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ABSTRACT

In this paper, we address the problem of 3D human motion generation, which
aims at learning a model to generate plausible and diverse future sequences of 3D
human poses from an observed one. Current state-of-the-art solutions propose in-
jecting a single random latent vector into a deterministic motion prediction frame-
work. The stochasticity in the generative process is thus modeled at the whole se-
quence level, which is inconsistent with the inherent time-dependent uncertainty
of human motion (e.g. people can jump or walk after getting up from a chair). To
overcome this limitation we propose Hierarchical Transformer Dynamical Varia-
tional Autoencoder (HiT-DVAE), a deep generative model with sequential latent
variables that can efficiently learn the stochastic dynamics of human motion. The
proposed model learns an expressive time-varying latent space that encodes di-
verse and realistic human motions. A thorough evaluation on HumanEva-I and
Human3.6M datasets using various metrics shows that HiT-DVAE performs better
than current state-of-the-art methods. Our code will be released upon publication.

1 INTRODUCTION

Human motion forecasting has drawn much attention with a wide range of applications such as
autonomous driving (Brian et al., 2016), human-robot interaction (Hema & Ashutosh, 2013), and
3D game productions (Van Welbergen et al., 2010). Deterministic human motion prediction, which
aims at forecasting the exact future based on a sequence of past observation (Fragkiadaki et al.,
2015; Martinez et al., 2017; Mao et al., 2019; Guo et al., 2022a), has a quick development with
the availability of large-scale datasets (Ionescu et al., 2014; Mahmood et al., 2019). While this
task ignores the time-dependent uncertainty of human motion (future motion always has multiple
reasonable possibilities, e.g. seeing a person lifting his hand, it is hard to tell if he is going to high-
five or waving goodbye). Recent works about stochastic human motion generation take this problem
into consideration and aim at generating diverse but plausible future motions (Yan et al., 2018; Yuan
& Kitani, 2020; Mao et al., 2021; Dang et al., 2022).

Stochastic human motion generation introduces several challenges: i) dynamics: a generation model
must be able to learn and mimic the dynamics of the 3D human motion and avoid collapsing to
a static motion. ii) diversity: in contrast to deterministic motion prediction, the generation task
should not only learn average motion patterns but needs to faithfully reflect the intrinsic intra-class
variability. iii) contextual consistency: the generated motions have to be contextually consistent
with the observed motion.

Some of these challenges have been partially addressed in previous works. For example, MT-
VAE (Yan et al., 2018) combines a motion prediction model based on a recurrent neural network
(RNN) with a conditional variational autoencoder (CVAE). The difference between the observed
and future poses is encoded into the CVAE latent variable, which was then concatenated with the
RNN’s hidden state to account for the dynamics. DLow (Yuan & Kitani, 2020) proposes to generate
a diverse set of motion sequences by training a large number of different encoders (fifty in their
implementation) and a single decoder, obtaining different instances of the latent variable to generate
different motions. GSPS (Mao et al., 2021) inherits the diversity loss from DLow but uses a motion
prediction framework based on graph convolutional network (GCN) rather than RNN. The diver-
sity of the generated motions is enforced by concatenating random noise to the observed sequences.
More recently, Dang et al. (2022) proposes to encode the past observations into a base vector space
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Figure 1: Conditional variational autoencoder (CVAE) based methods (left) aim to encode a se-
quence of observations into a single latent embedding and learn to generate future motions by com-
bining samples from this single latent space with past observations. Our method HiT-DVAE (right)
aims to learn a sequential generative model for the joint distribution of data and latent variables. The
generation of human motion is conducted using the alternate generations of zt and xt.

and generate diverse future observations from different soft assignments of the base vector where
the coefficients of the Gaussian distributions are obtained from a Gumbel-Softmax Sampling (Jang
et al., 2017; Maddison et al., 2017).

One common denominator of the above methods is that they all encode the whole sequence of ob-
served human poses into a single time-independent embedding, thus modeling the stochasticity in
the generative process at the whole sequence level. However, this is inconsistent with the inherent
time-dependent uncertainty of human motion. This motivates us to propose HiT-DVAE based on
dynamical variational autoencoders (DVAEs) (Girin et al., 2021) which could inherently generate
the diversity of sequential outputs. By using a DVAE, the sequence of observations is encoded into a
sequence of latent vectors, instead of only using a single latent vector as done in the aforementioned
approaches, see Figure 1. This offers larger flexibility to learn and exploit the motion dynamics
(Girin et al., 2021). Specifically, we model the generative process with auto-regressive dependen-
cies, in a way that the generation of each frame depends on the previous information, including the
previous and the present latent representations and also the previous poses. These auto-regressive
dependencies are implemented with a Transformer-based architecture(Vaswani et al., 2017).

Evaluating the quality of the generated data is an open problem in computer vision. For 3D human
motion generation, previous works either evaluate the generated data directly on the joint coordinates
of the poses (Yuan & Kitani, 2020; Mao et al., 2021) or evaluate on the feature spaces based on a
pre-trained feature extractor (Petrovich et al., 2021; Guo et al., 2020). However, both protocols
have clear shortcomings: the former just evaluates the best-generated sample and the diversity of
all generated data, ignoring the quality of most generated results except for the best one; while
the latter depends on the quality of the pre-trained feature extractor. To fully evaluate the data
generation quality, we use both evaluation methods and broaden the former by evaluating not only
the best-generated sample but also the median result, to consider the overall quality of the generation
results and take performance stability into consideration.

