Memory-Based Meta-Learning on Non-Stationary Distributions

Tim Genewein " !

Jordi Grau-Moya !

Abstract

Memory-based meta-learning is a technique for
approximating Bayes-optimal predictors. Under
fairly general conditions, minimizing sequential
prediction error, measured by the log loss, leads
to implicit meta-learning. The goal of this work is
to investigate how far this interpretation can be re-
alized by current sequence prediction models and
training regimes. The focus is on piecewise sta-
tionary sources with unobserved switching-points,
which arguably capture an important character-
istic of natural language and action-observation
sequences in partially observable environments.
We show that various types of memory-based
neural models, including Transformers, LSTMs,
and RNNs can learn to accurately approximate
known Bayes-optimal algorithms and behave as
if performing Bayesian inference over the latent
switching-points and the latent parameters gov-
erning the data distribution within each segment.

1. Introduction

Memory-based meta-learning (MBML) has recently risen to
prominence due to breakthroughs in sequence modeling and
the proliferation of data-rich multi-task domains. Previous
work (Ortega et al., 2019} Mikulik et al.,2020) showed how,
in principle, MBML can lead to Bayes-optimal predictors by
learning a fixed-parametric model that performs amortized
inference via its activations. This interpretation of MBML
can provide theoretical understanding for counter-intuitive
phenomena such as in-context learning that emerge in large
language models with frozen weights (Xie et al.| 2022).

In this work, we investigate the potential of MBML to learn
parametric models that implicitly perform Bayesian infer-

“Equal contribution 'DeepMind *University of Cambridge.
Correspondence to: Tim Genewein <timgen@deepmind.com>,
Grégoire Delétang <gdelt@deepmind.com>>, Anian Ruoss <ani-
anr@deepmind.com>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Grégoire Delétang " ! Anian Ruoss “! Li Kevin Wenliang ' Elliot Catt'! Vincent Dutordoir ' >
Laurent Orseau

1 1

Marcus Hutter ! Joel Veness

ence with respect to more elaborate distributions than the
ones investigated in Mikulik et al.| (2020). We focus on
piecewise stationary Bernoulli distributions, which produce
sequences that consist of Bernoulli segments (see Figure|I]).
The predictor only observes a stream of samples (0Os and
1s), with abrupt changes to local statistics at the unobserved
switching-points between segments. The focus on piecewise
stationary sources is inspired by natural language, where
documents often switch topic without explicit indication
(Xie et al.l [2022), and observation-action streams in envi-
ronments with discrete latent variables, e.g., multi-task RL
without task-indicators. In both domains, neural models that
minimize sequential prediction error demonstrate hallmarks
of sequential Bayesian prediction: strong context sensitiv-
ity or “in-context learning” (Reed et al.l |2022)), and rapid
adaptation or “few-shot learning” (Brown et al.| [2020).

To solve the sequential prediction problem, Bayes-optimal
(BO) predictors simultaneously consider a number of hy-
potheses over switching-points and use prior knowledge
over switching-points and segment-statistics. Tractable ex-
act BO predictors require non-trivial algorithmic derivations,
and are only known for certain switching-point distributions.
The main question of this paper is whether neural predictors
with memory, trained by minimizing sequential prediction
error (log loss), can learn to mimic Bayes-optimal solutions
and match their prediction performance.

Our contributions are:

» Review of the theoretical connection between minimiz-
ing sequential prediction error, meta-learning, and its
implied Bayesian objective (Section[3).

» Theoretical argument for the necessity of memory to
minimize the former (Bayesian) objective (Section .

* Empirical demonstration that meta-learned neural pre-
dictors can match prediction performance of two gen-
eral non-parametric Bayesian predictors (Section [7).

e Comparison of off-distribution generalization of
learned solutions and Bayesian algorithms (Section [7)).

¢ Source code available at: https://github.com/
deepmind/nonstationary_mbml.

https://github.com/deepmind/nonstationary_mbml
https://github.com/deepmind/nonstationary_mbml

Memory-Based Meta-Learning on Non-Stationary Distributions

Sample —— KT Oracle — PTW LSTM [PTW] —=~ True bias —— Segment mean Switching-point
1.0 A
g - - ——— N A a =~ Y]
Bos{ /T ‘ ‘
3 |/ |
a ‘ e ‘ A A
00 L T T T T T
1 64 128 192 256
)
a
=21
g i
o \ n
b] _ \ [
o od \ /w,/\/-’/””»-—xﬂj J\ b NARA a NS A
1 64 128 192 256
@ E 20 A
=g —
B
g‘é 1 F—
3 @ -
O 1 T T T T T
1 64 128 192 256

Step

Figure 1. A single sequence from a piecewise Bernoulli source with three switching-points drawn from the PTW prior (see Section[G). Top:
The predictors observe streams of binary samples x; and, at each step, predict the probability of the next observation. The solid lines show
predictions p(z|z<¢) by the Bayes-optimal PTW, the KT Oracle that observes switching-points, and the trained LSTM (trained on data
from PTW prior, indicated in the square bracket). Both the LSTM and PTW rapidly adapt after switching-points, enabled via the inductive
bias of the PTW prior and acquired by the LSTM via meta-learning on data following the PTW prior. Middle: Per-time-step regret (see
Section@ measures the prediction error by quantifying the excess log-loss compared to a predictor that always knows the ground-truth
bias. Bottom: Cumulative regret; the value at the final time-step is the basis for our main performance metric (see Equation (@)).

2. Background

We begin with some terminology for sequential, probabilis-
tic data generating sources. An alphabet is a finite, non-
empty set of symbols, which we denote by X'. A string
T1T2 ...z, € X" of length n is denoted by x1.,,. The pre-
fix x1.; of X1.n, j < m, is denoted by x<; or x<;41. The
empty string is denoted by €. Our notation also generalizes
to out of bounds indices; that is, given a string x1.,, and an
integer m > n, we define 1., := x1., and Z,,.,,, := €. The
concatenation of two strings s and r is denoted by sr.

Probabilistic Data Generating Sources A probabilis-
tic data generating source p is defined by a sequence
of probability mass functions p, : X" — [0,1], for
all n € N, satisfying the compatibility constraint that
on(T10) = ZyEX Pn+1(21.ny) for all zq., € X™, with
base case po(e) = 1. From here onward, whenever the
meaning is clear from the argument to p, the subscripts on p
will be dropped. Under this definition, the conditional prob-
ability of a symbol z,, given previous data x,, is defined
as p(tnlt<n) == plw1n)/pl <) provided p(r,) > 0,
with the familiar chain rules p(z1.,) = [}, p(z;|z<;) and
p(xijlr<i) = [1.—; p(xk|z <)) now following.

Temporal Partitions A sub-sequence is described via a
segment, which is a tuple of time-indices (a,b) € N x N
with a < b. A segment (a, b) is said to overlap with another
segment (c, d) if there exists an ¢ € Nsuch thata <14 <b
and ¢ <7 <d.LetS = {1,2,... n} denote a set of time-
indices for some n € N. A temporal partition P of S is a
set of non-overlapping segments such that each i € S is
covered by exactly one segment (a,b) € P witha < i < b.
We also use the overloaded notation P(a,b) := {(c,d) €
P : a <c¢<d<b}. Finally, 7, will be used to denote
the set of all possible temporal partitions of {1,2,...,n}.

Piecewise Stationary Sources We now define a piecewise
stationary data generating source 4 in terms of a partition
P = {(a1,b1), (az,bs), ...} and a set of probabilistic data
generating sources {u', p2, ...}, such that for all n € N,
for all z1.,, € X",

I #“(@aw), €

(a7b)EP7L

(1) =

where P,, := {(a;,b;) € P : a; <n} and f(¢) returns the
index of the time segment containing ¢; that is, it gives a
value k£ € N such that both (ag, bg) € P and ay, < i < b.
In other words: a piecewise stationary data generating
source consists of a number of non-overlapping segments

Memory-Based Meta-Learning on Non-Stationary Distributions

(covering the entire range without gaps), with one stationary
data generating distribution per segment. An example-draw
from such a source is shown in Figure[T] where the distribu-
tion per segment is a Bernoulli process.

3. Memory-Based Meta-Learning

Given a parametric, memory-dependent probabilistic model
po(x1.,), a standard MBML setup works by repeating the
following steps:

1. Sample a task 7 from a task distribution 1);
2. Generate data 1., ~ T;

3. Perform one or more steps of optimization of the
model parameters § using the loss — log pg(z1.,) =

— > i pe(wilr<i).

In our piecewise stationary Bernoulli setup, a task corre-
sponds to prediction on a particular binary sequence (mean-
ing 7 is an instance of switching-points and Bernoulli biases
for each segment), and the distribution over tasks is exactly
the piecewise stationary distribution. In the case where the
task distribution is defined over a finite number of tasks, the
marginal probability of the MBML data generating source
is simply:

g(xlzn) = ZQZ)(T) T(xlzn)~ (2)

In other words: in meta-learning, the training data is implic-
itly generated by a Bayesian mixture whose properties are
determined from the particular details of the meta-training
setup. Note that this marginal form of a Bayesian mixture
still captures the usual notion of posterior updating implic-
itly; see Appendix [F for more background.

