
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PORTLLM: PERSONALIZING EVOLVING LARGE
LANGUAGE MODELS WITH TRAINING-FREE AND
PORTABLE MODEL PATCHES

Anonymous authors
Paper under double-blind review

ABSTRACT

As large language models (LLMs) increasingly shape the AI landscape, fine-
tuning pretrained models has become more popular than in the pre-LLM era
for achieving optimal performance in domain-specific tasks. However, pre-
trained LLMs such as ChatGPT are periodically evolved (i.e., model parame-
ters are frequently updated), making it challenging for downstream users with
limited resources to keep up with fine-tuning the newest LLMs for their do-
main application. Even though fine-tuning costs have nowadays been reduced
thanks to the innovations of parameter-efficient fine-tuning such as LoRA, not
all downstream users have adequate computing for frequent personalization.
Moreover, access to fine-tuning datasets, particularly in sensitive domains such
as healthcare, could be time-restrictive, making it crucial to retain the knowl-
edge encoded in earlier fine-tuned rounds for future adaptation. In this pa-
per, we present PORTLLM, a training-free framework that (i) creates an ini-
tial lightweight model update patch to capture domain-specific knowledge, and
(ii) allows a subsequent seamless plugging for the continual personalization of
evolved LLM at minimal cost. Our extensive experiments cover seven represen-
tative datasets, from easier question-answering tasks {BoolQ, SST2} to harder
reasoning tasks {WinoGrande, GSM8K}, and models including {Mistral-7B,
Llama2, Llama3.1, and Gemma2}, validating the portability of our designed
model patches and showcasing the effectiveness of our proposed framework. For
instance, PORTLLM achieves comparable performance to LoRA fine-tuning with
reductions of up to 12.2× in GPU memory usage. Finally, we provide theoreti-
cal justifications to understand the portability of our model update patches, which
offers new insights into the theoretical dimension of LLMs’ personalization.

1 INTRODUCTION

The rise of large pretrained language models has marked a significant shift in natural language
processing (NLP), particularly in their ability to adapt to specific domains and tasks. These models,
such as GPT-4 (Achiam et al., 2023), have achieved state-of-the-art performance by leveraging vast
amounts of pretraining data (Antoniades et al., 2024). However, pretrained LLMs often require
adaptation for specialized domains where context-specific knowledge is critical (Wang et al., 2022a;
Bommasani et al., 2021; Qiu et al., 2020). Hence, while pretraining provides a strong foundation,
fine-tuning (e.g., personalization) is essential for specific domains. Fine-tuning bridges this gap
by adapting pretrained models to specific tasks, enhancing their performance in domains such as
healthcare, legal analysis, or scientific research (Min et al., 2021; Wei et al., 2021; Ouyang et al.,
2022; Wang et al., 2022b; Liu et al., 2022; Raffel et al., 2020; Chen et al., 2024; Gao et al., 2024b).
For instance, fine-tuned models can more effectively recognize domain-specific terminology, reason
about complex relationships, and deliver more accurate and contextual appropriate responses.

Much effort has been devoted to developing fine-tuning methods. Traditionally, fine-tuning would
normally involve updating all the parameters of a model. For example, in the case of Mistral
7B (Jiang et al., 2023), it would involve updating all 7 billion parameters. Typically LLMs have
billions of parameters, and so this process poses significant challenges in computational and mem-
ory requirements. To alleviate these constraints, many Parameter Efficient Fine-Tuning (PEFT)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

methods (Houlsby et al., 2019) have been proposed. One popular method is Low-Rank Adaptation
(LoRA) (Hu et al., 2021), which aims to estimate an updated matrix ∆W using the product of two
low-rank matrices A and B. However, although LoRA lowers the training complexity, it still re-
quires fine-tuning a large number of trainable parameters to reach a satisfactory performance. For
example, LoRA fine-tuning Llama 2 13B (Touvron et al., 2023) variant would require up to eight
A6000 GPUs with 48 GB VRAM each, for a very small batch size, hence imposing a considerable
memory and computational burden.

Furthermore, as cloud-hosted LLMs like ChatGPT (OpenAI, 2022) and Gemini (Team et al., 2023)
undergo periodic (bi-annually or shorter) updates with newer data, their improved performance often
renders previous versions outdated. For downstream users who have already invested in fine-tuning
these models for domain-specific tasks, repeatedly fine-tuning or performing personalization at ev-
ery new update is highly impractical, as the process is not only computationally expensive but also
time-consuming.

Beyond the computational and logistical hurdles, continual updates present another challenge for the
downstream user: the lack of availability of the fine-tuning dataset. In domains such as healthcare
or finance, data access is regulated by privacy laws and potentially time-sensitive. For example,
fine-tuning medical models on patient data requires strict adherence to ethical and legal guidelines,
making it difficult to repeatedly fine-tune with every model update. As a result, repeatedly fine-
tuning models on newer LLM releases is not a viable long-term strategy for many users, hindering
the downstream users from harnessing the performance gains from the evolving nature of LLMs. In
response to these challenges, a nature research question comes:

(Q) How to leverage the personalized knowledge captured in the first fine-tuned model to
update any evolving LLMs?

To address this question, we introduce PORTLLM, training-free framework that enables seamless
transfer of domain-specific knowledge across evolving models. PORTLLM leverages model patches
derived from LoRA, allowing users to port fine-tuned knowledge from one model iteration to an-
other while preserving or even enhancing the performance of a downstream task. We show that
our model patches are portable across model updates. If the downstream user fine-tunes a version
of the model that has long become obsolete, they can simply add the model patches to the newer
model, maintaining or boosting their performance on the downstream task. PORTLLM eliminates
the need for costly periodic fine-tuning, offering a scalable solution for maintaining task-specific
performance across different model versions. Our contributions can be summarized as follows:

❶ We introduce PORTLLM, a training-free framework designed to transfer knowledge between
different versions of an evolving LLM. Given two model versions, PORTLLM leverages task-
specific model patches extracted from a pretrained LLM and seamlessly applies them to the
updated version of the pretrained LLM. This process allows the updated model to achieve com-
parable, and in some cases improved, performance on downstream tasks — without any need for
fine-tuning.

❷ Why do our model patches work? We address this question through both theoretical analysis
and empirical investigation. Our findings reveal that certain terms in the model patch are effec-
tively negligible, enabling us to create a simplified version of the patch that requires no train-
ing. Consequently, adding the simplified model patches alone is sufficient to achieve improved
performance on the downstream task. Furthermore, we examine the impact of the pretraining
dataset on downstream tasks, demonstrating that our framework can harness the benefits of con-
tinued pretraining across different model updates, across different pretraining datasets including
{OpenOrca, SlimOrca, OpenPlatypus, AlpacaGPT4}.

❸ We conduct extensive experiments across a series of seven downstream tasks, including
Question-Answering Tasks {BoolQ, SST-2} (Wang, 2018; Wang et al., 2019), Similarity and
Paraphrase Tasks {MRPC} (Wang, 2018), Inference Tasks {RTE, WNLI} (Wang, 2018), and
Reasoning Tasks {WinoGrande, GSM8K} (Sakaguchi et al., 2021; Cobbe et al., 2021). To further
demonstrate the robustness and broad applicability of our approach, we evaluate it on multiple
model architectures, such as Mistral-7B, Llama2-7B, Llama3.1-8B, and Gemma2-9B.
Additionally, we explore the applicability of our method on full-weight continued pretraining
compared to LoRA-based continued pretraining and show the effectiveness of our method by

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

quantifying the gains on GPU memory usage (of up to 12.2× reduction), GPU hours, and de-
crease in the number of trainable parameters (to zero trainable parameters).

