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Abstract. This work introduces a multi-task, deep learning-
based tutoring system tailored to the NCERT curriculum, leveraging
Retrieval-Augmented Generation (RAG) and specialized Large Lan-
guage Models (LLMs) to perform curriculum-aligned educational
tasks. The system supports three primary functionalities: (1) ques-
tion answering grounded in textbook content, (2) automated ques-
tion generation using a fine-tuned T5 model, and (3) multilingual an-
swering via integration with Sarvam, an LLM capable of generating
responses in Indian languages.

The core architecture adopts a unified RAG pipeline, where
NCERT textbooks are tokenized, semantically embedded, and in-
dexed using dense vectors. Retrieved passages are appended as con-
text to generative models, ensuring curriculum-grounded outputs.
LangChain orchestrates the retrieval and generation flow, enhancing
domain fidelity and factual accuracy across tasks.

To improve the accuracy and curriculum alignment of automated
question generation, we systematically evaluate several fine-tuning
strategies for the T5 model. Specifically, we compare (1) the base
T5 model, (2) T5 fine-tuned on NCERT questions and solutions, (3)
T5 tuned with GPT-4-based self-instruct data, and (4) a combined
method employing both parameter-efficient fine-tuning (PEFT) and
self-instruct tuning. Among these, the combination of PEFT with
self-instruct emerges as the most effective approach, consistently
achieving higher accuracy, better lexical alignment, and greater ques-
tion diversity.

1 Introduction

The integration of large language models (LLMs) into educa-
tion has opened new avenues for scalable, curriculum-aligned tu-
toring systems. We present a multi-task AI framework designed
around the NCERT curriculum, supporting question answering, au-
tomated question generation, and multilingual responses. Leverag-
ing a unified Retrieval-Augmented Generation (RAG) architecture
and LangChain for orchestration, the system ensures outputs remain
grounded in textbook content, enhancing factual consistency and cur-
ricular relevance. A key focus is improving question generation via
multiple fine-tuning strategies for the T5 model. We evaluate the base
T5, NCERT-tuned variants, a GPT-4-based self-instruct approach,
and a hybrid method combining self-instruct with parameter-efficient
fine-tuning (PEFT). Results show that the PEFT + self-instruct strat-
egy significantly outperforms others in generating accurate, diverse,
and curriculum-aligned questions.

2 System Architecture

The proposed tutoring system is a modular, multi-task framework
supporting three core functions: Question Answering (QA), Ques-
tion Generation (QG), and Multilingual Answering. All compo-
nents are unified through a shared Retrieval-Augmented Generation
(RAG) backbone, ensuring outputs remain grounded in NCERT cur-
riculum content.

• Question Answering (QA): GPT-4 is used to generate accurate,
curriculum-aligned answers using the retrieved context.

• Question Generation (QG): A T5 model fine-tuned with multi-
ple strategies, including PEFT and GPT-4–based self-instruct tun-
ing, generates pedagogically relevant questions.

• Multilingual Answering: The Sarvam LLM generates accurate
responses in multiple Indian languages using the same retrieved
context.

The system is orchestrated via LangChain, centered around a
Router Agent (powered by LLaMA3-8B-8192) that classifies user
intents and dispatches structured task-specific calls in JSON format.
A Memory module maintains conversational history, enabling co-
herent multi-turn interactions. This architecture supports scalable,
curriculum-aligned tutoring across diverse educational tasks.

Figure 1: System Architecture

2.1 Question Answering

The primary objective of this project is to assist students in compre-
hending fundamental technical concepts that are aligned with their
academic syllabus, presented in a manner that is easy to consume.

2.1.1 Methodology

Queries are routed through a RAG pipeline powered by gpt-4o-
mini, which uses FAISS vector search over pre-indexed academic



content extracted from structured PDFs. The documents are pro-
cessed with RecursiveCharacterTextSplitter and embedded using
text-embedding-3-small to build the vector store.

