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Abstract

Large language models have transformed Al, yet reliably controlling their outputs
remains a challenge. This paper explores activation engineering, where outputs
of pre-trained LLMs are controlled by manipulating their activations at inference
time. Unlike traditional methods using a single steering vector, we introduce
conceptors—mathematical constructs that represent sets of activation vectors as
ellipsoidal regions. Conceptors act as soft projection matrices and offer more
precise control over complex activation patterns. Our experiments demonstrate
that conceptors outperform traditional methods across multiple steering tasks. We
further use Boolean operations on conceptors for combined steering goals that
empirically outperform additively combining steering vectors on a set of tasks.
These results highlight conceptors as a promising tool for more effective steering
of LLMs. Our code is available on github.com/jorispos/conceptorsteering.

1 Introduction

Large language models (LLMs) have rapidly advanced Al capabilities [1]], but their potential to spread
misinformation [2], reinforce biases [3l], and develop harmful behaviors [4] highlights the urgent
need for methods to understand and control their outputs. Various methods, including reinforcement
learning from human feedback (RLHF) [3], supervised fine-tuning [6]], and prompt engineering [[7]],
have been proposed to steer LLM outputs toward desired patterns. However, RLHF and fine-tuning
are computationally expensive and struggle with generalization [8, 9], while prompt engineering
often produces inconsistent results [[10].

Activation engineering 11} 12] has recently been proposed as a new steering method which works by
directly modifying the model’s activations at inference time without changing the model’s parameters
and without expensive optimization. A steering vector that represents desired behavior can be
computed directly or (more commonly) contrastively from positive and negative examples [[13].
However, finding contrastive prompts to identify complex patterns is not always possible and, more
importantly, the performance of activation addition for steering is not reliable [12].

This paper introduces an alternative to the predominant approach for steering LLMs using activation
engineering. Instead of averaging or subtracting a set of activation vectors to form a steering vector,
we use the cached activations to compute a conceptor [14], which we refer to as a “steering matrix”.
Instead of manipulating the LLM’s activations using vector addition, the activations are (softly)
projected using a matrix-vector multiplication with the steering matrix. We contribute the following:
(1) we introduce a novel application of conceptors [14] as steering mechanisms for LLMs, (2) we
apply this mechanism to function vectors [15] on GPT-NeoX and GPT-J, and (3) we show how a
Boolean algebra on conceptors [16] can be used for combining steering targets on GPT-J.
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Figure 1: Illustration showing the basic geometric difference between additive and conceptor steering
using a set of activations for the antonym task. Additive steering acts as a translation of the activation
vectors by a fixed steering vector. Conceptor steering acts as a (soft) projection onto a target ellipsoid.

2 Background

Adding steering vectors to the residual stream has been used to control the output of LLMs across
various domains [[12}[13|[17]. The use case that will mainly be focused on here are the findings from
the paper by Todd et al. [[15]. Their work showed that a steering vector can be extracted from the
residual stream that captures the activation space of an input-output function (e.g. a function that
takes a word and returns its antonym). This steering vector can then be added to the residual stream at
inference time to steer the model toward performing the captured function. See Figure [6]in Appendix
[A. I Tlfor an illustration of function vector tasks.

Their baseline method works as follows. First, a set of in-context learning (ICL) prompts P; that

demonstrate a particular task f (the execution of an input-output function) are compiled. Then,
antonym

for each prompt p{ € Py (e.g., p] =hot:cold,old:), the final token’s activations h, (p{)
are cached at a specific layer £ from the residual stream h. The cached activation vectors are then

averaged into the steering vector B‘,f for task f at layer ¢:

_, 1 .
h = 7] S he(p]) (1)

p‘[EPf

To steer the model towards performing this function, the function (steering) vector }_Lg can be added
(without additional re-normalization) to the residual stream at layer £ when the model would be
completing a prompt containing a previously unseen input:

hy = Baga bl + ho 2)

where h), is the steered activation and (.44 > 0 is a hyperparameter. The performance of additive
steering can further be improved by a technique called mean-centering [18]], see Appendix [A.2.1]

