
RoSe: Rotation-Invariant Sequence-Aware Consensus for Robust
Correspondence Pruning

Yizhang Liu
School of Software Engineering, Tongji University

College of Computer and Data Science, Fuzhou University
China

lyz8023lyp@gmail.com

Weiwei Zhou
School of Software Engineering, Tongji University

Shanghai, China
zhouweiwei@tongji.edu.cn

Yanping Li
Department of Computer Science and Technology, Tongji

University
Shanghai, China

liyp8023yz@tongji.edu.cn

Shengjie Zhao
School of Software Engineering, Tongji University
Engineering Research Center of Key Software

Technologies for Smart City Perception and Planning,
Ministry of Education

Shanghai, China
shengjiezhao@tongji.edu.cn

ABSTRACT
Correspondence pruning has recently drawn considerable atten-
tion as a crucial step in image matching. Existing methods typically
achieve this by constructing neighborhoods for each feature point
and imposing neighborhood consistency. However, the nearest-
neighbor matching strategy often results in numerous many-to-one
correspondences, thereby reducing the reliability of neighborhood
information. Furthermore, the smoothness constraint fails in cases
of large-scale rotations, leading to misjudgments. To address the
above issues, this paper proposes a novel robust correspondence
pruning method termed RoSe, which is based on rotation-invariant
sequence-aware consensus. We formulate the correspondence prun-
ing problem as a mathematical optimization problem and derive a
closed-form solution. Specifically, we devise a rectified local neigh-
borhood construction strategy that effectively enlarges the distribu-
tion between inliers and outliers. Meanwhile, to accommodate large-
scale rotation, we propose a relative sequence-aware consistency
as an alternative to existing smoothness constraints, which can bet-
ter characterize the topological structure of inliers. Experimental
results on image matching and registration tasks demonstrate the
effectiveness of our method. Robustness analysis involving diverse
feature descriptors and varying rotation degrees further showcases
the efficacy of our method.

CCS CONCEPTS
• Computing methodologies → Matching; Visual content-
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1 INTRODUCTION
Establishing accurate correspondence is crucial for many computer
vision tasks, including image registration [7, 28, 40, 49], image fu-
sion [16, 41], image retrieval [17, 18], 3D reconstruction [1, 46], and
simultaneous localization and mapping (SLAM) [37, 39, 43]. How-
ever, the reliability of feature descriptors of matching images can be
compromised by various factors, such as illumination changes, scale
transformations, and the presence of noise. For instance, feature
points extracted by the SIFT [29] algorithm often exhibit similar
descriptors in repetitive structures. This similarity can lead to a
substantial number of incorrect correspondences (outliers) when
initial correspondences are determined based on nearest-neighbor
criteria. Consequently, the implementation of effective and robust
correspondence pruning algorithms is of great significance and has
garnered considerable attention.

Due to the diversity of transformations and challenges between
images, existing parametric methods such as RANSAC [11], as well
as learning-based approaches, fail to achieve satisfactory results
across a wide range of general scenarios. Specifically, RANSAC-
relatedmethods fall short in dealing with non-rigid transformations,
and they often struggle to produce good results within a reasonable
time when faced with a high proportion of outliers among initial
correspondences. Learning-basedmethods [12, 13, 19, 30, 52], on the
other hand, cast the correspondence pruning problem into a binary
classification task, while incorporating the geometric constraints
(e.g., essential matrix loss) to boost model performance. However,
this strategy limits the network’s ability to generalize to other types
of transformations.
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Recently, motion consistency-basedmethods have shown promis-
ing performance in general correspondence pruning scenarios.
These methods are typically based on an intuitive observation that
feature points belonging to the same structure exhibit similar mo-
tion behaviors [20, 21, 26, 27], thus they are general enough and
can be applied to various scenarios. For such methods, the reliabil-
ity of local neighborhood information of feature points and how
motion consistency is formulated have a significant impact on the
model performance. However, the widely used nearest-neighbor
matching criterion often results in many-to-one correspondences,
where at most only one correspondence is inlier. Therefore, when
feature points involved in many-to-one correspondences contribute
to neighborhood construction, there is a significant negative impact
on the local neighborhood information of the feature points. In ad-
dition, in cases of large-scale rotations, inliers within a small region
may exhibit substantial differences in length and angle, leading to
the breakdown of smoothness constraints.

