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Abstract
Multi-solid systems are foundational to a wide
range of real-world applications, yet modeling
their complex interactions remains challenging.
Existing deep learning methods predominantly
rely on implicit modeling, where the factors influ-
encing solid deformation are not explicitly repre-
sented but are instead indirectly learned. However,
as the number of solids increases, these methods
struggle to accurately capture intricate physical
interactions. In this paper, we introduce a novel
explicit modeling paradigm that incorporates fac-
tors influencing solid deformation through struc-
tured modules. Specifically, we present Unisoma,
a unified and flexible Transformer-based model
capable of handling variable numbers of solids.
Unisoma directly captures physical interactions
using contact modules and adaptive interaction
allocation mechanism, and learns the deforma-
tion through a triplet relationship. Compared to
implicit modeling techniques, explicit modeling
is more well-suited for multi-solid systems with
diverse coupling patterns, as it enables detailed
treatment of each solid while preventing informa-
tion blending and confusion. Experimentally, Uni-
soma achieves consistent state-of-the-art perfor-
mance across seven well-established datasets and
two complex multi-solid tasks. Code is avaiable
at https://github.com/therontau0054/Unisoma.

1. Introduction
Multi-solid (rigid and deformable) systems play an essential
role in a broad range of real-world scenarios, such as indus-
trial manufacturing (Khan & Turowski, 2016), mechanical
manipulation (Mason, 2001), and aerospace (Mouritz, 2012).
For example, multi-point metal stamping (Li et al., 2002)
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Figure 1. Implicit Modeling and Explicit Modeling. Yellow planes
are rigid solids. Orange and red balls are deformable solids.

in industry, robotic gripping (Zhang et al., 2020), and com-
posite materials research (Clyne & Hull, 2019) are typical
application scenarios. From a scientific standpoint, multi-
solid systems can often be formulated as high-dimensional,
nonlinear Partial Differential Equations (PDEs). However,
the large solution space, strict contact conditions, and com-
plex dynamics pose significant computational challenges for
traditional numerical methods (e.g., Finite Element Methods
(Sifakis & Barbic, 2012) and Material Point Methods (Sul-
sky et al., 1995)), making them difficult to meet real-time or
high-fidelity requirements (Umetani & Bickel, 2018). Re-
cently, Deep Learning techniques have been increasingly
adopted in scientific computing, showing promise for vari-
ous physical simulations (Cai et al., 2021; Lu et al., 2021;
Li et al., 2020a). Despite these advances, most research
to date has focused on few-solid systems or other physical
scenarios such as fluids. There remains a notable gap in
applying deep learning to multi-solid systems, and a system-
atic approach capable of characterizing complex physical
interactions among multiple solids is still underexplored.

Multi-solid systems encompass multiple rigid and de-
formable solids with distinct mechanical properties (e.g.,
elastic, plastic, hyperelastic). The motion of these solids
and their contact interactions induce forces (also referred
to as loads), thereby driving deformations and changes in
the physical quantities of deformable solids, which are our
primary focus. In these systems, diverse material behaviors,
contact phenomena, and exerted loads converge into com-
plex physical interactions, which in turn lead to intricate
deformation behaviors (Braess, 2001). Consequently, how
to effectively distinguish and capture these interactions is
the key challenge in multi-solid analysis.

Presently, research specifically dedicated to multi-solid sys-

1

https://github.com/therontau0054/Unisoma


Unisoma: A Unified Transformer-based Solver for Multi-Solid Systems

tems remains relatively scarce. In addressing solid prob-
lems, data-driven approaches predominantly rely on im-
plicit modeling, where the factors that influence the defor-
mation of deformable solids are not explicitly structured
but instead implicitly captured through the overall learning
process. These methods can be broadly categorized into two
types. As shown in the upper branch of Figure 1, the first
category (Raissi et al., 2019; Li et al., 2020a) is domain-
wise, treating the entire computational domain as input and
merging all solids into one large PDE problem. Then it is
solved through Physics-Informed Neural Networks (PINNs)
(Cai et al., 2021) or Neural Operators (Boullé & Townsend,
2023). Although this approach simplifies setup and ensures
global consistency, it can become computationally expen-
sive and lacks fine-grained insight into individual solids. As
the number and diversity of solids increase, the effective cap-
ture of intricate physical interactions becomes increasingly
challenging, restricting its scalability. The second category
(Sanchez-Gonzalez et al., 2018; 2020a) is graph-wise, using
graph topologies to represent each solid as a subdomain
and dynamically add or remove edges between solids based
on a physical distance threshold. The GNN-based message
passing (Gilmer et al., 2017) is then utilized to transmit and
aggregate information between nodes. In this process, the
edges merely act as conduits for information flow, and the
interactions influencing the deformation of solids are still
implicitly learned through the node-level propagation. How-
ever, only relying on independent edges to learn physical
interactions between different solids may introduce blend-
ing and ambiguity (Yifan et al., 2020). In addition, the local
nature of graph kernels limits its efficacy for long-range
predictions involving long time span (Li et al., 2024a).

As shown in the lower branch of Figure 1, unlike previous
approaches, we propose to solve multi-solid systems within
an explicit modeling paradigm, which directly models the
factors (such as contact constraints and loads) that influ-
ence the deformation of solids through the model structure.
This design is especially well-suited to multi-solid scenarios
where coupling patterns are diverse, allowing for tailored
treatment of different pairs with more fine-grained model-
ing. In this way, we can distinguish and capture essential
physical interactions more controllably and accurately. It
avoids the issues of information confusion and the difficulty
in fully learning complex physical interactions in multi-solid
scenarios that are common in implicit modeling methods.

Technically, we propose Unisoma, a unified and flexible
Transformer-based (Vaswani, 2017) framework with explicit
modeling capable of handling variable numbers of solids
and two important tasks (long-time prediction and autore-
gressive simulation) in the multi-solid scenarios, as the first
attempt of the explicit modeling to our best knowledge.
Specifically, we define a deformation triplet consisting of
a deformable solid, an equivalent load, and an equivalent

contact constraint to describe the deformation of a single de-
formable solid in the system. We first utilize distinct contact
modules to capture each pair of contact constraints in the
system. Then we propose an adaptive interaction allocation
mechanism to compute the individual equivalent load and
contact constraint for each deformable solid. Afterwards,
for each deformable solid, we adopt a deformable module to
model the influence of equivalent load and contact constraint
on its deformation under deformation triplet relationship.
Unisoma achieves state-of-the-art performance on extensive
evaluations. Our main contributions are as follows:

• We propose to solve multi-solid systems in an explicit
modeling paradigm. This kind of paradigm brings a
high degree of flexibility, enabling effective control
and capture of essential physical interactions.

• We design Unisoma, a unified Transformer-based
model with an explicit modeling approach capable of
flexibly handling varying numbers of solids. Unisoma
captures and integrates physical interactions with ex-
plicitly structured modules, and learn the deformation
under the deformation triplet relationship.

• We evaluate Unisoma on two multi-solid-related tasks
across seven datasets spanning different complexity,
comparing it against over ten advanced deep learning
models. Unisoma consistently achieves superior per-
formance improvements under all test scenarios.

2. Related Work
Currently, there is a relative scarcity of research focused
on multi-solid systems. For solid problems, data-driven
frameworks are generally divided into two paradigms.

Implicit Modeling In this paradigm, the factors that influ-
ence the deformation of solids are not explicitly structured
but instead implicitly learned from data. Methods belonging
to this paradigm can be classified into two categories. The
first domain-wise category treats the entire computational
domain as input, merging all objects into one PDE prob-
lem. In the solid field, PINNs have been widely applied
(Haghighat et al., 2021; Rodriguez-Torrado et al., 2021;
Okazaki et al., 2022), often with elaborately designed loss
functions (Bai et al., 2023; Chiu et al., 2022) and domain-
wise techniques (Diao et al., 2023; Li et al., 2023a). Neural
Operators, such as FNO (Li et al., 2020a) and its variants
(Gupta et al., 2021; Deng et al., 2024), have demonstrated
success in simple solid problems with regular geometries.
Many variants (Li et al., 2020b; 2024a) are proposed to
tackle irregular geometries. In particular, the geometric
Fourier transform proposed in Geo-FNO (Li et al., 2023b) is
vastly used, which projects the irregular geometry into uni-
form latent structure. Transformer-based models (Vaswani,
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Figure 2. The overview of Unisoma. The contact module and deformation module are attention-based. The loads allocation module and
contacts allocation module deploy adaptive interaction allocation mechanism.

2017) have gained traction in continuum mechanics, uti-
lizing advanced attention mechanisms (Liu et al., 2024; Li
et al., 2024b; Wu et al., 2024; Xiao et al., 2024; Zhihao Li
& Wang, 2024) and physics-informed inductive biases (Li
et al., 2023d; Hao et al., 2023; Shao et al., 2022). However,
all these models are primarily evaluated on simple few-solid
scenarios. When tackling multi-solid systems, they strug-
gle to effectively capture distinct physical interactions due
to the lack of fine-grained insight into individual solids,
particularly as the number and diversity of solids increase.

The second graph-wise category encodes the physical ob-
jects as graphs, and leverage GNNs (Scarselli et al., 2008)
to capture the interactions in a local neighbor with radius
threshold. In the solid field, GNN-based simulators have
been vastly used in particle-based simulations (Li et al.,
2019; Sanchez-Gonzalez et al., 2020b) and mesh-based sim-
ulations (Weng et al., 2021; Han et al., 2022; Cao et al.,
2023). MGN (Pfaff et al., 2021) utilizes message passing
blocks (Gilmer et al., 2017) to learn the dynamics of physi-
cal systems. Many subsequent works have enhanced perfor-
mance through hierarchical structures (Grigorev et al., 2023;
Yu et al., 2024; Fortunato et al., 2022), physics-informed
guidance (Würth et al., 2024; Perera & Agrawal, 2024) and
diverse geometrical information (Linkerhägner et al., 2023;
Allen et al., 2022). However, when independent edges are
used as the learning medium, it may cause ambiguity and
blending of the physical interactions between the solids.
Additionally, graph-based simulators still fall short in learn-
ing global interactions and struggle to address long-time
predictions involving long time span (Li et al., 2024a).