2 RELATED WORKS

Large Language Models (LLMs). LLMs have transformed natural language processing, enabling
models to perform complex tasks with remarkable accuracy and generalization. Models like GPT-
3 (Brown et al., 2020), BERT (Devlin et al., 2019), and T5 (Raffel et al., 2023) have set benchmarks
across a range of NLP tasks, from translation and summarization to question answering and text
generation (Vaswani et al., 2023; Zhang et al., 2020; Rajpurkar et al., 2016). More recently, models
like Llama (Touvron et al., 2023; Dubey et al., 2024), Mistral (Jiang et al., 2023), and Gemma (Team
et al., 2024) have pushed the boundaries further by optimizing both performance and computational
efficiency. LLama, Mistral, and Gemma represent recent advances in LLM architectures, each of-
fering improvements in efficiency and performance. However, even with such improvements, the
performance on domain-specific downstream tasks is sub-par making fine-tuning necessary. In this
paper, we propose a training-free solution that enables the seamless transfer of personalized knowl-
edge across evolving LLMs, reducing the need for costly fine-tuning and enhancing accessibility.

Parameter Efficient Fine-tuning (PEFT). The rapid growth in the size of pretrained LLMs has
posed significant challenges for efficiently fine-tuning LLMs to specific downstream tasks. To ad-
dress this, numerous PEFT methods have been developed, aiming to balance efficiency and accuracy.
Early approaches focused on inserting trainable adapters—feed-forward networks placed between
the layers of the pretrained model (Houlsby et al., 2019; Lin et al., 2020). Recent advancements
have led to more sophisticated adapter-based PEFT methods (Mahabadi et al., 2021; Pfeiffer et al.,
2020; Luo et al., 2023) including LMaaS (Sun et al., 2022) for service-oriented adaptation and kNN-
Adapter (Huang et al., 2023) for retrieval-augmented fine-tuning. A notable example is LoRA (Hu
et al., 2021), which introduces trainable low-rank weight perturbations to the pretrained model, sig-
nificantly reducing the number of parameters required for fine-tuning. LoRA’s key innovation lies in
its use of the product of two low-rank matrices to approximate weight changes. Building upon this
concept, several methods have emerged including Q-LoRA (Dettmers et al., 2023), CombLM (Or-
mazabal et al., 2023), and IPA(Lu et al., 2023). Concurrently, prompt-based learning methods have
demonstrated effectiveness across various NLP tasks. Methods such as prompt-tuning (Lester et al.,
2021), prefix-tuning (Li & Liang, 2021) and more recent approaches like Proxy-Tuning (Liu et al.,
2024) and BBox-Adadpter (Sun et al., 2024) incorporate learnable continuous embeddings into the
model’s hidden states. They condition the frozen model to adapt to specific tasks without modifying
the underlying architecture. Despite these advances, fine-tuning each updated LLM with PEFT to
equip personalized knowledge remains highly costly, and how PEFT can bridge the gap in person-
alized settings within this evolving environment in a portable manner is yet to be fully explored. To
this end, we develop in this paper the theory behind portable model patches that can be plugged into
an updated model to carry over the personalized knowledge from the first fine-tuned model.

3 METHODOLOGY

3.1 PRELIMINARIES

Transformers. Transformer models (Vaswani et al., 2023) is an architecture that has revolution-
ized NLP and other sequence-based tasks. It consists of two key components: (1) Multi-Head
Self-Attention and (2) Feed-Forward Neural Network. The Multi-Head Self-Attention mechanism
is the core innovation of transformers. It computes the weighted representation of the input sequence
where each token attends to every other token. Suppose we are given an input X ∈ Rn×d where n
refers to the sequence length and d is the hidden dimension of the transformer model. Then for any
given attention head i with a total of H heads, we define the following three matrices: query matrix
Wqi ∈ Rd×dH , key matrix Wki ∈ Rd×dH and value matrix Wvi ∈ Rd×dH , where dH = d/H .
Given these, we can compute the self-attention for the ith head as follows

hi = Softmax

(
XWqi(XWki

)T√
dH

XWvi

)
, i = 1, . . . ,H. (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: The diagram illustrates the core components of PORTLLM, a training-free framework to port person-
alized knowledge between evolving LLMs. Initially, a pretrained LLM is fine-tuned using LoRA. We transfer
this task-specifc knowledge without requiring the newer updated model to be fine-tuned again. This allows for
continual performance improvements on downstream tasks without additional periodic fine-tuning.

The outputs of the H attention heads are then concatenated as follows:

Multi-head Self-Attention(X) = Concatenate(h1, h2, . . . , hH)Wo , (2)

where Wo ∈ Rd×d is a projection matrix that combines the outputs of the different heads back into
the model’s hidden dimension d. After the Muli-head Self-Attention, the output is passed through
a position-wise feed-forward network that consists of two linear transformations and a nonlinear
activation function (like ReLU or GELU). Given the weight matrix of the first linear layer Wup ∈
Rd×dm , the weight matrix of the second layer Wdown ∈ Rdm×d, bias terms b1 ∈ Rdm , b2 ∈ Rd, and
a non-linear activation function σ(·) where dm is the hidden dimension, Feed-Forward Network is
applied independently to each position in the sequence as follows

Feed-Forward Network(X) = σ(XWup + b1)Wdown + b2 . (3)

Furthermore, these two layers are wrapped with residual connections and layer normalization.

Low-Rank Adaptation (LoRA). Consider a transformer model where W0 ∈ Rd×d is the pre-
trained weight matrix, which could be a weight matrix for any layer in the transformer. In a typi-
cal fine-tuning setup, the weights W0 are updated during training to adapt the model to a specific
task. This update requires storing and computing the entire matrix W0 during training, which be-
comes computationally expensive for large models. Instead of updating the full weight matrix W0,
LoRA (Hu et al., 2021) assumes that the weight update ∆W ∈ Rd×d, essentially the difference
between pretrained weights W0 and the hypothetical fine-tuned weight, can be approximated by a
low-rank decomposition:

∆W = BA, (4)
where B ∈ Rd×r and A ∈ Rr×d are trainable matrices, while r is the rank of the decomposition
with r ≪ d. In this setup, the full weight update matrix ∆W is replaced by the product of two
smaller matrices, B and A, drastically reducing the number of trainable parameters from d2 to 2rd.
Hence, the fine-tuned model weights we can be trained as follows:

Wnew = W0 +∆W = W0 +BA. (5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

By doing this, LoRA reduces the number of parameters that need to be trained while still allowing
the model to adapt to new tasks.

3.2 PROPOSED TRAINING-FREE FRAMEWORK: PORTLLM

Notations and Assumptions. We refer to the pretrained LLM as the first version of the model,
denoted by θ, and the updated continued pretrained model as θ′, as illustrated in Figure 2. We also
assume that to get to θ′, the provider does continued pretraining using LoRA, where ∆θ denotes
this adapter, however empirical experiments in Section 4.4 show that even if the provider does full
weight continued pretraining on the newer dataset, our method still holds. We denote this full weight
updated model as ϕ. Similarly, for any downstream user i, we have a corresponding dataset denoted
di. The base model fine-tuned on this dataset di is denoted by θi. We can also rewrite θi in terms of
its LoRA update as θi = θ+∆θi. Consequently, if we fine-tune updated model θ′ for ith downstream
task, we have θ′i = θ′ + ∆θ′i. We further assume that a personalization adaptor ∆θi or ∆θ′i has a
rank that is much smaller than that of a continued pretrained adaptor ∆θ or ∆θ′.