3 Conceptors as Steering Matrices

Conceptors can broadly be defined as a neuro-computational mechanism designed to encapsulate and
manipulate the state space of neural activations [14]. A conceptor matrix C' is a positive semi-definite
matrix that captures the principal directions and variances of a set of neural activation vectors. This
structure can be visualized as a high-dimensional ellipsoid that describes the overall shape and spread
of the activations’ “underlying pattern”, or state space region. See Figure 2] for a visual illustration.
Because conceptors are computed from the cloud of activation vectors and encode the correlations
between activations, conceptors can better capture the activation space of complex patterns compared
to simple point representations, which discard information about correlations. This difference is
illustrated geometrically in Figure [I]

Conceptors have been used to control pattern-generating RNNs effectively across various behaviors
[L6], prevent catastrophic forgetting and enhance continual learning in feedforward networks [[19],
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Figure 2: Illustration of three conceptors as ellipsoids that capture the state space region of different
sets of neural activations in 3D space (black points). Reproduced from Jaeger [[14]].

remove bias subspaces in LLMs like BERT and GPT [20], and distill linguistic abstractions into
knowledge graphs from contextual embeddings [21} [22].

One way to formalize the conceptor matrix C, is through an optimization that minimizes the recon-
struction error while using a regularization term. The objective function to be minimized is:

min [ X = XClf + a2 C%

where X is a matrix of neural activation vectors (stacked as rows), || - || r is the Frobenius norm, and
« s the regularization parameter also referred to as the conceptor’s aperture. This aperture parameter
« balances the trade-off between accurately representing the activation pattern and maintaining a
generalized representation. The closed-form solution to this problem is given by:

XTX
n

C(R,a) = R(R+a™2I)"" with R= 3)

where 7 is the number of samples, and [ is the identity matrix of the same dimensionality as R.

The eigenvalues p; of the conceptor matrix C' are defined as:

/\i—i\;* forO0< \; <land 0 < a0 < o0

0 forO< \; <landa=0
i =<1 forO0 < \; <land a = ©

0 for\; =0and 0 < a < o0

1 for \; =1land 0 < a <

where \; represents the eigenvalues of the correlation matrix R. These eigenvalues p; fall within
the interval [0, 1] and are influenced by the aperture parameter . When « is large, the eigenvalues
1; approach 1 and C' approaches the identity matrix, causing the conceptor to allow for more signal
components to pass through the projection of the states with the conceptor matrix C'z. Conversely,
when « is small, the eigenvalues p; approach 0, causing the conceptor to allow for less variability. In
the extreme case of a — 0, the conceptor tends to the zero mapping.

We can use the conceptor for steering by collecting activations hy (pi ) into X and then compute the
associated conceptor C’Z using Equation and finally steer new hidden activations h, with:

hy = B.Cfhy 4)

where hj, is the steered activation and . > 0 is a hyperparameter. We can think of this as a “soft
projection”. A projection matrix has eigenvalues that are either zero or unity, but the conceptor matrix
has “soft” eigenvalues between zero and unity. Thus, the conceptor “softly projects” the activation
vector h, toward the pattern represented by CZ by scaling its components according to the patterns’
principal directions.

3.1 Boolean Operations on Conceptors

We can combine multiple steering matrices using the conceptor Boolean operations as defined by
Jaeger [16]]. We begin with the OR operation on conceptors, which can be interpreted as merging the



data from which each conceptor is computed by adding the covariance matrices on which C; and Cy
were computed. Given that C; was computed with the covariance matrix R; and Cy was computed
with the covariance matrix R, the conceptor that is computed on the sum of the two covariance
matrices Ry + Ry is defined as C V Cs:

CyV Cy = (Ry + Ro)(Ry + Ry + a~21)! ®)
—1

chves= (s o))

The NOT operation on a conceptor C'is defined as the conceptor ~C' that is computed on a covariance
matrix B! that is the inverse of the original covariance matrix R for conceptor C. Intuitively, ~C'
can be interpreted as the conceptor that arises from data that which co-vary inversely to the data
giving rise to C"