Explicit Modeling In contrast, we propose an explicit mod-
eling paradigm, explicitly incorporating factors influencing
solid deformation through specialized modules. Technically,
we propose Unisoma, a unified and flexible Transformer-
based framework, as the first attempt of the explicit model-

ing for multi-solid systems to our best knowledge. It explic-
itly models physical interactions with structured modules
and learns deformation through deformation triplet relation-
ship. Compared to implicit modeling, explicit modeling is
better suited for multi-solid systems with diverse coupling
patterns, as it allows fine-grained treatment of each solid
and avoids information blending and confusion.

3. Method
Problem Setup Consider a system with multiple ob-
jects composed of Nd deformable solids ud = {ud

i ∈
RNd

i ×Cd}Nd

i=1 with different material properties, Nr rigid
solids ur = {ur

i ∈ RNr
i ×Cr}Nr

i=1, and Nf acting forces
(loads) uf = {uf

i ∈ RNf
i ×Cf }Nf

i=1 yielded by the move-
ment of solids in the system. They are all mesh points
described in the Lagrangian view. A point of a de-
formable solid di or rigid solid ri is recorded as a vec-
tor of length Cd or Cr, composed of 3D space coordi-
nates and its properties (like Young’s Modulus, Poisson’s
Rate, Stress and Friction). A point of load fi is a vector of
length Cf recording the 3D space coordinates of the solid
from which it originated, and its next movement or posi-
tion. For example, let ui,t and ui,t+1 denote the current
and next state of a moving solid, the load is represented
as Concat(Coord(ui,t),Coord(ui,t+1) − Coord(ui,t)) or
Concat(Coord(ui,t),Coord(ui,t+1)), where Coord(·) indi-
cates the 3D space coordinates of the solid.

We consider two types of tasks: 1) Long-Time Prediction
(Raissi et al., 2019; Li et al., 2020a; Wu et al., 2024):
Directly estimate target physical quantities (like geometries
and inner stress) of deformable solids with long time
duration and without intermediate process. It only infer-
ences one time as: P (ûi,t+T |ui,t), where T spans many
time steps. 2) Autoregressive Simulation (Pfaff et al.,
2021; Yu et al., 2024; Li et al., 2019): Autoregressively
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simulate the deforming process of deformable solids
with small time increments. It inferences many times as:
P (ûi,t+1|ui,t), P (ûi,t+2|ûi,t+1), · · · , P (ûi,t+T |ûi,t+T−1).

3.1. Model Overview

The overview of Unisoma is illustrated in Figure 2, fol-
lowing the “encoder-processor-decoder” fashion (Battaglia
et al., 2018). First, instead of processing the multiple solids
in the original input domain, we embed each object into edge
augmented physics-aware tokens (Section 3.2). We then
adopt stacked processors to explicitly model physical inter-
actions among solids, including equivalent loads, equivalent
contact constraints, and solid deformation (Section 3.3).
Throughout the process, tokens representing rigid solids
remain unchanged, while those representing deformable
solids are updated. This reflects the physical principle that
rigid solids are non-deformable. Finally, the outputs of the
final processor are mapped back to the original domain, re-
sulting in the predicted outcomes. Now we elaborate on
each key component of Unisoma.

3.2. Encoder: Edge Augmented Physics-Aware Tokens

Originally, the objects in the physical domain are described
as a large number of mesh points. We first need to embed
them into tokens. A naive approach treats each point as
a token, unfortunately leading to high computational cost
and redundant representation (Yu et al., 2022). Transolver
(Wu et al., 2024) proposes the concept of slice, which as-
signs mesh points with similar physical states to the same
learnable slice token, enabling attention to capture intrinsic
physical correlations more effectively. However, they only
consider point-level features and spatially aggregate points
in the whole domain. This leads to the loss of local relation-
ships of mesh points, which are important to model local
interactions like contact and local deformation. Therefore,
we incorporate the mesh edges into embedding and propose
Edge Augmented Physics-Aware Tokens.

...

mesh points

mesh edges

mesh slice

Figure 3. Embedding mesh points and mesh edges into slices.

For each object, we first utilize the k-nearest neighbor (kNN)
method to construct the edge set E based on input mesh
points. The edge attribution is the relative distance of the
connected neighbors. Let x ∈ RN×C be the deep features
of an object with N mesh points projected by linear layers

(i.e., x = Linear(u)) and ep,q ∈ R1×C be the deep fea-
ture of edge connecting mesh points xp and xq. The edge
augmented physics-aware tokens are formalized as:

wi = {Softmax(Linear(xi))}
we

(p,q) = {Softmax(Linear(wp +wq))}

zj =

∑N
i=1 sj,i + γ

∑
ep,q∈E sej,(p,q)∑N

i=1 wi,j + γ
∑

ep,q∈E we
(p,q),j

=

∑N
i=1 wi,jxi + γ

∑
ep,q∈E we

(p,q),jep,q∑N
i=1 wi,j + γ

∑
ep,q∈E we

(p,q),j

(1)

Here, s = {sj ∈ RN×C}Mj=1 are termed slices with number
of M , whose weights w ∈ RN×M are yielded from deep
features x by Linear(·) projection and Softmax(·) operation.
The weight wi,j indicates the degree that the i-th mesh point
belongs to the j-th slice with

∑M
j=1 wi,j = 1. The mesh

points with close geometry and physical features are more
likely to be assigned to the same slice. As shown in Figure 3,
we incorporate the mesh edges into the slice components
se = {sej ∈ R|E|×C}Mj=1, whose weights we ∈ R|E|×M

are derived from the weights of the connected points. The
physics-aware tokens z = {zj ∈ R1×C}Mj=1 then are en-
coded by spatially weighted aggregation and normalization.
Notably, although we utilize graph-like representation of
the objects, it differs from GNN-based methods that capture
interactions in the node level with edges. We transfer the
graph into the slice domain and explicitly model physical
interactions at the object level with attention mechanism.
Remark 3.1. Why incorporating edge features by spatially
weighted aggregation? Firstly, the aggregation follows the
transformation of the original slice operated on mesh points
(Wu et al., 2024) and the Eq.(1) is a unified projection form
including mesh points and edges. The Eq.(1) degenerates
to the original slice if edge feature is not taken into account.
Secondly, the weights of edge features are derived from
the weights of mesh point features. This aggregation em-
phasizes point pairs that are connected by edges, thereby
further enhancing the local information during the aggrega-
tion process. Normally, the number of edges is more than
the number of points. To avoid the point features being
inundated by edge features, we utilize the ratio of points
and edges γ = N/|E| for quality control.

The embedding is performed for each object instead of the
holistic domain for flexibly explicit modeling. We denote
the embedding tokens for deformable solids ud, rigid solids
ur, and loads uf as d = {di ∈ RM×C}Nd

i=1, r = {ri ∈
RM×C}Nr

i=1, and f = {fi ∈ RM×C}Nf

i=1, respectively.

3.3. Processor

After embedding these objects into edge augmented physics-
aware tokens, we propose an extensible processor to learn
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the physical interactions in an explicit manner. As shown
in the right part of Figure 2, the design of the processor
revolves around the deformation triplet. We separately con-
sider the loads and contact constraints and then capture their
effects on the deformable solids. First, we design a contact
module to capture each pair of contacts that may occur in
the system. Next, we propose an adaptive interaction allo-
cation mechanism to learn the equivalent load and contact
constraint for each individual deformable solid. Finally, we
introduce a deformable module to characterize the influ-
ence of the equivalent load and the contact constraint on the
deformation of the corresponding solid.

Deformation Triplet In a multi-solid system, the main
factors influencing the deformation of a deformable solid
are loads and contact constraints (Shabana, 2020; Wriggers
& Laursen, 2006; Bathe, 2006). Loads are the forces that act
on the system, causing stress and strain on the deformable
solids, thereby inducing deformation. Contact constraints
refer to the geometric conditions that a solid experiences
when in contact with other solids. These constraints alter the
force conditions experienced by the solid, thereby affecting
its deformation. Therefore, the key insight of explicitly mod-
eling the two factors in deformation guides us to propose a
triplet relationship (di, f̄ , c̄) to represent the deformation of
a single deformable solid di. Here, f̄ ∈ RM×C is the equiv-
alent load, which represents the comprehensive effect of all
loads in the system on the solid di, and c̄ ∈ RM×C is the
equivalent contact constraint, comprehensively modeling all
contacts experienced by the solid di in the system.

