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ABSTRACT

We tackle spatio-temporal interpolation for virtual sensors in sparse, partially ob-
served, and dynamically changing networks. We introduce DynaSTI, a diffusion-
based generative framework that is fully inductive to unseen locations, trains di-
rectly on incomplete observations, and remains effective without retraining when
sensor networks change with time. Our contributions are threefold: (i) a uni-
fied conditioning strategy that yields calibrated predictive distributions and robust
performance under severe input-sensor dropout; (ii) a Fourier-domain compres-
sion variant, FDynaSTI, that accelerates sampling performance, and (iii) state-
of-the-art performance on multiple real-world datasets, improving both RMSE
and CRPS relative to strong baselines. Together, these results establish diffusion-
based, frequency-aware probabilistic interpolation as a scalable solution for real-
world, dynamic sensor networks.

1 INTRODUCTION

Accurate modeling and interpolation of spatio-temporal signals underpin a wide range of practical
applications, including environmental monitoring, traffic analysis, and urban planning. A particu-
larly challenging yet important task within this domain is predicting multivariate time-series data
at locations devoid of sensors or historical observations, commonly termed as virtual sensors. This
process, known as spatio-temporal interpolation, is essential for enabling informed decision making
in scenarios where sensor networks are sparse, incomplete, or subject to dynamic changes. Our pri-
mary objective is to develop a robust method that accurately predicts data for these unseen locations
without requiring prior knowledge of their coordinates during training.

Classical approaches such as kriging/Gaussian processes (Matheron, [1963; |(Cressie} [1993; [Ras-
mussen & Williams), 2006; [Hamelijnck et al.l [2021), ARMA/VAR models (Box & Jenkins, |1990),
EM-based matrix/tensor completion (Dempster et al.L|1977), and spatial statistics provide principled
uncertainty but often rely on strong stationarity assumptions, hand-crafted kernels, dense cover-
age, and fixed topologies; they also struggle to scale to large, high-dimensional networks. More
recent deep methods—graph neural networks (Cini et al., 2022} |Tharzeen et al., [2023; |Yang et al.|
2025; Kuppannagari et al., [2021)), attention-based sequence models (Marisca et al., 2022} Nie et al.}
2024]), neural processes (Hu et al.,2023)), and diffusion-based imputers (Liu et al., 2023 |Tang et al.,
2025}, [Tashiro et al., 2021} Islam et al) [2025)-have improved expressivity and accuracy on par-
tially observed data, yet commonly presume that the set of observed and target sensors and their
graph/topology are fixed at training and test time. Moreover, uncertainty quantification for unseen
locations is frequently ad hoc (e.g., MC-dropout (Gal & Ghahramani, 2016))) or absent, and many
models require costly retraining or architectural change when the sensors drop out. In summary, no
existing approach simultaneously supports dynamic sensor configurations, long sequences, multi-
variate data, and uncertainty prediction for virtual sensors.

To address these challenges, we propose a novel diffusion-based generative framework for spatio-
temporal interpolation that leverages spatial, temporal, and feature encoders. Our model, DynaST],
short for “Dynamic Spatio-Temporal Interpolation via Diffusion”, is specifically engineered to pre-
dict multivariate time-series data at virtual sensor locations, excelling in scenarios where input sen-
sor data may be incomplete or missing at training and testing time. Moreover, Our model eliminates
the need for retraining when sensor configurations change, is fully inductive to unseen locations,
uses a unified conditioning scheme to ingest whatever sensors are available, naturally represents un-
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Table 1: Comparison of spatio-temporal interpolation methods by key strengths.

Strength GRIN ST-GAIN SPIN PriSTI IGNNK DeepKriging ST-VGP KITS GSLI BayesNF MMGN USTD DynaSTI
Dynamic Topology v v v v v v v v
Inductive v v v v v ' v ' '
Generative v v v v v v v
Multivariate v v ' ' v ' v ' v v '
Incomplete inputs v v ' v v v v v v v v

certainty, and accelerates long-horizon inference through a Fourier-domain compression—together
yielding a scalable, and cost-effective solution.

Table (1| summarizes how various models for spatio-temporal interpolation address four critical
strengths relevant to virtual sensor prediction — (1) Dynamic Topology, which is adaptability to
sensor networks whose configuration changes dynamically (e.g., sensors being added or removed),
(2) Inductive is the ability to predict at locations unseen during training, (3) Generative is to provid-
ing probabilistic outputs rather than solely deterministic predictions, (4) Multivariate is the ability
to predict for multivariate data instead of just univariate, and (5) Incomplete inputs is the ability
to handle incomplete data with arbitrary missing feature values as input at training and testing time.
While USTD (Tang et al.l[2025) meets all criteria in Table[I] the public implementation restricts se-
quences to 12 or 24 steps, so we were unable to run it on our datasets, which have longer sequences.

Our key contributions are:

¢ Inductive diffusion for virtual sensors: We propose a fully inductive, diffusion-based
framework that trains directly on incomplete data and generalizes to unseen target locations
without retraining.

* Unified conditioning with locations and probabilistic prediction: We introduce a con-
ditioning strategy that integrates irregular spatio-temporal context (locations) into the de-
noising process, delivering robust performance under severe sensor dropout. The approach
produces probabilistic predictions yielding uncertainty quantification.