Figure 2: LLM’s evolution & personalization cycle.

Proposed Method of PORTLLM. PORTLLM
aims to approximate the fine-tuned updated
model θ′i by applying the older personalization
adaptor/model patch ∆θi to the continued pre-
trained model θ′. It will be shown in Section 3.3
that the older model patch ∆θi may be used in
lieu of the newer model patch ∆θ′i, namely,

θ′i = θ′ +∆θ′i ≈ θ′ +∆θi. (6)

In other words, one can readily add the extra
knowledge ∆θi from the previous fine-tuning
process to the newest LLM θ′. Throughout our
experimental section, we perform experiments
with this approximated patching process.

3.3 ANALYSIS OF OUR PROPOSED PORTABILITY

Theoretical Justification. The fine-tuned updated model θ′i can be decomposed into a naive up-
date term and a residual matrix R as follows:

θ′i = θ′ +∆θ′i (7a)

= (θ′ +∆θi)︸ ︷︷ ︸
Naive Update θ̂′

i

+ (∆θ′i −∆θi)︸ ︷︷ ︸
Residual Matrix R

. (7b)

Lemma 1 (informal): We claim that the residual matrix R is negligible compared to the naive update
θ̂′i. The key reason is that the model patches ∆θ′i and ∆θi are both low rank (recall the assumption
in Section 3.2), whereas the pretrained models θ and θ′ are primarily full rank matrices. We provide
a formal proof in Appendix C.

Table 1: Comparison of the terms making up our
framework across different datasets.

Term BoolQ MRPC RTE WNLI

θ′ +∆θi σmax 7.37 7.37 7.37 7.37
∥ · ∥F 16.80 16.80 16.81 16.81

∆θ′i −∆θi σmax 0.19 0.14 0.10 0.08
∥ · ∥F 0.21 0.13 0.12 0.09

σmax/σmax 38.77 51.37 76.32 96.24

∥ · ∥F/∥ · ∥F 79.04 126.70 145.43 194.30

Empirical Validation. We empirically show that
the difference between two personalization updates,
R = ∆θ′i − ∆θi, is negligible when compared
to naive update term, θ′ + ∆θi. We use Frobe-
nius norm, ∥ · ∥F , and the maximum singular
value, σmax, to measure the magnitudes of matri-
ces. The results are summarized in Table 1 across
four different downstream tasks {BoolQ, MRPC,
RTE, WNLI}. We can see that the σmax for first
term are on average 66× and the ∥ · ∥F is 136× bigger in the favor of the first term, which implies
that C is comparatively negligible, hence our model patch can be simplified as shown in (6).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 2: Zero-shot performance comparison of model patches and baselines models on
Mistral-7B, using the OpenOrca dataset for continued pretraining.

Model Version BoolQ SST-2 MRPC RTE WinoGrande WNLI GSM8K
Accuracy Accuracy Accuracy/F1 Accuracy Accuracy Accuracy Accuracy

Pretrained LLM θ 83.58 66.86 65.20 / 73.70 67.51 74.11 57.76 6.37
Updated LLM θ′ 87.46 82.91 74.75 / 83.73 75.09 75.06 57.72 15.16

Fine-tuned LLM θi 91.01 95.99 89.46 / 92.62 87.73 85.95 83.11 34.04
Fine-tuned Updated LLM θ′i 90.67 96.22 89.20 / 93.03 89.89 86.05 82.08 34.95

θ′ +∆θi (Ours) 90.24 96.10 88.73 / 92.10 89.17 85.01 83.10 41.32

4 EXPERIMENTS

Datasets and Architecture. We evaluate our framework on a diverse set of datasets to demonstrate
PORTLLM universality and effectiveness across various downstream tasks and domains. Specifi-
cally, we leverage datasets from the GLUE (Wang, 2018), SuperGLUE (Wang et al., 2019), Wino-
Grande (Sakaguchi et al., 2021) and GSM8K (Cobbe et al., 2021) benchmarks commonly used for
such evaluation in literature. For Question Answering tasks, we utilize BoolQ (from SuperGLUE)
and SST-2 (from GLUE); for Similarity and Paraphrase Tasks, the MRPC (from GLUE) dataset; for
Inference Tasks, the RTE and WNLI (both from GLUE) datasets; and lastly for Reasoning Tasks, we
employ WinoGrande and GSM8K. This broad spectrum of tasks enables a comprehensive evalua-
tion of our model’s performance across diverse downstream applications. For continued pretraining
datasets, we use the following: OpenOrca (Lian et al., 2023a), SlimOrca (Lian et al., 2023b), Open-
Platypus (Lee et al., 2023) and AlpacaGPT4 (Peng et al., 2023). Additionally, we conduct extensive
experiments across multiple model architectures to demonstrate the generalizablity of our frame-
work. Specifically, we test our method on Mistral-7B (Jiang et al., 2023), Llama2-7B (Tou-
vron et al., 2023), Llama3.1-8B (Dubey et al., 2024), and Gemma2-9B (Team et al., 2024),
showcasing the robustness and adaptability of our approach across different LLMs.

Training Details. To simulate the progression of time, we employ continued pretraining, where
we transition from θ to θ′ by taking a pretrained model and further pretraining it on a specific dataset
using LoRA (Hu et al., 2021). In all continued pretraining scenarios, we maintain a constant rank
r = 64 and α = 128 with a learning rate of 0.0001 and 4 epochs. For downstream tasks, we also
use LoRA, but in this case, we set the rank r = 8 consistently to ensure a fair comparison across
tasks. Furthermore, for all LoRA applications we optimize all the attention layers (Key, Value,
Query, Projection), and all Feed Forward Network layers (Up Projection, Down Projection and Gate
Projection, where applicable). For each downstream fine-tuning, we use a constant learning rate
of 0.0004 while the number of epochs for each dataset {BoolQ, SST-2, MRPC, RTE, WinoGrande,
WNLI, GSM8K} is as follows {5, 5, 5, 5, 3, 5, 1}. Lastly, for fine-tuning on specific downstream
dataset mentioned, we solely use the train split, and evaluate on test split.

Evaluation Metrics. We use the Language Model Evaluation Harness (Gao et al., 2024a) by
EleutherAI to assess the performance of all trained and fine-tuned models across the datasets in our
experiments. All evaluations are conducted in a zero-shot setting rather than a few-shot setting. For
datasets {BoolQ, SST-2, RTE, WinoGrande, WNLI}, we employ accuracy as the primary evaluation
metric. In the case of {MRPC}, we utilize both accuracy and F1 score to provide a more compre-
hensive evaluation. For {GSM8K}, we had two evaluation options: (1) Flexible Match Accuracy or
(2) Exact Match Accuracy. Due to poor zero-shot performance of the models on GSM8K for exact
matches, we opted for Flexible Match Accuracy.