Contact Module A pair of contacts can occur between two
solids. In a multi-solid system, multiple pairs of contacts
may exist. It is hard to distinguish between these contact
constraints if we merge all solids as one input (Haghighat
et al., 2021; Li et al., 2020a). Therefore, we model each pair
of possible contacts individually. As shown in the right part
of Figure 2, for any two solids gi and gj that are likely to
contact, where gi,gj ∈ d∪ r and 1 ≤ i, j ≤ Nd +Nr, we
propose a contact module to capture the contact constraint
ck between them, formulated as follows:

Q,K,V = Linear(gi + gj)

ck = Softmax
(
QKT

√
C

)
V

(2)

We add these two tokens as the input and employ the atten-
tion mechanism to capture the intricate contact constraint.
Totally N c contact modules are arranged to learn N c pairs
of contact constraints c = {ck ∈ RM×C}Nc

k=1. For a sys-
tem with different numbers of contact pairs, we can easily
extend contact modules in the width direction. It brings vast
flexibility and applicability for various multi-solid systems.
Remark 3.2. Why is addition operation effective in slice
domain? Directly adding two high-dimensional features

representing different objects in the original input space
is generally not effective. Unlike the residual connections
(He et al., 2016), which are mainly designed to combine
features of the same object, summing features from distinct
objects can lead to significant information loss. Specifi-
cally, this operation causes an indiscriminate mixture of
two feature spaces, obscuring the unique physical attributes
of each object. In particular, tokens at corresponding po-
sitions may encode crucial physical properties, but their
summation with unrelated tokens may distort these details.
However, we argue that the addition operation is effec-
tive in slice domain. As mentioned before, we separately
embed each object in the system into their own slice do-
mains with size M . In fact, this separate embedding is a
special case of the holistic embedding. Technically, for
deep features xα and xβ of any two objects, we embed
them into slice zαβ ∈ RM×C with slice weight wαβ =
{wα

1,j ,w
α
2,j , · · · ,wα

Nα,j ,w
β
1,j ,w

β
2,j , · · · ,w

β
Nβ ,j

}:

zαβj =

∑Nα+Nβ

i=1 wαβ
i,j Concat(xα,xβ)i∑Nα+Nβ

i=1 wαβ
i,j

=

∑Nα

i=1 w
α
i,jx

α
i +

∑Nβ

i=1 w
β
i,jx

β
i∑Nα

i=1 w
α
i,j +

∑Nβ

i=1 w
β
i,j

(3)

Following this formulation, embedding each object individ-
ually can be formulated as:

zαj =

∑Nα

i=1 w
α
i,jx

α
i +

∑Nβ

i=1 w
β
i,jx

β
i∑Nα

i=1 w
α
i,j +

∑Nβ

i=1 w
β
i,j

(wβ = 0)

=

∑Nα

i=1 w
α
i,jx

α
i∑Nα

i=1 w
α
i,j

(4)

For clarity, we omit the mesh edges here, and the com-
plete form can be found in Appendix B, where it still holds.
Through Eq.(4), we can observe that the separate embedding
is a special case that the slice weights for other objects are
0. This indicates that we build a pure slice domain on the
holistic input domain but only projected by a single object.
Furthermore, the slice zαβj can be reformulated as follows:

zαβj =

∑Nα

i=1 w
α
i,jx

α
i +

∑Nβ

i=1 w
β
i,jx

β
i∑Nα

i=1 w
α
i,j +

∑Nβ

i=1 w
β
i,j

=
(
∑Nα

i=1 w
α
i,j)z

α
j + (

∑Nβ

i=1 w
β
i,j)z

β
j∑Nα

i=1 w
α
i,j +

∑Nβ

i=1 w
β
i,j

≈ θzαj + (1− θ)zβj

(5)

Here, zαβ can be seen as the composition of zα and zβ

through coefficient θ, referred to as slice composition. Ac-
cordingly, the operation in Eq.(4) is termed slice decompo-
sition. We first construct multiple pure slice domains during
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embedding. Through slice composition, we merge two slice
domains that are contact-related. In practice, we adopt direct
element-wise addition in Eq.(2) as a simple, parameter-free
realization of this linear combination. This design achieves
comparable performance to the learnable form, while re-
ducing complexity. Although this simplified form does not
perform explicit averaging (e.g.,0.5(zαj +zβj )), the resulting
features are subsequently processed by normalization and
attention layers (e.g., in the contact module), which miti-
gates effects from scale differences. We then apply attention
mechanism to capture the physical interaction within the
composed slice domain. This avoids information loss and
minimizes interference from unrelated objects.

Adaptive Interaction Allocation In a multi-solid system,
the deformation of a deformable solid will be influenced
by all loads and contact constraints in the system to vary-
ing extents. For example, among all loads, those that act
directly on the deforming solid should have a more signif-
icant impact on its deformation than those far away from
it. Therefore, we propose an adaptive interaction allocation
mechanism to comprehensively take account all loads and
contact constraints. Technically, the equivalent contact con-
straint c̄ ∈ RM×C and the equivalent load f̄ ∈ RM×C are
formulated as follows:

c′i = Linear(ci), c̄ =

Nc∑
i=1

c′i∑Nc

i=1 c
′
i

ci

f ′i = Linear(fi), f̄ =

Nf∑
i=1

f ′i∑Nf

i=1 f
′
i

fi

(6)

The weights are learnable and deprived from correspond-
ing physical interactions. Through the mechanism, those
interactions have significant influence on the correspond-
ing deformable solid having higher weights. At the same
time, this allocation process can also be seen as the slice
composition with prior inductive biases. In particular, the
allocation weights for each deformable solid are different
and are learned individually, extending the flexibility.

Deformation Module We adopt distinct deformation mod-
ules for each deformable solid. The input for i-th module
is the deformation triplet (di, f̄ , c̄). Similarly, we employ
attention mechanism and slice composition to model the
deformation interaction,

Q,K,V = Linear(di + f̄ + c̄)

d̂i = Softmax
(
QKT

√
C

)
V

(7)

Here, d̂ = {d̂i ∈ RM×C}Nd

i=1 are updated tokens of de-
formable solids. Within the i-th deformation module, we
explicitly establish the relationship between the i-th de-
formable solid and its associated equivalent load and contact

constraint, rather than implicitly learning the triplet relation-
ship from data as in implicit modeling methods. This avoids
the information confusion and ambiguity caused by the ex-
cessive number of solids. Besides, using an independent
deformation module for each deformable solid allows for
precise, individualized modeling of each solid, enhancing
scalability and flexibility.

Decoder Afterwards, the transited tokens of deformable
solids d̂ = {d̂i ∈ RM×C}Nd

i=1 are projected back to mesh
points. Because these tokens are normalized during embed-
ding, the decoding of mesh points and edges is naturally
decoupled. We directly decode tokens with formulation
proposed in (Wu et al., 2024):

ûd
i =

M∑
j=1

wi,jd̂j , 1 ≤ i ≤ Nd
i (8)

Each token d̂j is projected back by weighted broadcast,
where the weights are the same as those in the forward
embedding in Eq.(1). The ûd = {ûd

i ∈ RNd
i ×Cd}Nd

i=1 are
the prediction of the original deformable solids ud.

4. Experiments
We evaluate Unisoma on extensive experiments, including
two essential tasks and seven well-established datasets, cov-
ering multi-solid systems with varying complexity.

4.1. Experiment Settings

Datasets Our experiments span different complexity from
few solids to multiple solids. All of them are in 3D space.
Deforming Plate (Pfaff et al., 2021), Cavity Grasping (Link-
erhägner et al., 2023), Tissue Manipulation (Linkerhägner
et al., 2023) and Rice Grip (Li et al., 2019) are public
datasets, widely followed on autoregressive task. To ex-
plore more complex scenarios, we construct three datasets:
Bilateral Stamping, Unilateral Stamping and Cavity Ex-
truding, which are inspired by metal stamping (Wang &
Budiansky, 1978) in industrial manufacturing and robotic
gripping (Zhang et al., 2020). Except for the target geom-
etry, we also predict attendant physical quantities in some
experiments, including inner stress (Stress) and equivalent
plastic strain (PEEQ). The summary of datasets is recorded
in Table 1. See Appendix D for more details about datasets.

Baselines We comprehensively compare Unisoma against
more than ten baselines within the implicit modeling
paradigm. These include typical neural operators: GNO
(Li et al., 2020b), Geo-FNO (Li et al., 2023b), GINO (Li
et al., 2024a), LSM (Wu et al., 2023); Transformer solvers:
Galerkin Transformer (Cao, 2021), Factformer (Li et al.,
2024b), OFormer (Li et al., 2023c), ONO (Xiao et al.,
2024), Transolver (Wu et al., 2024); and GNN-based mod-

6



Unisoma: A Unified Transformer-based Solver for Multi-Solid Systems

Table 1. Summary of experiment datasets, which include various complexity. #Content records the number of deformable solids (DS),
rigid solids (RS), loads (L) and contact pairs (C). #Mesh represents the mean number of discretized mesh points, including deformable
solids and rigid solids.

DATASET #DIM #MATERIAL #CONTENT #MESH #TARGET

DEFORMING PLATE 3D HYPERELASTICITY 1 DS 1 RS 1 L 1 C 1271 GEOMETRY STRESS

CAVITY GRASPING 3D ELASTICITY 1 DS 2 RS 2 L 2 C 1386 GEOMETRY

TISSUE MANIPULATION 3D ELASTICITY 1 DS 2 RS 2 L 2 C 362 GEOMETRY

RICE GRIP 3D ELASTO-PLASTICITY 1 DS 2 RS 2 L 2 C 1106 GEOMETRY

BILATERAL STAMPING 3D ELASTO-PLASTICITY 2 DS 2 RS 2 L 5 C 13714 GEOMETRY STRESS PEEQ

UNILATERAL STAMPING 3D ELASTO-PLASTICITY 2 DS 17 RS 16 L 18 C 49386 GEOMETRY STRESS PEEQ

CAVITY EXTRUDING 3D ELASTO-PLASTICITY
ELASTICITY

3 DS 4 RS 4 L 6 C 4800 GEOMETRY STRESS PEEQ

els: GraphSAGE (Hamilton et al., 2017), GraphUNet (Gao
& Ji, 2019), MGN (Pfaff et al., 2021), HOOD (Grigorev
et al., 2023), HCMT (Yu et al., 2024). These advanced deep
models are widely used for continuum mechanics, and most
have demonstrated success in few-solid scenarios.