To address the aforementioned challenges, this paper introduces
a novel mathematical model solely based on rotation-invariant
sequence-aware consensus, which is simple yet effective and gen-
eral. Specifically, to mitigate the impact of many-to-one correspon-
dence on feature point neighborhood construction, we propose
a rectified local neighborhood construction strategy. Initially, we
identify many-to-one correspondences, and subsequently exclude
feature points involved in these correspondences during neigh-
borhood construction for each feature point. Statistics on publicly
available datasets confirm that this strategy effectively expands the
distribution between inliers and outliers, thereby facilitating corre-
spondence pruning. Additionally, to address large-scale rotations,
we introduce the concept of relative sequence-aware consistency
as a substitute for conventional smoothness constraints. This is
grounded in the assumption that the relative ordering of inliers is
preserved post-transformation. We ascertain this by calculating the
longest common subsequence length from the ordered sequences
of the 𝑘 nearest neighbors of matched feature points. Notably, the
rectified local neighborhood construction also provides a solid foun-
dation for relative sequence-aware consistency by enlarging the
length of the ordered sequences of the 𝑘 nearest neighbors. In short,
our method effectively handles reliable neighborhood construction
and large-scale rotations and generalizes well to other challenges
and transformations. The contributions of this paper are summa-
rized as follows:

1. To the best of our knowledge, this paper is the first to inves-
tigate the effects of many-to-one correspondences on the neigh-
borhood construction of feature points. We propose a rectified
local neighborhood construction strategy, effectively enlarging the
distribution between inliers and outliers.

2. We develop a novel rotation-invariant relative sequence-aware
consistency that is both versatile and more effectively captures the
topological structure of inliers during large-scale rotations.

3. Experiments on image matching and registration across a
range of publicly available datasets demonstrate optimal or compa-
rable performance. Further, our method’s robustness is highlighted
through validation studies that involve distinct feature descriptors
and different rotation degrees.

2 RELATEDWORK
Existing correspondence pruning methods are mainly categorized
into traditional methods and learning-based methods.

2.1 Traditional Correspondence Pruning
RANSAC [11] is one of the representative resampling-based meth-
ods, which estimates model parameters by randomly sampling a
subset of the original data and calculating the number of inliers that
fit the model. This process is repeated multiple times, ultimately
selecting the model with the highest number of inliers as the best fit.
Despite enhancements in RANSAC through optimizing sampling
strategies and termination criteria, etc. [2–4, 8], these methods still
encounter challenges with sensitivity to high outlier ratios and
inefficiencies in handling non-parametric transformations. Motion
consistency-based methods [31] generally operate on the assump-
tion that inliers within a local region exhibit similar motion behav-
iors, albeit using different formulations to construct distinct models
based on motion consistency. LPM [34] introduces two types of con-
sistencies: neighborhood element consistency and neighborhood
topology consistency, which are utilized to ensure that the unknown
inlier correspondences possess similar local neighborhood struc-
tures. RFMSCAN [15] proposes to cluster correspondences with
similar neighborhood elements and topologies by using DBSCAN.
LAF [14] treats outliers as noise, and solves the correspondence
pruning in remote-sensing images using a linear adaptive filtering
method. LOGO [42] proposes a locality-guided strategy to guide
global information optimization. A reliable subset with high ratio
inliers is determined by local topology consistency, which is then
progressively expanded to yield the final inlier set. The performance
of these methods heavily relies on the accuracy with which the
local neighborhood structures of feature points are constructed.
In addition, under large-scale rotations, most existing consistency
constraints become ineffective, leading to a significant degradation
in model performance. Technically, our method belongs to the same
category as LPM, but it enhances the reliability of the neighbor-
hood construction for feature points. Meanwhile, it introduces a
rotation-invariant relative sequence-aware consensus, making it
broadly applicable and general.

2.2 Learning-based Correspondence Pruning
Given the widespread adoption of deep learning across diverse
domains, correspondence pruning has evolved into a binary classifi-
cation problem employing deep models. LFGC [44] pioneers a deep
learning model to accomplish correspondence pruning. It draws
inspiration from the highly successful PointNet framework in point
cloud processing, utilizing a shared-weight Multi-Layer Perceptron
(MLP) architecture and permutation-invariant operations to extract
the global context of correspondences. Building on this, OANet [47]
introduces the DiffPool and DiffUnpool layers to learn the local con-
text of correspondences, and construct an Order-Aware Filtering
block to capture the global context of correspondences. MS2DGNet
[9] proposes to construct multiple sparse semantics dynamic graphs
to capture local topology among correspondences. PGFNet [22] de-
vises an iterative filtering structure, wherein the outcomes of one
iteration guide the network learning in the subsequent iteration, fur-
ther improving the reliability of contextual information. CLNet [51]
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Figure 1: The impact of many-to-one correspondences on the
neighborhood construction of feature points. At most only
one of the four neighboring correspondences is an inlier, re-
sulting in unreliable statistics of neighborhood information
for feature points.

introduces a pruning framework that progressively learns local and
global consistency scores for correspondence pruning. Model esti-
mation is then conducted by selecting correspondences with high
global consistency scores. Building on CLNet [51], NCMNet [23]
proposes to construct 𝑘-nearest neighbors for each correspondence
within graph space, combining existing coordinate-space 𝑘-nearest
neighbors and feature-space 𝑘-nearest neighbors to create a more
comprehensive local context for correspondences. Furthermore,
ConvMatch [48] presents a novel architecture that employs convo-
lutions to learn and aggregate local features for correspondences.
While these methods incorporate the essential matrix loss in the
loss function to improve model performance, this often results
in decreased adaptability to other transformations. Additionally,
learning-based methods heavily rely on training data and typically
exhibit weaker generalization capabilities across different datasets.