We thoroughly test HiT-DVAE on HumanEva-I and Human3.6M datasets, using both explicit
(coordinate-based) and implicit metrics (feature-based) to measure the quality of the generated data.
Experimental results show that HiT-DVAE consistently achieves state-of-the-art performance on
most of the metrics for both datasets, leading to high-quality 3D human pose sequence generation
(smaller errors, better features, correct action).

In summary, our contributions are threefold:

• We propose to use a latent-variable model with a sequence of latent vectors associated with a
sequence of data vectors instead of just using a single latent vector, to better model the inherent
time-dependent uncertainty of human motion.

• We design the first combination of a Transformer with a DVAE model for 3D human motion
generation and show that this model is able to generate high-quality 3D human motion data by
experiments on widely used datasets.

• We discuss the pros and cons of current evaluation protocols for motion generation and broaden
the evaluation metrics to better evaluate the quality of generated data.
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2 RELATED WORK

Deterministic human motion prediction. Deterministic human motion prediction aims at regress-
ing a single future motion from the past observation which is the most likely to the ground truth.
Due to the inherent sequential structure of human motion, 3D human motion prediction has been
mostly addressed with RNNs (Fragkiadaki et al., 2015; Jain et al., 2016; Martinez et al., 2017).
Meanwhile, recent approaches demonstrate the effectiveness of modeling the spatial connectivity
of human joints with GCNs (Mao et al., 2019; Dang et al., 2021; Ma et al., 2022), self-attention
(Transformers) (Aksan et al., 2021; Cai et al., 2020) or simply with multi-layer perceptrons (Bouaz-
izi et al., 2022; Guo et al., 2022b). While deterministic methods have achieved promising results,
they exhibit strong limitations when it comes to modeling the diversity of plausible human motion
forecasts.

Stochastic human motion generation. Different from human motion prediction, the task of human
motion generation focuses on generating various possibilities of the future to model the uncertainty
of motion. While some works alleviate this problem by leveraging the corresponding action la-
bels (Guo et al., 2020; Petrovich et al., 2021) or text information (Tevet et al., 2022; Petrovich et al.,
2022), in this work we focus on generating future motion merely from past observations. To solve
this problem, two types of approaches have been studied in the recent past: (i) the enhancement
of deterministic methods with stochastic variations, e.g., incorporating noise, and (ii) leveraging
conditional variational architectures that learn a probability distribution (see Fig. 1 left). In the
first category, early works include combining random noise with hidden states either by concate-
nation (Lin & Amer, 2018; Kundu et al., 2019) or addition (Barsoum et al., 2018). More recently,
Mao et al. (2021) further investigated this paradigm with a GCN-based motion prediction model
and showed promising results with dedicated losses. In the second category, past observations are
encoded to learn a latent space, then a random variable is sampled and combined with observations
to predict the future (Walker et al., 2017; Yan et al., 2018; Aliakbarian et al., 2020; Cai et al., 2021;
Aliakbarian et al., 2021). Recently, DLow (Yuan & Kitani, 2020) proposed to explicitly generate a
large number of samples during training, then use an energy function to promote the diverse gener-
ation. This approach was later ameliorated by Dang et al. (2022) with a Gumbel-Softmax sampling
from an auxiliary space to get rid of learning massive encoders in DLow. Rather than modeling the
whole observation into a single embedding, HuMor (Rempe et al., 2021) exploits an auto-regressive
generative model where the current generation will depend on the past prediction. However, HuMor
has to use the SMPL (Loper et al., 2015) parameters which are not eligible for many of the motion
datasets.

3 METHOD

The problem of 3D human motion generation can be formalized as follows. Given a sequence of O
observed pose vectors x1:O = [x1, . . . ,xO], we aim at generating a sequence of the following G
frames xO+1:O+G = [xO+1, . . .xO+G]. Each pose vector xt ∈ RJ×3 represents the 3D Cartesian
coordinates of the J joints of a person at time t. For convenience, we use x1:T (T = O+G) to rep-
resent the entire sequence in the following. Different from deterministic human motion prediction,
we intend to generate multiple plausible future motion sequences. To this end, we propose a new
model named Hierarchical Transformer Dynamical Variational AutoEncoder (HiT-DVAE) based on
DVAE to deal with the uncertainty of human motion.

3.1 BACKGROUND: THE DVAE FAMILY

The proposed HiT-DVAE model is based on the family of dynamical variational autoencoders
(DVAEs) (Girin et al., 2021). In a DVAE, the generation of a time series of observed data vec-
tor x1:T involves an associated time series of latent vectors z1:T . This is opposed to a “static” VAE
which encodes x1:T into a single latent variable z. In the most general DVAE formulation, the time
dependencies within and across x1:T and z1:T are of the autoregressive type and are implemented
with RNNs.

In addition to the time-dependent latent variables z1:T , we further add a time-independent latent
variable w to grasp the global context of the whole sequence, inspired by Petrovich et al. (2021) and
Li & Mandt (2018). While different from Petrovich et al. (2021), our w is learned in an unsupervised
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Figure 2: Overview of HiT-DVAE. The Encoder (left) inputs the observed sequence x1:T to estimate
the posterior distribution of the time-dependent latent variables z1:T and time-independent latent
variable w. Then the Decoder (right) reconstructs the motion and the priors of z.

manner within the DVAE methodology, thus not requiring action class labels (Li & Mandt, 2018).
The general form of the generative model that we use in this work writes:

pθ(x1:T , z1:T ,w) = pθw(w)

T∏
t=1

pθx(xt|x1:t−1, z1:t,w)pθz(zt|x1:t−1, z1:t−1,w), (1)

where pθw(w) is a standard normal distribution. pθx(xt|x1:t−1, z1:t,w) = N (xt;µθx,t,Σθx,t)
and pθz(zt|x1:t−1, z1:t−1,w) = N (zt;µθz,t,Σθz,t), where N (·; µ,Σ) denotes the Gaussian dis-
tribution of mean vector µ and covariance matrix Σ. θz and θx denote the parameters of the neural
network which generates the parameters of the corresponding density functions, and θ = θz ∪ θx.

