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ABSTRACT

Fairness-aware learning studies the development of algorithms that avoid discrim-
inatory decision outcomes despite biased training data. While most studies have
concentrated on immediate bias in static contexts, this paper highlights the im-
portance of investigating long-term fairness in dynamic decision-making systems
while simultaneously considering instantaneous fairness requirements. In the con-
text of reinforcement learning, we propose a general framework where long-term
fairness is measured by the difference in the average expected qualification gain
that individuals from different groups could obtain. Then, through a causal lens,
we decompose this metric into three components that represent the direct impact,
the delayed impact, as well as the spurious effect the policy has on the qualifica-
tion gain. We analyze the intrinsic connection between these components and an
emerging fairness notion called benefit fairness that aims to control the equity of
outcomes in decision-making. Finally, we develop a simple yet effective approach
for balancing various fairness notions.

1 INTRODUCTION

Artificial intelligence and machine learning decision-making systems are being increasingly imple-
mented in real-world scenarios Zhang et al. (2017a); Johnson et al. (2016); Baker & Hawn (2021);
Lee & Floridi (2021); Schumann et al. (2020); Berk et al. (2021). Real-world data, influenced by
social and historical contexts, often carries biases related to gender, race, and other factors. These
biases can be inadvertently embedded in the algorithms, leading to discriminatory outcomes. As a
result, fairness-aware learning, which aims to satisfy various fairness constraints alongside the usual
performance criteria in machine learning, has received increasing attention. A body of literature on
fairness-aware learning focuses on developing fair policies in reinforcement learning (RL) Sutton &
Barto (2018). For a comprehensive survey on fair RL, please refer to Gajane et al. (2022).

Most studies in fairness-aware learning focus only on the immediate implications of bias in a static
context. These works typically quantify the fairness of model predictions or outcomes in a static
population. However, real decision-making systems usually operate dynamically, and the decisions
made by these systems have long-term consequences. The literature has shown that fairness notions
and techniques focusing on the immediate bias produced by automated decisions cannot guarantee
to protect disadvantaged groups in the long run Liu et al. (2018). It has hence been proposed to
consider the delayed impact of automated decisions in sequential decision-making systems due to
the interplay between the decisions and individuals’ reactions Liu et al. (2020). For example, Zhang
et al. (2020) proposes to use the equilibrium of the dynamics of population qualifications across
different groups of individuals as a measure of the delayed impact of decisions on fairness. In this
paper, when the context is clear, we refer to the instantaneous fairness concerns, such as demographic
parity Feldman et al. (2015), equal opportunity Hardt et al. (2016), and causality-based notions like
direct and indirect discrimination Zhang et al. (2017b), as short-term fairness. On the other hand, we
refer to fairness concerns that arise over time due to dynamic user-decision interactions as long-term
fairness, which is the primary focus of this paper.

Given that the objective of RL is typically to maximize the long-term (discounted) reward, long-
term fairness has been studied in the context of RL where Markov Decision Processes (MDPs) are
utilized to model and learn the system dynamics Jabbari et al. (2017); Ge et al. (2021); Wen et al.
(2021); Yu et al. (2022); Hu et al. (2023); Yin et al. (2023). However, in addition to modeling the
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system dynamics and formulating fairness constraints, achieving long-term fairness also faces chal-
lenges due to the trade-off between the long-term and short-term fairness requirements. Short-term
fairness requirements are pervasive and may be stipulated by laws or regulations. For example, in
May 2023, the U.S. Supreme Court ruled that race cannot be considered a direct factor in admissions
to U.S. universities 600 U.S.. However, such requirements may be conflict with long-term fairness
constraints. For instance, Hu et al. (2024) models the sequential decision-making system with a
temporal causal graph and captures long-term and short-term fairness as causal effects transmitted
through different paths in the temporal causal graph. The authors demonstrated that achieving long-
term fairness could be impeded by the requirement of sensitive attribute unconsciousness, i.e., no
direct causal effect of the sensitive attribute on the model outcome. Thus, understanding the connec-
tion between long-term and short-term fairness is critical for developing comprehensive strategies
that balance both fairness requirements.