Implementation For Unisoma, we set the number of pro-
cessors, the hidden channels and the slice number to 2, 128
and 32, respectively, across all experiments. All experiments
are conducted on a single RTX 3090 GPU and repeated three
times. We utilize Relative L2 and Root Mean Square Error
(RMSE) as evaluation metrics for long-time prediction and
autoregressive simulation, respectively. See Appendix E
and C for detailed implementations and metrics.

Table 2. Performance comparison on long-time prediction task.
Relative L2 is recorded. A smaller value indicates better perfor-
mance. The best result is in bold and the second best is underlined.

DEFORMING
PLATE

CAVITY
GRASPING

TISSUE
MANIPU-

LATION

GEOMETRY STRESS GEOMETRY GEOMETRY

GEO-FNO 0.0931 0.5048 0.1361 0.0764
GINO 0.1071 0.6015 0.1523 0.0781
GNO 0.1223 0.6362 0.1273 0.0769
LSM 0.1319 0.7002 0.1073 0.0399

GALERKIN 0.1368 0.7046 0.1529 0.0832
FACTFORMER 0.0945 0.5135 0.1085 0.0886
OFORMER 0.1091 0.6136 0.1112 0.0316
ONO 0.1269 0.6592 0.1191 0.0513
TRANSOLVER 0.0933 0.4968 0.1077 0.0363

GRAPHSAGE 0.1194 0.6160 0.1194 0.0794
MGN 0.1183 0.6232 0.1141 0.0825

UNISOMA 0.0892 0.4713 0.0984 0.0253

4.2. Experiment Results

Long-Time Prediction As presented in Table 2, we first
conduct long-term prediction task on three public datasets,

commonly used in autoregressive settings (Pfaff et al., 2021;
Linkerhägner et al., 2023). We directly predict the physical
quantities for the step with the maximum applied load, using
the first step. Unisoma achieves consistent state-of-the-art
performance across these benchmarks. The deforming plate
only involves two solids and one pair of contact. There
is just one contact module and the adaptive interaction al-
location module is omitted. Under these conditions, the
advantage of explicit modeling is less pronounced, so the
accuracy of advanced models remains similar. For tissue ma-
nipulation, one jaw of the gripper holds the tissue in a fixed
position, while the other jaw moves. Because the physical
interactions of these two states differ significantly, accurate
modeling is more challenging. By explicitly modeling these
contact constraints and loads, Unisoma achieves noticeable
improvements in this benchmark.

We further evaluate more complex scenarios involving mul-
tiple solids. Metal stamping (Wang & Budiansky, 1978),
one of the most crucial industrial processes, is examined in
two settings (see Figure 4 and Appendix D): one featuring
bilateral stamping by two rigid dies, and another involving
multi-point unilateral stamping by sixteen rigid dies. The
processed metal is hollow, and a rubber material is inserted
to support its cross-section. Note that both scenarios are
challenging, as they require the model to account for numer-
ous solids and their interactions. As presented in Table 3,
Unisoma also excels in complex scenarios when compared
to implicit modeling. Beyond geometry, Unisoma delivers
the best performance on stress and PEEQ, which are es-
sential for subsequent design analysis. It is worth noting
that Transolver outperforms other baselines in most targets,
illustrating how slices effectively capture complex interac-
tions. The performance margins with Unisoma highlight the
strengths of explicit modeling in complicated setups. More-
over, in the bilateral stamping, random cuts in the metal
can lead to occasional contact between the stamping dies
and the rubber. Even if contact does not occur, we still
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Table 3. Performance comparison on long-time prediction task. Relative L2 is recorded. A smaller value indicates better performance.
The best result is in bold and the second best is underlined. Under the same target, the left column represents the results for the metal,
while the right column represents the results for the rubber.

BILATERAL STAMPING UNILATERAL STAMPING

GEOMETRY STRESS PEEQ GEOMETRY STRESS PEEQ

GEO-FNO 0.0125 0.0117 0.0390 0.1612 0.4269 0.4731 0.0109 0.0154 0.1113 0.1124 0.3771 0.3574
GINO 0.0299 0.0243 0.0543 0.2621 0.5523 0.6409 0.0188 0.0219 0.1262 0.1438 0.4651 0.4885
GNO 0.0285 0.0281 0.0463 0.2524 0.5830 0.5909 0.0426 0.0424 0.1351 0.1814 0.6413 0.6859
LSM 0.0598 0.0615 0.0556 0.3616 0.7001 0.7347 0.0367 0.0357 0.1327 0.1335 0.5889 0.6026

GALERKIN 0.0599 0.0594 0.0563 0.3442 0.6962 0.7335 0.1007 0.1010 0.1725 0.2794 0.7986 0.8555
FACTFORMER 0.0297 0.0105 0.0459 0.1378 0.6266 0.4218 0.0178 0.0166 0.1095 0.1035 0.3886 0.3022
OFORMER 0.0334 0.0268 0.0495 0.3178 0.5551 0.5157 0.0119 0.0098 0.1103 0.0981 0.3269 0.2675
ONO 0.0301 0.0275 0.0464 0.3291 0.5176 0.5231 0.0433 0.0437 0.1377 0.1311 0.5140 0.4748
TRANSOLVER 0.0083 0.0081 0.0346 0.1425 0.3592 0.3276 0.0079 0.0075 0.0839 0.0862 0.2938 0.2693

GRAPHSAGE 0.0227 0.0229 0.0440 0.2196 0.4936 0.4495 0.0275 0.0260 0.1059 0.1189 0.5441 0.5106
MGN 0.0195 0.0197 0.0421 0.2059 0.4646 0.4141 0.0391 0.0383 0.1252 0.1417 0.5805 0.5694

UNISOMA 0.0057 0.0052 0.0278 0.1039 0.2817 0.2265 0.0071 0.0063 0.0807 0.0773 0.2591 0.2114

Table 4. Performance comparison on autoregressive simulation task. We record RMSE-all, the average RMSE of the whole rollout
trajectory and all samples. A smaller value indicates better performance.

CAVITY GRASPING
(×10−3)

TISSUE MANIPULATION
(×10−3)

RICE GRIP
(×10−3)

CAVITY EXTRUDING
(×10−2)

GRAPHSAGE 13.41 ± 0.36 13.19 ± 0.31 26.68 ± 1.86 65.81 ± 1.58 128.48 ± 6.05 104.44 ± 4.79
GRAPHUNET 14.27 ± 0.11 21.31 ± 1.17 22.48 ± 1.23 58.83 ± 0.88 96.26 ± 1.44 82.55 ± 1.69
HOOD 12.43 ± 0.34 9.87 ± 0.17 19.25 ± 0.43 53.98 ± 1.84 89.93 ± 2.69 81.02 ± 2.68
HCMT 19.32 ± 1.82 17.59 ± 1.81 18.36 ± 0.47 64.91 ± 3.39 110.18 ± 5.98 97.09 ± 4.42
MGN 12.89± 0.46 9.56 ± 0.29 19.61 ± 0.78 57.37 ± 1.62 95.87 ± 1.17 86.28 ± 4.93

UNISOL 9.50 ± 0.54 7.51 ± 0.28 17.68 ± 0.36 11.98 ± 0.27 19.37 ± 0.72 19.46 ± 1.82

employ contact modules for potential interactions, and the
adaptive interaction allocation mechanism controls the rele-
vant constraints. This demonstrates both the scalability and
flexibility of explicit modeling.

Autoregressive Simulation We further evaluate the perfor-
mance of Unisoma on the autoregressive simulation task.
In this task, the process starts from the first step, and each
subsequent step is predicted based on the previously pre-
dicted step. This is more challenging because it requires
accurate modeling to prevent physical shifts and error ac-
cumulation during the simulation. We compare Unisoma
with advanced GNN-based simulators. As shown in Table 4,
Unisoma achieves the best results across all datasets. In
scenarios involving only one deformable solid, the physical
interactions between the deformable solid and rigid solids
are relatively straightforward to handle, resulting in simi-
lar performance between Unisoma and other GNN-based
simulators. However, in scenarios with multiple solids, the
advantage of explicit modeling becomes evident. For the
cavity extrusion, the materials of the three deformable solids
vary, and the number of contacts and loads is higher. Relying
solely on message passing between nodes is insufficient to
implicitly capture all physical interactions. Moreover, mes-

sage passing is constrained within a limited radius, which
weakens the long-distant propagation of the influence of
contacts. This limitation becomes more pronounced as the
number of contacts increases. In contrast, Unisoma lever-
ages explicit modeling to construct relationships between
contacting solids and captures their influence on the defor-
mation. The attention mechanism and slice composition
enable global modeling, while the incorporation of mesh
edges in the embedding preserves local features. As a re-
sult, the performance improvement in multi-solid scenarios
is more significant. This modeling approach, which bal-
ances global and local considerations, also highlights the
flexibility of explicit modeling.

Out-of-distribution (OOD) generalization To further ex-
amine the generalizability of Unisoma, we experiment with
OOD long-time prediction task on the cavity extruding
dataset. In this dataset, the Young’s modulus and Pois-
son’s ratio of the inner elastic material in the cavity are
uniformly sampled from the ranges [30000, 70000] MPa
and [0.1, 0.45]. The data is divided into two parts: the first
part serves as the training and validation set, with parameter
ranges of [30000, 65000] MPa and [0.1, 0.42]. The samples
out of these scopes are used as the test set. The numbers
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Ground truth Geometry (Unisoma) Geometry(Transolver) PEEQ(Unisoma) PEEQ(Transolver)

Ground truth Geometry (Unisoma) Geometry(Transolver) Stress(Unisoma) Stress(Transolver)

Ground truth step 60, 90 �Geometry (Unisoma) step 90, 100, 110, 120 Geometry (MGN) step 90, 100, 110, 120 �

Figure 4. Visualization of error maps. The first, second, and third rows respectively show sample visualizations from the bilateral stamping,
unilateral stamping, and cavity extruding datasets. The error has been normalized among the same physical quantities of the same samples.