In order to learn this generative model, an inference model with parameters φ = φw ∪ φz is
introduced. In the present work, we consider the following inference model:

qφ(z1:T ,w|x1:T ) = qφw(w|x1:T )

T∏
t=1

qφz(zt|x1:T ,w), (2)

where qφw(w|x1:T ) = N (w;µφw ,Σφw) and qφz(zt|x1:T ,w) = N (zt;µφz,t,Σφz,t).

The training objective is to maximize the Evidence Lower Bound (ELBO):

L(θ,φ;x1:T ) = Eqφ(z1:T ,w|x1:T ) [ln pθ(x1:T , z1:T ,w)− ln qφ(z1:T ,w|x1:T )] . (3)

3.2 HIT-DVAE

Although the above equations define the probabilistic dependencies between the different random
variables, there are plenty of ways to implement these dependencies. In previous literature, this
is always realized by RNNs (Girin et al., 2021). In this paper, we propose a hierarchical DVAE
architecture based on the Transformer of Pavlakos et al. (2017). The pipeline of HiT-DVAE is
shown in Figure 2, and the pseudo-code for training and generation could be found in Appendix D.

3.2.1 GENERATIVE MODEL (HIT-DVAE DECODER)

The generation of both x1:T and z1:T is performed via the multi-head attention (MHA) mechanisms
of the original Transformer architecture (Vaswani et al., 2017). The outputs of the two cross MHA
modules are the parameters of the respective probability distributions defined in Equation 1. Note
that in the present implementation, we set Σθx,t = I (the identity matrix), as in previous works
(Aliakbarian et al., 2021; Rempe et al., 2021; Guo et al., 2020; Petrovich et al., 2021; Yuan & Kitani,
2020). The covariance matrix Σθz,t is a diagonal matrix (the diagonal entries being in the vector
vθz,t). The output of the first MHA module is thus {µθz,t,vθz,t}, and the output of the second
MHA module is µθx,t. As for the inputs of the MHA modules, it is noted that the past observations
are first processed with a Spatial Graph Convolutional Network (SGCN) that extracts pose features
from the raw poses xt. We denote this pose feature extraction operation as fD and we detail it below.
Then, the generative processes of xt and zt differ on what variables are used as queries, keys, and
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values in the attention mechanism. In the present work, the decoder is given by:

µθx,t = MHA (Qθx,t,Kθx , Vθx) (4)

Qθx,t =

[
zt
w

]
,Kθx = Vθx = [ fD(x1), . . . , fD(xT ) ] , (5)[

µθz,t

vθz,t

]
= MHA (Qθz,t,Kθz , Vθz) , (6)

Qθz,t =

[
fD(xt−1)

w

]
,Kθz = Vθz = [ z1, . . . , zT ] , (7)

where a mask is used to prevent zt and xt from being generated from future latent and observed
variables. More discussions could be found in Appendix A.

In the conventional Transformer architecture, the past observations (e.g. x1:t−1) are used as queries
(Q) for the generation of the current state (e.g. xt). However, in our implementation, we use the
past observations as keys (K) and values (V ). This is motivated by the fact that this led to notably
better results than with the “conventional” variable ordering. An intuitive explanation is that directly
exploiting x1:t−1 to predict xt leads to poor information in z1:T and a poor decoder capacity.

3.2.2 INFERENCE MODEL (HIT-DVAE ENCODER)

The inference of the latent variables w and z1:T from x1:T at the HiT-DVAE encoder is performed
via a multi-head self-attention mechanism (MHSA). Pose features are first extracted with an SGCN
similar to the one of the decoder and denoted here fE. The series of pose features are then fed
into a temporal GCN with T nodes, where each node indicates a time frame, and then into a fully
connected (FC) layer to output the posterior mean and covariance matrix of w. A sample of w is
drawn from the corresponding posterior, concatenated to the pose features extracted from x1:T , and
then fed into the Transformer encoder such that:[

µφz,t

vφz,t

]
= MHSA (Qφz,t,Kφz , Vφz) , (8)

Qφz,t =

[
fE(xt)

w,

]
, (9)

Kφz = Vφz =

[
fE(x1), . . . , fE(xT )

w, . . . , w

]
, (10)

where each of the output at index t indicates the distribution parameters of the latent variable zt,
namely µφz and Σφz (with diagonal entries vφz,t).