-C=R YR '+a2)7! @)
-C=I-C 8)

For our experiments, we use the AND operation which can now be obtained from the NOT and OR
operations using de Morgan’s law a A b = —(a V b) such that the conceptor C; A Cs is computed

using the correlation matrix (R; ' + Ry ™')™, This leads to:

CiACy= (R + Ry (R + Ry ' +a72D) " ©)
CiANCy=(Cyt+ Oy + 1)t (10)

3.2 Computational Complexity of Conceptor Steering

The cost of computing a conceptor steering matrix is dominated by the matrix inversion and matrix-
matrix multiplication of the activation correlation matrix R = X X T /n (see Equation . This
correlation matrix is a n X n-dimensional matrix where n is the dimension of the activation vectors
(typically <4096 for the model sizes we presented, or up to 8192 for larger models such as Llama-2-
70B), so the complexity of the conceptor computation is O(n?). This computation is done entirely
offline and the cost is amortized over all future applications of the steering method. The final
conceptor C' € R™*" takes O(n?) memory — the same amount as a weight matrix acting on the
activation vectors. For 32-bit floating point numbers, this amounts to 17MB for n = 2048, 67MB for
n = 4096, or 268MB for n = 8192.

During inference, conceptor steering adds an extra matrix-vector multiplication C'x with the activation
vector . However, the additional memory and inference cost for applying the conceptor can be
eliminated by fusing the conceptor with the succeeding weight matrices for the query, key and value
weight matrices. This is equivalent to replacing the existing weight matrix W, with the conceptor-
fused weight matrix W< = W, C. This fusing of operations is standard practice when optimizing
networks for inference. We note that there may be an overhead cost for switching the conceptor
steering on and off which amounts to the cost of changing the network’s computational graph during
inference. We believe this overhead to be negligible during auto-regressive generation on a single
data sample, but it must be considered when using batch sizes larger than one.

4 Experiments

For our experiments, we will use EleutherAI’s GPT-J 6B and GPT-NeoX 20B models, as done in
previous works on activation steering [15} [18]]. For all experiments, we find optimal hyperparameters
for each steering method at every layer. The details of our grid search for a and j3.. for conceptor-based
steering and (3,44 for additive steering can be found in Appendix

4.1 Function Steering

We compare conceptor-based and additive steering mechanisms on their ability to steer a given model
towards correctly executing a set of functions. We test both methods on GPT-J with 6B parameters
and GPT-NeoX with 20B parameters. For each function, the described experiment will be repeated
five times with different random seeds, and all reported results are averaged across across these five



runs. The examples of the input-output functions come from the dataset by Todd et al. [15]. We use
the following subset of five functions [[18]: antonyms (e.g. good—bad), present-past (e.g. go—went),
English-French (e.g. hello—bonjour), singular-plural (e.g. mouse—mice), country-capital (e.g.
Netherlands— Amsterdam), and capitalize (e.g. word— Word). To ensure comparability of our results,
we follow [15] as closely as possible. For more details, see Appendixlm_j'l

Performance of different steering mechanisms across different functions
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Figure 3: Comparison of the accuracy on all six function tasks for conceptor-based steering against
additive steering across all layers for GPT-J and GPT-NeoX. For explanation, see main text.

The results in Figure[3|show that conceptor-based steering outperforms additive steering (the baseline
method reported in Ref. [[15]) for every task on both tested models. In line with previous findings
[L5} 18], steering is most effective across layers 9-16 for GPT-J and layers 10-30 for GPT-NeoX.

Table [T] and Figure ] show that mean-centering (as outlined in Appendix [A-Z1)) provides a small
improvement for both addition-based and conceptor-based steering. Mean-centering improves the
performance of additive steering by as much as 2x (on the country-capital task). For conceptor-based
steering the improvements of mean-centering are relatively smaller — at most 5% on the country-
capital task. Conceptor-based steering outperforms additive steering on all tasks, even comparing
additive steering with mean-centering against conceptor-based steering without mean-centering.