3 PROPOSED METHOD
3.1 Rectified Local Neighborhood Construction
Given two matching images 𝐼1 and 𝐼2, feature point detection and
description are conducted, resulting in 𝑁 and 𝑀 feature points
for each image, respectively. Using the nearest-neighbor matching
strategy, the 𝑁 feature points in 𝐼1 are paired with their closest
counterparts among the 𝑀 feature points in 𝐼2, forming 𝑁 cor-
respondence, denoted as 𝑆 = {(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1. Previous methods de-
termine the correctness of correspondences by constructing local
neighborhoods for feature points and analyzing the consistency
among their neighboring correspondences. Intuitively, when two
feature points are close in the image space, they probably share the
same structure. Consequently, they are expected to remain close
after transformation [6, 45, 50]. In other words, if (𝑥𝑖 , 𝑦𝑖 ) is an inlier,
its neighborhood usually contains inliers that mutually support
each other. Conversely, if it is an outlier, its neighborhood is likely
sparse with correspondences, attributed to the random distribution
of outliers. The neighborhood element consistency is widely uti-
lized in correspondence pruning methods [15, 24, 25, 34] and has
been proven to be highly effective in certain scenarios.

To guarantee the efficacy of neighborhood element consistency,
it is essential to ensure that the local neighborhoods of feature
points are predominantly composed of inliers [33]. Existing meth-
ods construct the neighborhoods for feature points 𝑥𝑖 and 𝑦𝑖 by

identifying their 𝑘 nearest neighbors among all feature points in im-
ages 𝐼1 and 𝐼2, respectively. However, this straightforward approach
to constructing neighborhoods can include a large number of out-
liers. Given that feature points in images 𝐼1 and 𝐼2 are detected and
described independently, this often leads to 𝑁 ≠ 𝑀 in most cases.
When 𝑁 significantly exceeds𝑀 , the initial correspondence set 𝑆 is
prone to include numerous many-to-one correspondences, namely,
different 𝑥𝑖 correspond to the same 𝑦𝑖 . Suppose 𝑥1, 𝑥2, · · · , 𝑥𝑛 cor-
respond to the same 𝑦𝑖 , but among these 𝑛 correspondences, at
most one is inlier. Under these circumstances, the neighborhood
information of feature points becomes extremely unreliable. We
illustrate an example in Figure 1, where for correspondence (𝑥𝑖 , 𝑦𝑖 ),
we calculate the 𝑘-nearest neighbors for both 𝑥𝑖 and 𝑦𝑖 (with 𝑘 = 4).
As depicted in Figure 1, when the 𝑘-nearest neighbors of 𝑥𝑖 align
with those of 𝑦𝑖 , there are 4 neighboring correspondences within
the neighborhood of (𝑥𝑖 , 𝑦𝑖 ). Ideally, if these neighboring corre-
spondences are all inliers, then (𝑥𝑖 , 𝑦𝑖 ) is likely to be an inlier as
well. However, since all 𝑘-nearest neighbors of 𝑥𝑖 correspond to the
same neighbor of𝑦𝑖 , in practice, most of the neighboring correspon-
dences are outliers, which makes the neighborhood construction
of feature points unreliable.

Existing motion consistency-based methods have ignored the
impact of many-to-one correspondences on the neighborhood con-
struction of feature points, thereby limiting their performance. We
conduct a study about the proportion of many-to-one correspon-
dences in initial correspondences for the urban change detection
dataset. As shown in Figure 2, we observe that in the majority of im-
age pairs, the proportion of many-to-one correspondences exceeds
half, highlighting the prevalence and significance of this issue.
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Figure 2: Proportion of many-to-one correspondences in ini-
tial correspondences for the urban change detection datasets

To address the aforementioned issue, we propose a simple yet
highly effective strategy named rectified local neighborhood con-
struction. Intuitively, since many-to-one correspondences inher-
ently contain outliers, excluding feature points involved in these
correspondences from neighborhood construction can significantly
increase the number of potential inliers within these neighborhoods.
To investigate the impact of this strategy on the local neighborhood
information of correspondences, we perform statistical experiments
on the urban change detection datasets. We analyze the disparity in
the number of neighboring correspondences of inliers and outliers
at 𝑘 = 20, contrasting the original neighborhood construction strat-
egy and our proposed rectified local neighborhood construction
strategy. As shown in Figure 3, our rectified strategy effectively
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Comparison Between Ours and Original Ones
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Figure 3: On the urban change detection dataset, we compare
the difference in the number of neighboring correspondences
of inliers and outliers at 𝑘 = 20 when using the original
neighborhood construction strategy and our rectified local
neighborhood construction strategy.

(a)

(b)

Figure 4: (a) fails to differentiate between inliers and outliers
based solely on neighborhood element consistency. (b) illus-
trates the invalidation of motion smoothness.

enlarges the distribution between inliers and outliers, facilitating
the correspondence pruning.