* Fourier-domain compression for long sequences: We develop a frequency-aware repre-
sentation that expresses each series as a trend (intercept + slope) and seasonality to accel-
erate the inference time.

» Strong empirical performance and robustness: Across diverse, real-world datasets, Dy-
naSTI achieves state-of-the-art accuracy relative to strong baselines (e.g., lower RMSE and
improved CRPS) and shows graceful degradation with sensor dropout.

2 RELATED WORK

Traditional statistical approach: Classical methods—ARMA (Box & Jenkins},|1990), EM (Demp-
ster et al.| [1977)), and KNN (Fix & Hodges| [1951)—leverage temporal smoothness or spatial simi-
larity but miss complex dependencies. Kriging (Matheron, |1963}; Cressiel [1993) and Gaussian Pro-
cesses (GPs) (Rasmussen & Williams|, 2006; |Cressie & Wikle, 2011) provide principled uncertainty
via covariance kernels, yet suffer from cubic scaling and sensitivity to stationarity/kernel choice.

Deterministic deep models: Graph-based models (GRIN (Cini et al., 2022), GLSTM (Tharzeen
et al.| 2023), STGNN-DAE (Kuppannagari et al.,|2021))) capture spatial-temporal structure but typ-
ically assume fixed topologies and can accumulate autoregressive errors in sparse regimes. GSLI
(Yang et al.;2025) learns multi-scale graphs to handle node/feature heterogeneity but adds compute
overhead. Attention models like SPIN (Marisca et al., [2022) enable virtual prediction with local
representations but require known locations during training. Other deterministic methods—tensor
completion (Ben Said & Erradi, [2022; Zhang & Wei, [2024)), MLP-RAIN (Saubhagya et al.,|[2024),
and image inpainting Yun et al| (2023)-work well on grids yet adapt poorly to irregular/dynamic
graphs and usually lack calibrated uncertainty. Inductive kriging with GNNs (IGNNK (Wu et al.,
2021), DeepKriging (Nag et al., 2023), INCREASE (Zheng et al.| 2023)), KITS (L1 et al.| 2023))
generalizes to unseen nodes but often simplifies temporal dynamics, may depend on side infor-
mation, or rely on pseudo-labels. INR-style continuous fields (MMGN) (Luo et al., [2024)) learns
coordinate-to-value mappings but is deterministic and lacks explicit graph inductive bias.
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Probabilistic methods: Probabilistic approaches quantify uncertainty: STGNP (Hu et al., [2023)
(neural processes on graphs) relies on predefined graphs/covariates. Bayesian Neural Fields (Saad
et al., [2024) scale via hierarchical inference but approximate posteriors. ST-VGP (Hamelijnck
et al., 2021)) uses variational/state-space structure for linear-time scaling with assumptions on ker-
nels/likelihoods. ST-GAIN (Zhang et al., |2017) is a GAN-based imputation model, which suffers
from the training instability of GANs. Diffusion models handle nonstationarity generatively: CSDI
(Tashiro et al.,|2021)) and SADI (Islam et al.,2025)) impute time series without spatial context; PriSTI
(Liu et al., [2023)) adds spatio-temporal conditioning but remains non-inductive; USTD (Tang et al.,
2025) unifies forecasting/kriging with a shared encoder and gated-attention decoders, supports in-
ductive kriging but is evaluated on fixed training graphs and short sequences; VDM (Li et al., [2026)
combines VAE pre-imputation, multi-scale trends, and temporal Mamba (Gu & Daol 2024) with
dynamic/static graph encoders, assuming a fixed distance graph and risking VAE bias.

In summary, traditional/statistical methods offer interpretability and uncertainty but scale poorly.
Deterministic deep models broaden capacity yet often assume fixed graphs and lack calibrated un-
certainty. Probabilistic and diffusion-based methods add uncertainty and generative flexibility but
can be constrained by kernel/graph assumptions, motivating methods that handle dynamic topolo-
gies, fully inductive virtual sensors, multivariate data, and long horizons.

3 PRELIMINARIES

In this section, we first outline our problem setup and then provide an overview of the diffusion
model concepts that are relevant to our approach.

3.1 PROBLEM SETUP

We tackle spatio-temporal interpolation, predicting target time-series at arbitrary locations from mul-
tivariate sensors with missing and time-varying observations. This reflects real deployments (digital
agriculture, atmospheric sensing) where sparse networks face outages and changing topologies. Our
goal is a single model that generalizes across variables, time intervals, and virtual locations using
the available sensor data.

More formally, a spatio-temporal dataset consists of sensor observations indexed by location and
time. We let S denote the set of possible spatial coordinates, which will typically be 2D or 3D geo-
graphic locations, and S’ denote the finite set of locations involved in the data under consideration.
We consider a discrete time model where T = {¢;,t3,...,tr} is the set of regularly sampled time
steps spanning the temporal extent of the data. We consider multivariate sensors with C' channels
that produce data of the form (s, ¢, x, m), indicating the sensor location s € &’, the measurement
time ¢ € T, sensor values x € R, and a channel mask m € {0, 1}0, indicating which channels
are missing (0 indicates missing). Importantly, we make no assumptions about how many missing
values are in the data at either training or testing time. The observed dataset is defined as:

D= {(s,t,x, m) | seS teT,xeRY me{0,11¢, where m, = 1if z. is observed, else 0}

The goal of spatio-temporal interpolation is to estimate one or more unobserved sensor channels
at an arbitrary location s* and all time steps 7 using a dataset of observed data D. This process
handles situations where some channel values are observed at s*, with a mask M* € {0,1}7*¢,
which indicates which features/channels in X* € R”T*C are missing for any time and are to be
estimated as the data at the target location can be partially observed. For virtual locations, the mask
M™ is all zeros and the goal is to predict the entire time-series data at the location s*.