In this work, we study the specific task of analyzing the long-term fairness that can be achieved
in the context of RL. We aim to understand how long-term fairness intertwines with instantaneous
short-term fairness concerns during sequential decision-making. Aligning with a growing body
of research, our work explores fairness also through a causal lens Pearl (2009). We begin by in-
troducing a general framework for studying long-term fairness in RL, where we assume a flexible
qualification gain function that measures an individual’s qualification gain as they transition between
qualification states. Accordingly, we define the expected total qualification gain accumulated from
a given state while following a specific policy as a state value function, which can be expressed
using Bellman’s equation. Based on that, long-term fairness can be readily formulated based on the
disparity in the expectation of the state value function across different groups. We then conduct a
causal decomposition of the qualification gain disparity to identify the various sources of inequality,
noting that the qualification gain is influenced by both the policy and the environment. We end up
obtaining three components of the qualification gain disparity: (1) the Direct Policy Effect (DPE)
which represents the direct causal effect of the policy on the long-term qualification gain; (2) the
Indirect Policy Effect (IPE) which represents the indirect causal effect of the policy on the long-
term qualification gain through the environment; and (3) the Spurious Policy Effect (SPE) which
represents the spurious effect only due to the environment. Interestingly, we identify an inherent
connection between these components and an emerging fairness notion called benefit fairness that
aims to control the equalty of the outcome of the decision-making Plecko & Bareinboim (2023).
This connection may offer insights for designing decision-making systems where the long-term and
short-term objectives are aligned. Finally, we provide a simple yet effective approach to strike a
balance between qualification gain parity and benefit fairness in general settings.

The contributions of this paper are summarized as follows: (1) we introduce a general framework for
studying long-term fairness in reinforcement learning where we propose the notion of qualification
gain disparity; (2) we perform a causal decomposition of the qualification gain disparity and reveal
its connection with benefit fairness; and (3) we propose an approach to balance qualification gain
parity with benefit fairness.

2 RELATED WORK

The majority of literature on fairness-aware learning focuses on the immediate impact of bias within
a static context. However, in many applications, particularly in sequential decision-making systems,
decisions have long-term consequences. This necessitates examining these long-term effects in
the context of fair machine learning. Early research in long-term fair machine learning focuses
on specific applications and scenarios. For example, the authors in Holzer (2007) examine the
long-term effects of affirmative action in hiring and highlight its positive impacts on minority and
low-income communities. The authors in Hu & Chen (2018) study long-term fairness in a two-stage
labor market and construct a dynamic reputational model that shows how unequal access to resources
leads to different investment choices, which in turn reinforces unequal outcomes between groups.
The study in Liu et al. (2018) investigates the delayed impact of decisions in lending scenarios using
a one-step feedback model and reveals that short-term fairness notions generally do not reshape the
population to foster long-term improvements.

Reinforcement learning (RL) offers a solution for modeling the long-term impact of decisions
through Markov decision processes. Fairness methods in RL designed to address long-term effects
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have been proposed. The study in Jabbari et al. (2017) presents a fairness constraint that guaran-
tees an algorithm will not favor one action over another if the latter has a higher long-term reward.
However, this notion of fairness is solely based on the reward of each action and does not consider
demographic information. The research in Ge et al. (2021) studies long-term fairness and formu-
lates a Constrained Markov Decision Process (CMDP) for recommendation systems. The authors
in Wen et al. (2021) investigate the temporal impacts of fair and unfair decisions on individuals
within a population and propose two algorithms designed to learn policies that meet fairness con-
straints based on the average reward for individuals in various groups. Yu et al. (2022) suggests
incorporating fairness requirements into policy optimization by regularizing the advantage assess-
ment of different actions. Similarly, Hu et al. (2023) incorporates long-term fairness constraints into
the advantage function but proposes a pre-processing technique called action massaging to address
short-term fairness, aiming to balance both requirements. The research in Yin et al. (2023) also
demonstrates that achieving long-term fairness may require sacrificing short-term incentives, It also
develops probabilistic bounds on cumulative loss and cumulative fairness violations. Finally, differ-
ent from the above work, Henzinger et al. (2023) develops a monitor that continuously tracks events
generated by the system in real-time, providing an ongoing assessment of the system’s fairness with
each event.