3.2 Relative Sequence Consistency
While neighborhood element consistency helps eliminate clear
outliers, it operates on a coarse-grained level that ignores the topo-
logical structure of the neighborhood elements, thereby limiting its
effectiveness in further identifying inliers. To more clearly illustrate
this problem, we provide an example in Figure 4a. The local neigh-
borhoods of 𝑥𝑖 and 𝑦𝑖 are completely identical, perfectly satisfying
the neighborhood element consistency. Consequently, (𝑥𝑖 , 𝑦𝑖 ) is
identified as an inlier, whereas (𝑥𝑖 , 𝑦𝑖 ) is actually an outlier. Existing
methods primarily tackle this issue by measuring the differences in
length and angle between (𝑥𝑖 , 𝑦𝑖 ) and its neighboring correspon-
dences, which is a kind of motion smoothness constraint. Within
a local scope, inliers exhibit smoothness (e.g., only referring to
translation transformation). When matching images are subject to
wide baselines or large-scale rotations, the smoothness constraint

1234
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Figure 5: The relative sequence of inliers does not change
freely with translation, scaling, and rotation.

becomes ineffective. As shown in Figure 4b, we can observe that
the vector fields formed by inliers are not smooth, with noticeable
variations in both their lengths and angles. Consequently, distin-
guishing inliers from outliers under these conditions proves to be a
challenging task.

To address the above issue, we exploit the inherent property that
the local structure of objects will not change freely after image trans-
formations to propose a novel consistency named rotation-invariant
relative sequence-aware consistency. Specifically, we denote the
𝑘-nearest neighbors ordered list for feature point 𝑥𝑖 as 𝜎 (𝑥𝑖 ) =

[𝑥1
𝑖
, 𝑥2

𝑖
, ..., 𝑥𝑘

𝑖
], and for feature point 𝑦𝑖 as 𝜎 (𝑦𝑖 ) = [𝑦1

𝑖
, 𝑦2

𝑖
, ..., 𝑦𝑘

𝑖
].

The neighboring correspondences of the correspondence (𝑥𝑖 , 𝑦𝑖 ) are
defined as {(𝑥𝑐 , 𝑦𝑐 ) |𝑥𝑐 , 𝑦𝑐 ∈ 𝜎 (𝑥𝑖 ) ∩ 𝜎 (𝑦𝑖 )}. Whenever the number
of neighboring matches is nonzero, we consider two overlapping
ordered lists 𝜙 (𝑥𝑖 ) and 𝜙 (𝑦𝑖 ).

𝜙 (𝑥𝑖 ) = [𝑥𝑐 |𝑥𝑐 ∈ 𝜎 (𝑥𝑖 ) ∩ 𝜎 (𝑦𝑖 )], (1)

𝜙 (𝑦𝑖 ) = [𝑦𝑐 |𝑦𝑐 ∈ 𝜎 (𝑥𝑖 ) ∩ 𝜎 (𝑦𝑖 )], (2)

Obviously, 𝜙 (𝑥𝑖 ) and 𝜙 (𝑦𝑖 ) contain exactly the same elements
but not necessarily in the same sequence. Under ideal rigid trans-
formations, if (𝑥𝑖 , 𝑦𝑖 ) is an inlier, its local neighborhood is entirely
made up of inliers, satisfying 𝜎 (𝑥𝑖 ) = 𝜙 (𝑥𝑖 ), 𝜎 (𝑦𝑖 ) = 𝜙 (𝑦𝑖 ), and
𝜙 (𝑥𝑖 ) = 𝜙 (𝑦𝑖 ). This is due to the inherent physical constraints of the
object, which ensure that inliers maintain a fixed relative positional
relationship. As shown in Figure 5, we observe that regardless of
translation, scaling, or rotations involved in the matching images,
the relative sequence of the inliers remains unchanged. Therefore,
we achieve relative sequence-aware consistency by measuring the
length of the longest common subsequence between 𝜙 (𝑥𝑖 ) and
𝜙 (𝑦𝑖 ). The longest common subsequence, which is not necessarily
contiguous, serves as a robust measure of similarity between two
ordered lists by quantifying the extent of shared elements, which
focuses on the relative sequence rather than the absolute sequence.
We determine the length of the longest common subsequence using
the Dynamic Programming (DP) algorithm.

Given that the lengths of 𝜙 (𝑥𝑖 ) [ 𝑗] and 𝜙 (𝑦𝑖 ) [𝑘] are 𝑛, we first
initialize an 𝑛 × 𝑛 zero matrix 𝐿, which serves as a repository for
solutions to all subproblems. As we proceed to iteratively examine
the elements within 𝜙 (𝑥𝑖 ) and 𝜙 (𝑦𝑖 ), the value of 𝐿[ 𝑗, 𝑘] is updated
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contingent on the equality of 𝜙 (𝑥𝑖 ) [ 𝑗] and 𝜙 (𝑦𝑖 ) [𝑘]. If the two
values are equal, it means these two elements can be part of the
longest common subsequence, so the value of 𝐿[ 𝑗, 𝑘] is set to the
value of its top-left neighbor plus 1. Conversely, in instances of
inequality, 𝐿[ 𝑗, 𝑘] adopts the greater value between its left neighbor
𝐿[ 𝑗 −1, 𝑘] and its upper neighbor 𝐿[ 𝑗, 𝑘 −1]. Finally, the element in
the bottom-right corner of the matrix, 𝐿(𝑛, 𝑛), is the length of the
longest common subsequence. The specific steps of the algorithm
are summarized in Algorithm 1.