2.1.2 Results

Experiments were conducted using various combinations of com-
ponents, including LLaMA 3–8B–8192 [11] and GPT-4o-mini [8]
as the underlying language models, NomicAI’s nomic-embed-text
and OpenAI’s text-embedding-3-small as embedding models, and
Chroma and FAISS [6] as the vector stores. The chunk size and text
splitters were tuned to assess improvement in the quality of con-
tent retrieved. Human evaluation was sufficient to confirm the su-
perior performance of GPT-4o-mini over the LLaMA-based model.
Notably, when using Chroma for retrieval, the retrieved context of-
ten included fragments of textbook exercise questions or figure ref-
erences. While GPT-4o-mini effectively filtered these for relevance
before generating a response, the LLaMA-based model lacked such
discernment and frequently incorporated irrelevant content into its
explanations.

2.1.3 Evaluation Metrics

The QA system was evaluated on two distinct categories of ques-
tions—descriptive and numerical—derived from a curated NCERT-
based question-answer dataset.
Table 1: Model Evaluation Scores (ROUGE-L, BLEU, BERTScore,
F1)

Metric Descriptive QA Numerical QA

BERTScore 0.8495 0.8055
F1 0.3914 0.2125
ROUGE-L 0.2201 0.1191
Bleu 0.7056 0.090

The model showed stronger performance on descriptive questions.
Higher F1 and BLEU scores in this indicate better lexical and token-
level alignment with reference answers, while consistently high
BERTScore suggests strong semantic similarity overall. In contrast,
performance on numerical questions degraded significantly, likely
due to challenges in generating precise numerical values, mathemat-
ical expressions, and maintaining format fidelity—elements critical
to structured responses.

To complement traditional metrics, we employed a GPT-4-based
evaluator to assess generated answers across human-aligned dimen-
sions such as correctness, relevance, clarity, completeness, factual
accuracy, conciseness, and fluency. The model achieved consistently
high ratings (8.5/10), indicating that responses were coherent. To ad-
dress the limitations of traditional metrics, more robust evaluation
methods like BEM (BERT Embedding Match), and RAGAS met-
rics for reference-based correctness and reference-free answer rele-
vance can be integrated as future work. These metrics provides more
context-aware framework for evaluating QA systems in retrieval-
augmented educational applications. [2]

2.2 Question Generation Using RAG + LLM

2.2.1 Dataset

The training dataset for the QG model is constructed from official
NCERT textbooks and solutions. Each question is paired with its
corresponding answer and programmatically mapped to a subtopic

based on the textbook structure. This results in a structured dataframe
with fields [Subtopic, Question, Answer], enabling fine-
grained learning of curriculum-aligned patterns.

Additionally, the full NCERT textbook corpus is preprocessed and
indexed as the retrieval base for the RAG module, ensuring that gen-
eration remains grounded in canonical content during both training
and inference.

2.2.2 RAG Pipeline for Question Generation

The Retrieval-Augmented Generation (RAG) pipeline ensures that
generated questions are grounded in NCERT textbook content
through four stages:

1. Query Embedding: Each subtopic is embedded using
BAAI/bge-base-en-v1.5 to form a semantic query
vector.

2. Dense Retrieval: NCERT text is chunked, embedded using the
same model, and indexed in a FAISS IndexFlatIP structure.
The top-k passages (typically k = 5) are retrieved based on cosine
similarity.

3. Reranking: Retrieved chunks are reranked using the
BAAI/bge-reranker-large CrossEncoder, and the
top passages are concatenated into a final context document.
BAAI BGE models are used for both embedding and reranking
due to their strong performance on BEIR benchmarks and
instruction-tuned optimization for semantic retrieval [13].

4. Question Generation: This context is fed into a fine-tuned gen-
erative model (e.g., T5 or BART) to produce curriculum-aligned
questions at the subtopic level.

This two-stage retrieval (dense + reranking) significantly improves
context quality, yielding more relevant and pedagogically appropri-
ate questions.

2.2.3 Methodology

Baseline Model Initial experiments was done using BART and T5
architectures to identify a suitable baseline model for curriculum-
aligned question generation. Initial trials with BART revealed sig-
nificant limitations, including incoherent and repetitive output se-
quences even when prompted with clean, context-rich inputs. For ex-
ample, outputs such as "which which is wants is is is belongs is is..."
were frequently observed, indicating a lack of controlled generation
capacity. In contrast, the T5 architecture, particularly variants fine-
tuned for question generation, demonstrated more fluent and contex-
tually relevant outputs. This is consistent with prior studies [15, 10],
which found that T5-based models outperform BART in QG tasks
across benchmarks like SQuAD, MS MARCO, and NewsQA, with
stronger performance on BLEU, ROUGE-L, and METEOR metrics.
Moreover, models such as valhalla/t5-base-qg-hl, which
adopt a highlight-based encoding strategy, showed improved align-
ment with target answers and greater fluency. Hence T5 is chosen as
the base model for QG.

