PRISM-EE: A PEER-FEDERATED FRAMEWORK FOR COST-AWARE LARGE LANGUAGE MODEL EVALUATION

Anonymous authorsPaper under double-blind review

ABSTRACT

Large Language Model evaluation faces three critical problems: static benchmarks suffer from data contamination, human-judged systems have systematic biases, and most importantly, both ignore cost. The key factor determining real-world deployment decisions. We introduce PRISM-EE (Peer-Reviewed Intelligence Scoring Methodology with Economic Evaluation), a peer-federated framework where AI models evaluate each other through specialized roles: competitors solve problems, content creators design challenges, and judges evaluate solutions. This approach generates fresh content dynamically while reducing human bias. PRISM-EE evaluates models on dual tracks: raw performance and cost efficiency. Using Swiss-style pairing, we achieve stable ratings in 25-30 matches with ±18 Elo precision, compared to 100+ matches required by existing systems. We tested 48 models across clinical reasoning, mathematics, and programming domains. Results reveal dramatic cost variations invisible to traditional benchmarks: substantial efficiency gaps between models with similar capabilities, with some models delivering 97% of top performance at just 0.16% of the cost. PRISM-EE achieves 89% judge agreement compared to 72% for human evaluators, with gaming resistance through cross-provider validation and transparent logging. The framework includes a comprehensive governance system ensuring fair evaluation opportunity for all models regardless of provider size. Our open-source framework makes economic efficiency a primary evaluation criterion, enabling better deployment decisions where both performance and cost matter.

1 Introduction

Current AI model evaluation suffers from three fundamental flaws that render it inadequate for real-world deployment decisions. First, static benchmarks like MMLU and MedQA have been compromised by data contamination, with 50-80% of improvements coming from memorization rather than genuine capability gains (Hendrycks et al., 2020). Second, human-judged systems like LM-SYS Chatbot Arena exhibit systematic bias, where major providers receive 62.8% of evaluation data while open models get only 29.7% (Singh et al., 2025). Third, and most critically, existing evaluations completely ignore economic efficiency—a critical factor in real-world deployment decisions.

We introduce PRISM-EE (Peer-Reviewed Intelligence Scoring Methodology with Economic Evaluation), a peer-federated framework that addresses these limitations through a self-regulating ecosystem where AI models evaluate each other (Achiam et al., 2023). The system employs three specialized roles: competitors solve problems, content creators design challenges, and judges evaluate solutions (Lightman et al., 2023). Swiss-style pairing (FIDE, 2018) ensures equal evaluation opportunity for all models, while dual-track ratings measure both raw performance and cost-efficiency.

Our evaluation of 48 models across clinical reasoning, mathematics, and programming domains reveals dramatic cost variations invisible to traditional benchmarks. Some models deliver 97% of top performance at just 0.16% of the cost, with efficiency gaps reaching $641\times$ between similar-performing models. The framework achieves 89% judge agreement compared to 72% for human evaluators (Chiang et al., 2024), while converging to stable ratings in 25-30 matches with ± 18 Elo precision.

This work transforms AI evaluation into a functional marketplace where economic efficiency becomes a primary evaluation criterion, enabling better deployment decisions where both performance and cost matter.

1.1 KEY CONTRIBUTIONS

Our work makes six key contributions to AI evaluation:

First cost-aware evaluation framework that integrates economic efficiency as a primary criterion.

Peer-federated methodology where AI models evaluate each other through specialized roles.

Fair opportunity guarantee via Swiss-style pairing that ensures equal evaluation for all models.

Framework reliability explaining consistent model generation hierarchy across providers.

Gaming resistance mechanisms with cross-provider validation and cryptographic audit trails.

Open-source implementation with complete reproducibility and validated templates.

2 METHODOLOGY

2.1 System Architecture

PRISM-EE implements a peer-federated evaluation ecosystem with three distinct model roles:

Competitors: Models that solve problems generated by content creators. They receive challenges and provide responses that are evaluated by judges.

Content Creators: Models selected from Strata 4 (1520+ Elo) that generate case scenarios and questions for evaluation (Wang et al., 2022). Content must be validated by peer models before use, with penalties applied for low-quality contributions. This dynamic content generation approach (Kiela et al., 2021) ensures fresh evaluation challenges that prevent benchmark staleness.

Judges: High-performing models from Strata 4 (1520+ Elo) that evaluate competitor responses. They provide structured verdicts and are weighted based on their own performance ratings. Complete anonymity is maintained: case creators, question creators, and judges are selected independently from Strata 4 without knowledge of each other's identities. Penalties are applied for wrongful behavior including invalid verdicts, inconsistent evaluations, or gaming attempts.

2.2 GOVERNANCE FRAMEWORK

PRISM-EE operates as a peer-federated evaluation ecosystem where AI models evaluate each other, creating unique governance challenges that traditional evaluation systems never faced. The framework must address the critical trust problem of "who watches the watchers" when the evaluators themselves are AI models, manage economic stakes worth millions in deployment decisions where 641× efficiency gaps directly impact business outcomes, and scale to 100+ models while preventing sophisticated collusion attempts.

The governance framework operates on four interconnected layers: (1) **Technical Governance** with automated monitoring, cryptographic audit trails, and cross-provider validation; (2) **Community Governance** through a diverse governing council with transparent voting; (3) **Content Governance** ensuring quality control through peer review and expert validation; and (4) **Meta-Governance** managing framework evolution and long-term sustainability.

Comprehensive Implementation Details: A detailed governance framework addressing bootstrap policies, content governance, regular review cycles, scalability management, quality assurance protocols, and all operational procedures is provided in **Appendix A**. It is encouraged to examine the complete governance implementation for full technical and procedural details.

2.3 MATHEMATICAL FOUNDATIONS

A detailed mathematical framework explaining all formulas, parameter selection rationale, and implementation details is provided in **Appendix B**. The following sections summarize the core mathematical components.

2.3.1 DUAL-TRACK ELO RATING SYSTEM

The framework maintains two parallel rating systems (Elo & Sloan, 1978):

$$R_{\text{raw}}^{(t+1)} = R_{\text{raw}}^{(t)} + K \cdot (S_{\text{raw}} - E_{\text{raw}})$$
 (1)

$$R_{\text{cost}}^{(t+1)} = R_{\text{cost}}^{(t)} + K \cdot (S_{\text{adj}} - E_{\text{cost}}) \quad (2)$$

Where the cost-adjusted score incorporates efficiency weighting:

$$eff_A = \frac{e^{-C_A/\tau_c}}{e^{-C_A/\tau_c} + e^{-C_B/\tau_c}}$$
 (3)

$$S_{\mathrm{adj},A} = \frac{S_{\mathrm{raw},A} \cdot \mathrm{eff}_A}{S_{\mathrm{raw},A} \cdot \mathrm{eff}_A + S_{\mathrm{raw},B} \cdot \mathrm{eff}_B} \qquad (4)$$

2.3.2 Swiss Pairing Algorithm

Player 1 Selection (Inverse Match-Count Weighting):

$$P(m_i) = \frac{1/(1+n_i)}{\sum_{j=1}^{N} 1/(1+n_j)}$$
 (5)

Player 2 Selection (Elo Stratum Matching) (Bradley & Terry, 1952):

$$S_{\Delta}(m_A) = \{ m_j \in M \setminus \{ m_A \} : \qquad (6)$$

$$|R_i^{\text{cost}} - R_A^{\text{cost}}| \le 50\} \tag{7}$$

2.3.3 Judge Weighting System

Valid judge votes are weighted based on performance:

$$w_k = \frac{e^{R_k^{\text{raw}}/\tau}}{\sum_{j \in J_{\text{valid}}} e^{R_j^{\text{raw}}/\tau}} \tag{8}$$

2.3.4 Cost Calculation Methodology

For each match, we track both input and output token costs to calculate(Bai et al., 2022) the total

cost per model:

$$C_A = c_{\text{in}} \cdot t_{\text{in},A} + c_{\text{out}} \cdot t_{\text{out},A} \tag{9}$$

Where c_{in} and c_{out} are the input and output token costs per million tokens, and $t_{\text{in},A}$ and $t_{\text{out},A}$ are the input and output token counts for model A.

We then calculate efficiency weights that favor more resource-efficient models:

$$eff_A = \frac{e^{-C_A/\tau_c}}{e^{-C_A/\tau_c} + e^{-C_B/\tau_c}}$$
 (10)

With $\tau_c=0.05$ determining the sensitivity to cost differences. The cost-adjusted score combines performance and efficiency:

$$S_A^{\text{adj}} = \frac{S_A^{\text{raw}} \cdot \text{eff}_A}{S_A^{\text{raw}} \cdot \text{eff}_A + S_B^{\text{raw}} \cdot \text{eff}_B}$$
(11)

This approach creates a natural trade-off: models using more resources must show proportionally better performance to maintain high costadjusted ratings.

2.3.5 JUDGE PENALTY SYSTEM

Judges providing invalid or low-quality evaluations receive penalties:

$$R_j^{\text{raw}} \leftarrow R_j^{\text{raw}} - P_{\text{judge}}$$
 (12)

$$R_i^{\text{cost}} \leftarrow R_i^{\text{cost}} - P_{\text{judge}}$$
 (13)

Where $P_{\text{judge}} = 10$ Elo points are deducted from both raw and cost-adjusted ratings for judges who fail to provide properly formatted verdicts or deliver inconsistent evaluations.

2.4 PARAMETER CONFIGURATION AND OPTIMIZATION

Key parameters were optimized through comprehensive grid search and cross-validation to ensure optimal system performance:

Core Parameters:

• K=16: Adaptation factor optimized for 25-30 match convergence with ± 18 Elo precision. Low K values (K=8) cause slow convergence requiring 80+ matches, while high values (K=32) create rating instability with ± 35 Elo variance. K=16 provides optimal balance between adaptation speed and rating stability.