3.2 DIFFUSION MODELS

Diffusion models provide a generative framework for sampling from complex data distributions.
They define a forward diffusion process that incrementally adds noise to data, and a reverse denois-
ing process that learns to remove this added noise. Concretely, let Xy ~ ¢(Xg) be a sample from
the true data distribution. The forward diffusion process is a fixed Markov chain:

a(X | Xi1) = N(Xus VT= B Xp, Bid), b= 1. K,
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where [}, is a variance schedule and I is the identity matrix. After K steps, X is nearly isotropic
Gaussian noise.

A reverse diffusion model py parameterized by 6 is then trained to reconstruct X from X via:
po (Xn—1 | Xi) = M Xp—15 po(Xi, k), Zo( X, k)).

Sampling from the trained model amounts to starting from Gaussian noise Xz ~ N(0,I) and
iteratively applying the learned reverse steps:

Xk Npe(Xk_l | Xk), k=K K-1,...,1.

A popular way to train the reverse diffusion model is via noise prediction. Let &y = H§:1 (1= P5e).
We construct X by mixing the clean sample X with Gaussian noise ¢:

Xp=VarXo + V1—-are, e~N(0,I).

The model py (often denoted £¢) directly predicts €. This yields a simple mean-squared error objec-
tive according to Ho et al.| (2020):

5(9) = Ex0~q, e~N(0,I), k~Uniform{1,..., K} { H€ - Ee(Xk, k)”ﬂ

Minimizing this loss encourages 4 to correctly denoise X}, at each step k. By integrating condi-
tional mechanisms into €y, these models can be adapted for conditioned generation, making them
suitable for tasks such as spatio-temporal interpolation. In such a setup, the model conditions on
partial observations (spatial locations, diffusion steps, known features) and generates the missing
values accordingly.

4 DYNAMIC SPATIO-TEMPORAL DATA INTERPOLATION

We propose DynaSTI, a DDPM-based (Ho et al.,[2020) framework for multivariate spatio-temporal
interpolation that predicts time series at virtual sensor locations without prior coordinate knowledge.
It conditions noise prediction on observed measurements, sensor coordinates, and the diffusion step—
naturally handling missing data and dynamic topologies. The denoiser comprises three modules:
Spatial, Temporal, and Feature Encoders that capture spatial correlations, long-range temporal de-
pendencies, and cross-channel interactions, respectively (Fig.[I).

4.1 MODEL OVERVIEW

Our model operates within the DDPM framework, where a forward diffusion process incrementally
adds Gaussian noise to the data, and a reverse denoising process learns to reconstruct the original
data distribution. For spatio-temporal interpolation, we aim to estimate multivariate time-series data
X* € RT*C at a target location s* € R? and time steps 7, conditioned on observed measurements
D (See Section [3.1). The denoising model ¢4 estimates the noise ¢ added to the target data, con-
ditioned on the noisy target data X, € RT*C the target location s*, the observed data along with
their sensor location D and the diffusion step k. Two binary masks manage missing data: one for
features at observed locations and another for target locations, with 1 denoting observed data and 0
denoting missing data. The model is trained to minimize the noise prediction loss:

£(8) = Exgeg e (0.1 knUsitom(1,...16) |12 = £0(Xii, b, 5%, D] ()

The denoising model integrates three specialized encoders to model the complex dependencies in
spatio-temporal data. These encoders are applied sequentially, with multiple layers of each to refine
the representations, and the diffusion step k is embedded as a conditioning signal to guide the denois-
ing process. The following subsections detail each component, the Fourier compression upgrade,
and the training/inference pipeline.
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Figure 1: Overview of the model architecture when predicting the time-series data at one target
location s* (where there is no sensor) given 11 observed locations, each with two features. The
green cells denote observed values at each sensor, red cells indicate missing entries, yellow cells
store location metadata, and the grey cell represents a noisy placeholder for the target location’s
missing time series. The model applies spatial cross-attention on the observed sensors, followed
by dedicated temporal and feature “DiT” modules, ultimately producing a prediction for the target
location from the blended information of other neighbors.

4.2 SPATIAL ENCODER

The Spatial Encoder models the spatial relationships between the target location s* and the observed
sensor locations, while incorporating the diffusion step k to condition the denoising process. To
handle incomplete data, we incorporate missingness masks, which are binary indicators of whether
a measurement is observed at a given (s, t), where s € S,¢ € T. For each time step t € T, we
construct input data as follows:

Noisy Target Data: The target data at a particular time step ¢t € 7 and location s* € R is repre-
sented by the noisy sample x;, € R, initialized as Gaussian noise at inference time. We concatenate
X}, with the target location coordinates s* and the corresponding missingness mask m* € {0, 1}¢.