Algorithm 1 Pseudocode for computing the length of the longest
common subsequence.
Input: Two ordered lists 𝜙 (𝑥𝑖 ), 𝜙 (𝑦𝑖 )
Output: Length of the longest common subsequence 𝐿[𝑛, 𝑛]
1: Create a matrix 𝐿𝑛×𝑛 and initialize to 0
2: for 𝑗 from 1 to 𝑛 do
3: for 𝑘 from 1 to 𝑛 do
4: if 𝜙 (𝑥𝑖 ) [ 𝑗] == 𝜙 (𝑦𝑖 ) [𝑘] then
5: 𝐿[ 𝑗, 𝑘] = 𝐿[ 𝑗 − 1, 𝑘 − 1] + 1
6: else
7: 𝐿[ 𝑗, 𝑘] =𝑚𝑎𝑥 (𝐿[ 𝑗 − 1, 𝑘], 𝐿[ 𝑗, 𝑘 − 1])
8: end if
9: end for
10: end for
11: return 𝐿[𝑛, 𝑛]

3.3 Problem Formulation and Solution
Let 𝑛𝑖 denote the number of neighboring correspondences for
(𝑥𝑖 , 𝑦𝑖 ), and let 𝑙𝑖 signify the length of the longest common subse-
quence determined from these correspondences. Denote the un-
known inlier set as I, and the correspondence pruning problem
can then be formulated as the following optimization problem:

I∗ = argmin
I

𝐶 (I; 𝑆, 𝜆), (3)

where I∗ denotes the optimal inlier set, and𝐶 is the cost function:

𝐶 (I;𝑆, 𝜆) =
∑︁
𝑖∈I

(
(𝑘 − 𝑛𝑖 )

𝑘
+ 𝛽

(𝑛𝑖 − 𝑙𝑖 )
𝑛𝑖

)
+ 𝜆 (𝑁 − |I |), (4)

where 𝑘 represents the number of nearest neighbors associated
with feature points 𝑥𝑖 and𝑦𝑖 . 𝛽 is the weighted coefficient balancing
the neighborhood element consistency and the relative sequence-
aware consistency.

The first term of the cost function aims to penalize the corre-
spondences that violate neighborhood element consistency and
relative sequence-aware consistency. The second term serves as
a regularization measure to prevent model overfitting, with 𝜆 as
the balancing coefficient balancing these two terms. We introduce
an 𝑁 × 1 binary vector p to indicate the correctness of correspon-
dences, where 𝑝𝑖 = 1 indicates that (𝑥𝑖 , 𝑦𝑖 ) is an inlier, and 𝑝𝑖 = 0
points to an outlier. Therefore, the cost function mentioned above

can be rewritten as:

𝐶 (p; 𝑆, 𝜆) =
𝑁∑︁
𝑖=1

𝑝𝑖

(
(𝑘 − 𝑛𝑖 )

𝑘
+ 𝛽

(𝑛𝑖 − 𝑙𝑖 )
𝑛𝑖

)
(5)

+ 𝜆

(
𝑁 −

𝑁∑︁
𝑖=1

𝑝𝑖

)
.

By merging the terms associated with 𝑝𝑖 , we can obtain:

𝐶 (p; 𝑆, 𝜆) =
𝑁∑︁
𝑖=1

𝑝𝑖 (𝑐𝑖 − 𝜆) + 𝜆𝑁, (6)

where

𝑐𝑖 =

𝑁∑︁
𝑖=1

(
(𝑘 − 𝑛𝑖 )

𝑘
+ 𝛽

(𝑛𝑖 − 𝑙𝑖 )
𝑛𝑖

)
. (7)

Observing Eg. 6, it is evident that 𝑐𝑖 > 𝜆 will lead to an increase in
the cost function, whereas 𝑐𝑖 < 𝜆 will result in a decrease. Thus,
determining the correctness of correspondences can be achieved
through the following simple way:

𝑝𝑖 =

{
1, 𝑐𝑖 ≤ 𝜆

0, 𝑐𝑖 > 𝜆
, 𝑖 = 1, . . . , 𝑁 . (8)

The optimal inlier set I∗ is represented as follows:

I∗ = {(𝑥𝑖 , 𝑦𝑖 ) |𝑝𝑖 = 1, 𝑖 = 1, ..., 𝑁 }. (9)