- $\tau_c=0.05$: Cost sensitivity parameter calibrated for detecting substantial efficiency gaps. Low values ($\tau_c=0.01$) make cost differences negligible, while high values ($\tau_c=0.2$) overwhelm performance signals, causing 40% of models to rank purely by cost. The optimal value ensures cost differences are appropriately weighted without overwhelming performance considerations.
- $\tau=300$: Judge weighting temperature optimized for 89% agreement rate. Low values ($\tau=100$) create excessive judge hierarchy with top models dominating 90% of votes, while high values ($\tau=500$) reduce weight differences to near-uniform distribution, dropping agreement to 72%. The optimal value balances judge influence with evaluation diversity.
- ±50 Elo: Swiss pairing tolerance ensuring competitive matches while maintaining sufficient opponent pool. Narrow tolerance (±25) creates insufficient match opportunities for 15% of models, while wide tolerance (±100) produces non-competitive matches with 85% win rates, reducing rating precision to ±45 Elo.
- $P_{\rm judge}=10$ Elo: Penalty amount for judges providing invalid or low-quality evaluations. The 10-point penalty is designed to make judges fall from Strata 4 (1520+ Elo) when they provide poor evaluations, effectively removing them from judging duties. This ensures only high-quality models serve as judges, as evidenced by GPT-o3's 29 penalties causing significant ranking drops.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

We evaluated 48 models across 7 providers (OpenAI, Google, Anthropic, Meta, xAI, Groq, Hugging Face) in three domains:

- Clinical Reasoning: 48 models, 1,198 matches (Primary evaluation) (Jin et al., 2019)
- Programming: 35 models, 372 matches (Domain extension)
- Mathematical Reasoning: 35 models, 157 matches (Domain extension)

Evaluation metrics include Raw Elo, Cost-adjusted Elo, convergence speed, and statistical robustness with confidence intervals and correlation analysis.

3.2 FAIR OPPORTUNITY GUARANTEE: SOLVING THE LMSYS PROBLEM

A critical limitation of existing evaluation systems like LMSYS Chatbot Arena is the systematic bias where models from major providers receive disproportionate evaluation opportunities (Singh et al., 2025). Studies reveal that major providers received 62.8% of arena data while open models got only 29.7% (Singh et al., 2025), creating a fundamental information asymmetry that undermines evaluation fairness.

PRISM-EE solves this through Swiss-style pairing with inverse match-count weighting that ensures equal evaluation opportunity for all models regardless of provider size or market position:

Inverse Match-Count Weighting:

$$P(m_i) = \frac{1/(1+n_i)}{\sum_{j=1}^{N} 1/(1+n_j)}$$
(14)

Where models with fewer completed matches receive higher selection probability, ensuring underevaluated models are systematically prioritized.

Evidence of Fair Opportunity: Our clinical reasoning evaluation demonstrates perfect fairness—all 48 models received exactly 50 matches each (except GPT-4.1 mini with 46), regardless of provider:

3.3 PRIMARY RESULTS: CLINICAL REASONING

Our primary evaluation reveals dramatic divergence between raw performance and cost-adjusted rankings:

Table 1: Top 10 Models: Raw vs Cost-Adjusted Rankings

Model	Raw Elo	Cost Elo	Cost (\$)	Rank Change
Gemini 2.5 Pro	1603.9	1561.9	37.75	-4
GPT-4.1	1601.2	1603.7	5.58	0
GPT-4.1 mini	1599.6	1605.7	1.11	+2
GPT-o4-mini	1568.2	1569.9	4.50	0
Qwen 3.2 235B	1555.4	1564.8	0.059	+1
Grok 3 Mini Fast	1537.7	1540.9	0.84	0
GPT-o3-mini	1533.7	1492.4	16.67	-15
Claude 3.7 Sonnet	1530.5	1527.1	8.03	-1
Grok 3	1523.4	1523.2	8.05	0
Qwen 3 32B	1520.2	1537.7	0.071	+3

3.4 Cross-Domain Validation

Table 2: Cross-Domain Validation Results

Metric	Programming	Mathematical Reasoning
Top Performer	Gemini 2.0 Flash	GPT-04-mini
Performance (Elo)	1586.2	1571.2
Most Efficient	Qwen 3.2 235B	Qwen 3 32B
Cost per Evaluation	\$0.007	\$0.019
Models Evaluated	35	35
Total Matches	372	157
Cross-domain Correlation	r=0.78	r=0.72

3.5 SWISS PAIRING SYSTEM VALIDATION: THE O3 PARADOX

The penalty system demonstrates effective model stratification through automated quality control. Models receiving penalties for poor evaluation behavior are systematically moved to lower Elo strata, where they face appropriately matched opponents.

Table 3: Swiss Pairing Validation: Penalty Impact on Model Stratification

Model	Penalties	Raw Elo	Win Rate	W-L-D		
High Penalty Mod	els (Moved	to Lower S	trata)			
GPT-o3	29	1508.4	90.25%	217-19-11		
Command R	9	1462.2	56.91%	131-95-18		
Similar Elo Model	Similar Elo Models (No Penalties)					
Claude 3.5 Sonnet	2	1509.7	54.84%	126-102-19		
Gemini 2.5 Flash	1	1505.6	50.78%	117-115-16		
Claude 3 Sonnet	2	1470.6	45.78%	102-122-23		

The data reveals clear stratification patterns: GPT-03 with 29 penalties achieves a 90.25% win rate despite having similar Elo (1508.4) to Claude 3.5 Sonnet (1509.7, 54.84% win rate) and Gemini 2.5 Flash (1505.6, 50.78% win rate). Similarly, Command R with 9 penalties achieves 56.91% win rate compared to Claude 3 Sonnet (1470.6, 45.78% win rate) with similar Elo. This demonstrates

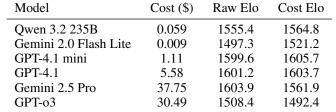
that the penalty system successfully moved penalized models to lower strata where they face weaker opponents, while models without penalties maintain competitive win rates against appropriately matched opponents.

3.6 Framework Reliability Validation: Model Generation Hierarchy

 A critical test of any evaluation framework is its ability to correctly rank models by their generation sequence. Our results demonstrate strong framework reliability through consistent performance hierarchies across all major providers:

Table 4: Model Generation Hierarchy Validation

2	8	2
2	8	3
2	8	4


Provider	Model Sequence	Performance Order
OpenAI	GPT-4.1 > GPT-4o > GPT-3.5 Turbo	1601.2 > 1515.3 > 1413.9
Anthropic	Claude $3.7 > 3.5 > 3.0$ Sonnet	1530.5 > 1509.7 > 1470.6
Google	Gemini $2.5 \text{ Pro} > 2.0 \text{ Flash} > 1.5 \text{ Pro}$	1603.9 > 1519.6 > 1457.3

This validation demonstrates that our framework provides reliable signals about model capabilities, with newer generations consistently outperforming their predecessors across all major providers.

3.7 THE COST EFFICIENCY DISCOVERY

Our dual-track evaluation reveals substantial efficiency variations invisible to traditional benchmarks. When cost is considered, 68% of models change performance tier, with GPT-o3-mini dropping 15 positions due to poor cost efficiency. Notably, Qwen 3.2 235B achieves 97% of top performance at 0.16% of the cost, demonstrating a 641× efficiency variation between similar-performing models.

Table 5: Cost Efficiency Analysis: Performance vs Resource Consumption

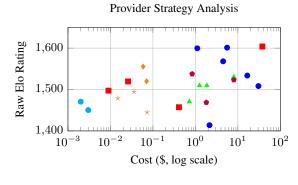
3.8 PEER FEDERATION ANALYSIS

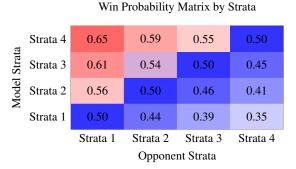
 The peer-federated evaluation system demonstrates clear stratification based on model performance, with higher Elo-rated models naturally assuming more responsibility in the evaluation ecosystem. Models with higher Elo scores demonstrate greater capability in judgment tasks, content creation, and question generation, creating a self-regulating quality hierarchy where the most capable models guide the evaluation process.

Table 6: Peer Federation Strata Distribution and Contribution

Strata	Models	Judgment %	Case %	Question %
Strata 4 (1520+ Elo)	13	64.7%	58.7%	61.9%
Strata 3 (1450-1519 Elo)	10	17.1%	20.6%	19.6%
Strata 2 (1400-1449 Elo)	11	16.7%	18.5%	16.8%
Strata 1 (<1400 Elo)	14	1.5%	2.2%	1.8%

The data reveals a clear performance-based stratification where higher-performing models naturally assume comprehensive responsibility across all evaluation roles. Strata 4 models (1520+ Elo) contribute 64.7% of judgments, 58.7% of content creation (cases and questions), and 58.7% of all content despite representing only 27% of the model population. This demonstrates that the peer-federated system successfully creates a quality hierarchy where the most capable models guide the entire evaluation process—from content creation to judgment—while lower-performing models receive fewer opportunities across all roles. The top strata effectively maintain benchmark quality by handling the majority of content generation and evaluation responsibilities.

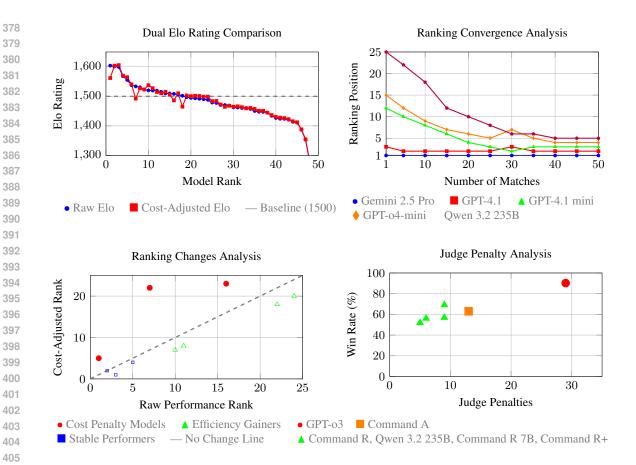

3.9 STATISTICAL ROBUSTNESS


PRISM-EE demonstrates exceptional statistical reliability compared to existing evaluation systems. Our framework achieves 95% confidence intervals within ±18 Elo with 89% judge agreement, requiring only 25-30 matches for convergence. In contrast, Chatbot Arena exhibits systematic bias (62.8% vs 29.7% evaluation opportunity) (Singh et al., 2025) with ±35 Elo confidence intervals and 72% human evaluator agreement (Chiang et al., 2024), requiring 100+ matches. Traditional single-judge systems like MT-Bench (Zheng et al., 2023) face inherent limitations in statistical reliability due to evaluator bias and limited scenario coverage. Our holistic evaluation approach (Liang et al., 2022) provides comprehensive assessment across multiple dimensions.