Optimality of Bayesian Predictor for MBML Consider
the expected excess log loss of using any sequential predic-
tor p on data x;.,, ~ £. Notice that for all n € N, we have
that

E¢ [~ log p(z1:0) + log&(z1:0)] =

e [le 522 ~ Datellp 20, @

with equality holding if and only if p = £ by the Gibbs
inequality.

In the context of our the generic MBML setup, Equation
implies that the Bayesian mixture p = £ (as given by Equa-
tion (2)) is the unique optimal predictor in expectation. The
set of all hypotheses/tasks in the mixture is called the model
class M. Neural networks trained to minimize log loss
should thus converge towards the Bayes-optimal solution

(see|Ortega et al.| (2019) for a detailed theoretical analysis).
Two conditions need to be fulfilled for trained meta-learners
to behave Bayes-optimally:

1. Realizability: the amortized Bayes-optimal solution
needs to be representable by the model with the right
set of parameters.

2. Convergence: training needs to converge to this set of
parameters.

The hope is that by using sufficiently powerful function
approximation techniques such as modern neural network
architectures in an MBML setup, we can circumvent the
need for explicit Bayesian inference and instead get the com-
putational advantages associated with the Bayes-optimal
predictor from a learned model with fixed weights. But
what properties of a model are needed for it to be sufficiently
powerful? The next section formally shows the necessity of
using models with memory to achieve the Bayesian ideal.
After establishing theoretically that Bayes-optimal predic-
tors require memory, it is far from clear that memory-based
neural network architectures achieve realizability (i.e., have
a set of parameters that represents the Bayes-optimal pre-
dictor) and convergence (via mini-batch based SGD). We
investigate these questions empirically in Section

4. The Essential Role of Memory

It is important to emphasize that a fixed-parametric
memoryless model cannot, in general, learn the Bayesian
mixture predictor £ (with model class M). The intuition is
that the Bayesian mixture requires computation of posterior
mixture weights, which, in general, depend on the history
observations (the sufficient statistics) and thus necessitate
some form of memory. We now state this formally.

Definition 4.1. A model v is defined to be memoryless if
v can be written in the form ve(21.,) = [ve, (z:),
where © = (6;)7_; for all ;..

In other words, vy is a product measure. Next we present
a negative result which explicitly quantifies the limitations
of memoryless models to approximate general Bayesian
inference.

Theorem 4.2. Assume there exist uy, o € M such that
St ¢ [Epy 11 (aclz <o) — By, [12(aslz<t)]] # 0. Then
there does not exist a © = (0,)52, for a memoryless model
ve such that for all p € M we have E,|ve(ai|z<:) —
E(atlz<t)] = 0ast — oo

For instance, for p; = Bernoulli(d;), which are
in most classes M, we have |E, [pi(ai|lz<s)] —
E,,[p2(atlz<s)]| = |91 — Y2| # 0 for any choice of
V1 # o

Memory-Based Meta-Learning on Non-Stationary Distributions

The main intuition is that a discrete Bayesian mixture
cannot always be represented as a product measure, as
E(@nlr<n) = 3 e p Wno1P(Tn|T<n), Where the poste-
rior weight w!_; = w{ p(x<p)/&(x<y) for n > 1; in
other words, w” _; can depend upon the whole history. A
complete proof is given in Appendix [D]

Importantly, this argument is independent of the represen-
tation capacity of vy, and for example still holds even if vy
is a universal function approximator, or if vy can represent
each possible p € M given data only from p. The same ar-
gument extends to any k-Markov stationary model for finite
k, though one would expect much better approximations to
be possible in practice with larger k.

5. Priors and Exact Inference Baselines

This section describes our baseline Bayesian algorithms for
exact Bayesian inference on piecewise stationary Bernoulli
data. The algorithms make different assumptions regarding
the statistical structure of switching-points. If the data gen-
erating source satisfies these assumptions, then the baselines
are theoretically known to perform optimally in terms of
expected cumulative regret. This allows us to assess the
quality of the meta-learned solutions against known optimal
predictors. Note that while exact Bayesian inference is of-
ten computationally intractable, the cases we consider here
are noteworthy in the sense that they can be computed effi-
ciently, and in some cases with quite elaborate algorithms in-
volving combinations of dynamic programming (see Koolen
& de Rooij (2008)) for a comprehensive overview) and the
generalized distributive law (Aji & McEliece, 2000).

In order to ensure that the data generating source matches
the statistical prior assumptions made by the different base-
lines, we use their underlying priors as data generating
distributions in our experiments (see Appendix [E] for details
on the algorithms that sample from the priors).

KT Estimator The KT estimator is a simple Beta-
Binomial model which efficiently implements a Bayesian
predictor for Bernoulli() sources with unknown 6 by main-
taining sufficient statistics in the form of counts. By us-
ing a Beta(3, 1) prior over 6, we obtain the KT-estimator
(Krichevsky & Trofimovl, [1981)), which has optimal worst
case regret guarantees with respect to data generated from
an unknown Bernoulli source. Conveniently, the predictive

probability has a closed form

c(T1m) + 3

KT(:En+1 = 1‘371:71) = nt1

)

where ¢(x1.,) returns the number of ones in x;.,, and
KT(zp+1 = 0|21.) = 1 — KT(2p41 = 1|z1.,). This can
be implemented efficiently online by maintaining two coun-
ters, and the associated marginal probability can be obtained

via the chain rule KT(z1.,) = [[/; KT(2;|z<;). The KT
estimator cannot handle (piecewise) non-stationary distri-
butions; to allow for this we next make a simple extension,
and later more complex extensions.

KT Oracle Our first baseline extends the KT estimator to
deal with piecewise stationarity: KT Oracle is provided with
knowledge of when switching-points occur. This allows us-
ing a KT estimator and simply resetting its counters at each
switching-point. The KT Oracle serves as a lower bound
to show achievable regret in case switching-points could be
instantaneously predicted with perfect accuracy. The prior
underlying the KT Oracle is never used to generate data in
our experiments, since the KT Oracle does not specify a
distribution over switching-points.

PTW: Partition Tree Weighting Our second baseline is
Partition Tree Weighting (Veness et al.,2013). In contrast
to the KT Oracle, PTW does not need to observe switching-
points. Instead, it performs Bayesian model averaging over
a carefully chosen subset C; C 7, of temporal partitions by
computing

PTWd(xlzn) - Z 2_Fd(7)) H P(%z:b)»

PeCy (a,b)eP

where p is a base-predictor for a single segment (in our case
the KT-estimator), and d is the depth of the partition tree
which needs to be at least logn. In other words, the tech-
nique gives a way to extend a given base predictor p to a
piecewise setting, with known worst case regret guarantees
that follow from the use of model averaging over a tree struc-
tured prior. Although the number of partitions |C4| grows
O(22d) = O(2"), this technique adds only a O(logn)
time/space overhead compared with computing p(x1.,,), and
can be computed online in a recursive/incremental fashion.
In this work we restrict our attention to the case where
the base model is the KT-estimator, p = KT, to obtain a
low-complexity universal algorithm for piecewise Bernoulli
sources. Informally, PTW assumes that a trajectory has a
switching-point at half its length with probability 1/2, and
both resulting sub-trajectories also have a switching-point
at their respective halves with probability 1/2, and so on
(recursively) for all subsequent sub-trajectories. This as-
sumption allows for efficient implementation and leads to a
characteristic inductive bias. In our experiments we investi-
gate whether neural models can meta-learn this structured
inductive bias and match prediction performance of PTW on
data that follows these assumptions.

LIN: Exact Model Averaging Over All Temp. Partitions
Our final baseline, LIN, is the linear complexity method
introduced by Willems| (1996)). It performs Bayesian model
averaging over all temporal partitions (whereas PTW only

Memory-Based Meta-Learning on Non-Stationary Distributions

considers a subset), and all possible Bernoulli models within
each segment, and has the marginal form

LIN(.’Klm) = Z w(P) H KT(xa:b)a

PETn (a,b)eP

where w(P) is a prior over the linear-transition diagram
representation of P, the details of which are not important
for this work, but they introduce a different assumption over
the distribution and location of switching-points compared
to PTW. To process a sequence of n symbols, this algorithm
runs in time O(n?) and has space complexity of O(n). In
our experimental section we also investigate whether neural
models can meta-learn to match the inductive bias of LIN.