4.1 SUPERIORITY OF PORTLLM FRAMEWORK

In this section, we compare the performance of our model patches against several baseline mod-
els, including the pretrained LLM θ, the updated model using continued pretraining θ′, the fine-
tuned model θi, and the updated fine-tuned model θ′i. For consistency, all models are variations of
Mistral-7B, while continued pretraining dataset is OpenOrca. Importantly, the performance is
evaluated under zero-shot setting across all the datasets. The results are summarized in Table 2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 3: Performance comparison of model patches ∆θi across four downstream tasks {BoolQ,
MRPC, WNLI, WinoGrande} using different continued pretraining datasets {OpenOrca, SlimOrca,
OpenPlatypus, AlpacaGPT4}. All models are based on Mistral-7B.

Dataset Model BoolQ MRPC WNLI WinoGrande
Accuracy Accuracy Accuracy Accuracy

OpenOrca Updated Model θ′ 87.46 74.75 57.72 75.06
Ours θ′ +∆θi 90.24 (↑ 2.78) 88.73 (↑ 13.98) 83.10 (↑ 25.38) 85.01 (↑ 9.95)

SlimOrca Updated Model θ′ 87.16 74.76 64.79 74.98
Ours θ′ +∆θi 90.07 (↑ 2.91) 87.75 (↑ 12.99) 83.09 (↑ 18.30) 85.59 (↑ 10.61)

OpenPlatypus Updated Model θ′ 83.73 70.10 53.52 73.95
Ours θ′ +∆θi 90.34 (↑ 6.61) 90.20 (↑ 20.10) 80.28 (↑ 26.76) 83.58 (↑ 9.63)

AlpacaGPT4 Updated Model θ′ 83.94 71.32 56.34 74.82
Ours θ′ +∆θi 90.52 (↑ 6.58) 89.22 (↑ 17.90) 84.51 (↑ 28.17) 84.93 (↑ 10.11)

❶ Compared to the zero-shot accuracy of updated model θ′, applying our model patches can result
in a significant performance gains, with improvements up to 2.7×. Notably, no additional training is
required when applying these patches, as the process simply involves a merge operation. Across all
evaluated datasets {BooLQ, SST-2, MRCP, RTE, WinoGrande, WNLI, GSM8K}, we observe sub-
stantial zero-shot performance gains of {2.7%, 13.19%, 13.98%, 14.08%, 9.95%, 25.38%, 26.16%},
respectively. This implies that our model patches are capable of transferring personalized knowledge
across the different model versions.

❷ Comparing the performance of our model patches applied to the updated model θ′ + ∆θi with
that of the fine-tuned model θi, we observe that our method successfully transfers most of the down-
stream task-specific knowledge, yielding comparable results. As shown in Table 2, for tasks {BoolQ,
MRPC, WinoGrande, WNLI}, the performance is nearly identical, with a maximum difference of
only 0.77% in favor of the fine-tuned model. However, in tasks like {SST-2, RTE, GSM8K}, our
approach outperforms the fine-tuned model by {0.11%, 1.44%, 7.28%}, respectively. These results
suggest that, when paired with a pretraining dataset that enhances performance for a specific task,
our model patches can further leverage this advantage to improve downstream task performance in
certain cases.

❸ Moreoever, our method performs on par with the fine-tuned updated model (θ′+∆θi compared to
θ′i), as evident from the comparison of the last two rows in Table 2. The difference between the two
approaches are minimal when it comes to performance, with a maximum variation of just 1.04%
observed in the case of WinoGrande. Notably, while one method requires fine-tuning, our approach
remains completely training-free. Additionally, for certain downstream tasks such as WNLI and
GSM8K, our method outperforms the fine-tuned updated model by 1.02% and 6.37%, respectively.
This demonstrates that our approach not only provides comparable results but can, in some instances,
surpass the performance of a fine-tuned evolved model.

4.2 CONSISTENT RESULTS ACROSS DIFFERENT PRETRAINING DATASETS

In this section, we investigate the impact of different pretraining datasets on our model patches
∆θi and assess whether our method can effectively leverage updates obtained through continued
pretraining. We conduct a comparative analysis across four downstream datasets – {BoolQ, MRPC,
WNLI, WinoGrande} – alongside four distinct continued pretraining datasets: OpenOrca, SlimOrca,
OpenPLatypus, and AlpacaGPT4. Consistent with our previous section, all experiments utilize the
Mistral-7B model. The results of this analysis are summarized in Table 3.

❶ The results presented in Table 3 demonstrate that our model patches exhibit strong portability
across different downstream tasks, irrespective of the continued pretraining dataset used. For each
specific downstream task, we observe substantial improvements in zero-shot performance compared
to the updated model θ′ across all pretraining datasets. For instance, in the case of WNLI, the perfor-
mance boosts are {25.38%, 18.30%, 26.76%, 28.17%} for {OpenOrca, SlimOrca, OpenPlatypus,
AlpacaGPT4} datasets, respectively. A similar trend of significant improvement is also evident
across other downstream tasks.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 4: Performance analysis of model patches across various architectures {Mistral-7B,
Llama2-7B, Llama3.1-8B, Gemma2-9B} on four downstream tasks {BoolQ, MRPC,
WNLI, WinoGrande} under four different model settings. For each downstream task Orange high-
lights the best performance for each model architecture.

Model Version BoolQ MRPC WNLI WinoGrande
Accuracy Accuracy/F1 Accuracy Accuracy

Mistral 7B Pretrained Model θ 83.58 65.20 / 73.70 57.76 74.11
Updated Model θ′ 87.46 74.75 / 83.73 57.72 75.06

Fine-tuned Model θi 91.01 89.46 / 92.62 83.11 85.95
Ours θ′ +∆θi 90.24 88.73 / 92.10 83.10 85.01

Llama 2 7B Pretrained Model θ 77.74 69.12 / 81.52 45.07 69.06
Updated Model θ′ 82.69 69.61 / 81.60 47.89 70.48

Fine-tuned Model θi 88.21 88.97 / 92.01 57.75 75.45

Ours θ′ +∆θi 88.32 89.95 / 92.56 53.77 76.87

Llama 3.1 8B Pretrained Model θ 82.35 66.91 / 77.54 59.15 73.56
Updated Model θ′ 85.63 75.00 / 83.60 61.95 73.64

Fine-tuned Model θi 90.22 84.31 / 89.51 83.10 85.71

Ours θ′ +∆θi 90.03 89.71 / 92.71 81.69 84.85

Gemma 2 9B Pretrained Model θ 83.98 68.63 / 74.19 57.75 74.19
Updated Model θ′ 88.41 77.21 / 84.93 74.65 76.72

Fine-tuned Model θi 91.38 91.42 / 93.83 83.20 83.98

Ours θ′ +∆θi 91.16 90.69 / 93.17 88.73 83.82

❷ We further observe from Table 3 that certain pretraining datasets can either enhance or detract
from the zero-shot performance of θ′ on specific downstream tasks, and this effect carries over to
our frameworks to some degree. For instance, continued pretraining on OpenPlatypus leads to a
decrease in performance on the WNLI dataset. Consequently, the addition of our model patch in this
scenario results in the lowest accuracy for this particular downstream task among all the pretraining
datasets evaluated.