3.4 Implementation Details
To ensure the reliability of feature point neighborhood construc-
tion, we adopt an iterative strategy similar to LPM [34]. In the first
iteration, neighborhood constructions for each correspondence are
based on the initial correspondence set 𝑆 , and 𝑐𝑖 for each correspon-
dence is computed according to Eq. 7. The potential inliers can be
obtained according to Eq. 8. The optimal inlier set in this iteration
is denoted as 𝑆1. In the second iteration, neighborhoods for each
correspondence are constructed using 𝑆1 instead of 𝑆 , as 𝑆1 contains
a higher inlier ratio compared to 𝑆 , enhancing the reliability of the
feature point neighborhood construction. Similarly, 𝑐𝑖 is calculated
using Eq. 7, further using Eq. 8 to obtain the optimal inlier set I∗.
In both iterations, the number of nearest neighbors 𝑘 is set to 20.
The weighted coefficients 𝛽 for balancing neighborhood element
consistency and relative sequence-aware consistency are both set
to 1. 𝜆 is set to 0.15 in the first iteration and 0.35 in the second
iteration.

4 EXPERIMENTS
4.1 Datasets and Evaluation Metrics
4.1.1 Datasets. We evaluate our method on the following three
datasets and compare it with state-of-the-art methods: 1) Remote
Sensing (RS) dataset [32], which encompasses four types of remote
sensing images, i.e., aerial images, synthetic aperture radar im-
ages, panchromatic aerial photographs, and infrared color aerial
photographs. The dataset consists of 161 image pairs, featuring chal-
lenges such as projection/affine distortions, small overlap, repetitive
structure, and high outlier ratio challenges. 2) Urban Change Detec-
tion (UCD) dataset [10], which consists of 21 multispectral image
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Figure 6: Qualitative image matching results of our RoSe on
five representative image pairs: PAN90, CIAP129, UCD160,
UCD169, and Retinal14. Each group includes the image
matching results along with their corresponding motion vec-
tor fields. The head and tail of each arrow in the motion
vector field indicate the positions of the feature points in
the two images (blue = true positive, black = true negative,
green = false negative, red = false positive). For clarity, we
randomly select up to 100 correspondences to display in each
image pair, true negatives are not shown.

pairs, featuring challenges such as low resolution, repetitive struc-
tures, and large-scale rotations. 3) Medical Retina (MR) dataset [16],
which comprises 70 multimodal retinal image pairs obtained us-
ing various angiographic techniques, containing slight non-rigid
deformations.

4.1.2 Evaluation Metrics. For image matching, the performance
is evaluated by Precision, Recall, and F-score. The F-score serves
as a comprehensive measure of matching efficacy. A larger F-score
indicates better matching performance. For image registration, the
performance is evaluated by Root Mean Square Error (RMSE), Max-
imum Error (MAE), and Median Error (MEE).
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Figure 7: Performance statistics of image matching on three
datasets. From left to right, RS, UCD, and MR datasets. The
coordinate (𝑥,𝑦) on the curve indicates that there are (100*𝑥)%
image pairs whose Precision/Recall/F-score is no more than
𝑦.

4.2 Image Matching
We select five traditional methods: RANSAC [11], LPM [34], LAF
[14], LOGO [42], RFMSCAN [15] and five learning-based methods:
MS2DGNet [9], NCMNet [23], PGFNet [22], ConvMatch [48], CLNet
[51] for comparative analysis.

4.2.1 Qualitative Results. Wefirst show the imagematching results
of our RoSe on five representative image pairs: PAN90, CIAP129,
UCD160, UCD169, and Retinal14. PAN90 is characterized by sig-
nificant repeated structures, causing strong ambiguity in feature
descriptors and leading to a low initial inlier ratio of 12.8%. CIAP129
features small overlapping areas, also resulting in a low initial inlier
ratio of 10.1%. UCD160 and UCD169 involve rotations at varying
scales. Retinal14, with a limited number of initial correspondences
(156), presents a challenge for identifying consistency among inliers.
As shown in Figure 6, our RoSe demonstrates good performance in
all five image pairs, validating the effectiveness and generalization
ability of the algorithm.

4.2.2 Quantitative Results. We further conduct a quantitative com-
parisonwith state-of-the-artmethods on the aforementioned datasets
to demonstrate the efficacy. As shown in Figure 7, it is evident that
our RoSe achieves the best recall and F-score for the RS dataset while
maintaining comparable precision. For the MR dataset, although
our method exhibits lower precision than traditional methods, it
achieves higher recall. For the comprehensive performance metric,
the F-score, our results are relatively favorable. The lower precision
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of our method can be attributed to i) the uniform threshold setting
used throughout the experiments (based on the RS dataset), without
adjustments for each specific dataset, leading to a precision-recall
imbalance. ii) The initial correspondence number for each image
pair in the MR dataset is relatively low, which is unfavorable for our
method to exploit the inherent consistency of inliers. Notably, our
RoSe demonstrates significant advantages over other competitors
for the UCD dataset, leading the second-best method by 7.35% in the
F-score. Except for LOGO [42], most methods struggle with large-
scale rotations. For RANSAC [11], rotation is a rigid transformation
that can be characterized by a parametric model. However, due
to the low inlier ratio of the correspondences in this dataset, it is
hard to find the optimal transformation. Among the learning-based
methods, CLNet [51] performs best, benefiting from its simpler ar-
chitecture that potentially reduces overfitting risks but suffers from
training data bias, affecting generalization. Overall, our method
exhibits outstanding performance across various transformations
and challenges, particularly with large-scale rotations.