6. Methodology

The general approach for our experiments is to train vari-
ous memory-based neural models according to the MBML
training setup described in Section [3] We explore multiple
neural architectures to get a better sense as to how archi-
tectural features influence the quality of the meta-learned
Bayesian approximation. After training, we evaluate mod-
els either on data drawn from the same meta-distribution
as during training (on-distribution experiments) or from
a different distribution (off-distribution experiments). We
quantify prediction performance by the expected cumula-
tive regret (called redundancy in information theory) with
respect to the ground-truth piecewise data generating source
1, quantifying the expected excess log loss of the neural pre-
dictor. More formally, we define the expected instantaneous
regret of model 7 at time ¢ with respect to the piecewise
source /i as

Rep(t) = By o [l0g 17O () — log m(ay)]

compare Equation (3), and the cumulative expected regret
as

T
RL, =" Ruu(t). (4)
t=1

An illustration of both metrics is shown in Figure[I] Note
that a cumulative expected regret of zero corresponds to the
performance of an oracle which knows both the location
of the switching-points, as well as the parameter of each
Bernoulli process governing a segment.

We now introduce the different types of data generating
sources used in our experiments, before describing the dif-
ferent types of memory-based neural models that we evalu-
ated.

Data-Generation We consider data sources that are piece-
wise stationary in the form given by Equation (I). Within a
stationary segment ¢, 1* is a Bernoulli distribution with bias

Sequence —— Mean

oo}
o

~
o
L

60
50 A

301

20 A 16.19
11.91 N 12.07
104 847 T A

Cumulative regret [bits]
N
o

04

KT Oracle PTW LIN LSTM [PTW]

Figure 2. Mean cumulative regret across 10k sequences of
length 256 drawn from PTW prior (same setting as Figure[T). The
LSTM trained on data from the PTW prior matches prediction per-
formance of the optimal PTW predictor. We also compare against
LIN, a strong but suboptimal predictor for this distribution.

sampled from a Beta prior ' ~ Beta(a, 3); see Figure
for a concrete example. In our experiments, we always use
a = = 0.5, which is consistent with the prior used by the
KT-estimator.

Across our experiments, we consider four different distri-
butions over switching-points, two of which coincide with
the statistical assumptions of our exact inference baselines
(PTW and LIN):

* Regular Periodic: All segments have fixed length [,
meaning that switching-points occur deterministically
at the same locations across all sampled trajectories.
Neural predictors can, during meta-learning, pick up
on [and thus learn to predict switching-points with
perfect accuracy.

* Random Uniform: Segment-lengths are repeatedly
drawn from a Uniform(1, n) distribution until the com-
bined summed segment length matches or exceeds the
desired sequence length n.

e PTW prior: Switching-points are sampled from the
PTW prior. More specifically, a temporal partition can
be sampled from the PTW, prior using Algorithm
with an expected running time of O(d), where d is
the depth of the partition-tree; see Appendix [E] for
more detail. Unless otherwise indicated, PTW in our
experiments refers to using the minimally necessary
depth for the given sequence length, e.g., PTWg for
length 256 and PTWq for length 512.

* LIN prior: Switching-points are sampled from the LIN
prior. Algorithm 2]in Appendix [E|provides a method
for sampling temporal partitions from the LIN prior,
whose worst-case time and space complexity grows
linearly with the sequence length n.

Memory-Based Meta-Learning on Non-Stationary Distributions

=
o
s

Mean cumulative regret [bits]

94

Seed Median
— Min. == KT Oracle == LIN

Evaluated on PTW

-— PTW

=
o
s

[
I
L

-
w
s

=
[N)
N

-
=
L

-
15
!

Mean cumulative regret [bits]

w
N
n

w
o
=3

N
N
o

N
o
=)

N
N
o

N
o
=3

-
N
n

Seed Median
— Min. == KT Oracle == LIN

Evaluated on LIN

-— PTW

| ——8————e-——8--0--

Mean cumulative regret [bits]

Seed Median -=- PTW
— Min. == KT Oracle == LIN

Evaluated on Regular

-
1)
=3

©
=3

o
=3

IN
S

——6--0--&-—-0--5-.

T \ a‘\ a‘\ \a‘\ \a‘\
'(\“\ AN N\N\ * *\ \$\ \S\ W e e‘)“\ 2‘3\) ped”
‘“\\? ,“y\\?\‘ ‘Q\\\\\"‘\i’g\\?’(\N e\ “‘“\\\' ,(\A\V e \A\V e\ “v\\“ ‘g\\t W L,‘g\\ e o\
oo 5‘?’6\; o™ o°C r,xa‘\: e ®C o c"ac\:o‘“ o
<« e 1(3““' ((a‘\‘"
(a) PTW3. (b) LIN. (c) Regular shifts with period 20.

Figure 3. On-distribution performance (models trained and evaluated on same distribution, denoted below panels). Evaluation on 10k
sequences of length 256. Columns in each plot show individual trained models (circles), and minimum and median results across
random initializations. Square-brackets denote the training distribution for models. Dashed lines show the three exact Bayesian inference
algorithms as dashed lines—of course PTW and LIN are only optimal for their respective data regimes, but serve as a strong baseline

predictor in the other regimes.

Example draws and visualizations of the switching-point
statistics of all prior distributions are shown in Appendix [B]

Neural Predictors Our neural models sequentially ob-
serve binary samples from the data generating source and
output probabilities over the next observation. my(-|x<¢)
given their parameters 6 and the data seen so far up to time ¢.
We use the logarithmic loss for training; for a sequence up
to time T, we have £y (z1.7) := —% Zthl log mo (z¢|z<t)-
During training, parameters are updated via mini-batch
stochastic gradient descent using ADAM.

We evaluate the following network architectures:

* RNN: One layer of vanilla RNN neurons, followed by
a two-layer fully connected read-out.

e LSTM: One layer of LSTM (Hochreiter & Schmidhu;
ber, [1997) memory cells, followed by a two-layer fully
connected read-out.

Stack-RNN/LSTM: We also augment the LSTM and
RNN predictors with a stack, similar to the Stack-RNN
of Joulin & Mikolov| (2015). The stack has three op-
erations, PUSH, POP, and NO-OP, which are imple-
mented in a “soft” fashion for differentiability, i.e.,
stack updates are computed via a linear combination
of each stack-action probability. At each time-step the
RNN/LSTM reads the top of the stack as an additional
input. A push writes a lower-dimensional projection
of the RNN/LSTM cell states to the top of the stack.
We treat the dimensionality of the projection and the
maximum depth of the stack as hyperparameters.

* Transformer: We use a Transformer encoder with
incremental causal masking to implement sequential
online prediction. The context of the transformer thus
acts as a (verbose) memory, storing all observations
seen so far. In our ablations we also simulate having
a smaller context length (via masking), but the best
results are achieved with the full context. We evaluate
three different positional encodings (see Appendix [A]):
standard sin/cos (Vaswani et al.,[2017)), ALiBi (Press
et al.,|2022), and the relative positional encodings from
TransformerXL (Dai et al.,2019)). For our experiments
in Section [/} we use the relative encoding, as it per-
formed best in the ablations.

For all our network architectures, we conducted an initial ab-
lation study to determine architecture hyperparameters (see
Appendix [A). The experimental results shown in Section
use the hyperparameter-set that led to the lowest expected
cumulative redundancy in the ablations (we provide the
exact values in Appendix [A).

We provide an open-source implementation of our mod-
els, tasks, and training and evaluation suite at https://
github.com/deepmind/nonstationary_mbml.

7. Results

To clarify how our main results are computed, an example
sequence from a PTW source, and corresponding model pre-
dictions, as well as our performance metric, are shown in
Figure[I} example draws from the other sources are in Ap-
pendix [B] To compare models’ performance we empirically
compute the mean cumulative regret across 10k sequences,

https://github.com/deepmind/nonstationary_mbml
https://github.com/deepmind/nonstationary_mbml

Memory-Based Meta-Learning on Non-Stationary Distributions

see Figure 2] Finally, we perform the same evaluation over
10 different random initializations for each model.

On-Distribution Evaluation We first evaluate the per-
formance of neural models when trained and evaluated on
the same data generating distribution—results shown in
Figure[3| Generally, we find that neural models match pre-
diction performance of the Bayes-optimal predictors very
well on their respective data regimes. Picking the best ran-
dom initialization (Min in the figure), all neural predictors
achieve near-optimal performance, except the RNN which
has a slightly larger error on the PTW data. Median results
(across random initializations) reveal some differences in
training stability. It is quite remarkable that all neural mod-
els across all random seeds, when trained on LIN data, man-
age to match LIN performance almost exactly. Somewhat
less surprising, for regular periodic shifts all neural models
quite reliably learn to predict switching-points with perfect
accuracy, allowing them to reach KT Oracle performance
levels. Figure [23]in the Appendix shows on-distribution
evaluation results for the Random Uniform distribution.