Table 5. OOD generalization experiment on the cavity extruding
dataset. Relative L2 is recorded. “Outer”, ”Middle”, and ”Inner”
refer to the layers of cavity from the outside to the inside. See
Appendix G for full results, where Unisoma still achieves best.

OUTER MIDDLE INNER

GEOMETRY GEOMETRY GEOMETRY STRESS

GEO-FNO 0.0117 0.0177 0.0198 0.2526
GNO 0.0238 0.0444 0.0449 0.3727
LSM 0.0249 0.0436 0.0339 0.3111

FACTFORMER 0.0202 0.0269 0.0308 0.2739
OFORMER 0.0134 0.0204 0.0229 0.2596
ONO 0.0213 0.0357 0.0372 0.2511
TRANSOLVER 0.0162 0.0334 0.0336 0.2643

GRAPHSAGE 0.0211 0.0339 0.0416 0.3571
MGN 0.0178 0.0280 0.0385 0.3526

UNISOMA 0.0077 0.0157 0.0179 0.2348

of samples in the training, validation and test set are 900,
83 and 217. As presented in Table 5, Unisoma can handle
OOD samples well, where it consistently performs best on
unseen materials. These results indicate that Unisoma also
captures some generalizable physical interactions, further
highlighting the advantage of explicit modeling.

Efficiency We provide the model efficiency comparison
in Table 6. We can observe that the GPU memory usage
of Unisoma is significantly lower than other models, in-
cluding Transolver, which also uses slice. Even when the
number of mesh points around 50,000 (unilateral stamping),
the memory consumption still remains around 1GiB. Uni-
soma employs explicit modeling, processing each object
separately. It breaks down the large matrix multiplications
in implicit modeling into smaller, multiple matrix multipli-

Table 6. Efficiency comparison. The running time is measured by
the time to complete one epoch, which contains 103 iterations. The
k for Unisoma is set as 4 for efficiency test. Other edge-related
methods set k = 3 or 4 based on the memory usage. We record the
max GPU memory in one epoch due to the dynamic mesh number.

BILATERAL
STAMPING

UNILATERAL
STAMPING

PARAM TIME MEM PARAM TIME MEM
(M) (S) (GIB) (M) (S) (GIB)

GINO 2.70 75.64 17.63 5.61 181.26 22.82
GNO 0.56 98.64 21.79 0.43 261.73 21.31
OFORMER 2.63 127.59 13.94 2.06 479.85 23.01
ONO 3.27 66.55 5.46 5.13 311.60 21.85
TRANSOLVER 3.81 83.97 6.35 5.07 402.35 16.33

UNISOMA 2.85 70.96 0.93 5.21 152.55 1.10

cations. This approach reduces the memory required for
intermediate states during computation, allowing for more
flexible memory allocation and release. As a result, the
model can handle larger problem scales, making it far more
applicable and meaningful for real-world applications.

5. Conclusions
This paper introduces a new paradigm of explicit model-
ing to solve complex multi-solid systems and, based on it,
designing a unified and flexible Transformer architecture
named Unisoma. Compared with implicit modeling mod-
els, Unisoma explicitly represents the key factors affecting
solid deformation and employs deformation triplet to more
accurately capture the diverse interactions among multiple
solids. Extensive experiments are provided to verify the
performance, OOD generalizability and efficiency.
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Linkerhägner, J., Freymuth, N., Scheikl, P. M., Mathis-
Ullrich, F., and Neumann, G. Grounding graph network
simulators using physical sensor observations. arXiv
preprint arXiv:2302.11864, 2023.

Liu, X., Xu, B., Cao, S., and Zhang, L. Mitigating spectral
bias for the multiscale operator learning, 2024.

Lu, L., Jin, P., Pang, G., Zhang, Z., and Karniadakis, G. E.
Learning nonlinear operators via DeepONet based on the
universal approximation theorem of operators. Nature
Machine Intelligence, 3(3):218–229, 2021.

Mason, M. T. Mechanics of robotic manipulation. MIT
Press, 2001.

Mouritz, A. P. Introduction to aerospace materials. Intro-
duction to Aerospace Materials, pp. 1–14, 2012.

Okazaki, T., Ito, T., Hirahara, K., and Ueda, N. Physics-
informed deep learning approach for modeling crustal
deformation. Nature Communications, 13(1):7092, 2022.

Perera, R. and Agrawal, V. Multiscale graph neural net-
works with adaptive mesh refinement for accelerating
mesh-based simulations. Computer Methods in Applied
Mechanics and Engineering, 429:117152, 2024.

Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., and
Battaglia, P. W. Learning mesh-based simulation with
graph networks. 2021.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
physics, 378:686–707, 2019.

Rodriguez-Torrado, R., Ruiz, P., Cueto-Felgueroso, L.,
Green, M. C., Friesen, T., Matringe, S., and Togelius,
J. Physics-informed attention-based neural network for
solving non-linear partial differential equations. arXiv
preprint arXiv:2105.07898, 2021.

Sanchez-Gonzalez, A., Heess, N., Springenberg, J. T.,
Merel, J., Riedmiller, M., Hadsell, R., and Battaglia, P.
Graph networks as learnable physics engines for inference
and control. In Dy, J. and Krause, A. (eds.), Proceed-
ings of the 35th International Conference on Machine

11



Unisoma: A Unified Transformer-based Solver for Multi-Solid Systems

Learning, volume 80 of Proceedings of Machine Learn-
ing Research, pp. 4470–4479. PMLR, 10–15 Jul 2018.

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R.,
Leskovec, J., and Battaglia, P. Learning to simulate com-
plex physics with graph networks. In III, H. D. and Singh,
A. (eds.), Proceedings of the 37th International Confer-
ence on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pp. 8459–8468. PMLR,
13–18 Jul 2020a.

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R.,
Leskovec, J., and Battaglia, P. Learning to simulate
complex physics with graph networks. In International
conference on machine learning, pp. 8459–8468. PMLR,
2020b.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
transactions on neural networks, 20(1):61–80, 2008.

Shabana, A. A. Dynamics of multibody systems. Cambridge
university press, 2020.

Shao, Y., Loy, C. C., and Dai, B. Transformer with implicit
edges for particle-based physics simulation. In European
conference on computer vision, pp. 549–564. Springer,
2022.

Sifakis, E. and Barbic, J. Fem simulation of 3d deformable
solids: a practitioner’s guide to theory, discretization and
model reduction. In Acm siggraph 2012 courses, pp.
1–50. 2012.

Sulsky, D., Zhou, S.-J., and Schreyer, H. L. Application of
a particle-in-cell method to solid mechanics. Computer
physics communications, 87(1-2):236–252, 1995.

Umetani, N. and Bickel, B. Learning three-dimensional flow
for interactive aerodynamic design. ACM Transactions
on Graphics (TOG), 37(4):1–10, 2018.

Vaswani, A. Attention is all you need. Advances in Neural
Information Processing Systems, 2017.

Wang, N.-M. and Budiansky, B. Analysis of sheet metal
stamping by a finite-element method. 1978.

Weng, Z., Paus, F., Varava, A., Yin, H., Asfour, T., and
Kragic, D. Graph-based task-specific prediction models
for interactions between deformable and rigid objects,
2021.

Wriggers, P. and Laursen, T. A. Computational contact
mechanics, volume 2. Springer, 2006.

Wu, H., Hu, T., Luo, H., Wang, J., and Long, M. Solv-
ing high-dimensional pdes with latent spectral models.
In International Conference on Machine Learning, pp.
37417–37438. PMLR, 2023.

Wu, H., Luo, H., Wang, H., Wang, J., and Long, M. Tran-
solver: A fast transformer solver for pdes on general
geometries. 2024.

Würth, T., Freymuth, N., Zimmerling, C., Neumann, G., and
Kärger, L. Physics-informed meshgraphnets (pi-mgns):
Neural finite element solvers for non-stationary and non-
linear simulations on arbitrary meshes. Computer Meth-
ods in Applied Mechanics and Engineering, 429:117102,
September 2024.

Xiao, Z., Hao, Z., Lin, B., Deng, Z., and Su, H. Improved
operator learning by orthogonal attention. In Proceedings
of the 41st International Conference on Machine Learn-
ing, volume 235 of Proceedings of Machine Learning
Research, pp. 54288–54299. PMLR, 21–27 Jul 2024.

Yifan, H., Jian, Z., James, C., Kaili, M., TB, M. R., Hongzhi,
C., and Ming-Chang, Y. Measuring and improving the
use of graph information in graph neural network. In The
Eighth International Conference on Learning Represen-
tations (ICLR 2020), Addis Ababa, 2020.

Yu, X., Tang, L., Rao, Y., Huang, T., Zhou, J., and Lu, J.
Point-bert: Pre-training 3d point cloud transformers with
masked point modeling. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pp. 19313–19322, 2022.

Yu, Y.-Y., Choi, J., Cho, W., Lee, K., Kim, N., Chang, K.,
Woo, C.-S., Kim, I., Lee, S.-W., Yang, J.-Y., Yoon, S.,
and Park, N. Learning flexible body collision dynamics
with hierarchical contact mesh transformer. 2024.

Zhang, B., Xie, Y., Zhou, J., Wang, K., and Zhang, Z. State-
of-the-art robotic grippers, grasping and control strategies,
as well as their applications in agricultural robots: A
review. Computers and Electronics in Agriculture, 177:
105694, 2020. ISSN 0168-1699.

Zhihao Li, Haoze Song, D. X. Z. L. and Wang, W. Har-
nessing scale and physics: A multi-graph neural opera-
tor framework for pdes on arbitrary geometries. arXiv
preprint arXiv:2411.15178, 2024.