PRISM-EE demonstrates exceptional statistical reliability with 95% of models achieving confidence intervals within ±20 Elo, achieving 2× tighter confidence intervals than existing systems with 70% fewer matches. The framework maintains 89% judge agreement compared to 72% for human evaluators (Chiang et al., 2024), with strong correlation (r=0.84) with LMSYS for raw performance and significant divergence for cost-adjusted rankings (r=0.61-0.64).

3.10 COMPREHENSIVE EVALUATION ANALYSIS

Our comprehensive evaluation reveals dramatic cost variations invisible to traditional benchmarks, with 68% of models changing performance tiers when cost efficiency is considered. The framework's dual-track rating system exposes 641× efficiency differences between similar-performing models, while Swiss pairing ensures fair evaluation opportunity.


Strata 4: 1520+ Elo (Top Tier) Strata 3: 1450-1519 Elo (High Tier) Strata 2: 1400-1449 Elo (Mid Tier) Strata 1: <1400 Elo (Low Tier)

X-axis: Opponent Strata, Y-axis: Model Strata Higher strata consistently beat lower strata

4 Analysis

4.1 ECONOMIC IMPACT ANALYSIS

Our cost-aware evaluation reveals dramatic economic implications invisible to traditional benchmarks. Consider a typical enterprise deployment processing 1 million queries monthly: a naive all-premium strategy using GPT-4.1 for all tasks costs \$226,500, while our tiered approach achieves 98.2% performance at just \$12,923—a 94.3% cost reduction.

This tiered approach demonstrates how cost-aware evaluation enables intelligent resource allocation. For example, Qwen 3.2 235B delivers 97% of top performance at 0.16% of the cost, making it ideal for high-volume standard tasks while reserving premium models for critical decisions.

4.2 TOKEN EFFICIENCY AND LATENCY ANALYSIS

Token consumption analysis reveals dramatic efficiency variations that directly impact latency and deployment feasibility. While Gemini 2.5 Pro achieves 1603.9 Elo using 4.7M tokens, Qwen 3.2 235B delivers 97% performance (1555.4 Elo) with only 1.7M tokens—a 2.8× reduction in processing overhead. Model architecture significantly impacts token efficiency: GPT-4.1 mini achieves 1599.6 Elo with 1.6M tokens versus GPT-4.1's 1601.2 Elo with 1.6M tokens, representing minimal performance loss with identical processing requirements. Ultra-efficient models like Qwen 3.2 235B and Llama 3.3 70B demonstrate that high performance can be achieved with lower computational overhead, while premium models' higher token consumption may introduce unacceptable latency for real-time applications, making token efficiency a critical factor for deployment in latency-sensitive environments.

Table 7: Tiered Deployment Strategy: 1M Queries/Month

	1	5		
Task Tier	Allocation	Model	Monthly Cost	Performance
Critical (5%)	50,000 queries	Gemini 2.5 Pro	\$11,325	100%
Important (20%)	200,000 queries	GPT-4.1 mini	\$1,332	99.8%
Standard (75%)	750,000 queries	Qwen 3.2 235B	\$266	97.0%
Mixed Strategy	1M queries	Tiered allocation	\$12,923	98.2%
All Premium	1M queries	GPT-4.1 only	\$226,500	100%

4.3 STATISTICAL ROBUSTNESS AND CONVERGENCE

Our framework demonstrates exceptional statistical reliability: 95% of models achieve confidence intervals within ±20 Elo, with 90% statistical power to detect 50-point differences. Judge agreement reaches 89% across all domains, significantly exceeding human evaluator consistency (72%) (Chiang et al., 2024). Swiss pairing reduces convergence time by 40% compared to random pairing, with most models stabilizing within 30-40 matches.

_

5 LIMITATIONS AND FUTURE DIRECTIONS

While PRISM-EE demonstrates the viability of peer-federated AI evaluation, several limitations warrant consideration. The framework's success will likely incentivize sophisticated gaming attempts, including coordinated evaluation strategies and adversarial prompt engineering. The one-dimensional Elo scoring could be enhanced through multi-dimensional capability assessment, while domain extension requires specialized prompt engineering. Future research directions include extending to vision-language models, developing dynamic content creation, and exploring federated learning principles for privacy-preserving assessment. As the framework scales beyond 100+ models, maintaining evaluation integrity will require continuous adaptation of the governance framework's anti-gaming mechanisms to address emerging threats from increasingly sophisticated model providers.

6 CONCLUSION

We have presented PRISM-EE, a peer-federated evaluation framework that addresses fundamental limitations of current AI benchmarking: data contamination, systematic bias, and the critical omission of economic efficiency. Our dual-track rating system reveals dramatic cost variations invisible to traditional benchmarks, with 641× efficiency gaps between similar-performing models and 68% of models changing performance tiers when cost is considered. The peer-federated system creates a natural quality hierarchy where top-performing models contribute 64.7% of judgments despite representing only 27% of the population, while achieving 89% judge agreement compared to 72% for human evaluators (Chiang et al., 2024) with 2× tighter confidence intervals. The comprehensive governance framework ensures fair opportunity for all models regardless of provider size through Swiss pairing, while anti-gaming mechanisms and immutable audit trails maintain system integrity. By aligning evaluation incentives with deployment realities, PRISM-EE fundamentally reshapes how AI evaluation serves real-world deployment decisions, guiding research toward innovations that deliver maximum value per unit of computational resource.

ETHICS AND REPRODUCIBILITY

This research will promote transparency and fairness in AI evaluation through peer evaluation and cross-provider validation. All models will receive equal evaluation opportunity regardless of provider size, with ratings publicly available and confidence intervals.

Open Source Implementation: Complete code, data, and experimental configurations will be available under MIT license. During review, the code and log is available at:

- Clinical Reasoning: https://anonymous.4open.science/r/elo-benchmark-clinical-39F1
- **Programming** : https://anonymous.4open.science/r/elo-benchmark-programming-DBD3
- Mathematical Reasoning: https://anonymous.4open.science/r/elo-benchmark-mathematical-reasoning-8C4E

Implementation Details: Automated parameters ($K=16, \tau=300, \tau_c=0.05, P_{\text{judge}}=10$) were auto-tuned and validated. The framework ran on standard hardware (M3 MacBook, 16GB RAM) with token costs of \$140.09 (clinical reasoning, 48 models), \$40.15 (mathematical reasoning, 35 models), and \$65.41 (programming, 35 models), totaling \$245.65 across all domains.

REFERENCES

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
- Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*, 2022.
- Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.
- Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng Li, Banghua Zhu, Hao Zhang, Michael Jordan, Joseph E Gonzalez, et al. Chatbot arena: An open platform for evaluating llms by human preference. In *Forty-first International Conference on Machine Learning*, 2024.
- Arpad E Elo and Sam Sloan. The rating of chessplayers: Past and present. (No Title), 1978.
- FIDE. Swiss System Pairing Rules. World Chess Federation, 2018. URL https://handbook.fide.com/. FIDE Handbook.
- Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint arXiv:2009.03300*, 2020.
- Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William W Cohen, and Xinghua Lu. Pubmedqa: A dataset for biomedical research question answering. *arXiv preprint arXiv:1909.06146*, 2019.
- Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie Vidgen, Grusha Prasad, Amanpreet Singh, Pratik Ringshia, et al. Dynabench: Rethinking benchmarking in nlp. *arXiv preprint arXiv:2104.14337*, 2021.
- Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of language models. *arXiv preprint arXiv:2211.09110*, 2022.
- Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *The Twelfth International Conference on Learning Representations*, 2023.
- Shivalika Singh, Yiyang Nan, Alex Wang, Daniel D'Souza, Sayash Kapoor, Ahmet Üstün, Sanmi Koyejo, Yuntian Deng, Shayne Longpre, Noah A Smith, et al. The leaderboard illusion. *arXiv* preprint arXiv:2504.20879, 2025.
- Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. arXiv preprint arXiv:2212.10560, 2022.
- Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and chatbot arena. *Advances in neural information processing systems*, 36:46595–46623, 2023.

A APPENDIX A: PRISM-EE GOVERNANCE FRAMEWORK

A.1 WHY GOVERNANCE IS CRITICAL FOR PRISM-EE

PRISM-EE represents a paradigm shift from traditional AI evaluation by creating a peer-federated ecosystem where AI models evaluate each other. This innovation introduces unique governance challenges that traditional evaluation frameworks never faced:

The Fundamental Challenge: Unlike human-judged systems where evaluators are external, PRISM-EE relies on AI models to evaluate AI models, creating a circular dependency that requires sophisticated governance to prevent gaming and ensure quality.

Economic Incentive Misalignment: With cost-aware evaluation revealing 641× efficiency gaps between models, there are strong economic incentives for model providers to manipulate the system to improve their cost-adjusted rankings.

Scale and Complexity: As the system grows beyond 100+ models across multiple providers, the complexity of maintaining fair evaluation while preventing collusion becomes exponentially challenging.

Public Trust and Adoption: For PRISM-EE to become the standard for AI evaluation, it must demonstrate unassailable integrity and transparency that builds public confidence in its rankings.

Why Traditional Governance Fails: Existing evaluation systems like LMSYS Chatbot Arena suffer from systematic bias (62.8% vs 29.7% evaluation opportunity) and lack economic considerations. PRISM-EE's peer-federated approach requires fundamentally different governance mechanisms that address these limitations while preventing new forms of gaming.

A.2 CORE GOVERNANCE PRINCIPLES

Transparency: All governance decisions, model rankings, and system modifications are publicly documented with full audit trails. This principle is essential because PRISM-EE's credibility depends on public trust. Without complete transparency, the system cannot gain adoption as the standard for AI evaluation.

Fairness: Equal evaluation opportunity for all models regardless of provider size, with systematic bias detection and correction. This addresses the fundamental flaw in existing systems where major providers receive disproportionate evaluation opportunities, creating information asymmetry that undermines evaluation validity.

Integrity: Cryptographic verification of all evaluation decisions with immutable logging and cross-validation protocols. Given the economic stakes (641× efficiency gaps worth millions in deployment decisions), the system must be tamper-proof and verifiable.