Our research complements related studies by examining the trade-off between long-term and short-
term fairness from a causal perspective and establishing a connection to benefit fairness.

3 METHODOLOGY

3.1 PRELIMINARIES

We adopt Pearl’s structural causal model (SCM) and causal graph framework Pearl (2009) to facili-
tate modeling the Markov decision process and formulating long-term fairness. Here, we provide a
brief overview of the fundamentals of SCM. A detailed introduction to SCM can be found in Pearl
(2010). An SCM is a mathematical framework used in causal inference to represent and analyze the
relationships between variables in a system. It provides a formal way to describe how changes in one
variable can causally affect other variables, enabling the analysis of cause-and-effect relationships.
An SCM defines the causal dynamics of a system through a collection of structural equations. Each
SCM is associated with a causal graph that includes a set of nodes to represent variables and a set of
directed edges to depict direct causal relationships.

Causal inference within the SCM is enabled through interventions, as described in Pearl (2009).
A hard intervention assigns specific constant values to certain variables, while a soft intervention
establishes a functional relationship for some variables in response to others Correa & Bareinboim
(2020). A causal path from node X to node Y in a causal graph is a directed sequence of arrows
leading from X to Y . The total causal effect refers to the impact of X on Y when the intervention is
transmitted along all causal paths connecting X to Y . If the intervention is restricted to only a subset
of these causal paths, the resulting effect is known as the path-specific effect Avin et al. (2005).

3.2 FORMULATING LONG-TERM FAIRNESS

Consider a discrete-time sequential decision-making process applied to a certain population, de-
scribed as a Markov decision process (MDP). Each individual in the population is described by a
sensitive feature and a qualification state. The sensitive feature S is assumed to be a binary vari-
able in this paper for ease of representation, i.e., S ∈ {s+, s−}. The qualification state, denoted as
X, represents the individual’s suitability or potential performance in the given context relevant to a
specific decision-making task. It could be a variable vector and may evolve over time, reflecting the
dynamic nature of an individual’s attributes or skills. At each time step, a Markov policy π(d|x, s)
is used to make decisions D ∈ {d0, d1} where d0 represents negative decision or non-treatment, and
d1 represents positive decision or treatment. A reward R is received following each decision and the
utility of the policy is defined as the expected total reward received during the process. Meanwhile,
individuals may also take actions upon receiving the decisions, which may change their qualification
states at the next time step. This interplay is captured by a transition probability P (xt+1|xt, dt, s).

The above process can be described by the causal graph shown in Fig. 1 which can represent either
a randomly sampled individual or a population undergoing the decision cycles. In general, at each
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time step t, the agent selects an action dt based on the policy π. This causes the qualification state to
transition from xt to an intermediate state (xt, dt), which subsequently transitions to the next state
xt+1 according to the transition probability. Without loss of generality, we assume that the sensitive
feature S may influence any part of the process, including the initial state distribution, the transition
probability, the policy function, etc.

Figure 1: Causal graph for representing the discrete-
time sequential decision-making process where S is
omitted. At each time step t, the state xt transits
to the intermediate state xt, dt based on the policy
π, and then transits to xt+1 based on the transition
probability. The reward rt is received based on the
decision/action xt, and the qualification gain is ob-
tained based on both xt, dt and the next state xt+1.