Table 1: The effect of mean centering on conceptor-based and addition-based steering on the GPT-J
(6B) model, across simple function vector tasks. Results show the best performance across all
hyperparameters and across all layers.

antonyms capitalize country-capital english-french present-past

Addition 20.54% 93.16% 32.04% 18.88% 69.66%
Addition (MC) 31.20% 95.00% 63.90% 34.32% 83.32%
Conceptor 52.14% 96.68 % 81.62% 59.02% 91.56%
Conceptor (MC)  52.82% 96.26% 85.32% 61.32% 91.88%

Performance of mean-centering on different steering mechanisms
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Figure 4: The effect of mean centering on conceptor-based and addition-based steering on the GPT-J
(6B) model across all layers, computed on five different function vector tasks (% accuracy). The line
shows the best average performance across five runs for the best hyperparameters for the given layer.



4.2 Steering Composite Functions

We further conducted experiments where two conceptors, each representing one of three different
functions, were combined using the AND operator. The input-output example dataset for this
function was generated using GPT-40. To present the baseline for how well non-combined steering

mechanisms perform, we show results for the conceptor C'1'? and the steering vector h}’z that were
each computed on the compound function directly. We then combine the conceptors computed on the
individual functions C! and C? using the AND operation as C* A C?, and we combine the steering
vectors h} and h? using their arithmetic mean 1 (h} + h?).
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Figure 5: Performance of additive steering and conceptor steering on composite functions. For
explanation of the figure caption, see text. Dashed lines represent the “baseline” where the steering
mechanism is computed on the composite task. Solid lines show task arithmetic.

Figure 5] shows the performance of all compared methods across all layers of the GPT-J model. In
line with the results from Section the conceptor baseline outperformed the additive baseline on
all three tasks. The AND-combined conceptor outperformed the mean-combined steering vectors. On
one of the three tasks, english-french & antonyms, the AND-combined conceptor even outperforms
the additive baseline.

5 Conclusion

In our experiments, conceptor-based steering generally outperformed addition-based methods. Further
research should be conducted to assess the mechanisms’ impact on the model’s overall capabilities,
the performance on more complex behaviors/tasks, and the scalability to larger models.

A limitation of conceptors is their reliance on more data points to build accurate representations.
Additionally, the inherent mathematical structure and additional required computations makes it
more computationally expensive compared to simple addition-based methods. However, while more
expensive than addition-based approaches, they are still much cheaper than alternatives like RLHF
and fine-tuning. Conceptors also introduce a new hyperparameter, the aperture «, that may require
tuning for optimal performance. In our experiments, we found a single aperture value, a = 0.1,
yields the best performance across all experimentﬂ but this finding must be verified for new models
and steering tasks.

Despite these challenges, conceptor-based steering methods could offer a more precise and effective
way to steer LLMs compared to traditional addition-based methods, proposing a fundamental shift in
what is possible with activation engineering. Our experiments on conceptor-based steering further
suggest that region-based representations may allow for more flexible and nuanced steering compared
to point-based representations. The proposed method could have significant positive implications for
debiasing models, aligning models with human values, and overall Al safety.

"More precisely, the aperture value o = 0.1 is within 10% of the best-performing aperture value across all
experiments and models. In most experiments, it is the single best value. See Appendix@]for more details.
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A Appendix

A.1 Experimental Details

All experiments were run on NVIDIA GPUs. The GPT-NeoX model was run on one NVIDIA RTX
A6000 with 48GB of VRAM, and the GPT-J model was run on one NVIDIA GeForce RTX 4090
with 24GB of VRAM. Each hyperparameter sweep took less than 18 hours of compute time per
model and per task.

A.1.1 Function Steering

All the experimental configurations (number of experiments, number of ICL prompts and examples
per prompt, accuracy metric, etc.) were, unless mentioned otherwise, adopted from Ref. [15]] to
ensure comparability of results.