3.3 TRAINING AND TESTING

In the case of the proposed HiT-DVAE, optimizing ELBO (see Equation 3) boils down to (i) min-
imizing the L2 loss on the reconstructed poses while (ii) minimizing the KL divergence between
the posterior and prior distributions over the latent variables (LELBO = −L(θ,φ;x1:T )). Follow-
ing Yuan & Kitani (2020) and Mao et al. (2021), we explicitly generate K motion sequences and
compute the reconstruction loss with respect to the ground-truth as well as the pseudo-multi-modal
ground-truth. And we also promote the diverse generation (LDIV) and penalize unrealistic samples
(LREAL). Details and more explanations could be found in Appendix C. Altogether, our final training
loss writes:

L = LELBO + LDIV + LREAL. (11)

The above losses allow training the proposed HiT-DVAE model to reconstruct full sequences x1:T .
At training time, the model is trained from ground-truth (GT) input sequences. At test time, between
O+1 and O+G, the previously generated data vectors are used at input, but not the GT. There is thus
a mismatch between the training and testing condition, which degrades the quality of the generated
sequences. To avoid this mismatch, we use scheduled sampling during training (Bengio et al., 2015):
we progressively introduce the past generated vectors at the input during the training iterations which
improves the quality of generated data, see Section 4.4 for more discussion.
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Once our model is trained, we could use it to generate various future motion sequences of arbitrary
length. Given O observations x1:O, we sample z1:O and w from the inference model. Then, we
generate the next G frames x̂O+1:O+G by recursively sampling from the generative distributions
pθx(xt|x1:t−1, zt,w) and pθz(zt|xt−1, z1:t−1,w). The diversity of generated data comes from the
different samples of zO+1:O+G and w.

4 EXPERIMENTS

4.1 DATASETS

Following Mao et al. (2021) and Yuan & Kitani (2020), we train and evaluate the proposed method
on the Human3.6M (Ionescu et al., 2013) and HumanEva-I (Sigal & Black, 2006) datasets, and
remove global translations of the poses for both datasets.

Human3.6M is the most commonly used dataset for human motion-related tasks. It contains 7
actors (S1,5,6,7,8,9,11) performing 15 annotated actions recorded at 50 Hz. The human pose is
represented by 32 joints, while we follow Mao et al. (2021) and only use 17 of the joints in the
training and all testing implementations of HiT-DVAE. We use S1,5,6,7,8 as the training set and the
other two subjects as the test set. To be comparable with previous methods(Mao et al., 2021; Yuan
& Kitani, 2020), we observe the first 25 frames and predict the next 100 frames (O = 25, G = 100).

HumanEva-I contains 5 actions (Box, Gesture, Jog, ThrowCatch, Walking) performed by 3 actors,
recorded at 60 Hz. Each pose is represented by 15 joints. Following previous literature(Mao et al.,
2021; Yuan & Kitani, 2020), We observe the first 15 frames and predict the next 60 frames (O = 15,
G = 60).

4.2 EVALUATION PROTOCOLS

Explicit evaluation metrics. Following Mao et al. (2021) and Yuan & Kitani (2020), we evaluate
the error and diversity of our results with the following metrics, calculating directly on the joint
locations of poses: (i) Average Pairwise Distance (APD): average L2 distance between all pairs of
generated sequences: 1

K(K−1)
∑K

i=1

∑K
j=1,j 6=i ‖x̂i

O+1:O+G − x̂j
O+1:O+G‖2, where K is the total

number of generated sequences. APD measures the capacity of the model to generate diverse sam-
ples without considering their quality. (ii) Average Displacement Error (ADE): L2 distance between
the ground truth and the best generated sample with minimum error among all, averaged over all
frames of the sequence: 1

G mink ‖x̂k
O+1:O+G−xO+1:O+G‖2. ADE evaluates the upper bound of the

generation quality of a model but not its usual performance. (iii) Final Displacement Error (FDE):
Similar to ADE, FDE evaluates the distance between the ground truth and the best sample, but just
on the final frame instead of the whole sequence: mink ‖x̂k

O+G − xO+G‖. (iv) Multi-Modal ADE
(MMADE) and Multi-Modal FDE (MMFDE): ADE and FDE on pseudo-multi-modal ground-truth.

These coordinate-based metrics are widely used for evaluating the quality of generated mo-
tion (Ionescu et al., 2013), in terms of explicit diversity on Cartesian coordinates and the upper
bound of the generated samples (i.e. the best sample). However, when merely using these metrics,
we could not avoid the corner case where the model tends to generate a few samples with high qual-
ity and the others which totally fail. In this case the model could still achieve high scores both in
APD and ADE/FDE, whereas it lost our original intention to generate plausible and diverse future
sequences.

To this end, we propose two solutions: (1) instead of just evaluating (ii-iv) on the best sample,
we also evaluate these criteria on the median example, i.e. the generated motion with the median
error instead of minimum error among all generated examples; (2) in addition to these explicit
measurements based on pose coordinate, we also consider implicit measurements based on a pre-
trained action classifier to evaluate on feature space, as described below.

Implicit evaluation metrics. Following Petrovich et al. (2021) and Guo et al. (2020), we use a
GRU-based action classifier pre-trained on real data to evaluate the quality of generated data by: (i)
calculating Recognition Accuracy(Acc) of the classifier on generated data to evaluate if they could
be recognized as the correct action class; (ii) extracting features of the generated data and real data
respectively by the same action classifier, and calculating the Frechet Inception Distance (FID) of
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Table 1: Results on HumanEva-I. “Real data” means real motion in the testing set, showing the
theoretical upper bounds of accuracy (Acc) on generation methods. The suffix “b” or “m” represents
the best/median metrics. ↑ (↓) means higher (lower) is better. † indicates results taken from DLow,
? indicates results obtained by using the official code repository.