A metric of long-term fairness typically con-
siders the equilibrium of qualification states
across different groups. It can also be treated
as the causal effect of the sensitive feature on
the qualification states. For instance, the au-
thors in Hu et al. (2024) investigate long-term
fairness by examining the path-specific ef-
fect, i.e., the causal effect transmitted through
all paths from s to xT in the graph. They
conclude that the objective of eliminating this
causal effect may conflict with the require-
ment of sensitive attribute unconsciousness.

In this work, we explore long-term fairness
and establish a general formulation within the
framework of MDPs. The typical objective
of MDPs is to maximize the expected cumu-
lative reward for an agent interacting with an
environment over time. Taking fairness into consideration, different from previous work that incor-
porates long-term fairness as an advantage regularization (e.g., Yu et al. (2022); Hu et al. (2023)),
we argue for considering the expected total change in the qualification state when the individual in-
teracts with the decision policy. To achieve this, we introduce a flexible qualification gain function,
denoted as gs(x,x′), which quantifies the increase/decrease in qualifications when an individual
from the sensitive group s transitions from state x to state x′. This qualification gain function can
be defined in any form as long as it satisfies the additive property over intervals, i.e., for all inter-
mediate states x1, . . . ,xn between x and x′, we have gs(x,x′) = gs(x,x1) + · · · + gs(xn,x

′).
Then, for a given trajectory in the sequential decision-making process, the total qualification gain
from transitioning from the initial state to the final state is equivalent to the cumulative qualification
gain throughout the process, i.e.,

∑T
t=0 g

s(xt,xt+1).

To define the expected qualification gain an individual can achieve through the deployment of this
policy, we employ the notations from Hu & Zhang (2022), where the policy deployment is treated
as a soft intervention, denoted as do(π). Meanwhile, in line with causality-based fairness notions,
we consider the qualification gain individuals would achieve if their sensitive features were altered
to different values. This involves performing hard interventions on the sensitive feature S. By
conducting both interventions, we consider the interventional expected qualification gain, denoted
as Vdo(π,s)(x). Adopting the causal perspective of reinforcement learning Zeng et al. (2023), the
interventional expected qualification gain can be defined as the state value function Vdo(π,s)(x) :=

Eπ

[∑T
t=0 g

s(xt,xt+1) | x0 = x
]
. This state value function above captures the cumulative impact

of decisions over time, enabling us to address the need for equity in decision-making systems over
extended periods. A natural long-term fairness requirement, therefore, is to ensure that the average
expected qualification gain is equal across different groups over time. Consequently, we define
qualification gain parity as a general metric for long-term fairness, as detailed below.

Definition 1 (Qualification Gain Parity) We say that a policy π exhibits qualification gain parity
if Cπ(θ) = E[Vdo(π,s+)(x0)]− E[Vdo(π,s−)(x0)] is equal to zero.

3.3 POLICY OPTIMIZATION WITH CONSTRAINTS

Qualification gain parity can be achieved through policy optimization with constraints. To this end,
we first express the state value function using Bellman’s equation as follows.

Vdo(π,s)(x) =
∑
d

π(d|x, s)Qdo(π,s)(x, d), (1)
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where
Qdo(π,s)(x, d) =

∑
x′

P (x′|x, d, s)
(
gs(x,x′) + Vdo(π,s)(x

′)
)

is the action value function. By following the Policy Gradient Theorem Sut-
ton & Barto (2018), the gradient of the state value function Eq. (1) is given by
∇θVdo(π,s)(x) =

∑
x′ ηπ,s(x → x′)

∑
d ∇θπ(d|x′, s)Qdo(π,s)(x

′, d) where ηπ(x → x′)
is the probability of transitioning from state x to state x′ with policy π after an ar-
bitrary number of steps. Thus, the gradient of Cπ(θ) is given by ∇θCπ(θ) =
α
(
Eπ|s+

[
∇θ lnπ(d|x, s+)Qdo(π,s+)(x, d)

]
− Eπ|s−

[
∇θ lnπ(d|x, s−)Qdo(π,s−)(x, d)

])
,

where the expectation is over the state visitation distribution and α =
2
(
E[Vdo(π,s+)(x0)]− E[Vdo(π,s−)(x0)]

)
. A detailed derivation is included in Appendix A.