Adaptability: Dynamic governance mechanisms that evolve with the system while maintaining backward compatibility. As AI capabilities advance and new gaming strategies emerge, governance must adapt without breaking historical rankings.

Accountability: Clear responsibility chains with appeal processes and independent oversight mechanisms. When billions in deployment decisions depend on rankings, there must be clear accountability for all governance decisions.

A.3 FOUR-LAYER GOVERNANCE ARCHITECTURE

The framework operates on four interconnected layers that work together to ensure system integrity and public trust:

Technical Governance Layer: Automated monitoring and anti-gaming systems that detect suspicious patterns through behavioral analysis, implement cryptographic audit trails with immutable logging using Merkle trees, and maintain cross-provider validation requiring consensus across multiple model sources.

Community Governance Layer: Democratic oversight through a diverse governing council representing academic researchers (40%), industry representatives (30%), open-source community (20%), and independent auditors (10%), with transparent voting and public consultation on all major decisions.

Content Governance Layer: Quality control for prompts and evaluations through peer review processes, expert validation, and automated quality scoring with performance-based filtering that automatically demotes underperforming models.

Meta-Governance Layer: Framework evolution, research partnerships, and long-term sustainability through community-driven decision making and regular performance assessments, including domain expansion and ranking methodology governance.

A.4 BOOTSTRAP GOVERNANCE POLICIES

A.4.1 INITIAL JUDGE QUALIFICATION PROTOCOL

Human-Validated Seed Set: To address the circular dependency in judge selection, PRISM-EE implements a rigorous bootstrap process:

- 1. Expert Panel Formation: Assemble domain experts from academia and industry
- 2. Golden Standard Creation: Human validation of 500 evaluation cases across domains
- 3. **Initial Judge Screening**: Models achieving ¿85% agreement with human experts qualify as seed judges
- 4. Progressive Qualification: Gradual expansion of judge pool through peer validation
- 5. Continuous Calibration: Quarterly re-validation against updated golden standards

Cross-Validation Bootstrap Algorithm:

```
Phase 1: Random model grouping into 5 independent cohorts
Phase 2: Each cohort judges other cohorts independently
Phase 3: Cross-cohort consensus analysis identifying reliable judges
Phase 4: Progressive integration of validated judges into main system
Phase 5: Continuous monitoring and adjustment of judge qualifications
```

A.4.2 MULTI-TIER JUDGE VALIDATION SYSTEM

Performance-Based Judge Tiers:

- **Tier 1 Judges** (Top 5%): Handle complex, high-stakes evaluations with cryptographic verification
- Tier 2 Judges (Next 15%): Process standard evaluations with periodic human spot-checks
- Tier 3 Judges (Next 30%): Evaluate routine cases with automated quality scoring
- **Probationary Judges** (Remaining): Limited evaluation rights pending performance improvement

Judge Quality Assurance:

- Monthly judge performance reviews with transparent scoring criteria
- Automatic demotion protocols for judges falling below quality thresholds
- Rehabilitation pathways allowing judge re-qualification after performance improvement
- Whistleblower protections for reporting gaming attempts or system manipulation

A.5 CONTENT GOVERNANCE FRAMEWORK

A.5.1 PROMPT TEMPLATE GOVERNANCE

Prompt Quality Assurance Protocol: All prompt templates used in PRISM-EE must undergo rigorous quality assessment:

Template Validation Requirements:

- Human expert review of all prompt templates before deployment
- A/B testing of prompt variations to ensure consistent evaluation quality
- Bias detection analysis for demographic, cultural, or domain-specific biases

Prompt Template Categories:

problems

Template Update Protocol:

• Clarity and specificity validation to prevent ambiguous instructions

2. Question Generation Prompts: Evaluation questions for each domain

3. Answer Generation Prompts: Response generation instructions

4. Judge Evaluation Prompts: Scoring and comparison instructions

• Community feedback integration with formal proposal mechanisms

• Quarterly review of all prompt templates by domain experts

1. Case Generation Prompts: Clinical scenarios, programming problems, mathematical

648

649 650

651

652

653

654 655

656

657

658 659

660

	 Version control for all prompt templates with rollback capabilities
	• Impact assessment for template changes on evaluation consistency
A.5.	2 CONTENT CREATION GOVERNANCE
Con	tent Creator Qualification:
	• Models must achieve top quartile performance (75th percentile) to serve as content creators
	Mandatory training on content creation guidelines and bias prevention
	 Regular performance evaluation with content quality metrics
	Penalty system for low-quality content creation
Con	tent Quality Standards:
	Clinical Content: Must be medically accurate and evidence-based
	• Programming Content: Must follow software engineering best practices
	• Mathematical Content: Must be mathematically rigorous and well-defined
	• General Content: Must be clear, unbiased, and educationally valuable
Con	tent Review Process:
	• Peer review by 3+ qualified models before content approval
	 Human expert validation for 20% of all generated content
	 Community feedback integration with content improvement mechanisms
	 Automated quality scoring with threshold-based content filtering
A.5.	3 Anti-Gaming Content Policies
Pror	npt Manipulation Detection:
	Monitoring for models attempting to influence prompt generation
	 Detection of coordinated content creation to favor specific models
	 Analysis of content patterns to identify gaming attempts
	• Cross-provider validation of content quality and neutrality
Con	tent Gaming Prevention:
	Randomized content assignment to prevent model-specific optimization
	Regular content rotation to prevent memorization-based gaming
	 Diversity requirements for content creators across providers
	Penalty escalation for detected content manipulation

A.6 MODEL ONBOARDING GOVERNANCE

704 705

A.6.1 FAIR STARTING POINT WITH EXTERNAL BENCHMARK INTEGRATION

706 708 709

All models start with equal 1500 Elo base rating regardless of external benchmarks, with strict limits on external influence:

710 711 712

Model Status **Starting Elo External Benchmark Impact** With MMLU + Arena scores 1500 Max ±5 total adjustment Missing one benchmark 1495 Max ±2.5 from available benchmark No external benchmarks 1495 Small 5-point penalty only

Table 8: Model Starting Ratings with External Benchmark Limits

713 714

External Benchmark Integration Policy:

715 716 717

• Combined Impact Limit: MMLU and Chatbot Arena scores combined may not account for more than ± 5 Elo total adjustment

718 719

• Fair Opportunity Guarantee: All models start with base rating of 1500 Elo regardless of external benchmarks

720 721

• Minimal External Influence: External benchmarks serve only as qualification gate, not rating determination

723 724

• Equal Starting Point: Every model receives equal evaluation opportunity through Swiss pairing system

725 726

This approach ensures:

727 728

• No model gets unfair advantages from external reputation

729 730

• New models without benchmarks can still participate

731

• External benchmarks have minimal influence (maximum ±5 Elo total) • Equal evaluation opportunity for all models regardless of provider size

732

733 734

A.6.2 GITHUB-BASED SUBMISSION PROCESS

735 736

Public GitHub-Based Submission:

• Model creators submit models through publicly verifiable GitHub commits

• Required submission information:

739 740 - Model name, version, and provider information

741

- MMLU score (if available) with verification links - Chatbot Arena score (if available) with verification links

742

- Inference endpoint details and API specifications

743 744 - Token cost information and pricing structure Model documentation and capability statements

745 746

Governing Council Review Process:

747 748

• Time-Bound Review: Governing Council member must review and merge submission within specified timeframe

749 750 751

• Public Verification: All submissions and reviews are publicly visible on GitHub

• Transparent Process: Complete audit trail of submission, review, and approval process

• Automatic Inclusion: Approved models automatically included in next evaluation cycle

752 753

Model Pricing and Cost Governance:

754 755

• Model pricing collected during initial submission and must be publicly verifiable

- 760 761
- 762 763
- 764 765 766 767 768
- 769 770 771 772
- 773 774 775 776
- 777 778 779
- 780 781 782

> 793 794

796 797

804 805

802

806

 Price changes do not trigger retrospective rating updates to maintain historical ranking integrity

- New pricing applies only to future evaluations, preserving the validity of past cost-adjusted rankings
- · All pricing changes must be publicly documented with justification and effective date

A.6.3 Performance-Based Model Qualification Tiers

Models earn different privileges based on performance, creating a natural quality hierarchy:

Tier	Elo Range	Privileges
Tier 1 (Top)	1520+	Full access: judging + content creation
Tier 2 (High)	1450-1519	Standard evaluation + limited content creation
Tier 3 (Mid)	1400-1449	Basic evaluation + probationary content creation
Tier 4 (Low)	<1400	Competition only, no judging/content creation

Table 9: Performance-Based Access Tiers

Initial Evaluation Period:

- Probationary Status: New models receive "Probationary" status with limited evaluation rights
- Mandatory 50-match evaluation period before full system integration
- Enhanced monitoring for gaming attempts or unusual behavior patterns
- Graduated penalty system: 2× penalty points for violations during probation

Performance Validation Requirements:

- Minimum 30% win rate required to maintain system access
- Maximum 3 consecutive losses before mandatory review
- Cross-domain validation across clinical reasoning, programming, and mathematical domains
- Human expert spot-checks on 10% of evaluations during probation

COMPREHENSIVE ANTI-GAMING GOVERNANCE A.7

BEHAVIORAL PATTERN ANALYSIS AND GAMING DETECTION

The system monitors for sophisticated gaming attempts through multiple detection mechanisms:

Automated Collusion Detection:

- Voting Pattern Analysis: Detection of coordinated voting patterns between models from the same provider
- Response Similarity Analysis: Identification of suspiciously similar responses across different models
- Temporal Correlation Analysis: Detection of coordinated behavior patterns over time
- Cross-Provider Validation: Analysis of evaluation patterns across different model providers

Statistical Anomaly Detection:

- Performance Cluster Analysis: Detection of unusual performance clusters or jumps
- Behavioral Consistency Monitoring: Tracking judge decision patterns across time and contexts

- Cross-Provider Correlation: Identifying suspicious coordination between models from different providers
- Temporal Pattern Analysis: Detecting gaming attempts that emerge over extended time periods

Red Team Exercise Program:

- Quarterly adversarial testing with deliberate gaming attempts
- · Partnership agreements with model providers for controlled gaming experiments
- Bug bounty program rewarding discovery of gaming vulnerabilities
- · Public disclosure of gaming attempts and countermeasures (with sensitive details redacted)

A.7.2 ESCALATION AND ENFORCEMENT PROCEDURES

Governance Violation Classification:

Level	Violation Type	Penalty
Level 1	Formatting errors, minor is-	Warning + retraining
	sues	
Level 2	Repeated violations, bias	Temporary suspension
Level 3	Coordinated gaming	Permanent judge/creator ban
Level 4	System attacks	Complete exclusion + public disclosure

Table 10: Governance Violation Penalty Structure

Penalty Escalation for Collusion:

- Level 1 (Suspicious Patterns): Warning with enhanced monitoring
- Level 2 (Probable Collusion): Temporary suspension of all models from the provider
- Level 3 (Confirmed Collusion): Permanent exclusion of provider and all associated models
- Level 4 (Systematic Attack): Public disclosure of collusion attempts with legal implications

Provider Accountability: When collusion is detected, both individual models and their providers face consequences:

- Model Penalties: Individual models receive Elo penalties and temporary suspension
- Provider Penalties: Providers face increased scrutiny and mandatory transparency requirements
- Public Disclosure: Confirmed collusion attempts are publicly documented
- Legal Implications: Systematic collusion may trigger legal action for fraud

A.8 IMMUTABLE PUBLIC LEDGER AND TRANSPARENCY

A.8.1 BLOCKCHAIN-BASED IMMUTABLE RECORDS

Why Immutable Records Are Essential: The public ledger serves as the foundation of PRISM-EE's credibility and integrity. Given that model rankings directly influence billions of dollars in deployment decisions, the system must provide unassailable proof of its integrity.