Acc
(%) ↑

FID
↓

APD
(m) ↑

ADEb
(m) ↓

FDEb
(m) ↓

MMADEb
(m) ↓

MMFDEb
(m) ↓

ADEm
(m) ↓

FDEm
(m) ↓

MMADEm
(m) ↓

MMFDEm
(m) ↓

Real data 88.3 - - - - - - - - - -

ERD† Fragkiadaki et al. (2015) - - 0 0.382 0.461 0.521 0.595 - - - -
acLSTM† Li et al. (2017) - - 0 0.429 0.541 0.530 0.608 - - - -
Pose-Knows†Walker et al. (2017) - - 2.308 0.269 0.296 0.384 0.375 - - - -
MT-VAE† Yan et al. (2018) - - 0.021 0.345 0.403 0.518 0.577 - - - -
HP-GAN† Barsoum et al. (2018) - - 1.139 0.772 0.749 0.776 0.769 - - - -
BoM† Bhattacharyya et al. (2018) - - 2.846 0.271 0.279 0.373 0.351 - - - -
GMVAE† Dilokthanakul et al. (2016) - - 2.443 0.305 0.345 0.408 0.410 - - - -
DeLiGAN† Gurumurthy et al. (2017) - - 2.177 0.306 0.322 0.385 0.371 - - - -
DSF† Yuan & Kitani (2019) - - 4.538 0.273 0.290 0.364 0.340 - - - -
DLow? Yuan & Kitani (2020) 52.7 3.472 4.853 0.248 0.262 0.361 0.337 0.577 0.717 0.646 0.753
GSPS? Mao et al. (2021) 51.6 1.604 5.825 0.233 0.244 0.343 0.331 0.686 0.794 0.735 0.825
GumbelSample? Dang et al. (2022) 62.4 1.457 6.109 0.220 0.234 0.342 0.316 0.698 0.758 0.744 0.783

HiT-DVAE 72.6 0.089 4.721 0.282 0.261 0.335 0.290 0.579 0.665 0.610 0.683

Table 2: Results on Human3.6M. “Real data” means real motion in the testing set, showing the
theoretical upper bounds of accuracy (Acc) on generation methods. ↑ (↓) means higher (lower) is
better. † indicates results taken from DLow, and ? indicates results obtained by using the official
code repository.

Acc FID APD ADE FDE MMADE MMFDE ADE FDE MMADE MMFDE
(%) ↑ ↓ (m) ↑ Best sample (m) ↓ Median sample (m) ↓

Real data 85.5 - - - - - - - - - -

ERD† Fragkiadaki et al. (2015) - - 0 0.722 0.969 0.776 0.995 - - - -
acLSTM† Li et al. (2017) - - 0 0.789 1.126 0.849 1.139 - - - -
Pose-Knows†Walker et al. (2017) - - 6.723 0.461 0.560 0.522 0.569 - - - -
MT-VAE† Yan et al. (2018) - - 0.403 0.457 0.595 0.716 0.883 - - - -
HP-GAN† Barsoum et al. (2018) - - 7.214 0.858 0.867 0.847 0.858 - - - -
BoM† Bhattacharyya et al. (2018) - - 6.265 0.448 0.533 0.514 0.544 - - - -
GMVAE† Dilokthanakul et al. (2016) - - 6.769 0.461 0.555 0.524 0.566 - - - -
DeLiGAN† Gurumurthy et al. (2017) - - 6.509 0.483 0.534 0.520 0.545 - - - -
DSF† Yuan & Kitani (2019) - - 9.330 0.493 0.592 0.550 0.599 - - - -
DLow? Yuan & Kitani (2020) 65.9 1.412 11.741 0.425 0.518 0.495 0.531 0.896 1.284 0.948 1.289
GSPS? Mao et al. (2021) 65.0 2.030 14.757 0.389 0.496 0.476 0.525 1.013 1.372 1.065 1.381
GumbelSample? Dang et al. (2022) 66.5 2.659 15.310 0.370 0.485 0.475 0.516 0.922 1.345 1.005 1.361

HiT-DVAE 70.0 1.708 8.942 0.472 0.505 0.497 0.514 0.804 1.034 0.812 1.028

these two distributions to evaluate the overall quality of the generated data. We train a classifier for
each of the datasets separately on their training splits.

4.3 QUANTITATIVE RESULTS

We evaluate HiT-DVAE on HumanEva-I and Human3.6m dataset using the explicit and implicit
metrics described in Sec 4.2 and observe that the proposed method outperforms the state-of-the-art
methods on most of the evaluation metrics. Note that considering the large number of metrics used
(some of them are even incompatible), we aim to find a balance of all the metrics to get overall good
performance.

HumanEva-I As shown in Table 1, HiT-DVAE achieves significantly better results than other
state-of-the-art methods on ACC and FID. This means that the feature distributions of the motions
generated by HiT-DVAE are more similar to the corresponding ground-truth, and the action patterns
of these generated motions could be better recognized. Besides, we observe that HiT-DVAE achieves
comparable results with state-of-the-art on explicit evaluation of diversity (APD) and errors of the
best sample (ADEb, FDEb, MMADEb, MMFDEb). As discussed in Sec 4.2, just considering errors
of the best sample along with the diversity is not reliable, thus it is important to consider the error
of median samples. We could find that HiT-DVAE is also better on median errors (ADEm, FDEm,
MMADEm, MMFDEm), indicating better overall generation quality. Note that APD is not always
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Table 3: Ablation study on different architecture designs on HumanEva-I and Human3.6M. “w/o
SS” means without scheduled sampling, “w/o Att.” means using an LSTM instead of transformer,
“w/o w” means without using the time-independent latent variable w. “w/o Att. & w ” means
without attention and no use of w.