Figure 8: Qualitative image registration results. (From top to
bottom and left to right) Original image pair, RANSAC [11],
LPM [34], LAF [14], LOGO [42], RFMSCAN [15], MS2DGNet
[9], NCMNet [23], PGFNet [22], ConvMatch [48], CLNet [51]
and RoSe on the SAR58.

4.3 Image Registration
We choose the same state-of-the-art methods as the image matching
task for comparison. The registration experiments are conducted
on the RS dataset, which poses a variety of challenges. Similar

Table 1: Quantitative results of image registration. RMSE:
root mean square error; MAE: maximum error; MEE: median
error; RT: run time. The best results are boldfaced.

Method RMSE MAE MEE RT(s)
RANSAC [11] 25.627 222.912 2.6506 2.4421
LPM [34] 2.1767 49.6659 0.0004 0.0172
LAF [14] 2.5412 51.3587 0.0004 0.0632
LOGO [42] 6.7671 134.262 0.0004 0.1998

RFMSCAN [15] 2.8510 51.7178 0.0004 0.1293
MS2DGNet [9] 9.0689 153.880 0.0004 0.7904
NCNMet [23] 83.136 347.564 86.520 0.7392
PGFNet [22] 9.4205 161.137 0.0004 0.7182

ConvMatch [48] 70.931 434.225 22.379 1.1486
CLNet [51] 10.902 178.060 0.0004 0.5021

RoSe 1.5866 34.8641 0.0004 0.2494

to [14], obtaining the identified inliers, TPS (Thin Plate Spline)
[35] is selected to estimate the transformation function. Then, for
each pixel in the sensed image, its corresponding coordinates in
the reference image can be calculated through the transformation
function, and the intensity at that coordinate can be calculated
using a bicubic interpolation algorithm.

4.3.1 Qualitative Results. We first show the qualitative image regis-
tration visualization comparison of all methods on the SAR58 image
pair, as shown in Figure 8. SAR58 features severe noise and low
texture. For most methods, they exhibit noticeable distortions in
the registration results except LAF [14] and RoSe. Most traditional
methods successfully recover the valid transformation function.
By contrast, many learning-based methods yield strange registra-
tion results, primarily due to their limited generalization capability,
which is induced by the imposition of the essential matrix loss.
Since the rectified local neighborhood construction significantly en-
hances the reliability of neighborhoods for correspondence and aids
in the rotation-invariant sequence-aware consistency, our Rose can
identify most of inliers, thereby recovering accurate transformation
function and producing high-quality registration results.

4.3.2 Quantitative Results. We further provide quantitative com-
parison results of all methods. From Table 1, it can be seen that
traditional methods such as LPM [34], LAF [14], and RFMSCAN
[15] perform well in terms of RMSE, MAE, and MEE metrics. LOGO
[42], while demonstrating low RMSE, exhibits high MAE values,
indicating its registration performance is not stable. For learning-
based methods, MS2DGNet [9], PGFNet [22], and CLNet [51] also
show low RMSE but high MAE values, indicating their instability.
The overall registration performance of the remaining methods is
inadequate. In contrast, our method significantly outperforms all
state-of-the-art methods in terms of RMSE, MAE, and MEE metrics.
This demonstrates that our RoSe can retain more inliers in a global
scope, which is beneficial for accurately estimating transformations
between images. Regarding runtime, LPM [34] is the most efficient,
whereas RANSAC [11] is the least efficient. Our method builds on
LPM [34] and improves by integrating new designs to ensure more
inliers are retained, which is relatively time-consuming.
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Table 2: Image matching results for the initial correspondences obtained by different descriptors. The best results are boldfaced.

Method VGG-SIFT VGG-SURF VGG-ORB
Precision Recall F-score Precision Recall F-score Precision Recall F-score

RANSAC [11] 0.9511 0.9806 0.9643 0.8468 0.9974 0.9136 0.8671 0.9970 0.8979
LPM [34] 0.9710 0.8550 0.8687 0.9434 0.7933 0.8053 0.9724 0.9156 0.9420
LAF [14] 0.9712 0.9683 0.9692 0.9048 0.9525 0.9244 0.9479 0.9697 0.9580
LOGO [42] 0.9612 0.9560 0.9586 0.9102 0.9106 0.9068 0.9020 0.9044 0.8979

RFMSCAN [15] 0.9424 0.9498 0.9437 0.8202 0.9727 0.8863 0.9007 0.9792 0.9344
MS2DGNet [9] 0.9007 0.8777 0.8735 0.7389 0.9755 0.8251 0.7468 0.9874 0.8367
NCMNet [23] 0.9504 0.9616 0.9539 0.7636 0.8504 0.7917 0.7860 0.8589 0.8125
PGFNet [22] 0.9472 0.9059 0.9119 0.7874 0.9874 0.8603 0.8249 0.9835 0.8859

ConvMatch [48] 0.9237 0.6126 0.7197 0.6736 0.7438 0.6649 0.6680 0.7332 0.6532
CLNet [51] 0.9595 0.9889 0.9694 0.8189 0.9519 0.8728 0.8504 0.9987 0.9155

RoSe 0.9789 0.9729 0.9758 0.9445 0.9748 0.9623 0.9523 0.9739 0.9614

Table 3: Images matching results for the initial correspondences built at different rotation scales. The best results are boldfaced.