Conditional Observed Data: For each observed location s € S and particular time step ¢t € T,
we concatenate the observed measurement x € RC, the location coordinates s € R?, and the
corresponding missingness mask m € {0,1}¢.

The Spatial Encoder treats time steps as independent and identically distributed (IID) samples, al-
lowing parallel computation across 7. The concatenated feature vectors for the noisy target and
observed data are processed by a cross-attention mechanism, where the noisy target data serve as
the query, and the observed sensor data serve as the key and value. This cross-attention computes
attention weights that reflect the spatial relevance of each observed sensor to the target location,
similar to the covariance-based weighting in kriging. The learnable weights within this module de-
pend only on the combined size of feature vectors and location embedding rather than the number
of locations, enabling the encoder to seamlessly handle a variable number of sensor locations. The
spatial attention layers iteratively refine the representation, progressively integrating spatial infor-
mation from neighboring sensors into the target predictions. We chose not to jointly model the
spatial-temporal correlations to reduce the space, time, and sample complexities.

4.3 TEMPORAL ENCODER

Starting from the spatially contextualized target representation produced by the Spatial Encoder,
the model refines it by capturing temporal and cross-feature correlations. The Temporal Encoder
uses DiT (Peebles & Xie, [2023)) self-attention to model temporal dependencies. We compute the
self-attention on the target location only and treat the time dimension 7 as the sequence dimension.
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Inputs are X' € RT*C for the target s* and the conditional information for the observed locations.
The diffusion step k is embedded with sinusoidal encodings and added to token embeddings to con-
dition on the noise level. Self-attention operates along time (after temporal positional encodings),
yielding a 7" x T attention map per location that captures temporal patterns across all features simul-
taneously. The number of learnable parameters for each layer is the sum of the feature dimension
and the size of location embeddings. We concatenate the latter to inject spatial context.

4.4 FEATURE ENCODER

Each Feature Encoder layer uses DiT blocks with self-attention. It models correlations among C
features and injects spatial coordinate embeddings for spatial structure. We do this for the target
location only. The feature dimension is treated as the sequence dimension. Parameters scale with
the temporal dimension; conditional observed data provide context. The layer takes the output of
the preceding Temporal Encoder. Self-attention computes feature-wise weights across all times at
each location, learning dependencies between channels.

Temporal and Feature Encoders alternate—[ Temporal — Feature]-repeated Nl’wers times (a depth
hyperparameter). This interleaving jointly models temporal-feature dependencies across levels. Af-
ter the final Feature Encoder, we apply the DiT output head (Peebles & Xiel [2023)) (LayerNorm +
linear) to the target location to predict the noise.

4.5 FOURIER COMPRESSION (TREND + SEASONALITY) FOR DYNASTI

To mitigate DynaSTT’s slow inference on long sequences, we compress each multivariate time-series
(length L) into a compact trend + seasonality representation in the frequency domain as a truncated
Fourier series (to lowest F' frequency pairs). For feature & with centered time 7 € [—1,1], we
reconstruct:

F
Y.k = Ck + My Tt—i—Z{ak,fcos(QﬂTft) +Bk,fsin(2ﬂTﬂ)}, 2)
Y =1

trend

seasonality
where the zero-th frequency component is absorbed by cy. The compressed vector per feature is

2F 42
zk = | k1r s Berr, ce, my | € R 3)

so abatch y € REXLXK pecomes Z € REXF+2)XK [y practice 2F +2 < L, which yields faster
diffusion steps despite a small coefficient-fitting overhead.

The diffusion model is trained directly on the compressed data. At each epoch, we map the ob-
served conditionals to («, /3, ¢, m) by minimizing a reconstruction loss (a few gradient steps), then
concatenate these coefficients to form Z. At inference, we apply the same mapping before running
DynaSTI, reducing end-to-end latency relative to operating at length L. We initialize (¢, m) via
least squares on (74, y. 1), and set (o, 3) by a one-shot real FFT of the series; all coefficients are
subsequently refined by gradient descent. We are calling this model FDynaSTI.

4.6 TRAINING & INFERENCE

Training: For each dataset, we partition the sensor locations into non-overlapping training and
testing pools, with the training pool comprising 80% of the total locations. To ensure our model,
DynaSTI, effectively handles incomplete data, we preserve any naturally occurring missing values
in the training data. For datasets with minimal missing data, we introduce artificial missingness by
randomly masking a subset of observations at the observed locations, enabling the model to learn to
handle real-world scenarios with missing sensor data.

We train our model, DynaSTI, within the Denoising Diffusion Probabilistic Model (DDPM) frame-
work, tailored for conditional generation of spatio-temporal data. At each training step, we uni-
formly sample a target location s* € S’, where S’ C & is the training pool, with its true time-
series data X € RT*C (T time steps, C features). The conditional observed data D comprises
time-series data Xo € RT*C, and missingness masks M € {0,1}7*C for a set of observed
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Table 2: Datasets Description

Dataset Sampling interval | Time-series length | Number of features | Training locations | Testing locations
AWN 15 minutes 288 (3 days) 7 54 13
NACSE 1 day 30 days 2 143 36
METR-LA 5 minutes 288 (1 day) 1 165 42
PEMS-BAY 5 minutes 288 (1 day) 1 260 65
locations Spps € S’ \ s*. We sample a diffusion step k& ~ Uniform({1,...,K}) and noise

e ~ N(0,I), computing the noisy target data X; according to Section The model predicts
the noise & = e9(X}, k, s*, D), minimizing the loss in Eq.