12



Unisoma: A Unified Transformer-based Solver for Multi-Solid Systems

A. Overall Structure
The overall structure of Unisoma is as follows:

Encoder Given a system with multiple objects composed of Nd deformable solids ud = {ud
i ∈ RNd

i ×Cd}Nd

i=1 with different
material properties, Nr rigid solids ur = {ur

i ∈ RNr
i ×Cr}Nr

i=1, and Nf loads uf = {uf
i ∈ RNf

i ×Cf }Nf

i=1, we first embed
each of them into edge augmented physics-aware tokens by Eq.(1):

xd
i = Linear(ud

i ), di = Encoder(xd
i ), 1 ≤ i ≤ Nd

xr
i = Linear(ur

i ), ri = Encoder(xr
i ), 1 ≤ i ≤ Nr

xf
i = Linear(uf

i ), fi = Encoder(xf
i ), 1 ≤ i ≤ Nf

Here, d = {di ∈ RM×C}Nd

i=1, r = {ri ∈ RM×C}Nr

i=1, and f = {fi ∈ RM×C}Nf

i=1 are edge augmented physics-aware
tokens of corresponding objects in ud, ur, and uf , respectively.

Processor We first characterize the contact constraints in the system. For two solids that may contact with each other with
high probabilities, we utilize contact module to capture the contact constraint. For any two solids gi and gj that are likely to
contact, where gi,gj ∈ d ∪ r and 1 ≤ i, j ≤ Nd +Nr, the contact constraint ck between them is formalized as:

Q,K,V = Linear(gi + gj)

ck = Softmax
(
QKT

√
C

)
V

Here, totally N c contact modules are arranged to learn N c pairs of contact constraints c = {ck ∈ RM×C}Nc

k=1.

Then we deploy adaptive interaction allocation mechanism to integrate loads and contact constraints, as follows:

c′i = Linear(ci), ĉ =

Nc∑
i=1

c′i∑Nc

i=1 c
′
i

ci, c̄ = FFN(ĉ) + ĉ

f ′i = Linear(fi), f̄ =

Nf∑
i=1

f ′i∑Nf

i=1 f
′
i

fi

The c̄ and f̄ are the equivalent contact constraint and equivalent load. There is little difference in their operation. As
described above, the contact module is attention-based. When the number of contacts increases, the parameters grow and
make the model unstable. Therefore, we move the FFN(·) to the back of contact constraints allocation, instead of arranging
distinct FFN(·) for each contact module, to reduce parameters. With regard to loads, they are from encoders. The FFN(·) is
unnecessary for them.

Subsequently, we adopt deformation modules to capture the deformation of deformable solids. Notably, each deformation
module processes one deformable solid, and the equivalent load and contact constraint for each deformable solid are different.
For i-th deformable solid, its deformation is modeled as:

Q,K,V = Linear(di + f̄ + c̄)

d′
i = Softmax

(
QKT

√
C

)
V

d̂ = d′
i + FFN(d′

i)

Here, d̂ = {d̂i ∈ RM×C}Nd

i=1 are updated tokens of deformable solids.

Decoder We decode updated tokens back to mesh points with formulation proposed in (Wu et al., 2024):

ûd
i = FFN(Decoder(d̂j) + xd

i ) = FFN(

M∑
j=1

wi,jd̂j + xd
i ), 1 ≤ i ≤ Nd

i

Each token d̂j is projected back to mesh points by weighted broadcast, where the weights are the same as those in the
forward embedding in Eq.(1). The ûd = {ûd

i ∈ RNd
i ×Cd}Nd

i=1 are the predicted states corresponding to the original input
deformable solids ud. The residual connection with xd is introduced to prevent the vanishing gradient problem.
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B. Slice Composition and Decomposition

For deep features xα ∈ RNα×C and xβ ∈ RNβ×C of any two objects, we embed them into slice zαβ ∈ RM×C as follows:

zαβj =

∑Nα+Nβ

i=1 wαβ
i,j Contact(xα,xβ)i + γ

∑
eαβ
p,q∈Eα∪Eβ weαβ

(p,q),je
αβ
p,q∑Nα+Nβ

i=1 wαβ
i,j + γ

∑
eαβ
p,q∈Eα∪Eβ weαβ

(p,q),j

(9)

Here, eαp,q ∈ Eα and eβp,q ∈ Eβ are corresponding edge sets. Since we apply k-NN separately to different solids, using the
same value of k for each, it follows that Eα ∩ Eβ = ∅ and γ = k. Therefore, similar to wαβ , the weight weαβ

can also be
separated according to α and β, allowing the Eq.(9) to be rewritten as:

zαβj =

∑Nα

i=1 w
α
i,jx

α
i + γ

∑
eα
p,q∈Eα weα

(p,q),je
α
p,q +

∑Nβ

i=1 w
β
i,jx

β
i + γ

∑
eβ
p,q∈Eβ weβ

(p,q),je
β
p,q∑Nα

i=1 w
α
i,j + γ

∑
eα
p,q∈Eα weα

(p,q),j +
∑Nβ

i=1 w
β
i,j + γ

∑
eβ
p,q∈Eβ weβ

(p,q),j

(10)

As mentioned in Section 3.2, the edge weights weβ is deprived from point weights wβ . When wβ = 0, we have weβ = 0.
Following this formulation, embedding each object individually can be formulated as:

zαj =

∑Nα

i=1 w
α
i,jx

α
i + γ

∑
eα
p,q∈Eα weα

(p,q),je
α
p,q +

∑Nβ

i=1 w
β
i,jx

β
i + γ

∑
eβ
p,q∈Eβ weβ

(p,q),je
β
p,q∑Nα

i=1 w
α
i,j + γ

∑
eα
p,q∈Eα weα

(p,q),j +
∑Nβ

i=1 w
β
i,j + γ

∑
eβ
p,q∈Eβ weβ

(p,q),j

(wβ = weβ = 0)

=

∑Nα

i=1 w
α
i,jx

α
i + γ

∑
eα
p,q∈Eα weα

(p,q),je
α
p,q∑Nα

i=1 w
α
i,j + γ

∑
eα
p,q∈Eα weα

(p,q),j

(11)

Therefore, we can also conduct slice decomposition with mesh edges, which builds a pure slice domain on the holistic input
domain but only projected by a single object.

Furthermore, the slice zαβj can be reformulated as follows:

zαβj =

∑Nα

i=1 w
α
i,jx

α
i + γ

∑
eα
p,q∈Eα weα

(p,q),je
α
p,q +

∑Nβ

i=1 w
β
i,jx

β
i + γ

∑
eβ
p,q∈Eβ weβ

(p,q),je
β
p,q∑Nα

i=1 w
α
i,j + γ

∑
eα
p,q∈Eα weα

(p,q),j +
∑Nβ

i=1 w
β
i,j + γ

∑
eβ
p,q∈Eβ weβ

(p,q),j

=
(
∑Nα

i=1 w
α
i,j + γ

∑
eα
p,q∈Eα weα

(p,q),j)z
α
j + (

∑Nβ

i=1 w
β
i,j + γ

∑
eβ
p,q∈Eβ weβ

(p,q),j)z
β
j∑Nα

i=1 w
α
i,j + γ

∑
eα
p,q∈Eα weα

(p,q),j +
∑Nβ

i=1 w
β
i,j + γ

∑
eβ
p,q∈Eβ weβ

(p,q),j

≈ θzαj + (1− θ)zβj

(12)

Here, with the mesh edges, the zαβ can also be seen as the composition of zα and zβ through coefficient θ, referred to as
slice composition. The unified forms of Eq.(11), Eq.(12), Eq.(4) and Eq.(5) benefit from the unified aggregation of mesh
edges in Eq.(1).

C. Metrics
We employ different metrics for specific tasks, adhering to the evaluation approaches used in related works.

Long-time Prediction: Relative L2 In line with prior studies on long-time prediction tasks (Raissi et al., 2019; Li et al.,
2020a; Wu et al., 2024), we use the relative L2 to assess performance. Given the input physical quantities u and the
predictions û, the relative L2 is computed as:

Relative L2 =
∥u− û∥
∥u∥
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Autoregressive Simulation: RMSE Consistent with works focused on autoregressive simulation tasks (Pfaff et al., 2021;
Yu et al., 2024; Li et al., 2019), we use Root Mean Square Error (RMSE) as the evaluation metric. Given the input physical
quantities u and the predictions û, RMSE is calculated as:

RMSE =

√√√√ 1

N

N∑
i=1

∥ui − ûi∥2

D. Datasets
We extensively evaluate our model on two key tasks across seven datasets. These datasets encompass varying levels of
complexity in the number of solids, diversity in solid materials, and variety in applied loads. The summary of datasets is
recorded in Table 1.

D.1. Public Datasets

Deforming Plate (Pfaff et al., 2021) This dataset consists of a 3D dynamic simulation of a deformable plate being pressed
by a rigid solid (Figure 5), with a total of 1,200 samples. The deformable plate is made of a hyperelastic material, and
the target physical quantities include the geometry and inner stress of the plate. Typically used for autoregressive tasks,
this dataset spans 400 time steps. In our study, we evaluate the long-term prediction performance of Unisoma. The first
time step is used as input, and we predict the results for the time step corresponding to the largest rigid solid movement
(approximately step 340). Each sample contains an average of 1,271 points. Following the strategy outlined in the original
paper, we use 1,000 samples for training, 100 for validation, and 100 for testing.

(a) Before deformation (b) After deformation

Figure 5. The deforming plate scenario.