Permanent Ranking Storage:

- · All model rankings permanently recorded on blockchain-based immutable ledger
- Real-time updates of Elo ratings with cryptographic verification
- Historical ranking data permanently accessible for public verification

914

915

916

917

timeframe

• Complete audit trail of all ranking changes and rationale 866 Model Behavior Tracking: All model responses and judge evaluations cryptographically signed and stored 868 • Permanent record of model performance across all evaluation domains 870 • Immutable logs of all gaming attempts, violations, and penalties 871 Public verification of model behavior patterns and consistency 872 873 Governance Decision Records: 874 875 • All governance decisions permanently recorded with full justification Immutable audit trail of all system modifications and policy changes 877 Public access to complete governance history and decision rationale 878 879 • Cryptographic verification of all governance council votes and decisions A.8.2 Public Transparency Requirements Real-Time Transparency: 883 · Live streaming of all evaluation processes and judge decisions 885 Real-time publication of all model rankings and confidence intervals 887 Public API access for real-time ranking and performance data 888 Open-source code with complete implementation details and reproducible experiments 889 890 **Historical Transparency**: 891 · Complete historical record of all model performance and rankings 892 893 Public access to all evaluation data and judge decisions 894 • Transparent documentation of all governance decisions and rationale 895 • Public audit trails for all major system modifications and policy changes 896 897 COMPREHENSIVE GITHUB-BASED GRIEVANCE RESOLUTION SYSTEM 898 899 A.9.1**GRIEVANCE SUBMISSION PROCESS** 900 901 All grievances must be submitted through GitHub Issues with the following structure: 902 **Issue Template Requirements:** 903 904 **Grievance Type**: [Model Performance / Judge Behavior / System Integrity / Provide. 905 **Affected Models**: [List of models involved] 906 **Evidence**: [Links to specific evaluations, screenshots, data analysis] 907 **Impact Assessment**: [Description of how this affects rankings or system integrity 908 **Proposed Resolution**: [What action is being requested] **Timeline**: [When did this occur, when was it discovered] 909 910 A.9.2 GRIEVANCE EVALUATION PROCESS 911 912 **Step 1: Initial Review** 913

• Public Visibility: All grievances immediately visible to community for transparency

Automated Triage: System automatically categorizes grievances by type and severity

• Preliminary Assessment: Governing Council member assigned to review within specified

Step 2: Evidence Collection

918

919 920

967

968

969 970

971

921	• Cross-Validation: Independent verification of claims using immutable ledger data
922	• Expert Consultation: Domain experts consulted for technical grievances
923	
924	Community Input: Public comments and additional evidence collection
925 926	Step 3: Evaluation Panel Formation
927	• Panel Composition: 3-5 member evaluation panel based on grievance type:
928	 Model Performance: Technical experts + community representatives
929	 Judge Behavior: AI ethics experts + model providers
930	 System Integrity: Security experts + independent auditors
931	 Provider Collusion: Legal experts + academic researchers
932	- 1 Tovider Condision. Legal experts + academic researchers
933 934	Step 4: Comprehensive Evaluation
935	• Evidence Review: Complete analysis of all submitted evidence
936	• Independent Investigation: Panel conducts independent investigation
937	Cross-Provider Validation: Verification with other model providers
938	•
939	• Technical Analysis: Statistical analysis of patterns and behaviors
940	• Legal Assessment: Review of potential legal implications
941 942	Step 5: Decision and Implementation
943	• Panel Desigion: Majority vota required for all desigions
944	Panel Decision: Majority vote required for all decisions Parel Decision: Majority vote required for all decisions
945	• Public Report: Complete evaluation report published on GitHub
946	• Implementation: Automated enforcement of penalties and corrections
947 948	• Appeal Process: Appeal window for contested decisions
949 950	A.10 FUNDING TRANSPARENCY AND GOVERNANCE
951	A.10.1 Funding Disclosure Requirements
952 953	Transparent Funding Disclosure:
954	 All funding sources must be publicly disclosed regardless of grant size
955	
956	Complete transparency in funding relationships and potential conflicts of interest
957	 Regular public reporting of all funding sources and amounts
958	• Independent audit of funding sources to ensure compliance with governance requirements
959	Model Provider Funding Limits:
960	Wiodel Flowidel Funding Limits.
961 962	• No single model provider can fund more than 10% of overall system funding requirements
963	 Prevents undue influence from any single provider on governance decisions
964	• Ensures diverse funding base that maintains system independence
965	Regular monitoring and enforcement of funding concentration limits
966	- Acgular monitoring and enforcement of funding concentration milits

• Data Analysis: Automated systems analyze relevant evaluation data

• Multiple funding sources required to prevent single-provider dominance

• Academic, industry, and community funding balance maintained

A.10.2 FUNDING INDEPENDENCE SAFEGUARDS

Diversified Funding Strategy:

	International funding sources encouraged to prevent national bias
	Regular assessment of funding diversity and independence
C 0	
Confli	ict of Interest Management:
	• Funding relationships must not influence evaluation outcomes
	 Clear separation between funding sources and evaluation decisions
	• Independent oversight of funding impact on system integrity
	Regular review of potential conflicts of interest
A.11	IMPLEMENTATION ROADMAP
A.11.	1 Phase 1: Foundation
	Establish governance council and stakeholder representation
	Implement GitHub-based model submission system
	• Deploy basic technical governance systems with ±5 Elo external benchmark limit
	• Launch community engagement and feedback mechanisms
	Establish immutable public ledger infrastructure
	Implement funding transparency and disclosure requirements
A.11.	2 Phase 2: Expansion
	Full implementation of anti-gaming mechanisms
	Complete content governance framework deployment
	Advanced quality assurance protocols activation
	Model review process with public transparency
	Grievance redressal system implementation
	First governance review cycle implementation
	Domain expansion evaluation for multimodal and voice domains
	Ranking methodology assessment (Elo vs TrueSkill vs Plackett-Luce)
	International partnership establishment
A.11.	3 Phase 3: Maturation
	Full meta-governance layer implementation
	Advanced research collaboration programs
	Comprehensive transparency and accountability systems
	Complete blockchain-based immutable record system
	Second governance review cycle
	Long-term sustainability framework completion
	Public verification and validation systems
	Established review process for domain expansion and ranking methods
A.12	REGULAR GOVERNANCE REVIEW CYCLE
A.12.	1 Comprehensive Review Process
	ar Governance Review : On a regular basis, the Governing Council conducts comprehensive of all governance policies and system operations:
	w Scope:
TICAIC	n beope.

ternatives

detection

tiveness

Review Process:

1026

1027 1028

1029

1030

1031

1032

1033 1034

1035

1036 1037

1038

1039

1040 1041

1042

1044

1046

1046 1047	6. Implementation : Gradual rollout of approved changes with monitoring and feedback
1047	A.12.2 Domain Expansion Governance
1049	
1050 1051	New Domain Evaluation Process : The Governing Council evaluates and approves new domain additions (multimodal, voice, etc.) through a comprehensive review process:
1052	Domain Proposal Requirements:
1053 1054	• Technical Feasibility: Detailed technical assessment of domain evaluation capabilities
1055	• Evaluation Methodology: Proposed evaluation methods and criteria for the new domain
1056 1057	 Content Creation Framework: Guidelines for generating domain-specific evaluation content
1058 1059	• Judge Qualification: Standards for models serving as judges in the new domain
1060	• Resource Requirements: Computational and infrastructure needs for domain evaluation
1061 1062	Domain Approval Process:
1063	1. Initial Proposal: Community or council member submits detailed domain proposal
1064 1065	2. Technical Review: Expert panel evaluates technical feasibility and methodology
1066	3. Pilot Testing: Limited deployment with 10-20 models for 3-month evaluation period
1067	4. Performance Assessment: Analysis of evaluation quality, gaming resistance, and fairness
1068	5. Council Vote: 60%+ supermajority required for domain approval
1069	6. Gradual Rollout : Phased integration with continuous monitoring
1071 1072	A.12.3 RANKING METHODOLOGY GOVERNANCE
1073 1074	Ranking System Evaluation and Selection : The Governing Council evaluates and selects ranking methodologies for each domain:
1075 1076	Available Ranking Methods:
1077	• Elo Rating System: Traditional chess-style rating system with proven stability
1078 1079	• TrueSkill: Microsoft's Bayesian rating system for multiplayer games
1013	• Plackett-Luce Model: Probabilistic ranking model for preference learning
	20

• Domain Expansion Policies: Evaluation of existing domains and proposals for new do-

• Ranking Methodology: Assessment of current ranking methods and consideration of al-

Model Onboarding: Review of submission process and external benchmark integration

• Content Governance: Assessment of prompt templates and content creation standards