Policy Optimization. Our choice for policy optimization is mostly typical as a variant of Proximal
Policy Optimization (PPO) that incorporates the KL divergence as a penalty Schulman et al. (2017).
Using a slight variation of notations, we use Vdo(π,s)(x) and Qdo(π,s)(x) to denote the state/action
value function in terms of utility rt = r(xt, dt). The advantage function for a state is given as
Ado(π,s)(x, d) = Qdo(π,s)(x, d)− Vdo(π,s)(x). We then write the objective function as

JPPO(θ) = LUTIL − βKLLKL

where LUTIL = Êt

[
π(dt|xt,st)

πold(dt|xt,st)
Â(π,st)(xt, dt)

]
is the expected advantage with importance sam-

pling, and LKL = Êt [KL[πold(st|xt, dt)||π(st|xt, dt)]] is the KL divergence to penalize large
divergences between the new and old policies. We use the hat symbol to denote the emperical
estimation of a given function or operator.

As PPO updates the policy using minibatch SGD, we can separate the batch of timesteps t that
were sampled for the minibatches into those belonging to the advantaged group t+ and those for the
disadvantaged group t−. The constraint then becomes Ĉπ =

Êt+

[
π(dt+ |xt+ , st+)

πold(dt+ |xt+ , st+)
Q̂do(πold,s+)(xt+ , dt+)

]
−Êt−

[
π(dt− |xt− , st−)

πold(dt− |xt− , st−)
Q̂do(πold,s−)(xt− , dt−)

]
.

We then integrate the constraint into the full objective function as

J(θ) = LUTIL − βKLLKL − βC(Ĉπ)
2. (2)

3.4 CAUSAL DECOMPOSITION OF Cπ(θ)

As mentioned earlier, it is important to study the connection between long-term and short-term
fairness requirements as they may be conflicting objectives. To this end, in this section, we perform
a causal analysis to decompose the qualification gain parity, enabling us to identify and distinguish
various components contributing to bias. We study the various ways in which the policy π influences
the qualification gain, where we examine the instantaneous impact of the policy as well as the
delayed impact through the transitions of the environment.

As shown in Fig. 1, from a causal perspective, the instantaneous impact of the policy can be captured
by the direct edges from (xt, dt) to gt while the delayed impact can be captured by all other paths
from the states to the qualification gain. To examine these different mechanisms through which
the policy impact manifests respectively, we leverage the path-specific technique Avin et al. (2005)
in causal inference, which can isolate the effect transmitted through a particular causal path while
controlling the effect transmitted through other pathways. To achieve this, we construct two hypo-
thetical policies that are not actually implemented. One is a baseline policy π0 that always makes
the non-treatement decision, i.e., π0(d

0|x, s) = 1 (see Fig. 2(a)). The state value function of π0,
denoted as Vdo(π0,s), is given by

Vdo(π0,s)(x) =
∑
x′

P (x′|x, d0, s)
(
gs(x,x′) + Vdo(π0,s)(x

′)
)
. (3)

The other is a virtual policy πPS where the qualification gain is assumed to be obtained as if fol-
lowing policy π0, while the state transitions occur as if under policy π (see Fig. 2(b)). Its state value
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function, denoted as Vdo(πPS ,s), can be given by

Vdo(πPS ,s)(x) =
∑
x′

P (x′|x, d0, s)gs(x,x′) +
∑
d

π(d|x, s)
∑
x′

P (x′|x, d, s)Vdo(πPS ,s)(x
′). (4)

Facilitated by these hypothetical policies, we can decompose Vdo(π,s) into three components: the
component that captures the direct impact of the policy π on the qualification gain, the component
that captures the delayed impact, as well as the component that captures the spurious effect solely
attributable to the environment, given below.