Cavity Grasping (Linkerhägner et al., 2023) This dataset contains a 3D dynamic simulation of a deformable cavity grasped
by a rigid gripper (Figure 6), with a total of 840 samples. The rigid gripper is treated as two rigid solids, as its two jaws move
in different directions. The deformable cone-shaped cavities are randomly generated with radii ranging from 87.5 to 50.
The materials of the cavities are elastic, with Poisson’s ratios cyclically assigned from {-0.9, 0.0, 0.49}. Typically used for
autoregressive tasks, this dataset spans 105 time steps. In our work, we evaluate both long-term prediction and autoregressive
simulation tasks. For the long-term prediction task, we use the first time step as input and predict the outcome of the time
step corresponding to the largest rigid solid movement (the last step). Each sample contains 1,386 points. Following the
strategy in the original paper, 600 samples are used for training, 120 for validation, and 120 for testing.

Figure 6. The cavity grasping scenario.

Tissue Manipulation (Linkerhägner et al., 2023) This dataset simulates the 3D dynamics of tissue deformation caused by a
rigid gripper, a scenario often encountered in robot-assisted surgery. It contains 840 samples in total. The rigid gripper is
treated as two rigid solids, as its two jaws exhibit distinct movement patterns. The tissue material is elastic, with Young’s
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modulus sampled from {10000, 80000, 30000}. This dataset spans 105 time steps and is commonly used for autoregressive
tasks. In our work, we evaluate both long-term prediction and autoregressive simulation tasks. For long-term prediction, the
first time step is used as input, and the outcome of the step with the largest rigid solid movement (the last step) is predicted.
Each sample contains 363 points. Following the original paper, we allocate 600 samples for training, 120 for validation, and
120 for testing.

Figure 7. The tissue manipulation scenario.

Rice Grip (Li et al., 2019) This dataset involves the 3D dynamic simulation of sticky rice being gripped by two rigid
grippers (Figure 8). The rice is modeled as an elasto-plastic material. Two parallel grippers, represented as cuboids, are
initialized at random positions and orientations. We discretize each of them into 180 mesh points. During each trajectory, the
grippers move closer together before returning to their original positions. The task involves learning the physical interactions
between the grippers and the rice, as well as the deformation within the rice. The dataset spans 41 time steps and is typically
used for autoregressive tasks. In our experiments, we evaluate the autoregressive simulation task on it. Each sample contains
an average of 1,271 points. As for the experiment, we use 1200 samples in total and the numbers of samples used for
training, validation and test are 1000, 100 and 100, respectively.

� �
Figure 8. The rice grip scenario.

D.2. Created Datasets

All public datasets mentioned before involve few solids and simple dynamics. To diversify the datasets and improve the
complexity, we curate three multi-solid datasets with industrial inspiration for evaluation. These datasets are calculated by
ABAQUS software (Abaqus, 2011).

(a) (b) 

Figure 9. (a) the engineering stress-strain curve of the aluminum alloy; (b) The engineering stress-strain curve of the polyethylene rubber.

Bilateral Stamping Inspired by the metal stamping technique, we create a dataset related to bilateral stamping. As
illustrated in Figure 10, this scenario involves stamping a hollow metal workpiece using two rigid stamping dies to form
the desired target shapes. To maintain the integrity of the metal’s cross-sectional shape during the process, a rubber insert
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is squeezed into the hollow space while stamping. Both the metal and the rubber are modeled as elasto-plastic materials,
with their material parameters derived from real aluminum alloy and polyethylene rubber. The Poisson’s ratios for these
materials are 0.37 and 0.27, while their Young’s moduli are 69,000 MPa and 1,306.26 MPa, respectively. Their engineering
stress-strain curves are depicted in Figure 9. In this dataset, two filleted cylinders serve as the stamping dies, and their
positions and movement distances are randomly generated. The shape parameters of the solids are shown in Figure 11. All
sample parameters are uniformly sampled from predefined intervals to ensure dataset diversity. This dataset is designed
for the long-time prediction task, collecting the system’s initial and final states. The target physical quantities include the
geometry, inner stress, and plastic equivalent strain (PEEQ) of both the metal and the rubber. On average, each sample
consists of 13,714 points. We generate a total of 1,200 samples, of which 1,000 are used for training, 100 for validation, and
100 for testing.

(a) Before deformation (b) After deformation
Figure 10. The bilateral stamping scenario.

(a) deformable metal (b) rigid die
[8, 12]

[1.5, 3]

[2, 3]

[120, 150]

[200, 300]

[20, 40]

[15, 80]

[30, 80]

[5,10]

[10, 20]

Figure 11. The shape parameters (unit: mm) of the deformable metal and rigid dies in bilateral stamping dataset. The rubber shape is
deprived from the metal.

Unilateral Stamping Building on the concept of metal stamping, we develop a dataset focused on multi-point unilateral
stamping. As shown in Figure 12, this scenario simulates the deformation of a hollow metal workpiece using multiple rigid
stamping dies—16 dynamic dies and 1 static die in this dataset—to achieve the target shapes. To preserve the cross-sectional
integrity of the hollow metal during stamping, a rubber insert is pressed into the cavity. The material properties of the metal
and rubber are consistent with those used in the bilateral stamping dataset. The shape parameters of the solids are detailed
in Figure 13, with all sample parameters uniformly sampled within specified ranges to ensure diversity. This dataset is
tailored for long-time prediction tasks, capturing both the initial and final states of the system. The target physical quantities
include the geometry, internal stress, and plastic equivalent strain (PEEQ) of the metal and rubber. Each sample comprises
an average of 49,386 points. A total of 1,200 samples are generated, distributed as 1,000 for training, 100 for validation, and
100 for testing.

Cavity Extruding Inspired by the robotic gripping (Zhang et al., 2020), we enhance the complexity of the cavity grasping
dataset (Linkerhägner et al., 2023). As illustrated in Figure 14, this scenario simulates the deformation of multi-layer cavity
using four rigid grippers. The grippers’ positions and movement distances are randomly generated. The cavity is composed
of three deformable layers: the outer and middle layers are elasto-plastic materials, while the inner layer is an elastic material.
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(a) Before deformation (b) After deformation
Figure 12. The unilateral stamping scenario.

[200, 300]
[120, 150]

[8, 12]

[2, 3]

[25, 50]

[8, 10]

[20, 30]

(a) deformable metal and static die (b) dynamic die

Figure 13. The shape parameters (unit: mm) of the deformable metal and rigid dies in unilateral stamping dataset. The rubber shape is
deprived from the metal.

The stress-strain curves for the elasto-plastic layers follow those shown in Figure 9, with the Young’s modulus uniformly
sampled from [65000, 75000] MPa and [35000, 45000] MPa, and the Poisson’s ratio uniformly sampled from [0.3, 0.45]
and [0.3, 0.45]. For the elastic innermost layer, the Young’s modulus is uniformly sampled from [30000, 70000], and the
Poisson’s ratio is uniformly sampled from [0.1, 0.45]. This significantly increases the complexity of the data distribution.
The shape parameters of the solids are provided in Figure 15, and all sample parameters are uniformly sampled within
specified intervals to ensure dataset diversity. This dataset is designed for autoregressive simulation tasks and includes 121
steps from the initial state to the final state. For each step, the target physical quantities include the geometry, inner stress,
and plastic equivalent strain (PEEQ) of the two elasto-plastic layers, as well as the geometry and inner stress of the elastic
layer. Each sample contains 4,800 points, which is significantly larger than existing autoregressive simulation datasets. In
total, we generated 1,200 samples, of which 1,000 are used for training, 100 for validation, and 100 for testing.

t
Figure 14. The cavity extruding scenario.

E. Implementation Details
Implementations As shown in Table 7, Unisoma and all baseline models are trained and tested using the same training
strategy. We utilize relative L2 as loss function for long-time prediction task and MSE (Mean Square Error) for autoregressive
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(a) deformable layers (b) rigid die

20
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[100, 170]

[100, 170]
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[10, 12]

[10, 12]

[75, 85]

Figure 15. The shape parameters (unit: mm) of the deformable layers and rigid dies in cavity extruding dataset.

Table 7. Training and Model Configurations of Unisoma. The definition of batch size differs between the two tasks. For long-time
prediction, the batch size refers to the number of samples in a batch. For autoregressive simulation, only one sample is processed during
each forward and backward pass, and the batch size corresponds to the number of time steps in the sample. Since GPU memory usage
varies across different models, the batch sizes of baseline models in the autoregressive simulation task are dynamically adjusted to avoid
GPU memory overflow while maintaining performance.

TASKS DATASETS
TRAINING CONFIGURATION MODEL CONFIGURATION

LOSS EPOCHS LR BATCH PROCESSORS CHANNELS SLICES

LONG-TIME
PREDICTION

DEFORMING PLATE
RELATIVE L2 200 3× 10−4

1

2 128 32

CAVITY GRASPING 20
TISSUE MANIPULATION 20

BILATERAL STAMPING RELATIVE L2 100 3× 10−4 1
UNILATERAL STAMPING 1

AUTOREGRESSIVE
SIMULATION

CAVITY GRASPING

MSE 100 3× 10−4

104
TISSUE MANIPULATION 104

RICE GRIP 40
CAVITY EXTRUDING 120

simulation task. For multiple physical quantities, we add each loss with equal weights. For Unisoma, we set the number
of processors, hidden feature channels, and slices to 2, 128, and 32, respectively, across all experiments. To ensure fair
comparisons, we first approximate the parameter count of all baseline models to match that of Unisoma and then adjust
their parameters to minimize overfitting and achieve better performance. All experiments are conducted on a single RTX
3090 GPU (24GB memory) and repeated three times. Additionally, when adjusting the parameters of the baselines, we take
maximum GPU memory usage into account as a constraint, which means the GPU memory usage of all models cannot
incur ”Out of memory” error. This is important for practical applications. Due to the number of modules is adaptable to the
number of solids and their contacts, for all experiments, Unisoma performs well under a single set of network parameters,
which demonstrates its robustness and generalizability across various tasks and datasets. This consistency eliminates the
need for extensive parameter tuning when switching between tasks, making it more efficient and user-friendly for practical
applications. Additionally, the ability of Unisoma to handle diverse scenarios with a unified configuration highlights its
capacity to effectively model complex physical systems, where different dynamics and interactions are involved. This
advantage becomes particularly significant when compared to baseline models, which often require task-specific parameter
adjustments to achieve optimal performance.