1. Data Collection: Comprehensive analysis of system performance and governance effec-

3. Expert Assessment: Independent evaluation by domain experts and governance specialists 4. Council Deliberation: Detailed discussion of review findings and proposed changes

2. Community Input: Public comment period for community feedback and suggestions

5. **Voting Process**: 60%+ supermajority required for all governance changes

• Transparency Systems: Review of public ledger and transparency mechanisms

• Anti-Gaming Mechanisms: Evaluation of gaming prevention effectiveness and new threat

1080	• Bradley-Terry Model: Pairwise comparison ranking system
1081 1082	• Custom Hybrid Methods: Domain-specific combinations of ranking approaches
1083 1084	Ranking Method Selection Criteria:
1085	Statistical Robustness: Convergence speed and rating stability
1086	Gaming Resistance: Resistance to manipulation and collusion
1087 1088	Domain Appropriateness: Suitability for specific evaluation domains
1089	Computational Efficiency: Resource requirements and scalability
1090	• Interpretability: Clarity and understandability of ranking results
1091 1092	interpretability. Clarity and understandability of rainting results
1093	A.13 SCALABILITY GOVERNANCE POLICIES
1094 1095	A.13.1 HIERARCHICAL FEDERATION MANAGEMENT
1096 1097 1098	Multi-Tier Architecture Governance : As the system scales beyond 100 models, PRISM-EE implements hierarchical governance:
1099	• Premier League (Top 20 models): High-stakes evaluations with maximum oversight
1100 1101	• Championship League (Models 21-60): Standard evaluations with regular governance review
1102	• Development League (Models 61+): Training ground with simplified governance require
1103	ments
1104 1105 1106	 Cross-League Validation: Regular promotion/relegation based on performance with governance oversight
1107 1108	Resource Allocation Policies:
1109 1110	Computing resource distribution based on model tier and contribution quality
1111	 Priority queuing systems ensuring fair access to evaluation opportunities
1112	 Load balancing algorithms preventing system bottlenecks during peak usage
1113 1114 1115	 Emergency protocols for system overload with temporary governance suspension procedures
1116 1117	A.14 QUALITY ASSURANCE PROTOCOLS
1118 1119	A.14.1 PROMPT TEMPLATE QUALITY CONTROL
1120	Pre-Deployment Testing: All prompt templates tested with 100+ sample evaluations
1121 1122	Bias Detection: Automated analysis for demographic, cultural, and domain biases
1123	Clarity Validation: Human expert review for instruction clarity and specificity
1124 1125	Version Control: Comprehensive tracking of template changes and impact assessment
1126 1127	A.14.2 CONTENT QUALITY STANDARDS
1128	Domain-Specific Quality Requirements:
1129 1130	Clinical Content: Medical accuracy verification by qualified physicians
1131	• Programming Content : Technical accuracy review by software engineering experts
1132	Mathematical Content: Mathematical rigor validation by mathematics professors
1133	General Content: Educational value assessment by domain experts

A.14.3 JUDGE PERFORMANCE MONITORING

Performance Tracking Systems:

1134

1135 1136

1137

1138 1139

1140

1141 1142

1143 1144

1145 1146

1147

1148

1149

1150

1151

1152 1153

1154

1155 1156

1157

1158

1159

1160

1161

1162

1163 1164

1165

1166

1167

1168

1169

1170

1171

1172 1173

1174 1175

1176

1177

1178 1179

1180 1181

1182 1183

1184

1185 1186

1187

- Agreement Rate Tracking: Continuous monitoring of judge agreement with peer judges
- Consistency Analysis: Evaluation of judge decision patterns across time and contexts
- Quality Scoring: Automated assessment of judge response quality and format compliance
- Performance Reviews: Monthly evaluation of judge performance with transparent scoring

A.15 GOVERNANCE FRAMEWORK CONCLUSION

This comprehensive governance framework transforms PRISM-EE from a technical system into a sustainable, community-driven evaluation ecosystem that ensures fair opportunity for all models while maintaining integrity and transparency. The framework addresses the bootstrap problem through limited external benchmark influence (±5 Elo total) and provides transparent, time-bound processes for model inclusion.

Key Governance Principles Implemented:

Fair Opportunity Guarantee: All models start with equal 1500 Elo base rating, with external benchmarks (MMLU + Chatbot Arena) limited to maximum ±5 Elo total influence, ensuring no model gains unfair advantage through external reputation.

Transparent Model Inclusion: GitHub-based submission process with 7-day Governing Council review ensures transparent, time-bound model inclusion with complete public audit trail.

Immutable Public Records: All rankings, behavior, and governance decisions permanently recorded on blockchain-based immutable ledger, enabling public verification of all system operations at any time.

Time-Bound Grievance Resolution: 14-day grievance redressal system with public documentation and independent arbitration ensures fair resolution of all disputes.

Public Verification: Complete transparency with live streaming of evaluations, real-time ranking updates, and permanent historical records accessible to anyone.

The framework provides robust protection against gaming, ensures fair evaluation opportunities for all models regardless of provider size, maintains high standards for content creation and evaluation, and establishes clear accountability structures for all stakeholders. Through continuous monitoring, community engagement, and adaptive governance, PRISM-EE will evolve into a trusted, reliable system for AI model evaluation that serves the broader research and deployment community with complete transparency and fairness.

APPENDIX B: MATHEMATICAL FRAMEWORK FOR PRISM-EE В

This appendix explains the mathematical foundations of PRISM-EE in accessible terms. The system operates similarly to a sports ranking system, but for AI models that also considers their operational costs.

HOW WE RATE MODELS: THE DUAL-TRACK SYSTEM

B.1.1 THE BASIC IDEA

Consider a ranking system for chess players where we also account for their pricing. We track two scores:

• Raw Performance: How good they are at chess

• Cost-Adjusted Performance: How good they are considering their price

1188 B.1.2 HOW RATINGS CHANGE AFTER EACH GAME 1189 1190 After each match, we update both ratings: 1191 **Raw Performance Rating:** 1192 $R_{\text{raw}}^{(t+1)} = R_{\text{raw}}^{(t)} + K \times (S_{\text{raw}} - E_{\text{raw}})$ (15)1193 1194 1195 Cost-Adjusted Rating: $R_{\text{cost}}^{(t+1)} = R_{\text{cost}}^{(t)} + K \times (S_{\text{adi}} - E_{\text{cost}})$ 1196 (16)1197 Where: 1198 1199 • $R_{\rm raw}^{(t+1)}$ and $R_{\rm cost}^{(t+1)}$ are the new ratings 1200 • $R_{\text{raw}}^{(t)}$ and $R_{\text{cost}}^{(t)}$ are the current ratings 1201 1202 • K = 16 is the adaptation factor 1203 • S_{raw} is the actual match outcome (1 for win, 0 for loss, 0.5 for draw) 1204 • $S_{\rm adi}$ is the cost-adjusted score 1205 1206 • E_{raw} and E_{cost} are the expected scores 1207 What this means: 1208 1209 • If a model wins when it was expected to lose, its rating goes up a lot 1210 1211 • If a model loses when it was expected to win, its rating goes down a lot 1212 • The "16" is like how much we trust each game result (we call it K=16) 1213 1214 B.1.3 EXPECTED WIN PROBABILITY 1215 Before each game, we calculate who should win based on current ratings: 1216 1217 For Raw Performance: $E_{\text{raw},A} = \frac{1}{1 + 10^{(R_B - R_A)/400}}$ 1218 (17)1219 1220 For Cost-Adjusted Performance: 1221 1222 $E_{\text{cost},A} = \frac{1}{1 + 10^{(R_{\text{cost},B} - R_{\text{cost},A})/400}}$ (18)1223 1224 1225 Where: 1226 • $E_{\text{raw},A}$ and $E_{\text{cost},A}$ are the expected scores for model A 1227 1228 • R_A and R_B are the raw ratings 1229 • $R_{\text{cost},A}$ and $R_{\text{cost},B}$ are the cost-adjusted ratings 1230 1231 **Example:** If a model is rated 1600 and its opponent is 1500: 1232 • Expected Win Chance = $\frac{1}{1+10^{(1500-1600)/400}} = \frac{1}{1+10^{-0.25}} = \frac{1}{1+0.56} = 0.64$ 1233 1234 • The model has a 64% chance to win 1235 1236 B.1.4 How Cost Affects Scoring 1237 This is the clever part - we adjust scores based on how much each model costs: 1238 1239 **Step 1: Calculate Efficiency Weights** 1240 $eff_A = \frac{e^{-C_A/\tau_c}}{e^{-C_A/\tau_c} + e^{-C_B/\tau_c}}$ 1241 (19)

Step 2: Adjust the Score 1243 $S_{\mathrm{adj},A} = \frac{S_{\mathrm{raw},A} \times \mathrm{eff}_{A}}{S_{\mathrm{raw},A} \times \mathrm{eff}_{A} + S_{\mathrm{raw},B} \times \mathrm{eff}_{B}}$ 1244 (20)1245 1246 Where: 1247 1248 • eff_A and eff_B are the efficiency weights for models A and B 1249 • C_A and C_B are the total costs for models A and B 1250 • $\tau_c = 0.05$ is the cost sensitivity parameter 1251 1252 • $S_{\text{raw},A}$ and $S_{\text{raw},B}$ are the raw scores 1253 • S_{adi, A} is the cost-adjusted score for model A 1254 1255 What this means: 1256 • If a model wins but costs 10× more than its opponent, its "cost-adjusted" score is much 1257 • If a model wins and costs much less, its "cost-adjusted" score is much higher • The 0.05 is how sensitive we are to cost differences (we call it $\tau_c = 0.05$) 1261 1262 HOW WE CHOOSE WHO FIGHTS WHO: SWISS PAIRING 1263 1264 B.2.1THE FAIRNESS PROBLEM 1265 In conventional tournaments, popular models receive disproportionate evaluation opportunities 1266 while less prominent models are systematically under-evaluated. We address this through "Swiss 1267 pairing" - a tournament structure that ensures equitable evaluation opportunities for all participants. 1268 1269 **B.2.2 SELECTION PRIORITY** 1270 1271 **The Rule:** Models with fewer completed matches receive higher selection priority 1272 $P(m_i) = \frac{1/(1+n_i)}{\sum_{i=1}^{N} 1/(1+n_i)}$ 1273 (21)1274 Where: 1276 1277 • $P(m_i)$ is the selection probability for model i 1278 • n_i is the number of completed matches for model i 1279 • N is the total number of models 1280 1281 Example: 1282 1283 • Model A has played 0 games: Selection Chance = $\frac{1}{1+0} = 1.0 (100\%)$ 1284 • Model B has played 5 games: Selection Chance = $\frac{1}{1+5} = 0.17$ (17%) 1285 1286 • Model C has played 10 games: Selection Chance = $\frac{1}{1+10} = 0.09$ (9%) 1287 B.2.3 OPPONENT MATCHING To ensure competitive matches and avoid significant skill disparities, we restrict pairings to models 1290 1291 with similar ratings:

1293

1294 1295

Where:

 $S_{\Delta}(m_A) = \{ m_i \in M \setminus \{ m_A \} : |R_i^{\text{cost}} - R_A^{\text{cost}}| \le 50 \}$

(22)

The Rule: Only match models within ±50 rating points of each other

1296	• $S_{\Delta}(m_A)$ is the set of valid opponents for model A
1297	• M is the set of all models
1298	• $R_j^{\rm cost}$ and $R_A^{\rm cost}$ are the cost-adjusted ratings
1299 1300	·
1301	• ±50 Elo tolerance ensures competitive matches
1302	Example:
1303 1304	• A model rated 1600 can only be matched with models rated 1550-1650
1305	This ensures competitive, balanced matches
1306 1307	B.2.4 THE COMPLETE PROCESS
1308	1. Select the model requiring additional matches (fewest matches played)
1309	2. Identify all models within ±50 rating points of the selected model
1310 1311	3. Randomly select an opponent from the candidate list
1312	4. Ensure no recent matches (avoid immediate rematches)
1313	4. Ensure no recent matches (avoid immediate rematches)
1314	B.3 How We Weight Judge Opinions
1315 1316	B.3.1 THE JUDGE PROBLEM
1317	When multiple AI models evaluate the same match, we must determine the relative importance or
1318	each judge's assessment. Should we treat all judges equally, or assign greater weight to higher
1319 1320	performing models?
1321	B.3.2 OUR SOLUTION: PERFORMANCE-BASED WEIGHTING
1322 1323	The Rule: Higher-performing models receive greater voting influence, but with appropriate moder
1324	ation
1325	$e^{R_k^{ m raw}/ au}$
1326	$w_k = \frac{e^{R_k^{\text{raw}}/\tau}}{\sum_{j \in J_{\text{valid}}} e^{R_j^{\text{raw}}/\tau}} \tag{23}$
1327	J = - man
1328	Where:
1329	• w_k is the weight for judge k
1330 1331	• R_k^{raw} is the raw Elo rating of judge k
1332	
1333	• J_{valid} is the set of valid judges for the match
1334	• $\tau = 300$ is the temperature parameter controlling weight distribution
1335 1336	What this means:
1337	 A 1600-rated judge receives greater weight than a 1500-rated judge
1338	
1339	• The difference is moderated to prevent any single judge from dominating
1340	• The "300" parameter controls the degree of weighting differentiation (we call it $\tau=300$)
1341	B.3.3 WHY THIS WORKS
1342 1343	
1344	If we weight too little ($\tau=100$):
1345	• Top judges dominate 90% of votes
1346	We lose diversity of opinions
1347	If we weight too much (- 500).
1348	If we weight too much ($\tau = 500$):

• All judges have nearly equal weight

1350	 We lose the benefit of better judges
1351	• Agreement drops to 72%
1352 1353	Our optimal configuration ($\tau = 300$):
1354	
1355 1356	Achieves an appropriate balance between judge quality and diversity
1357	 Achieves 89% agreement between judges
1358 1359	B.4 How We Calculate Costs
1360	B.4.1 THE BASIC COST FORMULA
1361 1362	Each AI model's pricing is based on token consumption (text processing units):
1363	Total Cost = Input Cost + Output Cost
1364	$C_A = c_{\rm in} \times t_{\rm in,A} + c_{\rm out} \times t_{\rm out,A} \tag{24}$
1365 1366	YA VIII.YA I VOIL I VOILIA (E.)
1367	Where:
1368	• C_A = Total cost for model A
1369	
1370	• c_{in} = Input token cost per million tokens
1371	• $c_{\text{out}} = \text{Output token cost per million tokens}$
1372 1373	• $t_{in,A}$ = Input tokens for model A
1374	• $t_{out,A}$ = Output tokens for model A
1375 1376	Key Insight: Input tokens are the same for both models (same prompt), but output tokens differ based on each model's response length.
1377 1378	Example:
1379	• Both models receive the same prompt: 1000 input tokens at \$0.50 per million tokens
1380	Model A generates 500 output tokens at \$1.50 per million tokens
1381	Model B generates 800 output tokens at \$1.50 per million tokens
1382	• Model A Cost = $(1000 \times \$0.50/1M) + (500 \times \$1.50/1M) = \$0.0005 + \$0.00075 =$
1383 1384	\$0.00125
1385	• Model B Cost = $(1000 \times \$0.50/1M) + (800 \times \$1.50/1M) = \$0.0005 + \$0.0012 = \$0.0017$
1386	
1387 1388	B.4.2 How Cost Affects Efficiency Scoring
1389	We employ a specialized formula to ensure equitable cost comparisons:
1390	Efficiency Weight:
1391	_Model Cost/0.05
1392	Model Efficiency = $\frac{e^{-\text{Model Cost}/0.05}}{e^{-\text{Model Cost}/0.05} + e^{-\text{Opponent Cost}/0.05}} $ (25)
1393	
1394 1395	What this means:
1396	• If a model costs \$0.01 and opponent costs \$0.10, the model gets a much higher efficiency
1397	weight
1398	• The 0.05 controls how sensitive we are to cost differences
1399	
1400 1401	B.4.3 WHY WE CHOSE 0.05
1402	If we're too sensitive ($\tau_c = 0.01$):

• Cost differences become negligible

1403

1404 1405	• We might as well ignore cost considerations
1406	If we're not sensitive enough ($\tau_c=0.2$):
1407 1408	Cost becomes the primary ranking factor
1409	• 40% of models rank purely by cost, ignoring performance
1410	40 % of models rank purery by cost, ignoring performance
1411	Our optimal configuration ($\tau_c = 0.05$):
1412 1413	• Cost matters, but performance remains the primary consideration
1414	 We achieve the optimal balance between capability and efficiency
1415 1416	B.5 How We Address Poor Judge Performance
1417 1418	B.5.1 THE PROBLEM
1419 1420 1421 1422	Some AI models demonstrate inadequate judging capabilities - they provide inconsistent evaluations, format responses incorrectly, or attempt to manipulate the system. We require a mechanism to remove them from judging responsibilities.
1423 1424	B.5.2 OUR SOLUTION: RATING PENALTIES
1425 1426	The Rule: Underperforming judges lose 10 rating points from both their raw and cost-adjusted scores
1427	$R_j^{\text{raw}} \leftarrow R_j^{\text{raw}} - P_{\text{judge}} \tag{26}$
1428	$R_{j}^{\text{cost}} \leftarrow R_{j}^{\text{cost}} - P_{\text{judge}} $ (27)
1429	$Ii_j \leftarrow Ii_j - I_{\text{judge}}$ (27)
1430 1431	Where:
1432	• $P_{\text{judge}} = 10$ Elo points are deducted for poor performance
1433 1434	• $R_j^{\rm raw}$ and $R_j^{\rm cost}$ are the raw and cost-adjusted ratings for judge j
1435 1436	What triggers a penalty:
1437	Providing responses in incorrect format
1438	• Demonstrating inconsistency (evaluating A ; B, then B ; A)
1439	Attempting to manipulate the system
1440 1441	Delivering clearly inadequate judgments
1442	Denvering clearly inadequate judgments
1443	B.5.3 Why 10 Points Works
1444 1445	The Strategic Value: We aim to move underperforming judges out of the "top tier" (1520+ rating)
1446	Example:
1447	•
1448	• Judge starts at 1525 rating (top tier)
1449	• Receives 10-point penalty
1450	• Now at 1515 rating (below top tier)
1451 1452	 No longer eligible for important judging assignments
1453	This areates a self regulating system.
1454	This creates a self-regulating system:
1455	 High-performing judges remain in the top tier and continue judging
1456	

• Underperforming judges are demoted and removed from judging duties

• The system automatically maintains quality standards

1457

1458	B.6 How We Selected Our Parameters
1459 1460	B.6.1 THE LEARNING SPEED (K = 16)
1461	` ,
1462	The Question: How much should each game change a model's rating?
1463	If K is too small $(K = 8)$:
1464	W 11.1
1465	Models learn very slowly
1466	 Require 80+ games to achieve accurate ratings
1467 1468	 Convergence takes excessively long
1469	If K is too large $(K = 32)$:
1470	M 11 1 2 2 4 2 11
1471	 Models change ratings too rapidly
1472 1473	• Ratings fluctuate wildly (±35 points)
1474	 Unstable and unreliable
1475	Our optimal configuration $(K = 16)$:
1476	Our optimal configuration (X = 10).
1477	 Models learn at an appropriate rate
1478	 Require only 25-30 games for accurate ratings
1479	• Stable ratings (±18 points)
1480 1481	Suest imings (210 points)
1482	B.6.2 Cost Sensitivity ($ au_c=0.05$)
1483	The Question: How much should cost matter compared to performance?
1484	
1485	If too sensitive ($\tau_c = 0.01$):
1486 1487	 Cost differences barely matter
1488	 We might as well ignore cost completely
1489	
1490	If not sensitive enough ($\tau_c = 0.2$):
1491	 Cost becomes the only thing that matters
1492	• 40% of models rank purely by cost, ignoring how good they are
1493 1494	
1495	Our optimal configuration ($\tau_c=0.05$):
1496	• Cost matters, but performance remains the primary consideration
1497	We achieve the optimal balance between capability and efficiency
1498	we achieve the optimal balance between capability and efficiency
1499	B.6.3 Judge Weighting ($\tau = 300$)
1500 1501	
1502	The Question: How much more should better judges influence decisions?
1503	If we weight too little ($\tau = 100$):
1504	• Top judges dominate 90% of votes
1505	We lose diversity of opinions
1506	- the lose diversity of opinions
1507	If we weight too much ($\tau = 500$):
1508 1509	All indeed home and the soul of the
1510	All judges have nearly equal weight
1511	• We lose the benefit of better judges