Off-Distribution Evaluation The experiments in this sec-
tion serve to illustrate that models pick up precise inductive
biases during meta-learning. Biases, that match the statisti-
cal structure of the data distribution during training. If the
data distribution at test time violates this statistical structure,
optimal prediction performance can no longer be guaranteed.
Figure 4] shows how models trained on data from the PTW
and LIN prior perform when evaluated with data drawn from
a random uniform changepoint distribution. Overall, neural
networks trained on PTW are slightly more robust against
this change compared to PTW—the better neural models fit
PTW in Figure 3] (a), the less robust they seem to be against
this distributional shift. Off-distribution generalization for
the models trained on LIN is very uniform across models
and closely aligned with the exact inference implementa-
tion in terms of prediction performance. We show more
off-distribution evaluations in Appendix [C.2}

Sequence-Length Generalization Figure[5|shows length-
generalization behavior of the neural models. All models
shown are trained on sequences of length 256 but evalu-
ated on much longer sequences. As expected the models’
performance degrades with longer sequences, but remains
reasonably good, indicating that, e.g., internal dynamics of
the recurrent networks do not break down catastrophically.
See Figure 27| for an example trajectory for the LSTM eval-
uated on a sequence of length 512, showing that predictions
overall remain quite close to the optimum.

Note that the most likely switching-points under the PTW
prior depend on the sequence length, and thus our sequence-
length generalization experiment also induces a slight distri-

Seed Median
— Min. == KT Oracle

-— PTW
-= LIN

Evaluated on Random

18 ====-, i

— 5]
Ja) 1 —_—
H 16 8
g | mmmeeece e ————— —-—--——--0--
g 1419
(]
2
® 12
3
€
5
2104
©
Q
=

8

\ \~\\ \A\ \A\ \~\\ \~\\
sxac\‘sn e e S‘ac 9‘2%« o
o <o

Figure 4. Oft-distribution evaluation (10k sequences, length 256).
Models’ training distribution indicated in the square brackets. All
models are evaluated with a random-uniform distribution over seg-
ment lengths (Uniform(1, 256)). Red dashed line shows PTWs.

butional shift (models trained on length 256 have a different
prior expectation over switching point locations than the
PTW prior assigns for shorter or longer sequence lengths).
To quantify this effect Figure [6 shows results of a sequence-
length ablation that compares two types of models: one,
models trained on length 32 and evaluated on shorter and
longer lengths (suffering from the implicit distributional
shift that arises from PTW priors of different depth), and
two, models evaluated on the length that they were trained
on (for a range of different lengths).

8. Related Work and Discussion

Meta-learning is a technique for producing data-efficient
learners at test time through the acquisition of inductive
biases from training data (Bengio et al.,|1991}; [Schmidhu-
ber et al., |1996; Thrun & Pratt, [1998). Recently, Ortega
et al.| (2019) showed theoretically how (memory-based)
meta-learning leads to predictors that perform amortized
Bayesian inference, i.e., meta-learners are trained to min-
imize prediction error (log loss) over a task distribution
which requires (implicit) inference of the task at hand. Min-
imal error is achieved by taking into account a priori regu-
larities in the data in a Bayesian fashion and, in decision-
making tasks, implies automatically trading-off exploration
and exploitation (Zintgraf et al.| [2020). Memory-based
meta-learners pick up on a priori statistical regularities sim-
ply by training over the distribution of tasks without directly
observing task indicators. This leads to parametric func-
tions that implement amortized Bayesian inference (Ger{
shman & Goodmanl 2014} Ritchie et al., [2016), where a
parametric model 7y behaves as if performing Bayesian

Memory-Based Meta-Learning on Non-Stationary Distributions

70

—8— RNN
LSTM
—8— Stack-RNN
—@— Stack-LSTM
—o— Transformer-Relative

60

50

40 A

A cumulative regret [bits]

78 o 7o A 5
Sequence length

Figure 5. Evaluation of models on longer sequences. Models
are trained on length 256 with switching-points drawn from
PTWg (same as Figure E] (a)) and evaluated on sequences up to
length 4096 (depth of PTW is log,(sequence length)). The plot
shows the difference between the models’ cumulative regret and
PTW over 1k sequences. Lines show the mean and shaded areas the
standard deviation over 10 random seeds. The LSTM and Stack-
LSTM generalize best, but for all models performance degrades as
the sequence length increases beyond the training length, which is
a signature of learned amortized inference.

inference “under the hood”: my(x<¢) ~ p(zi|r<t) =
> . (x|, 2<¢)p(T|2<¢). The r.h.s. requires posterior in-
ference over the task-parameters p(7|z <) o< p(x<¢|7)p(7),
which is often analytically intractable. The result is a model
with fixed parameters that implements an adaptive algorithm
via its activations, and at its core is the collection of suffi-
cient statistics for rapid online task inference. The argument
can be extended to Bayes-optimal decision-making (Ortega
et al., [2019; Mikulik et al.| 2020)); recently, Adaptive Agent
Team et al. (2023) reported a large-scale demonstration
of the principle, where models are trained over 25 billion
distinct tasks in simulated 3D environments. Trained mod-
els are able to adapt to novel tasks on human time-scale
(i.e., with tens or a few hundreds of seconds of interac-
tion) purely via in-context learning (conditioning). [Kirsch
et al.|(2022)) also conducted an exploration of memory-based
meta-learning over a vast set of tasks to produce in-context
and few-shot learning abilities, with up to 224 tasks created
by randomly projecting inputs and randomly permuting la-
bels on MNIST. They find that having both, a large enough
model and a rich enough training distribution is required for
an in-context learning algorithm that generalizes.

While Bayes-optimality in sequential prediction and
decision-making is theoretically well understood, cf.|Hutter|
(2005)), an important question is whether neural networks,
when meta-trained appropriately, can approach the Bayesian
solution at all (realizability and convergence, see Section [3)),
or whether they operate primarily in a suboptimal regime
that is not well described by Bayesian theory. Mikulik
et al.| (2020) conducted a first targeted empirical compari-
son of meta-learned neural predictors with Bayes-optimal

—8— RNN
LSTM
—8— Stack-RNN
10°{ —e— Stack-LSTM
—&— Transformer
-,____...-----0‘-----..

A cumulative regret [bits]

2t 22 2 24 25 26 27 28
Sequence length

Figure 6. Evaluation of models on sequences of different lengths.
The plot shows the difference between the models’ expected cu-
mulative regret and PTW over 1k sequences (depth of PTW is
log,(sequence length)). Results are averaged over 10 random
seeds. Solid lines correspond to models evaluated on the length
they were trained on. Dashed lines correspond to models trained on
length 32 (dotted vertical line) and evaluated on other lengths. As
expected, models trained on 32 generalize worse to other lengths
(’U’ shape curve), which is explained by the implicit distributional
shift induced by the PTW prior with different depth.

algorithms, focusing on simple prediction- and decision-
making tasks where episodes had a fixed number of steps,
and changepoints were observed (internal memory states
were explicitly reset at episode boundaries). This setting is
similar to our regular periodic switching-point distribution,
but, crucially, switching-points are always unobserved in
our experiments. That is, the emphasis of our study is on
non-stationary data sources with abrupt changes in local
statistics. While piecewise stationary sources are conceptu-
ally simple, the switching-points make accurate prediction
challenging, particularly under a cumulative error metric.
Furthermore, piecewise Bernoulli data makes switching-
point detection difficult, which is, counter-intuitively, often
easier on more complex distributions when different seg-
ments exhibit strongly characteristic statistics. In|[Reed et al.
(2022), observations are, for instance, frames from Atari
games, where a single frame often suffices to determine the
task accurately.

We also aim at furthering the understanding of inductive
biases and reasoning principles acquired by sequential pre-
dictors such as large language models. Recently observed in-
context learning abilities in large language models (Brown
et al.} 2020) have rekindled interest in black-box parametric
models capable of learning-to-learn purely in-context, that
is, via activations, with frozen parameters (Hochreiter et al.
2001} [Duan et al., 2016} |Santoro et al., 2016; [Wang et al.}
2017). While the capabilities to learn in-context have been
heavily explored empirically, the connections to Bayesian
theory are still somewhat sparse (Ortega et al.,[2019; |[Miku{
lik et al., 2020; Miller et al.| [2022; [Xie et al., 2022)). From
an Al safety viewpoint it is desirable to understand the

Memory-Based Meta-Learning on Non-Stationary Distributions

mechanisms that enable few-shot and in-context learning;
which are plausibly the same mechanisms that create suscep-
tibility to prompt injections and context poisoning attacks.
These characteristics are expected from a model that per-
forms implicit Bayesian inference over piecewise stationary
data. For instance, Xie et al.|(2022)) argued that in-context
learning in large language models can be explained by (im-
plicit) Bayesian inference over a latent variable, but does
not draw a connection to the theory of meta-learning (which
explains why amortized Bayesian inference arises from min-
imizing log loss) and does not compare against a known
Bayes-optimal algorithm to establish optimality of the neu-
ral predictor. Our meta-learning interpretation is in line
with the arguments in Xie et al.[(2022) but is more general.
Our interpretation also does not rely on special delimiter
characters that signal a topic switch and needing to have a
posterior over the latent variable that is highly concentrated
on a single value. We believe it could be interesting in the
future to contrast the meta-learning interpretation with the
model by [Xie et al.| (2022) and extend our experimental
suite to incorporate their hidden Markov model as a more
complex piecewise stationary source.