4.3 CONSISTENT RESULTS ACROSS DIFFERENT MODEL ARCHITECTURES

This section provides a comprehensive analysis of our model patches across various architectures
to evaluate their performance. We examine four different model architectures: {Mistral-7B,
Llama2-7B, Llama3.1-8B, Gemma2-9B}, assessing their effectiveness on four distinct
downstream tasks {BoolQ, MPRC, WNLI, WinoGrande}. Performance is evaluated under four
settings : (1) pretrained model, (2) continued pretrained model or Updated Model, (3) fine-tuned
model, and (4) our model patches ported to the updated model. The OpenOrca dataset is used for
our continued pretraining in this analysis. The results are summarized in Table 4

❶ The results across different model architectures indicate that our training-free model patches
significantly enhance zero-shot performance for all downstream tasks. In each case, our approach
matches personalized performance (fine-tuned model), and in certain instances, it even surpasses
it. For example, with Gemma2-9B, when the personalized performance exceeds our method, the
difference in accuracy is at most 0.73%, which can considered negligible. Conversely, in scenarios
where our method outperforms personalized performance, we observe improvements of up to 5.53%.
A similar trend is noted across the other model architectures, as detailed in Table 4.

❷ Additionally, we observe that fine-tuning is essential for achieving optimal zero-shot performance
on downstream tasks. Across all model architectures, the zero-shot performance of both the pre-
trained model θ and the updated model θ′ is subpar, with particularly poor results noted on tasks like
WNLI. This reinforces the notion that excellent performance necessitates some form of fine-tuning,
further motivating the need for our training-free framework. Another significant finding is the slight
performance improvement for downstream tasks across all model architectures due to continued

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Evaluation of model patches added to Mistral-7Bwith full weight continued pretraining
on the OpenOrca dataset across various downstream tasks.

Model Version BoolQ SST-2 MRPC RTE WinoGrande WNLI GSM8K
Accuracy Accuracy Accuracy/F1 Accuracy Accuracy Accuracy Accuracy

Full Weight Updated Model ϕ 86.61 93.81 77.21 / 85.31 75.09 72.77 63.38 20.55
ϕ+∆θi (Ours) 89.88 95.53 87.25 / 90.97 90.61 85.08 80.28 41.24

pretraining. Therefore, it is advisable for the downstream user to utilize the updated model weights,
as this may provide beneficial enhancements in performance.

4.4 PORTLLM ALSO WORKS WITH FULL WEIGHT CONTINUED PRETRAINING

For our theoretical analysis, we initially assumed that continued pretraining was conducted using
LoRA. However, we aim to investigate whether our method is effective across model evolution
when the updates occur through full weight continued pretraining. Such a model is denoted ϕ. To
evaluate this, we utilize Mistral-7B, which has undergone full weight continued pretraining on
the OpenOrca dataset, and incorporate our model patches for various downstream tasks. We then
compare the performance of these patched models against the zero-shot performance of ϕ to assess
the improvements attributable to our model patches. The results across various downstream tasks
are summarized in Table 5.

We find that our model patches can be effectively applied to a continued pretrained model utilizing
full weight updates, rather than relying solely on LoRA. Across all evaluated datasets – {BoolQ, SST-
2, MRPC, RTE, WinoGrande, WNLI, GSM8K} – we observe significant performance improvements
of {3.27%, 1.72%, 10.04%, 15.52%, 12.31%, 16.90%, 20.69%}, respectively, compared to the zero-
shot performance of the Updated Model.

4.5 COMPUTING EFFICIENCY COMPARISON OF PORTLLM

Table 6: Efficiency Comparison Between PORTLLM and LoRA on SST-2
with Mistral-7B as the model architecture. The table compares trainable
parameters, GPU Memory Usage, and GPU Hours for PORTLLM, and LoRA
fine-tuning.

Metric Ours θ′ +∆θi Fine-tuning Model θi Savings

Trainable Parameters 0 20, 971, 520 100%
GPU Memory Utilization (GB) 28.71 350.61 12.21×
GPU Hours 0.0083 40.65 4897×

This section evaluates the
performance of our method
from an efficiency perspec-
tive. We employ the fol-
lowing metrics for compar-
ison: (1) Number of Train-
able Parameters, (2) GPU
Memory Utilization, and
(3) GPU Hours. We analyze the merging of our model patches in relation to model fine-tuning
using LoRA to achieve comparable performance. For LoRA fine-tuning calculations, we have the
following settings: Downstream task SST-2 for Mistral-7B, with local Batch Size of 4 and 5
Epochs. The results are summarized in Table 6.

Compared to downstream fine-tuning using LoRA, our methods offers plug-and-play solution with
no trainable parameters, resulting in a reduction of nearly 20 million parameters that need to be
trained. This training-free paradigm not only conserves resources but also saves up to 12.2× GPU
Memory, reducing the requirement from 350 GB for LoRA to just 28.7 GB during the merge op-
eration of model patches. Additionally, the merge operation can be executed in mere seconds, in
start contrast to the hours required for fine-tuning. This opens many other doors for applications of
our model patches. PORTLLM demonstrates the potential for on-device, training-free models for
various down-stream tasks without the need for fine-tuning. Furthermore, it reduces the need for
expensive cloud infrastructure, especially in large-scale fine-tuning.

5 CONCLUSION

In this paper, we propose PORTLLM, a framework aimed at addressing the challenges faced by
downstream users of pretrained LLMs when adapting to frequent model evolutions over time. By
leveraging lightweight model patches, PORTLLM offers a training-free, cost-effective solution to

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

seamlessly transfer domain-specific knowledge between different iterations of LLMs. This enables
users to maintain, and sometimes even enhance, their models’ performance on specialized tasks
without the need for repeated fine-tuning or extensive computational resources. Through extensive
empirical evaluations across a set of tasks and models, we demonstrate that our method not only
preserves performance but can also leverage the continual updates in pretraining LLMs, offering
substantial gains in-task specific performance. Moreover, we provide theoretical insights into the
portability of these model patches, highlighting the underlying factors that make them effective
across evolving model versions. Looking forward, PORTLLM paves the way for more robust and
adaptable solutions in the evolving landscape of LLM personalization, offering another avenue for
training-free adaptation. Furthermore, future endeavours will aim at developing such methods that
work across different model architecture, including using techniques from model merging.

6 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide detailed descriptions of datasets, model architectures, training
settings, and evaluation metrics used in our experiments in Section 4. The same section also dives
deep into the hyper-parameters used for all the tasks mentioned in our paper, including LoRA fine-
tuning and downstream evaluation. Furthermore, we have also provided all the training scripts
alongside the hyper-parameters as supplementary material so that results from our papers can be
reproduced with minimal effort. Lastly, the datasets and model architectures utilized in this paper
are open-source and publicly available for anyone’s use. Each dataset, as well as model, have been
cited accordingly so that anyone can reproduce the experiments.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Antonis Antoniades, Xinyi Wang, Yanai Elazar, Alfonso Amayuelas, Alon Albalak, Kexun Zhang,
and William Yang Wang. Generalization vs memorization: Tracing language models’ capabilities
back to pretraining data. arXiv preprint arXiv:2407.14985, 2024.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson,
S. Buch, Dallas Card, Rodrigo Castellon, Niladri S. Chatterji, Annie S. Chen, Kathleen A. Creel,
Jared Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon,
John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren E. Gillespie,
Karan Goel, Noah D. Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter Hen-
derson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas F. Icard, Saahil
Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani,
O. Khattab, Pang Wei Koh, Mark S. Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar,
Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen
Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir P. Mirchandani, Eric Mitchell, Zanele
Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Benjamin Newman, Allen Nie,
Juan Carlos Niebles, Hamed Nilforoshan, J. F. Nyarko, Giray Ogut, Laurel Orr, Isabel Papadim-
itriou, Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi Raghunathan, Robert
Reich, Hongyu Ren, Frieda Rong, Yusuf H. Roohani, Camilo Ruiz, Jack Ryan, Christopher
R’e, Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishna Parasuram Srini-
vasan, Alex Tamkin, Rohan Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William
Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You,
Matei A. Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kait-
lyn Zhou, and Percy Liang. On the opportunities and risks of foundation models. ArXiv, 2021.
URL https://crfm.stanford.edu/assets/report.pdf.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz

10

https://crfm.stanford.edu/assets/report.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

Nuo Chen, Yuhan Li, Jianheng Tang, and Jia Li. Graphwiz: An instruction-following language
model for graph problems. arXiv preprint arXiv:2402.16029, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms, 2023. URL https://arxiv.org/abs/2305.14314.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019. URL https://arxiv.org/
abs/1810.04805.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for
few-shot language model evaluation, 07 2024a. URL https://zenodo.org/records/
12608602.

Ziqi Gao, Xiangguo Sun, Zijing Liu, Yu Li, Hong Cheng, and Jia Li. Protein multimer structure
prediction via prompt learning. arXiv preprint arXiv:2402.18813, 2024b.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp,
2019. URL https://arxiv.org/abs/1902.00751.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Yangsibo Huang, Daogao Liu, Zexuan Zhong, Weijia Shi, and Yin Tat Lee. k nn-adapter: Efficient
domain adaptation for black-box language models. arXiv preprint arXiv:2302.10879, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Ariel N. Lee, Cole J. Hunter, and Nataniel Ruiz. Platypus: Quick, cheap, and powerful refinement
of llms. 2023.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning, 2021. URL https://arxiv.org/abs/2104.08691.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation, 2021.
URL https://arxiv.org/abs/2101.00190.

Wing Lian, Bleys Goodson, Eugene Pentland, Austin Cook, Chanvichet Vong, and ”Teknium”.
Openorca: An open dataset of gpt augmented flan reasoning traces. https://https://
huggingface.co/Open-Orca/OpenOrca, 2023a.

Wing Lian, Guan Wang, Bleys Goodson, Eugene Pentland, Austin Cook, Chanvichet Vong, and
”Teknium”. Slimorca: An open dataset of gpt-4 augmented flan reasoning traces, with verifica-
tion, 2023b. URL https://https://huggingface.co/Open-Orca/SlimOrca.

11

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://arxiv.org/abs/1902.00751
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2101.00190
https://https://huggingface.co/Open-Orca/OpenOrca
https://https://huggingface.co/Open-Orca/OpenOrca
https://https://huggingface.co/Open-Orca/SlimOrca

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zhaojiang Lin, Andrea Madotto, and Pascale Fung. Exploring versatile generative language model
via parameter-efficient transfer learning, 2020. URL https://arxiv.org/abs/2004.
03829.

Alisa Liu, Xiaochuang Han, Yizhong Wang, Yulia Tsvetkov, Yejin Choi, and Noah A Smith. Tuning
language models by proxy. arXiv preprint arXiv:2401.08565, 2024.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. Advances in Neural Information Processing Systems, 35:1950–1965, 2022.

Ximing Lu, Faeze Brahman, Peter West, Jaehun Jung, Khyathi Chandu, Abhilasha Ravichan-
der, Prithviraj Ammanabrolu, Liwei Jiang, Sahana Ramnath, Nouha Dziri, Jillian Fisher, Bill
Lin, Skyler Hallinan, Lianhui Qin, Xiang Ren, Sean Welleck, and Yejin Choi. Inference-time
policy adapters (IPA): Tailoring extreme-scale LMs without fine-tuning. In Houda Bouamor,
Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 6863–6883, Singapore, December 2023. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.424. URL https:
//aclanthology.org/2023.emnlp-main.424.

Gen Luo, Minglang Huang, Yiyi Zhou, Xiaoshuai Sun, Guannan Jiang, Zhiyu Wang, and Rongrong
Ji. Towards efficient visual adaption via structural re-parameterization, 2023. URL https:
//arxiv.org/abs/2302.08106.

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank
hypercomplex adapter layers, 2021. URL https://arxiv.org/abs/2106.04647.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. Metaicl: Learning to learn
in context. arXiv preprint arXiv:2110.15943, 2021.

OpenAI. Chatgpt: Optimizing language models for dialogue. OpenAI Blog, 2022. URL https:
//openai.com/research/chatgpt.

Aitor Ormazabal, Mikel Artetxe, and Eneko Agirre. CombLM: Adapting black-box language
models through small fine-tuned models. In Houda Bouamor, Juan Pino, and Kalika Bali
(eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 2961–2974, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.180. URL https://aclanthology.org/2023.
emnlp-main.180.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning
with gpt-4. arXiv preprint arXiv:2304.03277, 2023.

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya Kamath, Ivan Vulić, Sebastian Ruder,
Kyunghyun Cho, and Iryna Gurevych. Adapterhub: A framework for adapting transformers,
2020. URL https://arxiv.org/abs/2007.07779.

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing Huang. Pre-trained
models for natural language processing: A survey. Science China technological sciences, 63(10):
1872–1897, 2020.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer, 2023. URL https://arxiv.org/abs/1910.10683.

12

https://arxiv.org/abs/2004.03829
https://arxiv.org/abs/2004.03829
https://aclanthology.org/2023.emnlp-main.424
https://aclanthology.org/2023.emnlp-main.424
https://arxiv.org/abs/2302.08106
https://arxiv.org/abs/2302.08106
https://arxiv.org/abs/2106.04647
https://openai.com/research/chatgpt
https://openai.com/research/chatgpt
https://aclanthology.org/2023.emnlp-main.180
https://aclanthology.org/2023.emnlp-main.180
https://arxiv.org/abs/2007.07779
https://arxiv.org/abs/1910.10683

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text, 2016. URL https://arxiv.org/abs/1606.05250.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Haotian Sun, Yuchen Zhuang, Wei Wei, Chao Zhang, and Bo Dai. Bbox-adapter: Lightweight
adapting for black-box large language models. arXiv preprint arXiv:2402.08219, 2024.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. Black-box tuning
for language-model-as-a-service. In International Conference on Machine Learning, pp. 20841–
20855. PMLR, 2022.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma
2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.
org/abs/1706.03762.

Alex Wang. Glue: A multi-task benchmark and analysis platform for natural language understand-
ing. arXiv preprint arXiv:1804.07461, 2018.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. Advances in neural information processing systems, 32, 2019.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
arXiv preprint arXiv:2212.10560, 2022a.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei, An-
jana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik, David Stap, et al.
Super-naturalinstructions: Generalization via declarative instructions on 1600+ nlp tasks. arXiv
preprint arXiv:2204.07705, 2022b.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter J. Liu. Pegasus: Pre-training with ex-
tracted gap-sentences for abstractive summarization, 2020. URL https://arxiv.org/
abs/1912.08777.