For each experiment, to generate the 4 steering mechanisms, we first compile N, = 100 (ICL)
prompts that demonstrate the respective input-output function. The prompts are formed by randomly
sampling N = 10 input-output pairs from the function pairs dataset. If for a specific function,
the dataset contains less than N, x N = 1000 input-output examples, this sampling is done with

replacement. For each prompt p{ , the last input-output pair has the output stripped, resulting in the
format:

Pl =721y, e Yoy TN YN, TN
where x represents the input tokens of a randomly sampled (input, output) pair, y represents the
corresponding output tokens, N represents the number of sampled input-output pairs, and 7 €

{1,...,N,}. A very simple example where N,, = 3 and N = 3 can be seen in Figure@

old:young, vanish:appear, darl{: I simple] +.: complex

awake:asleep, future:past, joyf}
top:bottom, tall:short, acceptf] encode] +.* decode

(a) Extraction of the antonym function (steering) vector 71{ at (b) Antonym steering vector in 2 zero-shot
layer [ using 3 ICL prompts. contexts.

Figure 6: Visualization of how an antonym function (steering) vector can be extracted and applied.
Example from [[15]]

Formally, for each function f € F in our set of in-context learning (ICL) tasks, we have compiled

a set Py of ICL prompts p{ € Py. Each prompt p{ is a sequence of tokens with N input-output
exemplar pairs (, y) that demonstrate the function f mapping between x and y. For each experiment,
we generate IV, such prompts.

Now that the ICL prompts have been generated, we need to extract the relevant activations. Todd et al.
[15] showed that the neural representations of the functions are encoded in the activation vector of the
last token (":") of the prompt, right before the transformer would auto-regressively start generating
the output token(s). Moreover, the point in the residual stream h at which the functions were most
strongly encoded was shown to be at the beginning of layers L = {9, ..., 16}, right before MHA
and FFN [15].

Formally, for each function f € F' and each prompt p{ € Py, the activation vectors hg (pf ) are

extracted from the residual stream h at each relevant layer [ € L from the last token’s (":") activation
vector.

For each function f € F' and each layer [ € L, we now have IV, cached activation vectors h{ (plf )
aimed to encode the neural representation of f at layer /. Using this, we can generate the layer-specific
steering mechanisms for each function as follows:

* The standard additive steering mechanism ﬁ{ is generated by averaging over all the cached
activation vectors h{ (pf ) respectively as described in Equation



* The additive steering mechanism with mean-centering Bf "™ is computed by taking the
previously generated steering mechanism B{ and subtracting ju,in as described in Equation

* The regular conceptor steering mechanism C' is computed as described in Equation [3using

. . . T .
the aperture value cye. The correlation matrix R is computed as I? = XN—X, where X is the
P

matrix of all hg (pf ) stacked activation vectors.
* The mean-centered conceptor steering mechanism C™ is computed with some minor

adjustments. The matrix X is formed by subtracting fu,in, from the activation vectors hj; (pzf )
before stacking them. This results in an adjusted correlation matrix R:

(X - /J'train)T(X - MLrain)
NP

R:

The mean-centered conceptor matrix C™ can then be calculated as described in Equation[3]
using the aperture value oy and the adjusted correlation matrix R.

To test the performance of the generated steering mechanisms, new sets of N; = 1000 input-output
pairs are randomly sampled from the function pairs dataset for each experiment. This is done with
replacement for functions where the dataset contains less than V; pairs. An input prompt p; is
formatted as p, = "z : 7, where x is a tokenized input from an input-output pair. The tokenized
output y from the pair is left out from p; as it will be used to test the accuracy of the steering
mechanisms. For each experiment, we now have V; test input prompts p;.

To test the accuracy of the steering mechanisms, we apply the layer-specific steering mechanisms on
independent forward passes and record their subsequent output. This means that for our experimental
configuration, across the functions f € F’, the 5 experiments, the 4 steering mechanisms (excluding
the baseline), the IV; number of test prompts, and the number of layers [ € L, there will be
6 x 5 x4 x 1000 x 8 = 960, 000 forward passes, each with a steering intervention.