Limitations Our results show the potential of memory-
based meta-learning to accurately approximate Bayes-
optimal solutions. However, our findings are currently lim-
ited to Bernoulli statistics per segment, and four types of
switching-point distributions. For known Bayes-optimal al-
gorithms the complexity of dealing with different switching-
point distributions seems to dominate over increasing the
complexity of the base distributions per segment. This
makes us optimistic that our findings would generalize to
more complex per-segment distributions when training neu-
ral predictors—but at the current stage this remains specula-
tive. The main challenge with more complex data generating
sources, such as real-world datasets, is the lack of a (compu-
tationally or analytically) tractable Bayes-optimal solution
against which we could compare. The main point of this
paper is to demonstrate that neural networks can learn to
predict Bayes-optimally and not simply that they can learn
to predict well (which has already been demonstrated exten-
sively in the literature). Another limitation of our study is
that many known Bayes-optimal algorithms come with per-
formance guarantees and robustness bounds, and while our
generalization experiments attempt to shed some light on
robustness and out-of-distribution behavior of meta-learned
neural models, no formal guarantees can be provided.

9. Conclusion

In this paper we investigated whether neural networks,
trained to minimize sequential prediction error (log loss)
over statistically structured but highly non-stationary data
sources, can learn to match the prediction performance of

Bayes-optimal algorithms. We found this to be the case,
despite non-trivial algorithmic requirements for optimal pre-
diction in these settings. Our results empirically confirm
the theoretical Bayesian interpretation of memory-based
meta-learning (Ortega et al., 2019), which states that log-
loss minimization on a meta-distribution over data sources
with a memory-based parametric model leads to approx-
imately Bayes-optimal solutions. By focusing on piece-
wise stationary data sources, we study a highly relevant
regime that holds the promise to shed light onto recently
observed capabilities of large sequential prediction models.
We believe that few-shot and in-context learning abilities
of these models, as well as their susceptibility to context-
corruption and prompt-injection attacks at test time, can be
better understood from the viewpoint of inferring changes
in local statistics under a non-stationary distribution. A
more concrete, and near-term take-away from our study
is to highlight the potential of using memory-based meta-
learning to learn (near-) Bayes-optimal predictors in settings
where closed-form solutions are not obtainable or algorith-
mically intractable. The ingredients to succeed with this are
highly expressive parametric models (for realizability of the
Bayes-optimal predictor) and strong optimizers (to ensure
convergence)—our current study shows that modern neural
networks in a standard meta-learning setup with mini-batch
based SGD can fit this bill.

Acknowledgements

We thank Jane Wang, Christopher Mattern, and Shane Legg
for their helpful feedback and insightful conversations.

References

Adaptive Agent Team, Bauer, J., Baumli, K., Baveja, S., Be-
hbahani, F. M. P., Bhoopchand, A., Bradley-Schmieg, N.,
Chang, M., Clay, N., Collister, A., Dasagi, V., Gonzalez,
L., Gregor, K., Hughes, E., Kashem, S., Loks-Thompson,
M., Openshaw, H., Parker-Holder, J., Pathak, S., Nieves,
N. P, Rakicevic, N., Rocktischel, T., Schroecker, Y., Syg-
nowski, J., Tuyls, K., York, S., Zacherl, A., and Zhang, L.
Human-timescale adaptation in an open-ended task space.
CoRR, abs/2301.07608, 2023.

Aji, S. M. and McEliece, R. J. The generalized distributive
law. IEEE Trans. Inf. Theory, 46(2):325-343, 2000.

Bengio, Y., Bengio, S., and Cloutier, J. Learning a synaptic
learning rule. In IJCNN-91-Seattle International Joint
Conference on Neural Networks, 1991.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P, Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,

Memory-Based Meta-Learning on Non-Stationary Distributions

J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, 1., and Amodei, D. Language
models are few-shot learners. In NeurIPS, 2020.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J. G., Le, Q. V., and
Salakhutdinov, R. Transformer-xl: Attentive language
models beyond a fixed-length context. In ACL (1), pp.
2978-2988. Association for Computational Linguistics,
2019.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever,
1., and Abbeel, P. R1$"2$: Fast reinforcement learning
via slow reinforcement learning. CoRR, abs/1611.02779,
2016.

Gershman, S. and Goodman, N. D. Amortized inference in
probabilistic reasoning. In CogSci. cognitivesciencesoci-
ety.org, 2014.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Comput., 9(8):1735-1780, 1997.

Hochreiter, S., Younger, A. S., and Conwell, P. R. Learn-
ing to learn using gradient descent. In ICANN, volume
2130 of Lecture Notes in Computer Science, pp. 87-94.
Springer, 2001.

Hutter, M. Universal Artificial Intelligence: Sequential
Decisions Based on Algorithmic Probability. Springer,
2005.

Joulin, A. and Mikolov, T. Inferring algorithmic patterns
with stack-augmented recurrent nets. In NIPS, pp. 190—
198, 2015.

Kirsch, L., Harrison, J., Sohl-Dickstein, J., and Metz, L.
General-purpose in-context learning by meta-learning
transformers. CoRR, abs/2212.04458, 2022.

Koolen, W. M. and de Rooij, S. Combining expert advice
efficiently. In COLT, pp. 275-286. Omnipress, 2008.

Krichevsky, R. E. and Trofimov, V. K. The performance
of universal encoding. IEEE Trans. Inf. Theory, 27(2):
199-206, 1981.

Mikulik, V., Delétang, G., McGrath, T., Genewein, T., Mar-
tic, M., Legg, S., and Ortega, P. A. Meta-trained agents
implement bayes-optimal agents. In NeurIPS, 2020.

Miiller, S., Hollmann, N., Pineda-Arango, S., Grabocka, J.,
and Hutter, F. Transformers can do bayesian inference.
In ICLR. OpenReview.net, 2022.

Ortega, P. A., Wang, J. X., Rowland, M., Genewein, T.,
Kurth-Nelson, Z., Pascanu, R., Heess, N., Veness, J.,
Pritzel, A., Sprechmann, P., Jayakumar, S. M., McGrath,
T., Miller, K. J., Azar, M. G., Osband, 1., Rabinowitz,

10

N. C,, Gyorgy, A., Chiappa, S., Osindero, S., Teh, Y. W.,
van Hasselt, H., de Freitas, N., Botvinick, M. M., and
Legg, S. Meta-learning of sequential strategies. CoRR,
abs/1905.03030, 2019.

Press, O., Smith, N. A., and Lewis, M. Train short, test
long: Attention with linear biases enables input length
extrapolation. In /CLR. OpenReview.net, 2022.

Reed, S. E., Zolna, K., Parisotto, E., Colmenarejo, S. G.,
Novikov, A., Barth-Maron, G., Gimenez, M., Sulsky, Y.,
Kay, J., Springenberg, J. T., Eccles, T., Bruce, J., Razavi,
A., Edwards, A., Heess, N., Chen, Y., Hadsell, R., Vinyals,
O., Bordbar, M., and de Freitas, N. A generalist agent.
CoRR, abs/2205.06175, 2022.

Ritchie, D., Horsfall, P., and Goodman, N. D. Deep
amortized inference for probabilistic programs. CoRR,
abs/1610.05735, 2016.

Santoro, A., Bartunov, S., Botvinick, M. M., Wierstra,
D., and Lillicrap, T. P. Meta-learning with memory-
augmented neural networks. In ICML, volume 48 of
JMLR Workshop and Conference Proceedings, pp. 1842—
1850. JMLR.org, 2016.

Schmidhuber, J., Zhao, J., and Wiering, M. Simple princi-
ples of metalearning. Technical report, IDSIA, 1996.

Thrun, S. and Pratt, L. Y. Learning to learn: Introduction
and overview. In Learning to Learn, pp. 3—17. Springer,
1998.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. In NIPS, pp. 5998-6008, 2017.

Veness, J., White, M., Bowling, M., and Gyorgy, A. Parti-
tion tree weighting. In DCC, pp. 321-330. IEEE, 2013.

Wang, J., Kurth-Nelson, Z., Soyer, H., Leibo, J. Z., Tiru-
mala, D., Munos, R., Blundell, C., Kumaran, D., and
Botvinick, M. M. Learning to reinforcement learn. In
CogSci. cognitivesciencesociety.org, 2017.

Willems, F. M. J. Coding for a binary independent
piecewise-identically-distributed source. IEEE Trans. Inf.
Theory, 42(6):2210-2217, 1996.

Xie, S. M., Raghunathan, A., Liang, P., and Ma, T. An
explanation of in-context learning as implicit bayesian
inference. In /ICLR. OpenReview.net, 2022.