Vdo(π,s)(x) = Vdo(π,s)(x)− Vdo(πPS ,s)(x)︸ ︷︷ ︸
direct impact

+Vdo(πPS ,s)(x)− Vdo(π0,s)(x)︸ ︷︷ ︸
delayed impact

+Vdo(π0,s)(x)︸ ︷︷ ︸
spurious effect

Figure 2: Causal graphs for represent-
ing the two hypothetical policies (the
reward is omitted from the figures).
(a) The baseline policy π0 that always
makes the negative decisions. (b) The
virtual policy where the state transitions
occur as if under π while the qualifica-
tion is obtained as if under π0.

The explanation of this decomposition is as follows. For
deriving the direct impact, we employ the policy πPS

as the reference policy and assume that the decision-
making system shifts from this reference policy to policy
π. During this process, the policy π is used for generating
episodes. However, when calculating the instantaneous
qualification gain at each time step, the policy that is used
to make the decision shifts from π0 to π, which subse-
quently influences the next state that is used to compute
the qualification gain via gs(xt,xt+1). The direct im-
pact is then computed as the difference in the qualifica-
tion gain. Since the episodes remain unchanged during
the shift, this difference eliminates the policy’s delayed
impact, capturing only the direct effect of switching from
the baseline policy π0 to the behavior policy π.

Similarly, for the delayed impact, we employ the policy
π0 as the reference policy where both the episodes and
the instantaneous qualification gain are determined by π0.
Then, we switch to policy πPS , allowing policy π to gen-
erate the episodes. Thus, the change in the qualification
gain is due to the delayed impact of policy π. Finally,
since π0 is unrelated to π, we can treat the qualification
gain achieved, i.e., Vdo(π0,s)(x), as being solely due to
the environment’s transitions, which can be treated as the
spurious effect in the impact of policy π.

Correspondingly, by taking S into account and conducting the decomposition for both do(s+) and
do(s−), we can decompose Cπ(θ) into three components, referred to as the Direct Policy Effect
(DPE), the Indirect Policy Effect (IPE), and the Spurious Policy Effect (SPE), as given below.

Cπ(θ) = DPE + IPE + SPE,

where DPE = E
[
Vdo(π,s+)(x0)− Vdo(πPS ,s+)(x0)

]
− E

[
Vdo(π,s−)(x0)− Vdo(πPS ,s+)(x0)

]
,

IPE = E
[
Vdo(πPS ,s+)(x)− Vdo(π0,s+)(x0)

]
− E

[
Vdo(πPS ,s+)(x)− Vdo(π0,s−)(x0)

]
, and SPE =

E
[
Vdo(π0,s+)(x0)

]
− E

[
Vdo(π0,s−)(x0)

]
.

3.5 CONNECTION WITH BENEFIT FAIRNESS

The decomposition of Cπ(θ) allows us to build a connection between qualification gain parity and
instantenous fairness requirments. For the former, we pay special attention to the DPE which repre-
sents disparity in the instantaneous impact of the policy on the qualification gain. For the latter, we
consider benefit fairness proposed in Plecko & Bareinboim (2023), which does not merely allocate
equal treatment to each group’s entire population but instead it takes into account the proportion of
the population that can benefit from the treatment, making it more suitable for controlling fairness
in the outcomes of a decision model.
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In Plecko & Bareinboim (2023), the benefit is defined as the conditional average treatment effect
(CATE) which represents the increase in the outcome (e.g., survival) associated with the treatment.
In our context, the outcome of interest is the qualification gain an individual receives as a result of
the treatment. Hence, the benefit can be defined as the expected increase in the qualification gain an
individual can achieve if they receive treatment compared to not receiving treatment, i.e.,

∆(x, s) =
∑
x′

(
P (x′|x, d1, do(s))− P (x′|x, d0, do(s))

)
gs(x,x′),

where P (x′|x, d, do(s)) = P (x′|x, d, s) in our context. Then, benefit fairness is defined as follows.