Each steering intervention will consist of a layer-specific steering mechanism modifying the residual
stream h at the mechanisms’ respective layer [. This modification can be defined as transforming the
unmodified residual stream activation vector h, into the steered activation vector hj,. The steering
mechanisms’ modification can be described as follows:

* For the standard additive steering mechanism, the averaged activation vector B£ is multiplied
by the injection coefficient 3,44 and added to the residual stream activation vector hy:

Ry = Baaa ) + he

* For the additive steering mechanism with mean-centering, the mean-centered average

activation vector B({ "™ is multiplied by the injection coefficient 3,4 and added to the
residual stream activation vector hy:

Ry = Baaa h™ + hy

* For the regular conceptor steering mechanism, the residual stream activation vector hy is
multiplied using the conceptor matrix C' and further multiplied with the rescaling coefficient

Be:
h;) = ﬂc Chy

* For the mean-centered conceptor steering mechanism, the residual stream activation vector
hy is first adjusted by subtracting .. This adjusted vector is then multiplied with the
mean-centered conceptor matrix C™ and further multiplied with the rescaling coefficient
Bc. Finally, fiq,, is added back to the result:

h% = Bc cre (hi - ,Uftrain) + [train
¢ For the baseline condition, no modifications are made to the residual stream.

R, = hy

10



After the respective modifications have been made to the residual stream, the forward passes will
continue as usual. At the end of each forward pass, the final logits are converted into probabilities
using a softmax, and the token with the highest probability is selected. This means that at the end of
one experiment, we have N; single-token outputs for each layer-specific steering mechanism. These
tokens can now be compared with the first token of output y that corresponds with the input x of the
initial prompt p;. Based on how many of the /V; outputs were correctly identified, a top-1 accuracy is
calculated for each layer-specific steering mechanism. This experiment is repeated 5 times for each
function f € F' to account for variability caused by the random sampling for the generation of the
steering mechanisms and test sets.

A.1.2 Hyperparameter optimization

The performance of the steering mechanisms in the function vector experiments was optimized
through a grid search over all hyperparameters. Firstly, we try steering at each layer of the
model. For conceptor-based steering, we do a grid search for the aperture value o with possi-
ble values from {0.001,0.0125,0.05, 0.1} and the scaling coefficient 8. with possible values from
{0.5,1.0,2.0,3.0,4.0,5.0}. For additive steering, we run a grid search over the scaling coeffi-
cient Byqq with possible values from {0.5,1.0,1.5,2.0,2.5,3.0,4.0,5.0}. The results from these
hyperparameter sweeps are shown in Appendix [A.3]

A.2 Additional Experimental Results

A.2.1 Mean centering

An important improvement for additive steering is a technique called mean-centering, put forward
by Jorgensen et al. [18]. This method enhances the effectiveness of steering vectors by reducing
the inherent bias present in the activation space of LLMs. Activation vectors in LLMs tend to be
anisotropic, meaning that they are not evenly distributed around the origin, but are instead offset in a
consistent direction. This can negatively impact the steering vector’s performance as the bias vector b
representing this offset, does not encode any specific task-related information, diluting the steering
vector’s effectiveness.

First, the steering vector ﬁ{ for a specific function f is computed by averaging the activations at layer
¢ on a set of ICL prompts demonstrating the input-output function P (as defined in Equation .

h£ now encodes the task-specific behavior but may still be affected by biases in the model’s overall
activation space. Mean-centering attempts to mitigate this by subtracting the mean activation of a
broader dataset that represents the general activation space of the model. This is done by computing
the mean activation vector fi,i, over a large, representative set of prompts Dy, from the model’s
training data.

The mean activation vector i, Was calculated using the same procedure described by Jorgensen et
al. [18]: A subset from the dataset used to train GPT-2 was compiled [23]]. The subset was constructed
by storing all entries from the folders urlsf_subset01-1/data and urlsf_subset01-182/data.
After this, only entries that contained less than 500 tokens (using the GPT-2 Tokenizer) were retained.
This resulted in 210 entries from which the final 10 were removed, leaving a dataset of 200 entries.
The mean activation vector fu,i, was then computed by averaging the activations over this dataset.