Zintgraf, L. M., Shiarlis, K., Igl, M., Schulze, S., Gal, Y.,
Hofmann, K., and Whiteson, S. Varibad: A very good
method for bayes-adaptive deep RL via meta-learning. In
ICLR. OpenReview.net, 2020.

Memory-Based Meta-Learning on Non-Stationary Distributions

A. Architecture Ablation Study

We conducted an ablation study on the neural models we trained. This was used both to select the best parameters for the
main experiments, and better understand the impact of number of parameters and memory size on the models’ capabilities.
We trained all the networks on sequences of length 256, sampled from the PTW prior. We trained 5 different seeds for each
set of hyperparameters. We ran each distribution-architecture-hyperparameter triplet on a single GPU on our internal cluster.

Vanilla RNNs and LSTMs For these networks, we swept over three hidden sizes: 64, 128 and 256. We also swept over
the number of dense layers to be appended after the recurrent core: 0, 1, or 2 layers. These layers all contain 128 neurons.
The best performing models for both architectures were the largest ones, i.e., 256 neurons in the recurrent core and 2 extra
dense layers of 128 neurons after the core. These are the hyperparameters we picked for the main study. In Figure [/} we plot
the performance over the number of parameters of the model. The performance is the averaged cumulative regret over 10k
trajectories sampled from the PTW prior. The figure generally reveals a downward trend: the more parameters, the lower the
prediction error.

Stack-RNNs/LSTMs For these networks, we performed the same sweep as for simple RNNs and LSTMs above. In
addition, we swept over the stack size (1, 8 or total sequence length, e.g., 256) and the stack cell width (1, 2 and 8
dimensions). The best performing models for both architectures were again the largest ones, i.e., 256 neurons in the core and
2 extra dense layers of 128 neurons after the core. These are the hyperparameters we picked for the main study. Figure[7)also
shows the same trend as for standard RNNs and LSTMs. Furthermore, the best performing models for both architectures use
a stack size of 8 and a stack cell size of 8 too. This means that the networks cannot store the whole history of observations
in the stack (at least not straightfowardly), but this size seems sufficient and smaller stacks might make training easier.

Transformers For these networks, we used an embedding size of 64 and 8 heads. We swept over three positional
encodings: classical sin/cos from the original Transformer paper, ALiBi which work well for short span dependencies, and
the relative positional encodings from the TransformerXL paper. We also swept over the number of layers: 2, 4, 8 and 16.
We first observe that all networks, regardless their size or positional encodings, train very well: The loss curves are smooth
(not shown here) and the variance over seeds is small. The best performing models are the ones using the relative positional
encodings and the largest ones, i.e., with 16 layers. These are the hyperparameters we picked for the main study. In Figure|[8]
we report the performance over the capacity of the model, measured in number of parameters, for the different positional
encodings.

16.01
—— LST™M —— ALiBi
15.54 . .
Vanilla RNN 14.0 Relative
15.0 —— Stack-LSTM —— Sin/Cos
@ —— Stack-RNN @
5 14.51 ©13.5
1S o
2140 2
®13.5 ©13.0
g g
€130 &
O ©]
12.54 12.5
12,0 mmmmmm e
12,0 [mmmmmmmmmmmomoommoooo e
11.5 T r T - : - . .
0 20000 40000 60000 80000 100000 200000 400000 700000
of parameters # of parameters

Figure 7. Cumulative regret (in bits) of the different RNNs, over ~ Figure 8. Cumulative regret (in bits) of the different Transformers,
their number of parameters. Dashed line shows PTWs. over their number of parameters. Dashed line shows PTWs.

11

Memory-Based Meta-Learning on Non-Stationary Distributions

B. Illustration of Data Generating Sources
B.1. pTW Switching-Point Statistics

Positions of the Switching-Points To give a better intuition on where the PTW switching-points occur in the sequence, we
plot their distribution in Figure[9] They are mostly present at half the sequence (probability 1/2), then at all the quarters of
the sequence (probability 1/4), and so on, dividing by two the intervals recursively (and dividing the probability by 2).

[B SCCEEEE L e Theory -
? Sampled

o © I
N W >

Probability of switch point occuring

°
A

0 50 100 150 200 250
Sequence index

Figure 9. Distribution of PTW switching-points, over sequence indexes, computed over 10000 sequences. The length of the sequences is
fixed to 256.

Number of switching-points We are also interested in the prior distribution of the number of switching-points, which is
implicitly given by the PTW prior. We can get recursive and explicit formulas as follows: The recursive definition of the
PTW distribution (Veness et al., 2013)

PTWa(Z1:n) = 5p(21:N) + PTWa_1p(L1.20-1)PTW 41 p(Loa-141:0,) 5)
leads to the following recursion for the probability of k switching-points for d > 1

k—1
1
Falk] = 30r0+ S Pialk =1 Payfl—1], and Pylk] = dro (6)
=1

(the number of switching-points is the number in the left half plus the number in the right half plus 1). From this we can
compute P;[k] in time O(d - kpax). We plot the curves for d = 0, ..., 9, co in Figure We also plot the same curves
in Figure [TT} but from empirically sampling from our PTW data source and counting the number of switching-points. We
sample 10 batches of 1000 sequences and report the mean and standard deviations of number of switching-points. The
match is very good, with a very little statistical error.

The empirically observed kink at £ = d is indeed real for small d and gets washed out for larger d. It is easy to see from the
recursion and from the plot that P, [k] is the same for all d > k. We can hence compute the limit for d — oco: A sequence with
k switches corresponds to a full binary tree with & inner-switch nodes and k + 1 leaves-segments. PTW assigns a probability
1/2 to each decision of whether to switch or not. Therefore for such a partition P we have 2~ 7¢(P) = (%)’”(’“H). There

are C'(k) such trees, where C'(k) = % =1,1,2,5,14,42,132,...] are the Catalan numbers. Therefore
Poolk] = C(k)-27 ") = B 0-2k1 — Pylk] for d >k 9

This expression can also be verified by inserting it into (6)), using binomial identities. For large k, Stirling approximation
gives Py [k] ~ k=3/2/2\/7, which is quite accurate even for k as low as 1. This is good news: The prior distribution of
switches is as close to non-dogmatic as possible: 1/k would not sum, 1/k? is quite good, 1/k'-° is even better, while 1/2%
would be very dogmatic and therefore bad. This good behavior is not a priori obvious. Indeed, if in PTW we would choose

12

Memory-Based Meta-Learning on Non-Stationary Distributions

10° 10°
— d=0 -—- d=0
— d=1 - d=1
— d=2 -—- d=2
— d=3 -—- d=3
— d=4 - d=4
— d=5 -—- d=5
d=6 d=6
- — d=7 = Y -=- d=7
21071 d=8 Z107y 5 d=8
— d=9 ; --- d=9
—_— d=x : —_— d=x
i
i ! ~~.
i ! =S
; I
: i
1077 . 1072 i . ! .
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
k K

Figure 10. Theoretical PTW distribution of number of switches. Figure 11. PTW empirical distribution of number of switches over
For k > d = 0,...,9 (colored curves). For k < d, Py[k] = 10 batches of 1000 sequences each (colored curves). We also
P [k] (black curve). added the theoretical case Poo[k] (black curve).

the switch probability p anything but 1/2 (larger or smaller!), Ps, ,[k] = Pso[k] - 2(1 — p) - [4p(1 — p)]* which decreases
exponentially in & for p # 1/2. From (3, we can also derive the expected number of switching-points

Ealk] = §-04 (1 +Ea1[k] + Ea1[k]) = § +Eaalk] =... = d/2 (®)

which grows linearly with d (as expected) due to the tail of Py[k] being dragged out for d — oo. Similarly for p # 1/2 we
have

Eqlk] = 1 —p)-04+p(1 +Ey_1[k] + Eg—1[k]) = p+2p -Eq—1[k] = ...

- 1—2p)?¢ 4 —2_forp < %
Lo=p-[l42p+(2p)° + ...+ (2p)° 1]:p# [0 pl 2p) 2
—2p 57 (2p)dforp > 5

That is, for p < % this implies a prior believe of k (strongly) peaked around ﬁ, not growing with d, while for p > %, it

increases exponentially in d: k o< (2p)? = n® with 0 < a := log,(2p) < 1.

B.2. Switching-Point Statistics for Other Priors

An example draw from the LIN prior is shown in Figure [[2] Empirical switching-point statistics are in Figure [I5] and
Figure[T6]
An example draw from the Random Uniform prior is shown in Figure [I3] Empirical switching-point statistics are in

Figure[I7]and Figure[18]

An example draw from the Random Periodic prior is shown in Figure [[4] Empirical switching-point statistics are in
Figure[T9)and Figure 20]

B.3. Models’ Regret Along the Sequences

In Figure [21] we plot the average regret of the different models for all sequence indexes on 10000 sequences of length 256,
drawn from the PTW prior. The models have also been trained on this prior. The match is almost perfect. We also plot the
difference between the models’ regret and PTW’s regret in Figure[22] to emphasize the models’ relative performance. Note
that in theory, the models can do better than PTW on some indexes, but not when summing over all of them.