Definition 2 (Benefit Fairness Plecko & Bareinboim (2023)) We say that a policy π satisfies ben-
efit fairness if

∀x,x′, π(d1|x, s+) = π(d1|x′, s−) if ∆(x, s+) = ∆(x′, s−).

In words, benefit fairness means that individuals from different groups who would benefit equally
from a treatment should have similar probabilities of receiving that treatment.

The following proposition reveals the connection between the direct impact component of
Vdo(π,s)(x) and benefit. Please refer to Appendix B for the proof.

Proposition 1 Given a policy π and hypothetical policies π0, π
PS defined in Eqs. (3), (4), we have

Vdo(π,s)(x)− Vdo(πPS ,s)(x) =
∑
x′

ηπ,s(x → x′)π(d1|x, s)∆(x, s),

Vdo(πPS ,s)(x)− Vdo(π0,s)(x) =
∑
x′

(ηπ,s(x → x′)−ηπ0,s(x → x′))
∑
x′′

P (x′′|x, d0, s)gs(x′′,x),

where ηπ,s(x → x′) is the probability of transitioning from state x to state x′ with policy π after
any number of steps.

Using this proposition, we can reformulate DPE as follows

DPE= E
x∼π|s+

[
π(d1|x, s+)∆(x, s+)

]
− E
x∼π|s−

[
π(d1|x, s−)∆(x, s−)

]
,

where the expectation is over the state visitation distributions.

By combining the above expression and Definition 2, we observe that the DPE is closely related
to benefit fairness. When the state visitation distributions in terms of benefit are identical across
the two groups, benefit fairness will result in a zero DPE. This implies that both groups have equal
opportunities and exposure to the decision-making process so that achieving benefit fairness leads to
equitable direct impact. However, if the state visitation distributions differ between the two groups,
achieving benefit fairness becomes incompatible with eliminating the DPE. This discrepancy arises
because differing state visitation distributions indicate that the two groups are not equally repre-
sented in the sequential decision-making process. Hence, enforcing benefit fairness, which aims to
equalize the true benefits received by different groups, may inadvertently introduce or maintain dis-
parities in the DPE. On the other hand, we note that the IPE is less sensitive to benefit fairness. Thus,
enforcing benefit fairness may not result in a significant change in the IPE. This analysis highlights
the complexity of balancing fairness objectives and the challenges of ensuring equitable outcomes
across diverse populations in sequential decision-making systems.

Remark. A key insight we gain from the above analysis is that, if the benefit ∆ is independent of
the sensitive feature S, then achieving benefit fairness aligns with decreasing DPE and also loosely
corresponds to the goal of equalizing feature distributions across different groups. This is because,
in this context, the state visitation distribution approximates the feature distribution, suggesting that
benefit fairness could be achieved simultaneously with a reduced DPE and equalized feature distribu-
tion. This insight motivates us to introduce an additional consideration into the design qualification
gain function when designing practical decision-making systems, which is to ensure that the benefit
∆ remains independent of S, even though the transition probability may be dependent on S. This
may imply that the qualification gain function should be adjusted to account for differences in ben-
efits. It also underscores the importance of understanding why benefits differ between groups, as
highlighted in Plecko & Bareinboim (2023).
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Balancing qualification gain parity and benefit fairness. We propose a simple yet effective ap-
proach to achieve benefit fairness while promoting parity in qualification gains during policy op-
timization. Our approach leverages the concept of individual fairness Dwork et al. (2012) which
demands that any two similar individuals should receive similar decision outcomes. Individual fair-
ness is relevant and applicable to our setting, as we require that if two individuals from different
groups receive similar benefits from the policy, their probabilities of receiving a positive decision
should also be similar. To establish a quantitative metric for benefit fairness, we draw inspiration
from the Gini coefficient, commonly used to measure income equality in economic theory Mota
et al. (2021), which has also been applied to individual fairness Sirohi et al. (2024). Mathematically,
the Geni coefficient is defined as

∑n
i=1

∑n
j=1 |si − sj |/2n

∑n
j=1 sj where si is the income of a

person. Inspired by this, we define a metric that measures the difference in positive decision rates
for all pairs of individuals from different sensitive groups, weighted by the inverse distance in their
benefits, as follows.