Architecture ACC
(%) ↑

FID
↓

APD
(m) ↑

ADEb
(m) ↓

FDEb
(m) ↓

MMADEb
(m) ↓

MMFDEb
(m) ↓

ADEm
(m) ↓

FDEm
(m) ↓

MMADEm
(m) ↓

MMFDEm
(m) ↓

HumanEva-I

HiT-DVAE 72.6 0.089 4.721 0.282 0.261 0.335 0.290 0.579 0.665 0.610 0.683
w/o SS 69.6 0.359 4.777 0.314 0.300 0.358 0.315 0.596 0.708 0.624 0.727
w/o Att. 72.9 0.264 3.921 0.265 0.243 0.348 0.295 0.510 0.604 0.569 0.650
w/o w 74.0 0.306 4.244 0.287 0.263 0.360 0.303 0.535 0.662 0.591 0.689
w/o Att. & w 76.5 1.262 0.023 0.538 0.621 0.594 0.660 0.538 0.622 0.595 0.662

Human3.6M

HiT-DVAE 70.0 1.708 8.942 0.472 0.505 0.497 0.514 0.804 1.034 0.812 1.028
w/o SS 65.0 1.751 10.339 0.477 0.513 0.501 0.519 0.867 1.108 0.877 1.101
w/o Att. 70.5 1.475 7.189 0.537 0.569 0.555 0.567 0.805 1.060 0.826 1.056
w/o w 71.1 1.565 6.249 0.528 0.582 0.557 0.590 0.735 0.942 0.753 0.942
w/o Att. & w 64.2 0.659 2.688 0.752 0.892 0.787 0.896 0.897 1.184 0.934 1.186

Table 4: Ablation study on different loss terms on HumanEva-I and Human3.6M. The suffix “b”
or “m” represents the best/median metrics. Using all three losses results in the best performance.

LELBO LDIV LREAL
ACC
(%) ↑

FID
↓

APD
(m) ↑

ADEb
(m) ↓

FDEb
(m) ↓

MMADEb
(m) ↓

MMFDEb
(m) ↓

ADEm
(m) ↓

FDEm
(m) ↓

MMADEm
(m) ↓

MMFDEm
(m) ↓

HumanEva-I

X X X 72.8 0.080 4.823 0.280 0.251 0.333 0.282 0.583 0.690 0.615 0.705
X X 62.7 0.621 137.207 0.306 0.279 0.356 0.315 0.636 0.677 0.669 0.698
X 70.5 0.271 4.848 0.287 0.258 0.335 0.289 0.591 0.687 0.616 0.693

Human3.6M

X X X 70.0 1.708 8.942 0.472 0.505 0.497 0.514 0.804 1.034 0.812 1.028
X X 68.7 1.778 9.604 0.460 0.495 0.485 0.501 0.865 1.107 0.875 1.102
X 69.4 1.690 9.398 0.461 0.507 0.487 0.507 0.838 1.098 0.849 1.092

better for larger values, because extremely large diversity usually comes with large joint errors for
most generation results (“median” metrics), and also low recognition accuracy. This represents that
some of the generated samples might totally fail and the quality of generation is not guaranteed.

Human3.6M Similar conclusions can be drawn from the results on the Human3.6M dataset, as
shown in Table 2. When training the action classifier for Human3.6M dataset, we group the 15
actions into 5 groups instead of training on all the 15 action labels (see details in Appendix E). This is
because Human3.6M dataset is not designed for action classification and some actions in this dataset
are quite alike. For example, we could not see many differences between “eating” and “smoking” by
looking at the skeletons of a person. The re-grouping is based on the confusion matrix of an initial
classifier trained on real data with all class labels. After re-grouping, the average classification
accuracy on real data increases from 48.1% to 85.5%. We report results using this 5-group classifier
because we believe that a better classifier is more reliable for calculating accuracy and extracting
features for FID. Note that even on the 15-action classifier with low real-data accuracy, HiT-DVAE
still performs better than other state-of-the-art methods, see details in Appendix E.

4.4 ABLATION STUDY

Table 3 shows ablation studies on HiT-DVAE with different architecture designs. We put the best
results in bold and underline the second. We could find that without schedule sampling (“w/o SS”),
HiT-DVAE tends to generate more diverse results but with worse quality either on explicit metrics
or implicit metrics. Compared with using LSTM (“w/o Att.”), we found that the use of the attention
mechanism brings higher overall generation quality with better performance on explicit metrics and
multi-modal metrics. Besides, the global time-independent variable w brings more diversity for
both datasets (“w/o w”). When we consider a vanilla DVAE model (“w/o Att. & w”) without the
hierarchical transformer (HIT) architecture, it is very likely to collapse to a static state on the se-
quential latent space, which leads to moderate generation quality, and much worse diversity (APD =
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Figure 3: Qualitative visualization on four different actions of the HumanEva and Human3.6M
datasets. “Start”/“GT” means the last observed frame / the ground truth last frame respectively.
The subsequent frames correspond to the last frames of 10 different generated sequences. Note that
GSPS (Mao et al., 2021) and DLow (Yuan & Kitani, 2020) highly diverge from that last GT frame
or tend to have generations with less diversity. While our approach generates different alternatives
and keeps the essence of the particular action.

0.023 for HumanEva-I and APD = 2.688 for Human3.6M). The final setting of HiT-DVAE performs
well on almost all the metrics and balances different evaluations.

Moreover, to further understand the impact of each loss term on the performance, we conduct an
ablation study on the three loss terms in Table 4. We observe that LDIV increases the diversity and
facilitates the model to generate different motion sequences, and LREAL can help compensating for
excessive diversity which results in non-realistic and non-feasible poses (i.e. APD = 137.207 in
HumanEva-I).