13

Memory-Based Meta-Learning on Non-Stationary Distributions

Sample —— KT Oracle —— LIN LSTM[LIN] --- Truebias —— Segment mean Switching-point
1.0 — 2
« - \ \ B
2 L
8 {
Sos54f SV
@ i 1 \)& M / A
o - S
0.0 17 = =~ T T
1 64 128 256
va
2
®2
>
@
€, AhiA .
128 192 256
- SR
eF 30 PR
2 /
8220 I
EXT e
5 gv 10 B
04+
1 64 128 192 256
Step
Figure 12. Example draw from LIN prior and model predictions.
Sample —— KT Oracle —— LIN LSTM [Random] —-- True bias —— Segment mean Switching-point
1.0

Predictions
o
o

°
o

Regret [bits]
o =
4 o

°
o

N
o

Cumulative
regret [bits]
=
1)

o

1 64 128 192 256
Step

Figure 13. Example draw from Random Uniform prior (Uniform(1, 256)) and model predictions.

Sample ~—— KT Oracle —— LIN LSTM [Regular] ~ —-- True bias —— Segment mean Switching-point

1.0

Predictions
o
o

°
5

64

1

Regret [bits]
~N S

o

— 751
L8
25
B 501
S
EL s
oL _ .
0 e
1 64 128 192 256
Step

Figure 14. Example draw from Random periodic prior (period=20 steps) and model predictions.

14

Memory-Based Meta-Learning on Non-Stationary Distributions

Empirical Distribution of switching-point location

Number of switching-points across 10000 sequences across 10000 sequences
500 0.35
o
£ 030
400 g
" 2025
g 300 5 0.20
z £
8 i
5 5 0.15
* 200 2
§ 0.10
[
100 < 0.05
0.00
0
0 10 20 30 40 50 60 70 80 0 50 100 150 200 250
k Sequence index
Figure 15. No. of switching-points per sequence (LIN prior). Figure 16. Switching-point locations (LIN prior).
Empirical Distribution of switching-point location
Number of switching-points across 10000 sequences across 10000 sequences
5000 0.012
©0.010
g
4000 T
o
" § 0.008
g 3
£ 3000 a
E s
g £ 0.006
2 H
5 -
5
3 2000 2 0.004
z
E
1000 & 0.002
0.000
0 : y : : r :
8 0 50 100 150 200 250

Sequence index

Figure 17. No. of switching-points per sequence (Random Uni- Figure 18. Switching-point locations (Random Uniform prior,

form prior, Uniform(1, 256)). Uniform(1, 256)).
Empirical Distribution of switching-point location
Number of switching-points across 10000 sequences across 10000 sequences

10000 1.0
2

8000 E 0.8
5
o £

£ 6000 06
g <
= £
g H

s 5 0.4
% 4000 g
z
8

S02
2000 [

0.0

0— , - , , +
0 2 4 6 8 10 12 50 100 150 200 250
k Sequence index

Figure 19. No. of switching-points per sequence (Regular Periodic ~ Figure 20. Switching-point locations (Regular Periodic prior,
prior, period=20 steps). period=20 steps).

15

Memory-Based Meta-Learning on Non-Stationary Distributions

0.35 1 —— RNN
—— LSTM
= 0:301 —— Stack-RNN
3 —— Stack-LSTM
E 0.25 1 —e— Transformer
—— PTW
% 0.20 1
]
°
g 0.15 4
B
5, 0.10
[
o
0.05 A
0.00 . . , . .
0 50 100 150 200 250
Sequence index
Figure 21. Average regret per sequence index, over 10000 sequences of length 256, drawn from the PTW prior.
0.035 -
—— RNN
0.030 - —— LSTM
i~ —e— Stack-RNN
3 0.025 —— Stack-LSTM
E ’ —e— Transformer
& 0.020
3
g 0.015 -
E
@ 0.010
5
 0.005
0.000 -

Sequence index

Figure 22. Difference of the average regret per sequence index, over 10000 sequences of length 256, drawn from the PTW prior.

16

Memory-Based Meta-Learning on Non-Stationary Distributions

C. Additional Experiments
C.1. On-Distribution Performance

Figure 23| shows the models’ performance for training and evaluating on data with segment lengths drawn from a Random
Uniform prior.

Seed Median -= PTW
— Min. == KT Oracle == LIN

Evaluated on Random

184 == =TT mm T

16

144

129

101

Mean cumulative regret [bits]

Figure 23. On-distribution evaluation (10k sequences, length 256). Models were trained and evaluated on data from the Random Uniform
distribution (Uniform(1, 256)) over segment lengths. Note that we have no known exact Bayesian inference baseline in this case, though
LIN comes with certain robustness guarantees that ensure good prediction performance in this setting. Neural networks trained precisely
on this data distribution manage to outperform LIN though.

C.2. Off-Distribution Evaluation

Figure [24] shows how models trained on data from the PTW and LIN priors generalize to evaluating on data that follows
Regular Periodic shifts. Figure 25]and Figure 26 show how models trained on Random Uniform segment lengths behave
when evaluated on data from the PTW and LIN priors, respectively.

C.3. Evaluation on Longer Sequence Lengths at Test Time

See Figure[27] Figure 28] Figure[29] Figure[30] and Figure [31]for example sequences of length generalization of the different
models. For a large-scale quantitative evaluation see Figure [5in the main text. Finally, Figure[32] gives some insight into
generalization behavior of the different models. In the figure, models were trained on sequences of length 256 drawn from
PTWg, but evaluated on sequences of length 512 drawn from PTWg. In that case, the most likely change point occurs at 256,
but since models were trained on trajectories of length 256 all models, except the transformer predict better than PTWy if no
change point occurs (for all trajectories with 0 switching-points, roughly the upper half of each panel, there is a dark red
band at 256). If the most likely change point actually occurs (trajectories with 1 or more switching-points), neural models
predict the change at 256 with lower probability than PTWg, leading to a white/blue band in the lower half of each panel.
Similar trends are also seen for other highly likely switching-points such as 128 or 384, with the Stack-RNN showing the
strongest white bands (consistent with having the worst performance in Figure 3.

17

Memory-Based Meta-Learning on Non-Stationary Distributions

Mean cumulative regret [bits]

Seed Median
— Min. == KT Oracle

-= PTW
-= LN

Evaluated on Regular

w
vl

%]
o

IS
o

IS
o

w
o

w
=3

251

N
“ﬁ\v(‘:ﬂ‘\g\\‘(ﬂ\‘“ N “‘\w f\ \;\“w‘\ ™
sac o m "=‘ac 5‘2{&«\
B\ a““’(<

Figure 24. Oft-distribution evaluation (10k se-
quences, length 256). The models’ training distribu-
tion indicated in the square brackets. All models are
evaluated with regular periodic segment lengths of
period 20. Red dashed line shows PTW5.

Seed
— Min.

Median
== KT Oracle

-— PTW
—= LN

Evaluated on PTW

P - a -
—_——f = === .

16 1
154
144
13
12] o o o o e o

114

Mean cumulative regret [bits]

104

= \ N N
S\ mv@ v@“do‘“\’@“do‘“
‘“\\ ,(\r\\ “‘.\\ ‘r\\ e\
\. c_,\a \L (‘
o

Figure 25. Oft-distribution evalua-
tion (10k sequences, length 256).
Models were trained on data from
Random Uniform segment lengths
(Uniform(1, 256)) and evaluated on
data from PTW5g.

Seed Median
— Min. == KT Oracle

-— PTW
—= LN

Evaluated on LIN

35.0 T T
32.5
30.0 4
2754 ~ T T TTTTTTT T
25.0 4

22.54

Mean cumulative regret [bits]

60‘(\\ " \ " dc)ﬁ\\ " d0‘(\\

“\\\“ ,“r\\“ “\\\\“ ,“r\\‘\ e\‘\
S >
¢ g@ﬁ R o

o

Figure 26. Off-distribution evalua-
tion (10k sequences, length 256).
Models were trained on data from
Random Uniform segment lengths
(Uniform(1, 256)) and evaluated on
data from LIN.

Sample —— KT Oracle —— PTW LSTM [PTW] —== True bias —— Segment mean Switching-point
1.0
%]
j=
o
% A o s aet T /L
] 4 A T - .
o
O'O —l T T T
1 128 256 384 512
)
5
-
o
o
[
< |
A et —————————— e ———— | N— - V. V.. - — ———
128 256 384 512
— 31
<9}
25, ——
== 2
g | —
381 i
f
1 128 256 384 512
Step

Figure 27. Sequence-length generalization: single sequence of length 512 without switching points (which is quite likely under PTWg
prior). The LSTM predictions shown are taken from a model trained on sequences of length 256 (from PTWg prior). The LSTM
generalizes well to sequences of longer length, taking the main hit in terms of cumulative regret (compared to PTW) around step 128,
which is the most likely switching-point on the data that the model was trained on, and step 384 (which is a multiple of 128). Otherwise,
predictions remain stable despite the sequence being twice as long as any sequence the model has ever experienced during training (which
is an indicator that internal dynamics remain stable to0o).