Fine-Tuning Strategies We employ the following strategies to
fine-tune the T5 model for curriculum-aligned question generation:

• Supervised Fine-Tuning: The model is trained on a supervised
dataset of question–answer pairs extracted from NCERT text-
books and solutions. This forms the foundational approach to
align model outputs with curricular content.



• Self-Instruct Tuning: To improve question diversity and ped-
agogical alignment, we augment training data using self-
instruct [12]. GPT-4 is prompted with a few-shot template to gen-
erate synthetic questions from NCERT passages, and is also used
to filter out low-quality samples.

• Parameter-Efficient Fine-Tuning (PEFT) with Self-Instruct:
To mitigate the computational cost of full-model fine-tuning,
we adopt the LoRA (Low-Rank Adaptation) method [5] in con-
junction with the Self-Instruct framework [12]. Synthetic ques-
tion–answer pairs generated and filtered using GPT-4 are used
to fine-tune the model efficiently via LoRA, allowing instruction
alignment with minimal trainable parameters.

2.2.4 Training Efficiency and Fine-Tuning Observations

Comparison: Full Fine-Tuning vs. PEFT

Full Fine-Tuning. The fully fine-tuned T5 model reaches a val-
idation loss of 0.80 by epoch 3 (from 1.32), indicating rapid con-
vergence. However, this setup incurs high GPU memory usage and
slower training speed (0.03 iterations/sec), with just three epochs tak-
ing 6.8 hours—making longer training impractical on limited hard-
ware.

PEFT + Self-Instruct. Using LoRA-based PEFT and GPT-4-
generated instruction data, the model converges more gradually (val-
idation loss 1.55 at epoch 7.2, from 2.58) but offers significantly re-
duced resource requirements. Training runs at 0.05 iterations/sec and
completes 7.2 epochs in 9.3 hours.

Efficiency Insights.

• PEFT reduces training time, memory consumption, and number
of trainable parameters (typically <1%).

• Despite higher validation loss, PEFT + Self-Instruct achieves
comparable downstream performance, especially when paired
with high-quality synthetic data.

• PEFT acts as an implicit regularizer, preventing overfitting on
instruction-tuned data.

Impact of Self-Instruct Framework
Fine-tuning with GPT-4-generated question–answer pairs (via

few-shot prompting) significantly boosts question quality:

• Better contextual alignment with textbook content.
• Greater variation in cognitive depth (e.g., factual, inferential, ana-

lytical).
• Enhanced grammatical fluency and semantic clarity.

A GPT-4-based filtering loop further improves dataset quality, re-
ducing the need for manual annotations and accelerating curriculum
coverage.

2.2.5 Evaluation of Question Quality

Table 2: Model Evaluation Scores (BERT-F1, ROUGE-L, Self-
BLEU-2)

Model BERT-F1 ROUGE-L Self-BLEU

Base T5 0.8572 0.1835 0.3422
T5 + Supervised FT 0.8531 0.2345 0.3526
T5 + Self-Instruct 0.8485 0.2130 0.3312
T5 + Self-Instruct using PEFT 0.8720 0.2815 0.2984

Table 2 compares four T5-based configurations using three com-
plementary metrics: BERT-F1 (semantic similarity), ROUGE-L (lex-
ical overlap), and Self-BLEU-2 (diversity).

Semantic Accuracy (BERT-F1). All models demonstrate high se-
mantic similarity with ground truth answers. Notably, the PEFT +
Self-Instruct variant achieves the highest score (0.8720), indicating
improved contextual understanding. Even the base T5 performs rea-
sonably well (0.8572), though slightly behind fine-tuned variants.

Lexical Relevance (ROUGE-L). The PEFT + Self-Instruct model
leads with a ROUGE-L of 0.2815, showing better alignment
in surface-level phrasing. Supervised fine-tuning also improves
ROUGE over the base model (0.2345 vs. 0.1835), while self-instruct
tuning offers moderate gains.