We explore two approaches to select Syps: (1) using all locations in S’ \ s* as observed sensors in
each epoch; (2) randomly sampling a variable-sized subset of S\ s* per epoch, simulating dynamic
sensor availability. Experiments show that both approaches yield comparable performance, but we
adopt the first approach for training because of its simplicity throughout the paper.

Inference: During inference, the model starts with Gaussian noise X3 € R7*¢ ~ N(0,1) at
the target location s* and iteratively applies the reverse diffusion process conditioned on the target
location s*, diffusion step k, and conditional observed data along with locations D:

Xi_y~po(Xj_4 | Xikys™, D), k=K, K-1,...,1

)

In each diffusion step k, we get the estimated noise ¢ = €¢( X}, k, s*, D) and calculate the posterior
. . _ 1 B A
mean and \iarlance of the (k — 1)-th step noisy target data pux_; = \/TT(XI: - Jian £) and
Op_1 = 117?7;;1 B, respectively. Then, we get X} ; = N (ur—1,0k,—1I) and repeat this procedure,
decrementing £ until £ = 1, at which point we recover our prediction for the target location Xj.

5 EVALUATION

In this section, we evaluate the performance of our proposed diffusion-based generative model for
multivariate spatio-temporal data interpolation. We conduct experiments on four real-world datasets
and compare our model against the following baseline methods based on their availability and han-
dling multivariate data: (1) Deterministic methods: Mean imputation, DeepKriging (Nag et al.,
2023)), KITS (Li et al., [2023)), GSLI (Yang et al.| [2025), and IGNNK (Wu et al., 2021}, (2) Proba-
bilistic methods: ST-VGP (Hamelijnck et al., 2021)), and PriSTI (Liu et al.} 2023). Additionally, we
perform an ablation study to assess the contribution of each component in our architecture.

5.1 EXPERIMENTAL SETUP

We utilize four diverse spatio-temporal datasets to evaluate our model. AWN dataset consists of
weather data collected from the AgWeatherNet network such as temperatures at two different pres-
sure levels, relative humidity, dewpoint, wind speed, wind gust, and solar radiation. NACSE dataset
provides daily maximum and minimum temperature data from 179 weather stations in Northwest
Oregon, sourced from the NACSE PRISM climate dataset|| METR-LA and PEMS-BAY traffic
datasets contain traffic speed data collected at 5-minute intervals from Los Angeles and San Fran-
cisco Bay Area (Hel [2025) respectively. Tableshows the attributes of the four datasets.

Across datasets, we partition locations into disjoint train/test pools. In each trial, we sample a test lo-
cation s*, input its coordinates along with training-pool’s locations and observations D, and use s*’s
multivariate time-series as ground truth. We enforce a strict temporal split—train on earlier data, test
on the final 20%—for all methods except ST-VGP (Hamelijnck et al.,[2021). As a Gaussian Process
method, ST-VGP’s kernel learned on an earlier window extrapolates poorly under temporal shift,
so a disjoint split would disproportionately penalize it. We therefore fit ST-VGP on observations
from the evaluation period (the same calendar span as other methods’ test window) and predict the
held-out targets, a choice favoring ST-VGP. For each experiment, we conduct 10 trials for each time

"https://weather.wsu.edu/
*https://shorturl.at/ Aor04
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Table 3: Comparison of the RMSE (% 95% confidence interval) across four datasets

Model NACSE AWN METR-LA PEMS-BAY
MEAN 0.4113 £ 0.0590 | 0.9826 +0.0117 | 1.4954 £ 0.0269 | 0.9927 £ 0.0646
DeepKriging | 0.8965 + 0.0777 | 0.5651 £ 0.0142 | 1.3310 £ 0.0555 | 0.9524 + 0.0842
ST-VGP 0.6408 £ 0.0133 | 0.5121 £ 0.0183 | 1.1577 £ 0.0442 | 0.8990 + 0.0333
KITS 0.4009 £+ 0.0251 | 0.4453 £ 0.0171 | 1.1502 £ 0.0425 | 0.8542 4+ 0.0391
GSLI 0.6215 £+ 0.0125 | 0.4567 £ 0.0145 | 1.1521 £ 0.0450 | 0.8406 + 0.0534
IGNNK 0.8542 £ 0.0224 | 0.5400 + 0.0139 | 1.3217 £ 0.0538 | 0.9446 + 0.0986
PriSTI 0.5904 £+ 0.0574 | 0.4766 + 0.0171 | 1.1824 £ 0.0553 | 0.8762 £ 0.0930
DynaSTI 0.2333 £+ 0.0760 | 0.4339 +0.0163 | 1.1216 £ 0.0687 | 0.8252 £ 0.0963
FDynaSTI | 0.2608 + 0.0597 | 0.3706 + 0.0186 | 1.0338 + 0.0338 | 0.7996 + 0.0522

Table 4: Comparison of the CRPS (& 95% confidence interval) across four datasets

Model NACSE AWN METR-LA PEMS-BAY
ST-VGP | 0.2351 £0.0521 | 0.3211 +0.0230 | 0.8532 £ 0.3320 | 0.8245 £ 0.0341

PriSTI 0.2740 £ 0.0477 | 0.3542 £ 0.0121 | 0.9777 £ 0.0355 | 0.9573 £ 0.0886
DynaSTI | 0.1631 + 0.0515 | 0.2790 £ 0.0098 | 0.6839 + 0.0350 | 0.6392 £ 0.0308
FDynaSTI | 0.1933 +0.0436 | 0.2440 £ 0.0110 | 0.6528 + 0.0049 | 0.6832 £ 0.0361

period, varying the target location s* to assess the model’s robustness in predicting virtual sensor
data across diverse spatial configurations.