13

https://arxiv.org/abs/1606.05250
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1912.08777
https://arxiv.org/abs/1912.08777

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

A ANALYSIS OF MODEL PERFORMANCE UNDER MULTIPLE CONTINUAL
UPDATES

To validate our framework’s robustness under periodic updates, we conducted experiments simulat-
ing multiple rounds of continued pretraining. Using Mistral-7B as our base model, we performed
four sequential updates using different pretraining datasets: OpenOrca → OpenPlatypus → Alpaca
→ GPT4-LLM-Cleaned. For the hyperparameters we utilize the same settings described in Section
4. We evaluated our model patch on all seven downstream tasks after each update. The results are
summarized in Table A. Our experiments yield the following key findings:

Time Model Version BoolQ SST-2 MRPC RTE WinoGrande WNLI GSM8K
Accuracy Accuracy Accuracy/F1 Accuracy Accuracy Accuracy Accuracy

T = 0 Pretrained Model θ 83.58 66.86 65.20 / 73.70 67.51 74.11 57.76 6.37
None Fine-tuned Model θi 91.01 95.99 89.46 / 92.62 87.73 85.95 83.11 34.04

T = 1 Updated Model θ′ 87.46 82.91 74.75 / 83.73 75.09 75.06 57.72 15.16
OpenOrca Ours θ′ +∆θi 90.24 96.11 88.73 / 92.10 89.17 85.01 83.10 41.32

T = 2 Updated Model θ′ 86.33 86.81 76.23 / 83.53 71.48 74.51 52.11 12.36
OpenPlatypus Ours θ′ +∆θi 89.88 96.22 88.24 / 91.55 88.09 84.37 83.10 42.15

T = 3: Updated Model θ′ 87.03 85.78 74.02 / 83.33 73.65 74.27 56.34 16.38
Alpaca Ours θ′ +∆θi 89.66 96.33 88.73 / 92.12 88.81 85.08 83.10 38.21

T = 4: Updated Model θ′ 85.11 75.79 72.78 / 82.79 74.37 71.67 56.34 14.94
GPT4-LLM Ours θ′ +∆θi 88.41 96.10 87.01 / 90.91 85.56 80.19 77.46 31.77

Table A: Model performance across sequential updates (T=0 to T=4) on seven downstream tasks.
We report accuracy for all tasks except MRPC, where we show both accuracy and F1 score.

❶ Across all update stages (T = 0 to T = 4), applying our model patches results in substantial
zero-shot improvements over the updated model θ′. These improvements are consistent and signifi-
cant across different tasks, with SST-2 showing gains from +9.41% to +20.31%, WNLI maintain-
ing strong improvements between +21.12% and +30.99%, and MRPC consistently improving by
+12− 14% in accuracy. Notably, these improvements are achieved without any additional training,
requiring only a simple merge operation of our model patches.

❷ The performance stability of our patched models is particularly noteworthy when compared to
the fluctuating zero-shot performance of θ′. As shown in Table A, our method maintains remarkably
consistent performance across multiple updates. For instance, BoolQ accuracy remains within a
tight range of 88.41− 90.24%, SST-2 consistently maintains accuracy above 96%, and MRPC’s F1
score stays above 90 across all update stages. These results demonstrate our method’s robustness to
successive model updates and its ability to preserve task-specific knowledge.

❸ Furthermore, our method shows interesting behavior in leveraging complementary knowledge
from different updates. Taking GSM8K as an example, we observe varying but significant im-
provements ranging from +16.83% to +29.79% across different update stages. This suggests that
our model patches can effectively combine knowledge from both the original fine-tuning and the
continued pretraining updates, sometimes leading to performance gains that exceed what might be
expected from either source alone. Such behavior demonstrates the potential of our approach to not
just preserve but potentially enhance task performance through knowledge integration across model
versions.

B ANALYSIS OF LORA RANK SELECTION FOR DOWNSTREAM TASKS

To validate our choice of LoRA rank and understand its impact on model performance, we conducted
experiments with varying ranks. This analysis helps establish the optimal balance between compu-
tational efficiency and model effectiveness. To perform these experiments we utilize Mistral-7B
with OpenOrca as the continued pretraining dataset, and evaluate on BoolQ, MRPC, WNLI down-
stream tasks with a varying rank for LoRA. Rest of the hyper-parameters are the same as in Section
4. The results can be seen in Table B.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

❶ Both fine-tuning θi and our method θ′ + ∆θi demonstrate remarkable stability across different
ranks, with optimal performance typically achieved at rank 8-16. Specifically, on BoolQ, we observe
peak accuracy at rank 16, while MRPC and WNLI show optimal performance at rank 8. This
consistency across ranks validates the robustness of our approach and suggests that model patches
effectively capture task-specific knowledge regardless of rank selection.

❷ When examining the efficiency aspects, we find that increasing rank beyond 8 provides diminish-
ing or even negative returns. As shown in Table B, at rank 32, we observe decreased performance
across most tasks compared to rank 8: BoolQ drops by 1.01%, MRPC by 0.49%, and WNLI by
2.83%. Importantly, the performance gap between our method and direct fine-tuning remains min-
imal even at lower ranks, with differences of less than 1% in most cases. This suggests that our
training-free approach maintains its effectiveness even with more constrained rank settings.

❸ Our analysis strongly justifies our original choice of rank 8 as the default setting. This configura-
tion achieves an optimal balance between computational efficiency (requiring fewer parameters than
higher ranks), model performance (maintaining competitive results across all tasks), and adapta-
tion capability (providing sufficient capacity for task-specific learning). Notably, while higher ranks
like 16 or 32 require significantly more parameters, they offer minimal or no performance benefits,
making rank 8 the sweet spot for our training-free framework.

Rank Model Version BoolQ MRPC WNLI
Accuracy Accuracy/F1 Accuracy

r = 2 Fine-tuned Model θi 90.52 87.30 / 91.28 74.65
Ours θ′ +∆θi 89.85 87.01 / 91.03 77.46

r = 4 Fine-tuned Model θi 90.81 89.42 / 91.98 78.23
Ours θ′ +∆θi 90.18 87.75 / 91.53 80.28

r = 8 Fine-tuned Model θi 91.01 89.46 / 92.62 83.11
Ours θ′ +∆θi 90.24 88.73 / 92.10 83.10

r = 16 Fine-tuned Model θi 91.07 89.22 / 92.49 81.69
Ours θ′ +∆θi 90.98 88.97 / 92.31 82.98

r = 32 Fine-tuned Model θi 90.00 88.97 / 92.15 80.28
Ours θ′ +∆θi 90.28 88.73 / 91.93 81.69

Table B: Performance comparison across different LoRA ranks (2, 4, 8, 16, 32) on three downstream
tasks using Mistral-7B.

C PROOF OF LEMMA 1

Notations: C(·) returns the column vector subspace of a matrix.

Recall in Section 3.3, we decomposed the fine-tuned updated model θ′i into two terms:

θ′i = θ′ +∆θ′i (8a)

= (θ′ +∆θi)︸ ︷︷ ︸
Naive Update θ̂′

i

+ (∆θ′i −∆θi)︸ ︷︷ ︸
Residual Matrix R

. (8b)

Lemma 1: The residual matrix R is negligible compared to the naive update θ̂′i in terms of the
Frobenius norm.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Proof: Our goal is to show that the error ratio ∥R∥2F /
∥∥∥θ̂′i∥∥∥2

F
is small. We will proceed by finding a

large enough numerator ∥R∥2F and small enough
∥∥∥θ̂′i∥∥∥2

F
in the LoRA context and show that the upper

bound of the error ratio is small.