Diversity (Self-BLEU-2). Lower Self-BLEU scores indicate
greater output diversity. Here, the PEFT + Self-Instruct variant again
performs best (0.2984), suggesting it avoids overfitting and repeti-
tive phrasing. In contrast, supervised fine-tuning slightly increases
redundancy (0.3526), possibly due to narrow data patterns.

Interpretation. The PEFT + Self-Instruct configuration consis-
tently outperforms others across all metrics, balancing semantic ac-
curacy, lexical precision, and linguistic diversity. These results vali-
date that combining parameter-efficient tuning with high-quality syn-
thetic data enhances question generation effectiveness, while also
maintaining efficiency and generalizability.

2.2.6 Critical Evaluation: Limitations of Non-PEFT
Fine-Tuning

Although the non-PEFT model trained on GPT-4 self-instruct data
shows good token-level convergence (BERT-F1: 0.82–0.89), qualita-
tive analysis reveals significant shortcomings in question quality.

Overfitting to BCE Loss. Low training loss often leads to degener-
ate outputs such as repetitions (e.g., "What is the difference between a
cis-reaction and a cis-reaction?") or incomplete prompts, suggesting
that BCE loss alone is not a reliable proxy for educational quality.

Mismatch Between Metrics and Utility. Despite high BERT-F1,
low-to-moderate ROUGE-L (0.07–0.34) and fluctuating Self-BLEU
(0.18–0.62) indicate limited lexical fidelity and inconsistent diver-
sity—traits not always captured by standard metrics.

Observed Quality Issues. Manual review reveals:

• Grammatically broken or incoherent questions.
• Weak pedagogical framing and vague instructional focus.
• Hallucinations and topic mixing, especially in science-heavy do-

mains.

These issues affirm the need for more structured tuning ap-
proaches, like PEFT, to ensure stable, high-quality educational gen-
eration.

Conclusion. While BCE loss and semantic similarity metrics may
suggest learning progress, the absence of PEFT leads to instability
and overfitting, especially when trained on GPT-4-generated data.
The results affirm that:

Model parameter control via PEFT (e.g., LoRA) not only improves
training efficiency but also acts as an implicit regularizer.

Self-instruct data alone is insufficient unless the model is tuned
with care—either via full fine-tuning with adequate regularization,
or PEFT to prevent overfitting and structural drift.



3 Translation Pipeline

The translation pipeline utilizes Sarvam Translate V1, a domain-
specific model optimized for Indic languages, addressing the limi-
tations of general-purpose LLMs in low-resource translation tasks.
Triggered by the Router Agent’s query classification, the system fol-
lows a RAG-based generation flow, where user queries are first an-
swered in English using a large language model. The generated re-
sponse is then translated into the target Indic language. This archi-
tectural design synergistically combines the strengths of advanced
LLMs for content generation with a specialized translation model,
thereby ensuring both high-quality answers and accurate multilin-
gual output.

3.0.1 Evaluation Metrics for Translation

Given the use of an off-the-shelf translation model, a compara-
tive benchmarking study was performed to determine the optimal
choice for this application. Llama, GPT-4o, and Sarvam models
were evaluated across two distinct datasets, employing BLEU[9] and
METEOR[1] metrics, alongside anecdotal human assessment

Datasets

1. English to Hindi/Malayalam/Tamil/Kannada datasets from
AIKOSH[7].

2. Custom-created dataset of 10 entries of English to Malayalam
from SCERT Kerala English[3] and Malayalam[4] medium text-
books.

Translation Evaluation Results Results are updated below.

Table 3: Dataset1: Translation Model Evaluation Scores (BLEU, ME-
TEOR)

Language BLEU METEOR

Sarvam Llama GPT-4o Sarvam Llama GPT-4o

Hindi 0.12 0.07 0.15 0.31 0.26 0.40
Malayalam 0.05 0.02 0.05 0.16 0.07 0.18
Tamil 0.05 0.02 0.05 0.17 0.09 0.19
Kannada 0.06 0.03 0.05 0.18 0.10 0.17

Table 4: Dataset2: Translation Model Evaluation Scores (BLEU, ME-
TEOR)