We evaluate with RMSE (between predictions and ground truth at target locations) and Continuous
Ranked Probability Score (CRPS). For both metrics, we report the mean and 95% confidence in-
tervals over 10 runs. CRPS is a probabilistic scoring rule (lower is better) that captures uncertainty
quality—rewarding calibrated, sharp distributions. It decreases when probability mass concentrates
near the realized value and increases for over- or under-confident forecasts.

5.2 RESULTS

We evaluate our model’s performance across diverse scenarios, including virtual sensors and dy-
namic sensor configurations. In addition, we conducted an ablation study to evaluate the contribu-
tion of each of the key architectural components. Given that features vary in scale, we calculate the
RMSE and CRPS using normalized predictions and ground truth values.

Across all four datasets, our approach attains the best RMSE in Table[3] The Fourier variant (FDy-
naSTI) outperforms DynaSTI in all datasets except NACSE, which has relatively short time series.
Relative to the strongest baseline model per dataset, the error reductions are 16.8% (AWN against
KITS), 41.8% (NACSE against KITS), 10.1% (METR-LA against KITS), and 4.9% (PEMS-BAY
against GSLI). These gains hold within the reported 95% confidence intervals.

DynaSTI achieves the lowest CRPS on all datasets in Table [4] indicating better-calibrated and
sharper predictive distributions. FDynaSTI closely matches DynaSTI on METR-LA (0.6832 vs.
0.6839) and outperforms all on PEMS-BAY, while DynaSTI leads on AWN and NACSE (lower
CRPS is better). Note that deterministic baselines are omitted since CRPS does not apply to them.

To test the impact of dynamic sensor failures or sensor dropouts during inference, we gradually
masked the input sensors randomly at inference time and show the results in Table [5] and per-
formance degrades gracefully. From 100% to 10% active sensors, RMSE increases are +14.2%
(AWN), +61.7% (NACSE), +85.6% (METR-LA), and +24.3% (PEMS-BAY), reflecting dataset dif-
ficulty while preserving competitive accuracy under severe sparsity.

Table [] presents the results of an ablation study, where we remove key components of our model—
Spatial Encoder (SE), Temporal Encoder (TE), and Feature Encoder (FE)—to assess their individual
contributions. The Spatial Encoder is critical for maintaining model performance. Removing it more
than doubles error on AWN and yields large degradations on NACSE, METR-LA, and PEMS-BAY.
Removing the Temporal Encoder hurts notably on NACSE and METR-LA. The Feature Encoder
matters for multivariate datasets (AWN and NACSE), while it is inapplicable to the two univariate
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Table 5: Evaluation of our model’s performance (RMSE =+ 95% confidence interval) under varying

percentages of active input sensors during inference

Dataset Percentage of Active Input Sensors
100% 90% 70% 50% 30% 10%
AWN 0.3706 + 0.0186 | 0.3770 + 0.0195 | 0.3872 + 0.0303 | 0.3860 &+ 0.0173 | 0.4101 + 0.0189 | 0.4231 £ 0.0190
NACSE 0.2333 4+ 0.0760 | 0.2560 + 0.0931 | 0.2868 + 0.0995 | 0.3291 + 0.0987 | 0.3302 + 0.1021 | 0.3772 £+ 0.1102
METR-LA | 1.0338 +0.0338 | 1.1922 4 0.0525 | 1.3132 + 0.0566 | 1.5083 + 0.0474 | 1.8231 +0.1607 | 1.9191 + 0.1404
PEMS-BAY | 0.7996 £ 0.0522 | 0.8292 + 0.0942 | 0.8878 £ 0.0926 | 0.9232 4 0.0974 | 0.9421 + 0.0912 | 0.9938 + 0.0983

Table 6: Ablation study on the four datasets. Each cell reports RMSE (4 95% confidence interval).

SE: Spatial Encoder, TE: Temporal Encoder, FE: Feature Encoder.

Dataset DynaSTI/FDynaSTI no SE no TE no FE no TE & no FE

AWN 0.3706 + 0.0186 0.7836 + 0.0067 | 0.3737 £ 0.0171 | 0.4192 £+ 0.0069 | 0.4209 + 0.0049

NACSE 0.2333 + 0.0760 0.4462 + 0.0749 | 0.3512 £ 0.0726 | 0.3376 £+ 0.0784 | 0.3628 + 0.0779
METR-LA 1.0338 + 0.0338 1.7701 + 0.0788 | 1.4086 + 0.0774 N/A N/A
PEMS-BAY 0.7996 + 0.0522 1.1156 + 0.1036 | 1.0124 + 0.0417 N/A N/A

traffic datasets. For both Table[5]and Table[6] we reported the RMSE values for the best performing
model in TableE], i.e., FDynaSTI for AWN, METR-LA, and PEMS-BAY, and DynaSTI for NACSE.

