, 1521–1524.

[45] Zhe Zhao, Zhiyuan Cheng, Lichan Hong, and Ed H Chi. 2015. Improving user topic
interest profles by behavior factorization. In Proceedings of the 24th International
Conference on World Wide Web. International World Wide Web Conferences
Steering Committee, 1406–1416.

51

	Abstract
	1 Introduction
	2 Related Work
	2.1 Industrial Recommendation Systems
	2.2 Multi-objective Learning for Recommendation Systems
	2.3 Understanding and Modeling Biases in Training Data

	3 Problem Description
	3.1 Candidate Generation
	3.2 Ranking

	4 Model Architecture
	4.1 System Overview
	4.2 Ranking Objectives
	4.3 Modeling Task Relations and Conflicts with Multi-gate Mixture-of-Experts
	4.4 Modeling and Removing Position and Selection Biases

	5 Experiment Results
	5.1 Experiment Setup
	5.2 Multitask Ranking With MMoE
	5.3 Modeling and Reducing Position Bias
	5.4 Discussion

	6 Conclusion
	References