4.5 QUALITATIVE RESULTS

To qualitatively evaluate our generated results, we visualize various generating samples of our meth-
ods in Figure 3 compared with other state-of-the-art methods. we can see that other methods either
generate very similar samples for all the generations or result in some weird motions, while our
method performs well on all the generations with diverse but reasonable results. More visualiza-
tions in video with a simple user study could be found in Appendix F.

5 CONCLUSIONS

In this paper, we investigate the temporal probabilistic model combined with attention mechanisms
for human motion generation. In particular, we proposed a deep generative model, HiT-DVAE,
modeling temporal dependencies between the observations and the latent variables. The use of
our method enables the motion dynamics to be learned from a sequence of latent variables instead
of a single latent variable, which gives richer representation information for human motion which
has inherent time-dependent uncertainty and thus results in better performance. We evaluated our
method on two widely used datasets, HumanEva and Human3.6M, and reported state-of-the-art
results with various evaluation metrics.
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ETHICAL STATEMENT

The proposed research raises few direct ethical concerns since the contributions of the paper did
not require the collection/sharing of new data or experiments on humans. Possible ethical concerns
could arise, though, from the datasets used in our experiments, and more precisely from the potential
biases, these datasets could induce. Regarding Human3.6M, the gender of actors was balanced, and
a certain diversity of body mass index was also sought. However, there could still be biases e.g.
related to cultural background, since we do not have any information about that. The information
available on the HumanEva dataset is scarce, and it is difficult to understand the potential biases it
can contain.

REPRODUCIBILITY STATEMENT

As mentioned in the abstract, the code and pretrained models will be publicly released upon accep-
tance. This includes the code for the data loaders, the model, the training, and the evaluation codes.
For a primary test or proof of concept, please refer to Appendix B for the implementation details
and Appendix D for the pseudo-code.
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A PROBABILISTIC DEPENDENCIES VIA MASKED MHA

The temporal dependencies are implemented via the mask of the attention modules of the trans-
former decoder and encoder. The attention matrix in a Transformer layer is computed as follows:

Att(Q,K,V ) = Softmax
(
M ◦ QK

T

√
dk

)
V , (12)

where Q,K,V represent the query, key, and value, and dk represents the input feature dimension
of the query and key. M is the attention mask and ◦ denotes the element-wise multiplication.
Obviously, an upper triangular mask without a diagonal can prevent the model to see the future
input. In this case, we can generate the entire sequence of x1:T or z1:T simultaneously. In practice,
given an observed sequence with length T , we only generate x2:T and z2:T to bypass the estimation
of initial state x0 and z0.

(a) pθx(xt|x1:T , zt,w) (b) pθx(xt|x1:t−1, zt,w) (c) pθx(xt|xt−1, zt,w)

Figure 4: Probabilistic dependencies on the generation of xt with different mask designs, the yellow
blocks indicate the elements that will be masked in the attention computation.

Figure 4 shows three cases of probabilistic dependencies when using different masks in the Trans-
former layer. Note that Figure 4 (a) is a non-causal situation, thus we can not generate future motion
via these dependencies. The mask in Figure 4 (c) will make the attention computed only on one
element, thus the attention mask is meaningless in this case. We choose the mask shown in Figure 4
(b) in our proposed HiT-DVAE.

B IMPLEMENTATION DETAILS

We set the dimension of zt to 16 and w to 32, and employ the same GCN architecture described
in (Mao et al., 2019). We use 1 GCN block with a hidden size of 8 for spatial GCN and 4 GCN
blocks with a hidden size of 64 for temporal GCN. For the Transformer encoder and the decoder
for generating zt, we set the input feature dimension to 64, with 4 multi-head, followed by a FC
layer with a dimension of 256, whereas for the Transformer decoder to generate xt, we set those
parameters to 256, 4, 1024 respectively.

We generate K = 50 samples for each observation. We train the model for 500 epochs with 1000
training samples per epoch, using the Adam optimizer, and set the learning rate to 0.001, batch size
to 64 for HumanEva, and 32 for H3.6M. We applied a linear KL annealing (Sønderby et al., 2016)
for the first 20 epochs to warm up the latent space, then we take 80 epochs to increase the probability
of schedule sampling from 0 to 1. For HumanEva, we train with a sequence length of 75, where
the inference of w only takes 15 frames with a random start point. The weights of different loss
terms (λR, λMM , λDIV−l, λDIV−u, λL, λA, λNF , λKL−Z , λKL−W ) and the normalizing factors
(αl, αu) are set to (10, 5, 0.1, 0.2, 100, 1, 0.001, 0.5, 0.1) and (15, 50). For H3.6M, we train with a
sequence length of 125, where w is inferred from 25 frames. The weights of different loss terms and
the normalizing factors are set to (20, 10, 0.1, 0.2, 100, 1, 0.01, 0.5, 0.1) and (100, 300) respectively.
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C TRAINING LOSSES

C.1 PSEUDO-MULTI-MODAL GROUND TRUTH

Following Yuan & Kitani (2020) and Mao et al. (2021), we select pseudo-multi-modal ground truth
from the training dataset T using the distance between the last pose of the history. That is, for a
training sample x1:T ∈ T , we have its pseudo ground truth xm

1:T when:

||xO − xm
O ||2 < τ, ∀xm

1:T ∈ T , (13)

where O is the last frame of history and τ is the threshold. We set τ = 0.5 for both Human3.6M
and HumanEva-I.

C.2 ELBO.