Implementing the mean-centering performance enhancement for steering toward the execution of
functions can be done as follows:

Bg)mc = Bg = frain - With  figain = ——— he(d) (D)
| Dl &5,

where ﬁg is as described in Equation (1} and Dy, is the dataset for which the mean-centered vector

Lhrain 1S computed. This refinement leads to a steering vector that can more effectively guide the
model toward the specific task and has been shown to have a positive impact on the overall steering
effectiveness [[18]].
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A.3 Hyperparameter Sweep Results

In the following section, we present results from the hyperparameter optimization described in
Appendix[A.T.2] in order to assess the sensitivity of both steering mechanisms (additive and conceptor-
based) to the hyperparameters.

A.3.1 Conceptor Steering

Figure [7] shows that the optimal choice of aperture and beta parameters for the conceptor steering
mechanism is constant at &« = 0.05 and S = 2.0 across all tasks for the GPT-J model (for the layer
with the maximum performance). Figure[8|shows similar behavior for the GPT-NeoX model, although
the optimal beta parameter is 3 = 1 and the optimal aperture parameter changes to o = 0.0125
for the country-capital task, and @ = 0.1 for the english-french task, and o = 0.05 for all other
tasks. This shows that hyperparameter choices are robust for conceptor steering, but still benefit from
task-specific and model-specific optimization.

We further show the performance of conceptor-based steering across all layers and different beta
values (taking the best-performing aperture value) for the GPT-J model in Figure [9] and for the
GPT-NeoX model in Figure[T0] For the GPT-J model, the best-performing layers are typically layers
12-14 with some variability (present-past being a few layers later at 14-17, and capitalize working
well across layers 9-19). For the GPT-NeoX model, conceptor steering reaches (near-)maximum
performance at layer 15 across all tasks, with layer 15 being at around one third of the depth of
the model. Figures [IT)and[T2]show the performance of conceptor-based steering across all layers
and different aperture values (taking the best-performing beta value) for the GPT-J model and the
GPT-NeoX model, respectively, and show a similar pattern as described above.
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antonyms

capitalize

country-capital

g

-0.6

Io.s

-0.4

l..

-03 -0.6

beta

5.0 4.0 3.0 20 1.0 0.5
beta
beta

-0.4

I* 0.2
I»UAS

-0.6

-0.2
0.4

-0.4
: 0.1 0.2
0.4 0.3
! :

aperture aperture aperture

english-french present-past singular-plural

I.. L.

-0.4 -0.6

-0.3

beta

5.0 4.0 3.0 2.0 1.0 05
beta
beta

-0.4

-

-0.4

-

-0.2
0.4

0.1
0.3 0.3

'
0.001  0.0125 0.05 0.1 0.0125 0.05

0.001  0.0125 0.05
aperture aperture aperture

Figure 7: Performance results of the grid search across aperture and beta values (for the optimal
layer) for the GPT-J (6B) model, using conceptor-based steering.

A.3.2 Additive Steering

Additive steering only has two hyperparameters that were being optimized: the layer on which
steering was done, and the beta value that determines the “steering strength”. Figure[T3]shows the
performance of additive steering on the GPT-J model across all layers and beta values. Similarly to
the results of conceptor-based steering, additive steering works best across layers 9-14 with peak
performance always between layers 12-14. The best-performing beta values are 2.0, 3.0, and 4.0,
although 2.0 is sufficient to reach peak performance for all tasks. Figure[I4]shows the performance
of additive steering on the GPT-NeoX model across all layers and beta values. Similar to the best-
performing conceptor-based steering hyperparameters, additive steering works best on layers 12-16.
The optimal beta values are 1.5 and 2.0.
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Conceptor steering of GPT-NeoX (20B)
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Figure 8: Performance results of the grid search across aperture and beta values (for the optimal
layer) for the GPT-NeoX (20B) model, using conceptor-based steering.
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Figure 9: Performance results of the grid search across layers and beta values (for the optimal aperture
value) for the GPT-J (6B) model, using conceptor-based steering.
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Figure 13: Performance results of the grid search across layers and beta values for the GPT-J (6B)
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