18

Memory-Based Meta-Learning on Non-Stationary Distributions

Sample —— KT Oracle —— PTW Stack-LSTM [PTW] —==~ True bias —— Segment mean Switching-point

1.0

1
Ll
1
|

‘\ | VN NSOV s g A‘AA

v o o

Predictions
o
w

00 _l T T T
1 128 256 384 512
E‘ 0.6 -‘n
304l
el
© 0.2 1|
g !
« LR I W I . J..j — _ —
1 128 256 384 512
30 g
%é 2] ___/
S0 -
Eoqf
O = I}
1 128 256 384 512
Step

Figure 28. Same as Figure 27 but model shown here is Stack-LSTM.Compared to the plain LSTM, the Stack-LSTM seems to predict a
change point at step 384 with lower probability.

Sample —— KT Oracle — PTW RNN [PTW] —==- True bias —— Segment mean Switching-point
1.0 A
w 1
S 1
-§ 0541 LM AMIRIET e LA
I
0.0 -

1 128 256 384 512

)
5
-
I
o
Q
& A
128 256 384 512
v 34
52 i
Ex 21 /
£& J—
53 {
o g1 1!
1 128 256 384 512
Step

Figure 29. Same as Figure 7] but model shown here is RNN. Compared to the LSTM, the RNN predictions are a bit worse on this
sequence, but internal dynamics seem to remain very stable far beyond the training range of 256 steps.

19

Memory-Based Meta-Learning on Non-Stationary Distributions

Sample —— KT Oracle — PTW Stack-RNN [PTW] —==- True bias —— Segment mean Switching-point
1.0
(%] 1
5 |
% 0.5 i N apag e AA_AAAA
o ' v ’ N
o
Oo -l T T T
1 128 256 384 512
256 384 512
—_ 31
vz —
=0
3% 1 /
ER]
Eo,lf
o=
1 128 256 384 512

Step

Figure 30. Same as Figure 29]but model shown here is Stack-RNN. It is hard to identify a qualitative difference to the plain RNN; the
Stack-RNN performs better / more stable in the second half of the trajectory, which is in line with the trend seen for the Stack-LSTM in

Figure[28]compared to the plain LSTM.

Switching-point

Sample —— KT Oracle — PTW Transformer-Relative [PTW] —== True bias —— Segment mean
1.0
wn 1
g |
F=1 L
o B Py -
9
a
0'0 _l T T T
1 128 256 384 512
0.75 |
E |
5 0.50 1|
° “
o 0.25 A
Q |
o 'y h
0.00 A Mt — - —
1 128 256 384 512
— 6
]
58 4-
2%
1 128 256 384 512
Step

Figure 31. Same as Figure[27]but model shown here is Transformer-Relative. Compared to all other neural models, the transformer seems
to struggle with predicting well from step 256 onward (note that the model was trained with sequences of length 256).

20

Memory-Based Meta-Learning on Non-Stationary Distributions

RNN [PTW] LSTM [PTW]

Number of changepoints
Number of changepoints
Redundancy(model) - Redundancy(PTW)

200 300 200 300
Step Step

Stack-RNN [PTW] Stack-LSTM [PTW]

Number of changepoints
Number of changepoints

TP NN YITYNT T R P

200 300
Step Step

Transformer-Relative [PTW]

Number of changepoints

200 300
Step

Figure 32. Models evaluated on 500 trajectories of length 512 drawn from PTWg prior. Models trained on sequences of length 256 drawn
from PTW3. In each panel: each row is a single trajectory, and the color encodes the difference in redundancy between the model minus
PTWg. Trajectories are ordered by the number of switching-points (y-axis). See main text for a discussion of the figure.

21

Memory-Based Meta-Learning on Non-Stationary Distributions

D. Proof of Theorem 4.2

Proof. By way of contradiction, assume E,|vg (a¢|x<t) — £(at|z<:)| = 0 Vo € M. In particular this implies

E

wilve, (ag) — &(atlr<s)| — 0

where we have used vg(ai|z <) = vp, (a¢). Combining this with Solomonoff’s theorem (Hutter, 2005) (Thm.3.19iii)

E

wil§(atlzat) — pilag|w<i)| — 0
we get
Vo, (at) = By, pilare<e)| < Ey,lvo, (ar) — pi(aelz<i)] — 0
The inequality exploits that g is memoryless. Finally combining these convergences for ¢ = 1 and 7 = 2 we get

|Eu1ﬂl(at|x<t) - E;tzlm(at|x<t)| — 0

which contradicts the theorem’s assumption on f;.

E. Prior Sampling Algorithms

This section provides more detail on how the temporal partitions are sampled under the PTW and LIN priors which are
defined in Section[5] Both priors are hierarchical in the sense that they first define a prior on the latent switching-point
structure, and then assign a Beta(0.5,0.5) prior to the Bernoulli process governing each segment. Here we focus just on the

non-trivial first stage of each hierarchical process.

E.1. Sampling From the PTW Prior

Given a fixed d, Algorithm [I{ samples a binary temporal partition from C distributed according to the PTW prior when
invoked with an offset o = 0. The algorithm works by first flipping a fair coin which determines whether or not to continue
splitting the current segment in half; in the case of a split, the process continues recursively on the two half segments. The
base case is handled by d = 0 which corresponds to a segment consisting of a single time point, which obviously cannot be
split further. The expected running time is proportional to the expected number of switches, which we show in Appendix [B.1]

Equation (8) to be equal to % = O(logn).

Algorithm 1 TPS;(0)

Require: An offset o € N
if d = 0 then
return {(o+ 1,0+ 1)}
end if
Sample r ~ Bernoulli(0.5)
if r = O then
return {(0 + 1,0 + 2%)}
else
return TPS;_1(0) U TPSy_1 (0 + 2971)
end if

E.2. Sampling From the LIN Prior

Algorithm samples a temporal partition from P,, distributed according to the LIN prior. The algorithm starts in state (1, 1),
with the left component representing the current time, and the right component representing the time index of the current

segment. The current state (¢, ¢.) is adapted n times, where t,lt/ 2+1

t. The worst-case runtime complexity of this algorithm is clearly linear in n.

22

gives the probability of a change-point occurring at time

Memory-Based Meta-Learning on Non-Stationary Distributions

Algorithm 2 LIN-PRIOR-SAMPLE(n)
Require: Sequence length n € N
t< Lt 1,7+ {}
while ¢t < n do
Sample 7 ~ BERNOULLI (%)
if » = 1 then
T+ TU{(t,t)}
te=1t+1
end if
t—t+1
end while
T+ TU{(t,t)}

return 7

F. Discrete Bayesian Mixtures

A fundamental technique for constructing algorithms that work well under the logarithmic loss is Bayesian model averaging.
Given a non-empty discrete set of probabilistic data generating sources M := {py, po, ... } and a prior weight w{j > 0 for
each p € M such that pEM wf = 1, the Bayesian mixture predictor is defined in terms of its marginal by {(z1.,,) :=
> per Wo P(T1:n). The predictive probability is thus given by the ratio of the marginals {(2,|7<,) = {(21:0)/&(T <)
The predictive probability can also be expressed in terms of a convex combination of conditional model predictions, with
each model weighted by its posterior probability. More explicitly,

Zpej\/[wg p(xlzn)

{(@n|zan) =
" " EpEM wgp(x<n)
= Z w271 p(xn‘m<n)
peEM
p wgp(x<n)

where w),_, =

ZVGM wh v(T<n)

A fundamental property of Bayesian mixtures is that if there exists a model p* € M that predicts well, then & will predict
well since the cumulative loss satisfies

—log&(z1.) = —log Y wf p(1:n)
pEM

S - IOg wg P* (Ilzn)

= log (1) —log p*(1.)- 9

o
Wo

Equation @) implies that a constant regret bounded by log(1/wf *) is suffered when using ¢ in place of the best (in hindsight)
model p* € M.

23

	Introduction
	Background
	Memory-Based Meta-Learning
	The Essential Role of Memory
	Priors and Exact Inference Baselines
	Methodology
	Results
	Related Work and Discussion
	Conclusion
	Architecture Ablation Study
	Illustration of Data Generating Sources
	ptw Switching-Point Statistics
	Switching-Point Statistics for Other Priors
	Models' Regret Along the Sequences

	Additional Experiments
	On-Distribution Performance
	Off-Distribution Evaluation
	Evaluation on Longer Sequence Lengths at Test Time

	Proof of thm:limitations
	Prior Sampling Algorithms
	Sampling From the ptw Prior
	Sampling From the lin Prior

	Discrete Bayesian Mixtures