Method 30◦ 60◦ 90◦
Precision Recall F-score Precision Recall F-score Precision Recall F-score

RANSAC [11] 0.8373 0.7023 0.7789 0.8117 0.7366 0.7612 0.8423 0.7402 0.7928
LPM [34] 0.8282 0.9525 0.8816 0.8104 0.9568 0.8724 0.8071 0.9560 0.8702
LAF [14] 0.8912 0.9179 0.9026 0.8447 0.8739 0.8551 0.8211 0.7812 0.7958
LOGO [42] 0.9698 0.5910 0.7137 0.9753 0.5948 0.7168 0.974 0.5875 0.7105

RFMSCAN [15] 0.9010 0.7931 0.8330 0.8566 0.6406 0.7176 0.7797 0.5519 0.6228
MS2DGNet [9] 0.6771 0.9470 0.7790 0.6094 0.9340 0.7181 0.5559 0.9122 0.6681
NCNMet [23] 0.6922 0.6313 0.6383 0.5784 0.4213 0.4645 0.5182 0.3051 0.3614
PGFNet [22] 0.6111 0.9936 0.7385 0.5617 0.9873 0.7006 0.5378 0.9939 0.6809

ConvMatch [48] 0.4915 0.7080 0.5541 0.4544 0.7006 0.5312 0.4475 0.6430 0.5000
CLNet [51] 0.8255 0.9537 0.8819 0.8269 0.9470 0.8782 0.7997 0.8985 0.8429

RoSe 0.8579 0.9692 0.9080 0.8579 0.9692 0.9080 0.8579 0.9692 0.9080

4.4 Robustness Analysis
4.4.1 Different Descriptors. To validate the robustness of RoSe for
initial correspondences generated by different descriptors, we con-
duct experiments on the VGG dataset [36]. We utilize SIFT [29],
SURF [5], and ORB [38] descriptors to create initial correspon-
dences, and report the results in Table 2. It is apparent that except
for LAF [14], LOGO [42], CLNet [51], and our RoSe, the other meth-
ods exhibit significant differences or inadequate performance for
different descriptors. For instance, LPM [34] achieves an F-score of
0.9420 on VGG-ORB, but only reaches 0.8687 on VGG-SIFT. NCM-
Net [23] achieves an F-score of 0.9539 on VGG-SIFT, but drops
to 0.7917 on VGG-SURF. Our RoSe demonstrates exceptional ro-
bustness, achieving optimal F-values on VGG-SIFT, VGG-SURF, and
VGG-ORB, consistently surpassing 0.96, thus showcasing the strong
robustness of our method for different descriptors.

4.4.2 Different Rotation Scales. To validate the robustness of RoSe
for different rotation scales, for image pairs on the MR dataset,
we keep one fixed and rotate the other by 30◦, 60◦, and 90◦ to
create initial correspondences. From Table 1 and Table 3, it can be
observed that as the rotation scale increases, there is a noticeable
decline in performance for LAF [14], RFMSCAN [15], MS2DGNet
[9], NCMNet [23], PGFNet [22] and ConvMatch [48] indicating
that these method lack rotational invariance. RANSAC [11], being

a parametric model, it is robust to rotation, but its performance is
limited by the initial inlier ratio. LOGO [42] performs poorly on the
MR dataset across various rotation scales. LPM [34] and CLNet [51]
exhibit robustness to rotation and achieve good matching results.
Our RoSe shows exceptional robustness to rotations at different
scales, maintaining consistent performance for all rotation scales,
and demonstrating the rotation-invariant property.

5 CONCLUSION
This paper introduces RoSe, a novel and robust correspondence
pruning method. RoSe comprises two innovative components: a
rectified local neighborhood construction and a rotation-invariant
relative sequence-aware consistency. The first component signifi-
cantly mitigates the impact of many-to-one correspondences in the
neighborhood construction of feature points, thereby enhancing
the distinction between inliers and outliers. The second compo-
nent offers a general and fine-grained consistency that possesses
both rotation-invariant and sequence-aware attributes. Both quali-
tative and quantitative experimental results from image matching
and registration tasks underscore the superior performance of our
method in facing diverse challenges. The robustness analysis fur-
ther demonstrates that our method effectively adapts to various
descriptors and showcases outstanding rotational invariance.
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