Language BLEU METEOR

Sarvam Llama GPT-4o Sarvam Llama GPT-4o

Malayalam 0.04 0.02 0.04 0.18 0.06 0.16

Translation Evaluation Conclusion Initially, our tests on Dataset
1 showed GPT-4o performing well. However, when humans re-
viewed the translations, Sarvam AI consistently seemed better. This
difference made us look closer at Dataset 1, and we realized its trans-
lations (authored by Microsoft) appeared machine-generated and
were not high quality, which might have skewed our initial results.
To get a fairer evaluation, we created a new dataset (Dataset 2) using
real school textbooks. On this new, more domain-relevant dataset,
Sarvam AI clearly performed best in both our automated tests and
human review. This confirmed that Sarvam AI is the best choice for
our application’s translation needs.

4 Conclusion and Future Work
The TutorAI system demonstrates the effectiveness of a modu-
lar, multi-task architecture for delivering curriculum-aligned educa-
tional support. Key capabilities include question answering, auto-
mated question generation, and multilingual response generation, all
grounded in NCERT content through a unified RAG pipeline.

Future work will focus on enhancing personalization by profiling
user learning behavior and adapting tutoring strategies accordingly.
For the Question Generation module, we propose integrating rein-
forcement learning with a reward model trained to assess question
quality—optimizing for pedagogical value, diversity, and relevance
beyond token-level losses. Additionally, incorporating visual content
such as textbook figures and tables may improve the quality of expla-
nations. Multilingual support can be expanded and evaluated using
regional board data for broader inclusivity.

The source code for this project can be accessed at our GitHub
repository.

5 Contributions
All authors contributed significantly to the conceptualization, design,
and implementation of the NCERT AI-Tutor system. Specific contri-
butions are detailed as follows:

• Abijna Rao: Conducted an extensive literature review on ex-
isting question generation (QG) techniques—including answer-
aware QG, encoder-decoder models, and instruction-tuned ap-
proaches—to inform model design decisions. Developed the
QG module tailored to NCERT content and established a ro-
bust evaluation framework using BERT-F1, ROUGE-L, and Self-
BLEU metrics. Implemented and benchmarked multiple fine-
tuning strategies on the T5 model, with a focus on Parameter-
Efficient Fine-Tuning (PEFT) via LoRA and GPT-4–based self-
instruct tuning. Powered RAG with the state-of-the-art BAAI
embedding model. Systematically analyzed model performance
across configurations, highlighting trade-offs in efficiency, qual-
ity, and diversity.

• Jyothsna Shaji: Designed and implemented the orchestration
components like router agent and destination chains, enhanced
with apt prompt engineering, memory and session management.
Built Streamlit UI and integrated Fast API backend with conver-
sational chat interface, quizzing and evaluation. Evaluated llama,
GPT-4 models with Chroma and FAISS for different embedding
models for QA. Explored AgenticAI integration, image embed-
dings and bulk translation with OCR for SCERT texts.

• Malu Jayachandran: Developed and implemented the multilin-
gual translation pipeline, integrating Sarvam Translate V1 for
Indic languages. Orchestrated its seamless operation within the
LangChain framework, including the design and implementation
of session memory management. Conducted comparative anal-
ysis of translation models using BLEU and METEOR metrics,
confirming Sarvam AI’s optimal performance for domain-relevant
output.

• Nirmith V: Developed framework for evaluation of Question An-
swering (QA) module. Conducted the analysis of QA quality us-
ing BERT-F1, ROUGE-L, BLEU and GPT-4 based evaluation.
Proposed the enhancements that could be adopted for more con-
textual evaluation of QA module. Dataset collection from vari-
ous sources and providing clean data for various modules in this
project. Advanced RAG+ method was explored which gives more
application aware reasoning. [14]

https://github.com/jyothsnashaji/NCERT-Tutor/tree/main
https://github.com/jyothsnashaji/NCERT-Tutor/tree/main


• Thangaraj N: Laid the groundwork for the system architecture,
particularly in the implementation of the Retrieval Augmented
Generation (RAG) pipeline using LangChain and OpenAI Models
(gpt-4o-mini). Responsbile for chunking of NCERT textbooks, in-
dexing, embedding(text-embedding-3-small), and storing in vec-
tor store(FAISS). Prompt engineering for QA and Quiz Genera-
tion module of the system.
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