Numerator ∥R∥2F . First, we search for conditions that potentially lead to residual matrices with
larger Frobenius norm. We apply compact SVD to the patches ∆θi and ∆θ′i designating subscripts
1 and 2 for SVD matrices, respectively:

∥R∥2F = ∥∆θ′i −∆θi∥
2
F (9a)

=
∥∥U2Σ2V

T
2 − U1Σ1V

T
1

∥∥2
F (9b)

=

∥∥∥∥∥
r2∑
ℓ=1

σ
(2)
ℓ u

(2)
ℓ v

(2)T
ℓ −

r1∑
k=1

σ
(1)
k u

(1)
k v

(1)T
k

∥∥∥∥∥
2

F

. (9c)

Here, the typical order of magnitude for r1 and r2 is about 10.

1. When there is no intersection between the two pairs of singular vector subspaces, namely, C(U1)∩
C(U2) = ∅ and C(V1)∩C(V2) = ∅, the two terms in (9c) may be combined to form a valid compact
SVD of rank r1 + r2 as follows:

∥R∥2F =

∥∥∥∥∥
r2∑
ℓ=1

σ
(2)
ℓ u

(2)
ℓ v

(2)T
ℓ +

r1∑
k=1

σ
(1)
k · (−u

(1)
k)v

(1)T
k

∥∥∥∥∥
2

F

(10a)

=

∥∥∥∥∥
r1+r2∑
k′=1

σ
(1,2)
k′ uk′vTk′

∥∥∥∥∥
2

F

, (10b)

where σ
(1,2)
1 , . . . , σ

(1,2)
r1+r2 is a list of descending ordered positive numbers sampled without replace-

ment from {σ(1)
k }r1k=1 and {σ(2)

ℓ }r2ℓ=1. Applying the Frobenius norm property to the SVD represen-
tation of a matrix, we obtain

∥R∥2F =

r1+r2∑
k′=1

[
σ
(1,2)
k′

]2
=

r2∑
ℓ=1

[
σ
(2)
ℓ

]2
+

r1∑
k=1

[
σ
(1)
k

]2
. (11)

This is the case when the two patches ∆θi and ∆θ′i contain only orthogonal information. This is not
very realistic, because the two patches were created on the same downstream task i that should lead
to some information in common.

2. When the two patches have are oppositely embedded in one of the singular value subspaces, e.g.,
U2 = −U1 and V2 = V1, the two terms in (9c) can be merged and singular values with the same
ranking will be summed up, namely,

∥R∥2F =

∥∥∥∥∥
r2∑
ℓ=1

σ
(2)
ℓ u

(2)
ℓ v

(2)
ℓ +

r1∑
k=1

σ
(1)
k · (−u

(1)
k)v

(1)T
k

∥∥∥∥∥
2

F

(12a)

=

∥∥∥∥∥
r2∑
ℓ=1

[
σ
(2)
ℓ + σ

(1)
ℓ

]
u
(2)
ℓ v

(2)
ℓ

∥∥∥∥∥
2

F

(12b)

=

r2∑
ℓ=1

[
σ
(2)
ℓ + σ

(1)
ℓ

]2
, (12c)

which can be easily shown that it is larger than the orthogonal case (11) due to the extra interaction
term

∑r2
ℓ=1 σ

(2)
ℓ σ

(1)
ℓ . When σ

(2)
ℓ = σ

(1)
ℓ , this case corresponds to two patches having exactly oppo-

site gradient update directions, which again is not very realistic because the same downstream tasks

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

are used to generate the update directions. Equations (11) and (12c) both correspond to extreme
conditions, and the continuum in between should be more realistic. We will use the large numerator
(12c) to examine the error ratio.

Denominator
∥∥∥θ̂′i∥∥∥2

F
. We continue to apply compact SVD to the continued pretrained model θ′ and

patch ∆θi designating subscripts 0 and 1 for SVD matrices, respectively:∥∥∥θ̂′i∥∥∥2
F
= ∥θ′ +∆θi∥

2
F (13a)

=
∥∥U0Σ0V

T
0 + U1Σ1V

T
1

∥∥2
F (13b)

=

∥∥∥∥∥∥
r0∑
j=1

σ
(0)
j u

(0)
j v

(0)T
j +

r1∑
k=1

σ
(1)
k u

(1)
k v

(1)T
k

∥∥∥∥∥∥
2

F

. (13c)

Here, the typical order of magnitude for r0 is about 100. 1. When there is no intersection between
the two pairs of singular vector subspaces, the two terms may be combined to form a valid compact
SVD of rank r0 + r1. Hence, similar to (11), we have∥∥∥θ̂′i∥∥∥2

F
=

r0∑
j=1

[
σ
(0)
j

]2
+

r1∑
k=1

[
σ
(1)
k

]2
. (14)

2. When the basis vectors of singular matrices (with one matrix having opposite signs) of the patch
can be found in the singular matrices of the continued pretrained model, we are able to combine the
two terms in (13c) by using the basis vectors of U0 and V0 as follows:

∥∥∥θ̂′i∥∥∥2
F
=

∥∥∥∥∥∥
r0∑
j=1

σ
(0)
j u

(0)
j v

(0)T
j +

r0∑
j=1

σ
(1′)
j u

(0)
j v

(0)T
j

∥∥∥∥∥∥
2

F

, (15a)

=

r0∑
j=1

[
σ
(0)
j − σ

(1′)
j

]2
, (15b)

where we define an auxiliary symbol

σ
(1′)
j =

{
σ
(1)
k , ∃k ∈ [1, r1] s.t. u(0)

j = u
(1)
k ,

0, other k.
(16)

Both (14) and (15b) correspond to the extreme cases. Since (15b) leads to a smaller denominator,
we will use it to examine the error ratio.

Error Ratio. Using (12c) and (15b), a pessimistic error ratio can be approximated and then up
bounded as follows:

∥R∥2F∥∥∥θ̂′i∥∥∥2F
≈

∑r2
ℓ=1

[
σ
(2)
ℓ + σ

(1)
ℓ

]2
∑r0

j=1

[
σ
(0)
j − σ

(1′)
j

]2 (17a)

≤
r2 ·maxℓ

[
σ
(2)
ℓ + σ

(1)
ℓ

]2
r0 ·minj

[
σ
(0)
j − σ

(1′)
j

]2 (17b)

=
r2
r0

· ν, (17c)

where ν = maxℓ

[
σ
(2)
ℓ + σ

(1)
ℓ

]2 /
minj

[
σ
(0)
j − σ

(1′)
j

]2
is a singular-value based constant. Given

that the rank r2 of the patch is at least one order of magnitude smaller than the rank r0 of the
pretrained model, we conclude residual matrix term is negligible compared to the naive update term.

17

	Introduction
	Related Works
	Methodology
	Preliminaries
	Proposed Training-Free Framework: PortLLM
	Analysis of Our Proposed Portability

	Experiments
	Superiority of PortLLM Framework
	Consistent Results across Different Pretraining Datasets
	Consistent Results across Different Model Architectures
	PortLLM Also Works with Full Weight Continued Pretraining
	Computing Efficiency Comparison of PortLLM

	Conclusion
	Reproducibility Statement
	Analysis of Model Performance Under Multiple Continual Updates
	Analysis of LoRA Rank Selection for Downstream Tasks
	Proof of Lemma 1