Since these neural operators and transformer-based baselines employ implicit modeling and are primarily designed for
Eulerian settings, they are not naturally suited for handling Lagrangian scenarios, such as multi-solid systems. Consequently,
we preprocess the data to adapt it for use with these baselines. For different objects within the system, we first align the
feature dimensions using padding, then concatenate along the length dimension to combine all objects into a single large
Lagrangian sequence of points. For models that struggle to handle the Lagrangian setting (Li et al., 2023b; Wu et al.,
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2023; Li et al., 2024b; 2023c), we map each point to a regular grid, transforming the data into an Eulerian representation.
Specifically, for a point sequence of size N ×C, we discretize a cubic space [x, y, z] ∈ [−1, 1]3 into a regular grid, with the
number of discretization points along each axis set to ⌈ 3

√
N⌉. We then map each point’s coordinates and physical quantities

to the corresponding grid points. Excess grid cells are padded to align dimensions. Experiments show that this approach
improves baseline performance to some extent but results in a partial loss of information from the Lagrangian perspective,
revealing limitations in addressing multi-solid problems effectively.

We implement baselines based on official and popular implementations. For autoregressive simulation task, we uniformly add
noise with a mean of 0 and a variance of 0.001 to improve the error accumulation control during rollout. Because the results
of MGN (Pfaff et al., 2021) on tissue manipulation and cavity grasping datasets are well-explored in GGNS (Linkerhägner
et al., 2023), we directly use the model and weights in their code repository. Additionally, the data preprocessing code for
pooling is not provided in HCMT (Yu et al., 2024). Therefore, we attempted to implement our own version, which, however,
encountered convergence issues in some scenarios. We provide key network hyperparameters and parameter numbers of
baselines in Table 10. We refer the readers to original papers and code repositories for details.

Efficiency In this paper, we report GPU memory usage based on the operating system’s measurements, which include any
memory pre-allocated by the PyTorch caching allocator. This approach yields a conservative yet realistic view of hardware
requirements during training, since once memory is reserved, it is effectively unavailable for other processes. Even though
the model may not be actively using all of the allocated space at each moment, including pre-allocation in the reported usage
aligns more closely with the practical resource constraints encountered in real-world deployments. Furthermore, all models
are evaluated under the default PyTorch memory usage strategy on a single RTX 3090 GPU, ensuring a fair comparison
across different architectures and methods.

F. Ablation Study
We include ablation studies in Table 8. In general, we observe that incorporating mesh edges benefits the final performance by
enabling the model to capture more local features. However, as the number of mesh edges increases (especially when k = 8),
the performance declines. This is because an excessive number of edges introduces redundant information and additional
noise, which negatively impacts the model’s effectiveness. Furthermore, increasing the number of edges significantly raises
the computational cost, making the model less efficient. In principle, the optimal number of edges depends on the problem’s
scale and the number of mesh points. In our experiments, k is easy-to-tune in the range of 3 to 5.

Besides, removing the loads (which are usually implicitly considered in existing models) will damage the model performance
seriously, especially when the loads are more complex. This result further demonstrates the advantages of the explicit
modeling in handeling complex multi-solid systems.

Table 8. Ablation results. We experiment on two variants: the mesh edges and loads. We focus on long-time prediction task. The k
denotes the number of neighbors used in constructing mesh edges with kNN method. For bilateral stamping with two deformable solids,
under the same target, the left column represents the results for the metal, while the right column represents the results for the rubber.

ABLATIONS
TISSUE MANIPULATION BILATERAL STAMPING

GEOMETRY GEOMETRY STRESS PEEQ

W/O EDGES 0.0269 0.0063 0.0059 0.0292 0.1097 0.2962 0.2429
k = 2 0.0263 0.0058 0.0053 0.0289 0.1063 0.2843 0.2338
k = 3 0.0265 0.0056 0.0051 0.0283 0.1058 0.2870 0.2281
k = 4 0.0253 0.0057 0.0052 0.0278 0.1039 0.2817 0.2265
k = 5 0.0257 0.0057 0.0054 0.0282 0.1049 0.2836 0.2269
k = 6 0.0260 0.0056 0.0051 0.0279 0.1042 0.2842 0.2258
k = 7 0.0254 0.0059 0.0051 0.0284 0.1046 0.2818 0.2294
k = 8 0.0266 0.0062 0.0055 0.0293 0.1072 0.2905 0.2312

W/O LOADS 0.0346 0.0245 0.2353 0.0378 0.1949 0.5441 0.5720
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G. Out-of-distribution Generalization
In Table 5, we have provided part results of the out-of-distribution experiment on unseen material parameters. We include
the complete results in Table 9. It is impressive that Unisoma can still achieve the best performance in the out-of-distribution
setting across all target physical quantities. This comes from special explicit modeling design, which enables Unisoma to
capture more foundational physical interactions and generalize to unseen material parameters better.

Table 9. Complete results of the OOD generalization experiment on the cavity extruding dataset. Relative L2 is recorded. “Outer”,
”Middle”, and ”Inner” refer to each deformable solid of the multi-layered cavity from the outside to the inside, respectively.

OUTER MIDDLE INNER

GEOMETRY STRESS PEEQ GEOMETRY STRESS PEEQ GEOMETRY STRESS

GEO-FNO 0.0117 0.1036 0.1771 0.0177 0.0790 0.1171 0.0198 0.2526
GINO 0.0715 0.2003 0.7461 0.1165 0.1900 0.7268 0.1015 0.4645
GNO 0.0238 0.1452 0.2811 0.0444 0.1149 0.2914 0.0449 0.3727
LSM 0.0249 0.1194 0.3164 0.0436 0.0840 0.2633 0.0339 0.3111

GALERKIN 0.0931 0.1996 0.7899 0.1333 0.7641 0.1398 0.1398 0.5165
FACTFORMER 0.0202 0.1116 0.2289 0.0269 0.0738 0.1355 0.0308 0.2739
OFORMER 0.0134 0.1064 0.1930 0.0204 0.0722 0.1276 0.0229 0.2596
ONO 0.0213 0.1089 0.2088 0.0357 0.0792 0.1642 0.0372 0.2511
TRANSOLVER 0.0162 0.1066 0.2069 0.0334 0.0765 0.1521 0.0336 0.2643

GRAPHSAGE 0.0211 0.1434 0.2594 0.0339 0.1126 0.1971 0.0416 0.3571
MGN 0.0178 0.1413 0.2359 0.0280 0.1113 0.1788 0.0385 0.3526

UNISOMA 0.0077 0.0994 0.1527 0.0157 0.0706 0.1125 0.0179 0.2348
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Table 10. Key hyperparameters and parameter numbers of models.

DEFORMING
PLATE

CAVITY
GRASPING

TISSUE
MANIPULATION

BILATERAL
STAMPING

UNILATERAL
STAMPING

GEOFNO
MODES [8, 8, 8] [8, 8, 8] [8, 8, 8] [8, 8, 8] [10, 10, 10]

HIDDENS 24 28 28 36 36

PARAMETER (M) 1.30 1.77 1.77 2.92 5.47

GINO

MODES [8, 8, 8] [8, 8, 8] [8, 8, 8] [8, 8, 8] [8, 8, 8]
HIDDENS 8 8 8 12 18

LATENT GEOMETRY 8 20 20 8 8

PARAMETER (M) 1.41 1.41 1.41 2.70 5.61

GNO

HIDDENS 96 96 96 64 64
KERNEL WIDTH 128 128 128 128 128

DEPTH 3 3 3 3 3

PARAMETER (M) 1.14 1.23 1.23 0.56 0.56

LSM

HIDDENS 8 8 8 16 16
TOKENS 8 8 8 8 8

BASIS 12 12 12 12 12

PARAMETER (M) 1.49 1.49 1.49 5.94 5.94

GALERKIN

HIDDENS 128 128 128 192 256
FEEDFORWARD 512 512 512 512 512

LAYERS 6 8 8 8 10

PARAMETER (M) 1.20 1.60 1.60 2.80 5.35

FACTFORMER

HIDDENS 128 128 128 256 256
HEAD DIM 64 64 64 64 128

KERNEL MULTIPLIER 3 4 4 4 4

PARAMETER (M) 1.19 1.58 1.58 3.16 6.32

OFORMER
HIDDENS 128 128 128 128 128

DEPTH 2 2 2 4 3

PARAMETER (M) 1.48 1.48 1.48 2.63 2.06

ONO

HIDDENS 128 128 128 256 256
LAYERS 4 5 5 4 4

MLP RATIO 4 4 4 2 4

PARAMETER (M) 1.31 1.65 1.65 3.27 5.13

TRANSOLVER

HIDDENS 128 128 128 128 128
LAYERS 12 12 12 12 16

MLP RATIO 1 1 1 4 4
SLICE 32 32 32 32 32

PARAMETER (M) 1.44 1.44 1.44 3.81 5.07

MGN

HIDDENS 128 128 128 128 128
MLP LAYERS 2 2 2 3 4

PASSING STEPS 15 15 15 15 20

PARAMETER (M) 2.32 2.32 2.32 2.88 4.51

GRAPHSAGE
HIDDENS 256 256 256 256 512
LAYERS 8 8 8 12 10

PARAMETER (M) 1.18 1.18 1.18 2.10 5.46

UNISOMA PARAMETER (M) 0.88 1.42 1.42 2.82 5.67
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