We generate K motion sequences {x̂k
1:T }Kk=1 to compute the reconstruction loss:

LR = min
k
||x̂k

1:T − x1:T ||2, (14)

LMM =
1

M

M∑
m=1

min
k
||x̂k

1:T − xm
1:T ||2, (15)

where x1:T is the ground-truth, and xm
1:T are the pseudo-ground truth sequences. We select M

pseudo ground-truth sequences for each candidate. If the total number of its pseudo ground-truth is
less than M , we In addition to the reconstruction losses, we need to minimize the KL divergence:

LKL-Z =
1

T

T∑
t=1

DKL(qφz(zt|x1:T ,w)||pθz(zt|xt−1, z1:t−1,w)) (16)

LKL-W = DKL(qφw(w|x1:T )||pθw(w)). (17)

The final evidence lower bound (ELBO) writes:

LELBO = λRLR + λMMLMM + λKL-ZLKL-Z + λKL-WLKL-W. (18)

C.3 DIVERSITY LOSS.

As suggested by Yuan & Kitani (2020); Mao et al. (2021), we add diversity promoting losses on the
upper body and lower body:

LDIV =
∑

p∈{l,u}

λDIV-p
2

K(K − 1)

K∑
k=1

K∑
k′=k+1

exp

(
−
||x̂k,p

1:T − x̂k′,p
1:T ||1

αp

)
, (19)

where l (u) indicates the lower (upper) body part and αp is a normalizing factor.

C.4 REALISTIC POSE LOSS.

Follow Mao et al. (2021), we employ three extra losses to penalize for unrealistic poses, LL for
shifting limb length, LA for aberrant joint angles and LNF for negative prior pose probability from
a pre-trained pose prior model based on normalizing flow Rezende & Mohamed (2015); Dinh et al.
(2017). The realistic loss can be written as LREAL = λLLL + λALA + λNFLNF

Altogether, our final training loss writes:

L = LELBO + LDIV + LREAL. (20)
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D PSEUDO-CODE FOR HIT-DVAE

Here, we provide the pseudo-code for HiT-DVAE in training and generation:

Algorithm 1 HiT-DVAE in training
Inputs:
. Observation on human sequence x1:T

for epo in epochs do
Inference:
. Compute posterior of w and sample w ∼ qφw(w|x1:T ) = N (w; µφw ,Σφw)
. Compute posterior z1:T and sample zt ∼ qφz(zt|x1:T ,w) = N (zt; µφz,t,Σφz,t) for

t = 1, ..., T
Generation:
. Compute the distribution of x2:T via pθx(xt|x1:t−1, z1:t,w) = N (xt; µθx,t, I) for t =

2, ..., T
. Compute the prior of z2:T via pθz(zt|x1:t−1, z1:t−1,w) = N (zt; µθz,t,Σθz,t) for t =

2, ..., T
Compute loss and optimize via Adam

end for

Algorithm 2 HiT-DVAE in generation
Inputs:
. Observation on human sequence x1:O

Initialization:
. Compute posterior of w and z1:O
for t in range(O+1, O+G) do

. Generate ẑt via zt ∼ pθz(zt|x1:O, x̂O+1:t−1, z1:t−1,w)

. Generate x̂t via xt ∼ pθx(xt|x1:O, x̂O+1:t−1, ẑ1:t,w)
end for
Output:
. Generated human motion sequence x̂O+1:O+G

E ACTION-CLASSIFIER

As explained in the main paper, we trained an RNN-based classifier to calculate the implicit evalu-
ation metrics ACC and FID following Guo et al. (2020) and Petrovich et al. (2021). The classifier
we use is built upon 2 simple GRU layers with a hidden size of 128. When training on Human3.6M
dataset, we found that some action classes do not differ much from each other, which makes it diffi-
cult to train a good classifier. As our goal is to have a classifier that offers good features, we believe
the classifier with low accuracy on real data is not reliable enough, so we group the 5 similar actions,
and trained the classifier on these 5 groups instead of the 15 original classes. The groups of actions
are detailed in Table 5.
Note that even on the classifier trained on the 15 original classes, our method still performs better
than others, as shown in Table 6.

Table 5: Groups of actions of Human3.6m dataset, for training the action classifier.
group number original classes

0 Directions, Discussion, Greeting,
Photo, Posing, Purchases, WalkDog, Waiting

1 Eating, Phoning, Sitting, Smoking
2 SittingDown
3 Walking
4 WalkTogether
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Table 6: Implicit evaluations by different classification models on Human3.6m dataset. Our method
always performs better.

5 groups 15 classes
Acc (%) ↑ FID ↓ Acc (%) ↑ FID ↓

Real data 85.5 - 48.1 -

DLow Yuan & Kitani (2020) 65.9 1.412 22.7 1.566
GSPS Mao et al. (2021) 65.0 2.030 22.2 1.915
GumbelSample Dang et al. (2022) 66.5 2.659 24.4 2.471

HiT-DVAE 70.0 1.708 28.1 1.466

F MORE VISUALISATION RESULTS IN VIDEO

As shown in the main paper, we qualitatively compare our methods with the state-of-the-art meth-
ods (Mao et al., 2021; Yuan & Kitani, 2020) by showing the end poses of 10 generated motion
sequences. In the attached video, we further compare the results by visualizing 10 generated sam-
ples for each method. For better visualization, we highlight the “unrealistic” generated motions
which evidently do not correspond to the action label and are not similar to the real motion, based
on a simple user study: We sent a survey to 5 people to select the most unrealistic generation results
and marked the results with the agreement of at least 3 people. We can see that our method generates
more realistic motion sequences and keep the diversity, while others are less stable.
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