Table 7: Inference time (seconds) for each model to predict the entire time series at a single virtual
sensor location on each of the four datasets.

Dataset DynaSTI | FDynaSTI | IGNNK | ST-VGP | DeepKriging | PriSTI | KITS | GSLI
AWN 168.025s 28.920s 0.003s 2211s 1.224s 59.708s | 0.003 | 0.004s
NACSE 59.264s 39.357s 0.001s 0.025s 0.419s 26.603s | 0.001 | 0.001s
METR-LA | 200.374s 24.880s 0.002s 3.231s 1.445s 33.999s | 0.002 | 0.002s
PEMS-BAY | 292911s 32.466s 0.003s 3.570s 1.256s 52.151s | 0.003 | 0.003s

Table|/| shows the inference speeds of different models. Not surprisingly, the deterministic models
are much faster than the generative models. FDynaSTI is significantly faster than DynaSTI and the
other diffusion model, PriSTI. However it is slower than the other generative model, ST-VGP. We ex-
perimented with replacing the DDPM design of DynaSTI with DDIM (Song et al., 2020); however,
we found that it significantly degrades the quality of the generated samples. All experiments were
conducted on a cluster using GPU-enabled nodes equipped with Nvidia Tesla v100 32GB GPUs.

6 DISCUSSION AND CONCLUSIONS

Across four real-world datasets, DynaSTI delivers the best point accuracy (lowest RMSE, Table [3))
and the best probabilistic quality (lowest CRPS, Table ), showing that conditioning a diffusion
model on spatial, temporal, and feature context yields both accurate means and well-calibrated,
sharp uncertainty. The Fourier-compressed variant (FDynaSTI) outperforms or matches DynaSTI
on several settings, offering faster sampling. Moreover, initializing harmonic coefficients with real
FFT substantially improves accuracy over random starts (Appendix[A.3] Table[9). DynaSTI is robust
to time-varying sensor availability. As active sensors drop from 100% to 10%, errors rise gradually
but remain competitive across datasets (Table [5). Ablations confirm the Spatial Encoder is critical
(its removal more than doubles RMSE on AWN and NACSE), while Temporal and Feature encoders
provide complementary gains (Table|[6).

In summary, our proposed model significantly advances spatio-temporal interpolation by deliver-
ing a flexible, efficient, and accurate solution specifically designed to handle the complexities of
real-world sensor networks. Its ability to manage missing data, adapt to changing configurations,
and provide probabilistic predictions makes it a useful tool for applications such as environmental
monitoring and traffic analysis. Moreover, as a generative model, it opens avenues for generat-
ing synthetic data, which could be valuable for training other models or conducting simulations in
data-scarce environments.
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A APPENDIX
A.1 LLM USAGE
We used ChatGPT to aid in writing. We used it only to shorten sentences and improve grammar.

A.2 INCOMPLETENESS OF DATASETS

The four datasets we used have some original missing values. Table [§] shows the percentage of
missing values inherent to them.

Table 8: Percentage of missingness in the four datasets

Dataset Percentage of missingness (%)
NACSE 24.76
AWN 53.56
METR-LA 8.11
PEMS-BAY 0.003
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A.3 RANDOM VS REAL FFT INITIALIZATION OF FOURIER COEFFICIENTS

Empirically, random initialization of the seasonal (sine/cosine) coefficients performs substantially
worse than real FFT (rFFT) initialization. Random coefficients correspond to an arbitrary spectrum
that poorly reconstructs the series in the time domain at the start of training, forcing gradient de-
scent to discover both amplitudes and phases from scratch. In contrast, rFFT initialization aligns
the initial parameters with the dominant spectral content of the detrended signal, placing optimiza-
tion near a good basin. As a result, rFFT initialization achieves lower error with far fewer epochs,
whereas random initialization typically requires many more updates to reach a comparable mini-
mum—undermining the intended end-to-end speedup of our Fourier-compressed diffusion pipeline.
For a fair comparison and to preserve the diffusion model’s overall speedup, the Fourier model under
both initialization schemes was trained for the same number of epochs; results are shown in Table[9]

Table 9: FDynaSTI’s Fourier transform random vs real FFT initialization

Dataset FDynaSTI-random | FDynaSTI-rFFT
AWN 0.9889 £ 0.0071 | 0.3706 + 0.0186
NACSE 0.5651 +£0.0621 | 0.2608 £ 0.0597
METR-LA 1.1872 +£0.0444 | 1.0338 £ 0.0338
PEMS-BAY | 1.0481 £0.1094 | 0.7996 + 0.0522

A.4 HYPERPARAMETERS

Tables [I0] [T} [T2] [13] 14} [T3] and [I6]record the hyperparameters used for the corresponding model
and dataset.