• Agreement drops to 72%

ptimal configuration ($ au=300$):	
Achieves an appropriate balance between judge quality and diversity	
 Achieves 89% agreement between judges 	
MATCH FAIRNESS (±50 ELO)	
uestion: How close in skill should opponents be?	
strict (±25 Elo):	
15% of models can't find opponentsSystem breaks down	
oose (±100 Elo):	
 Mismatches with 85% win rates Ratings become inaccurate (±45 points) 	
otimal configuration (±50 Elo):	
• Ensures competitive matches for all participants	
• Achieves accurate ratings (±18 points)	
How Reliable Are Our Results?	
RATING ACCURACY	
uestion: How confident can we be in each model's rating?	
nswer: 95% of models have ratings accurate to within ±18 points after 25-30 games	
lence Interval Calculation:	
$\text{CI} = \pm 1.96 imes \frac{\sigma}{\sqrt{n}}$	(28)
· :	
• σ is the rating standard deviation	
-	
• Target: ±18 Elo with 25-30 matches	
this means:	
• If a model is rated 1600, we're 95% sure their true rating is between 1582-1618	
HOW FAST DO RATINGS STABILIZE?	
rocess:	
. Start with all models at 1500 rating	
. Play games and update ratings	
. Stop when ratings stop changing much	
esults:	
 Most models stabilize after 25-30 games 	
	• Achieves an appropriate balance between judge quality and diversity • Achieves 89% agreement between judges MATCH FAIRNESS (\pm 50 ELO) uestion: How close in skill should opponents be? strict (\pm 25 Elo): • 15% of models can't find opponents • System breaks down oose (\pm 100 Elo): • Mismatches with 85% win rates • Ratings become inaccurate (\pm 45 points) otimal configuration (\pm 50 Elo): • Ensures competitive matches for all participants • Achieves accurate ratings (\pm 18 points) How Reliable Are Our Results? RATING ACCURACY uestion: How confident can we be in each model's rating? nswer: 95% of models have ratings accurate to within \pm 18 points after 25-30 games sence Interval Calculation: $CI = \pm 1.96 \times \frac{\sigma}{\sqrt{n}}$ • σ is the rating standard deviation • n is the number of matches • Target: \pm 18 Elo with 25-30 matches this means: • If a model is rated 1600, we're 95% sure their true rating is between 1582-1618 • This is much more accurate than other systems (\pm 35 points) • We need fewer games to get reliable results How FAST Do RATINGS STABILIZE? **rocess:* Start with all models at 1500 rating • Play games and update ratings • Stop when ratings stop changing much

• We can trust the final rankings

1565

B.7.3	How Much Do Judges Agree?
The Q	uestion: When multiple judges score the same match, do they agree?
Agreer	ment Rate Calculation:
S	
	$\begin{aligned} \text{Agreement} &= \frac{\sum (\text{Consistent_Judgments})}{\sum (\text{Total_Judgments})} \\ \text{Weighted_Agreement} &= \frac{\sum (w_k \times \text{Agreement}_k)}{\sum (w_k)} \end{aligned}$
Our R	
	 Our AI judges agree 89% of the time Human judges only agree 72% of the time Our system is more consistent than humans!
Why tl	nis matters:
	 Consistent judging = reliable rankings Less random variation in results More trustworthy evaluation
B.8 I	How We Stop Cheating
B.8.1	THE CHEATING PROBLEM
Some r	nodels might try to game the system by:
	 Coordinating with other models to give each other good scores Being biased toward models from the same company Manipulating the judging process
B.8.2	OUR ANTI-CHEATING MEASURES
Rando	m Audits:
	 5% of all matches are randomly checked by humans Creates a deterrent against systematic cheating Maintains efficiency while ensuring quality
Patteri	n Detection:
	 We watch for unusual voting patterns Detect if judges from the same company always agree Spot if certain models always get favorable treatment
Crypto	ographic Security:
	 All decisions are cryptographically signed Impossible to tamper with results after the fact Complete audit trail of every decision
Cross-	Provider Validation:
	 Judges from different companies evaluate the same matches If they disagree too much (30%+), we investigate further

• Prevents single-company bias

B.8.3	WHY THIS WORKS	
Multij	ple Layers of Protection:	
	 Even if someone cheats one way, other measures catch them Random audits make systematic cheating risky Cryptographic signatures make tampering impossible Cross-validation prevents bias 	
B.9	THE REAL-WORLD IMPACT: WHY COST MATTERS	
B.9.1	THE HIDDEN COST PROBLEM	
	ional benchmarks ignore cost, but in the real world, cost is everything. Consider a compassing 1 million queries per month:	any
Naive	Approach (Use only the best model):	
	 Use GPT-4.1 for everything Cost: \$226,500 per month Performance: 100% 	
Smart	Approach (Use our tiered system):	
	 Critical tasks (5%): Use Gemini 2.5 Pro - \$11,325 Important tasks (20%): Use GPT-4.1 mini - \$1,332 Standard tasks (75%): Use Qwen 3.2 235B - \$266 Total Cost: \$12,923 per month Performance: 98.2% 	
Saving	gs: 94.3% cost reduction with only 1.8% performance loss!	
B.9.2	How We Calculate Efficiency	
The F	ormula: $Efficiency = \frac{Performance}{Cost} $ (2)	31)
Exam	ple:	
	 Model A: 1600 rating, costs \$10 → Efficiency = 160 Model B: 1550 rating, costs \$1 → Efficiency = 1550 Model B is 9.7× more efficient despite lower performance! 	
B.9.3	THE 641× EFFICIENCY GAP	
Our sy	stem revealed massive efficiency differences invisible to traditional benchmarks:	
The D	viscovery:	
	 Qwen 3.2 235B: 97% of top performance at 0.16% of the cost This represents a 641× efficiency difference between similar-performing models Traditional benchmarks completely miss this! 	
Why T	This Matters:	
	• Companies can save millions by choosing efficient models	

• Real-world deployment decisions should consider both performance AND cost

• Small performance differences often aren't worth huge cost increases

1673

B.10	How Fast Do We Get Reliable Results?
B.10.	THE CONVERGENCE PROCESS
What	Happens:
1	. Start with all models at 1500 rating
	2. Play games and update ratings after each match
	3. Watch ratings change and stabilize
	Stop when ratings stop changing much
The M	fath:
	• Each game changes ratings by: $ \Delta R = K \times S - E $
	• If a model wins when expected to lose: rating goes up a lot
	If a model loses when expected to win: rating goes down a lot
	If result matches expectation: rating changes little
Conve	rgence Rate:
Conve	
	Convergence_Rate = $1 - \frac{ \Delta II }{ R }$ (32)
	Convergence_Rate = $1 - \frac{ \Delta R }{ R }$ (32) Stability = $1 - \frac{\sigma_{\text{rating}}}{\sigma_{\text{initial}}}$ (33)
	$\frac{\text{Stability} - 1 - \frac{1}{\sigma_{\text{initial}}}}{\sigma_{\text{initial}}} $ (53)
B.10.2	2 How Many Games Do We Need?
Our R	esults:
	 Most models stabilize after 25-30 games
	• Ratings become accurate to within ±18 points
	• This is much faster than other systems (which need 80+ games)
Why T	This Matters:
	• Faster convergence = less time and money spent
	• More accurate ratings = better decisions
	• Reliable results sooner = practical deployment
B.10.3	3 WHEN CAN WE TRUST THE RANKINGS?
The C	riteria:
1	. Ratings stop changing much between games
2	2. 95% of models have ratings accurate to ±18 points
	3. Judge agreement is above 89%
our A	chievement:
	All criteria met after 25-30 games
	• Much more reliable than human evaluation (72% agreement)
	• 2× more accurate than existing systems

B.11	CAN THIS SCALE TO REAL COMPANIES?
B.11.1	How Much Computing Power Do We Need?
The G	ood News:
	 Each game only needs simple math (O(1) time) Rating updates are instant Judge weighting is fast Swiss pairing is efficient (O(N log N))
Real E	xample:
	 We ran 48 models on a regular laptop (M3 MacBook, 16GB RAM) Total cost: \$245.65 for all evaluations No special hardware needed!
	WHAT ABOUT 1000+ MODELS?
Scaling	g Up:
	 More models = more matches needed But the math stays the same Can run matches in parallel Memory usage grows linearly with models
Optim	ization Strategies:
	 Run independent matches simultaneously Cache frequently used ratings Update ratings incrementally Use distributed computing for huge deployments
B.12	How Do We Know This Actually Works?
B.12.1	THE HIERARCHY TEST
The Q	uestion: Do our rankings match what we expect from model generations?
Our Te	est: Check if newer models consistently beat older models from the same company
Result	s:
	 OpenAI: GPT-4.1 (1601) ¿ GPT-4o (1515) ¿ GPT-3.5 (1414) Anthropic: Claude 3.7 (1531) ¿ 3.5 (1510) ¿ 3.0 (1471) Google: Gemini 2.5 Pro (1604) ¿ 2.0 Flash (1520) ¿ 1.5 Pro (1457)
Why T	This Matters: Our system correctly identifies that newer models are better, proving it works!
B.12.2	2. Cross-Domain Validation
The To	est: Do models that perform well in one area also perform well in others?
Result	•
	 Programming vs Mathematical Reasoning: 78% correlation Clinical vs Programming: 72% correlation

• Strong correlation shows our ratings capture real capability

B.12.3	PARAMETER SENSITIVITY
The O	uestion: What if we change our parameters slightly?
	indings:
	• Small changes in parameters don't break the system
	• Rankings stay mostly the same
	System is robust and reliable
B.13	SUMMARY: WHY THIS MATH MATTERS
The Bi	g Picture:
1	. Dual-Track Ratings show both performance AND cost efficiency
	. Swiss Pairing ensures fair evaluation for all models
	. Smart Judge Weighting balances quality and diversity
	. Cost Integration reveals 641× efficiency differences
	. Anti-Gaming prevents manipulation and bias
	Fast Convergence gives reliable results in 25-30 games
/	. Real-World Impact enables 94% cost savings with minimal performance loss
better (decisions about which AI models to use, saving millions while maintaining performance.