Table 10: DynaSTI/FDynaSTI hyperparameters

Hyperparameter NACSE AWN METR-LA | PEMS-BAY
Epoch 2000/800 | 1000/600 | 1000/600 1000/600
Lr 1.0e-4 1.0e-4 1.0e-3 1.0e-4
Bstart 0.0001 0.0001 0.0001 0.0001
Bend 0.1 0.1 0.1 0.1
Diffusion steps 50 50 50 50
Spatial context embedding 128 128 128 256
Spatial encoder layers 4 4 4 4
Temporal & Feature encoder layers 4 4 4 4
FDynaSTI Fourier transform parameters
iterations 200 100 100 100
Lr 0.001 0.01 0.01 0.01
F 7 16 16 16
Table 11: ST-VGP hyperparameters
Hyperparameter NACSE AWN METR-LA PEMS-BAY
Likelihood noise 2.0 2.0 1.0 1.0
Variance 1.0 1.0 0.5 1.0
Lengthscale (0.001,0.1,0,1) | (0.001,0.2,0,2) | (0.01,0.3,0,3) | (0.01,0.2,0,2)
Lr Adam 0.001 0.001 0.001 0.001
Lr Newton 0.1 0.1 0.1 0.1
Epoch 300 500 500 600
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Table 12: PriSTI hyperparameters

Hyperparameter NACSE | AWN | METR-LA | PEMS-BAY

Epoch 2000 1000 1000 1000

Lr 1.0e-4 | 1.0e-4 1.0e-3 1.0e-4

Bstart 0.0001 | 0.0001 0.0001 0.0001
Bend 0.1 0.1 0.1 0.1
Diffusion steps 50 50 50 50
Layers 4 4 4 4
Channels 64 32 64 64
Number of heads 8 8 8 8
Projection dim 16 16 16 16
Time embedding dim 128 128 128 128
Feature embedding dim 16 16 16 16

Table 13: KITS hyperparameters

Hyperparameter | NACSE | AWN | METR-LA | PEMS-BAY
Epoch 300 500 300 300
Lr 0.001 | 0.0001 0.001 0.001
Samples per epoch 5120 5120 5120 5120
Hidden layer dim 64 64 64 64
Table 14: GSLI hyperparameters
Hyperparameter NACSE | AWN | METR-LA | PEMS-BAY
Epoch 100 200 200 300
Lr 0.001 | 0.001 0.001 0.001
Channels 128 64 64 64
Projection dim 128 64 64 64
Time embedding dim 128 128 128 128
Feature embedding dim 16 16 16 16
Number of heads 8 8 8 8

Table 15: IGNNK hyperparameters

Hyperparameter | NACSE | AWN | METR-LA | PEMS-BAY
Epoch 5000 2000 2000 3000
Lr 1.0e-4 1.0e-5 1.0e-4 1.0e-6
Embedding dim 128 256 512 256
Order 1 3 3 3

Table 16: DeepKriging hyperparameters

Hyperparameter | NACSE | AWN | METR-LA | PEMS-BAY

Epoch 500 600 700

700

Lr 1.0e-3 1.0e-3 l.e4

1.0e-4

A.5 QUALITATIVE RESULTS

Figures [2] and [3] visualize interpolation at two NACSE stations held out as virtual targets. The red
curve is ground truth; purple and blue are the posterior means from DynaSTI and FDynaSTI. Shaded
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bands (pink for DynaSTI, cyan for FDynaSTI) denote the £30 envelopes from generated samples,
quantifying predictive uncertainty. Each figure also includes a map of Spatial Encoder attention over
observed stations, indicating which sensors contribute most to the target prediction. Blue represents
more attention-weight and green represents less.

Figures [4] and [3] show results for two stations in the AWN dataset showing the results of DynaSTI
and FDynaSTI for all seven features.

Station name: AURORA STATE AP, length: 30 Station name: AURORA STATE AP, length: 30
for tmax, RMSE DynasTl: 11868 RMSE FDynaSTI: 1.6201 for tmin, RMSE DynaSTI: 0.7678 RMSE FDynasTI: 1.1305

FDynaSTI samples 100 FDynaSTI samples.
— FoynasTI mean — FoynasTi mean

DynaSTi samples. 75 DynaSTI samples © miuieg locut:
— OynasTi mean — DynasTi mean ooz
10 — Ground Truth 50 — Ground Truth

tmax
tmin

[ H 0 s 20 2 30 [ H 10 15 20 25 3
Days Days ! Ry

(a) Maximum temperature (b) Minimum temperature (c) Spatial encoder attention
weights

Figure 2: NACSE dataset, missing station “Aurora State AP”

Station name: BLAZED ALDER, length: 30 Station name: BLAZED ALDER, length: 30
for tmax, RMSE DynasTI: 1.2253 RMSE FDynasTI: 2.7368 for tmin, RMSE DynasTI: 1.5347 RMSE FDynasTI: 1.2956

s — prenem :
0 B :E‘:ZZZ?!Z:SL
- o 5 10 15 20 25 30 o 0 5 10 15 20 25 30
(a) Maximum temperature (b) Minimum temperature (c) Spatial encoder attention

weights

Figure 3: NACSE dataset, missing station “Blazed Alder”
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288
for SECOND_AIR_TEMP_F, RMSE DynaSTi: 2.8967 RMSE FDynaSTI: 2.3282

AR_TEMP_F
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Station name: ['McNary'], length: 21
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Figure 4: AWN dataset, missing station “McNary”
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Figure 5: AWN dataset, missing station “Naches”
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