Λ =
∑
x,x′

ϵ · |π(d
1|x, s+)− π(d1|x′, s−)|

ϵ+ |∆(x, s+)−∆(x′, s−)|
P (x|s+)P (x′|s−).

Here, ϵ is a small positive value that prevents division by zero and also controls the radius within
which we require similar positive decision rates. As ϵ decreases, similar positive decision rates are
only enforced when the benefits are nearly identical. Conversely, a large ϵ will penalize differences
in positive decision rates when the benefits are close but not exactly the same. The final objective
function is obtained by incorporating Λ into Eq. (2):

J(θ) = LUTIL − βKLLKL − βC(Ĉπ)
2 − βΛΛ. (5)

4 EXPERIMENTS

We conduct experiments to evaluate the policy optimization algorithms we have proposed and com-
pare them with baselines regarding the achievement of long-term fairness1. We also present the
results from the decomposition and the performance of our algorithm when taking benefit fairness
into consideration, demonstrating how the constraint of benefit fairness influences different compo-
nents of qualification parity. We refer to our algorithm with objective function Eq. (2) as PPO-C and
the algorithm objective function Eq. (5) as PPO-Cb.

4.1 EXPERIMENTAL SETUP

We leverage the simulation environment developed in D’Amour et al. (2020) that is commonly used
in related work (e.g., Yu et al. (2022); Hu et al. (2023)). The environment is designed to simulate the
process of a bank dispersing loans to members of a population. Each individual in the population
belongs to either the advantaged group s+ or the disadvantaged group s−. At each time step, an
individual applies for a loan and the bank has to make a binary decision, dt ∈ {d0, d1}, on whether
to approve or deny the loan. The decision is made in accordance with the current policy πθ(d|st,xt),
a distribution produced by a feedforward neural network from which the decision dt is sampled. By
default, the average qualification level of individuals belonging to s+ is higher than that of those
belonging to s−. These distributions evolve with time in response to factors in the environment and
loan decisions.

To facilitate the idea that the environment can have effects, unrelated to the decision, on an individ-
ual’s qualification level, we also include a term xdrift ∈ {−1, 0, 1}. This represents the change in
an individual’s credit score which would occur regardless of whether or not a loan was received by
the individual. As a result, an individual is represented by the 4-tuple (s,x, xdrift, y). To sample
an individual, first we sample the sensitive attribute s ∼ P (s), then the credit score x ∼ P (xt|s),
followed by the ability to repay the loan y ∼ P (y|x, s). The credit drift xdrift ∼ P (xdrift) is
sampled independently of the other attributes. Note that xdrift and y are unobserved for the policy
and are not used as input for decision-making.

We designed the qualification gain function to reflect the real-world phenomenon where progressing
from beginner to intermediate requires less effort than progressing from advanced to expert. The

1All the code is available at https://anonymous.4open.science/r/ppo-cb-rl-2342.
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Figure 3: Utility comparison accross different settings.

Figure 4: Qualification gain disparity comparison accross different settings.

distribution P (xt+1|xt, s) is a deterministic function of (st,xt, xdrift, yt, dt) where a small amount
of mass representing an individual is moved from P (xt|st) to P (xt+1|st). In the evaluation, we use
three different settings for the simulation environment which we will simply refer to as Setting
1,2, and 3. These settings differ from each other in initial distributions over credit scores, repayment
probabilities, and credit drift likelihoods. The repayment probabilities are learned by using the Home
Credit Default Risk dataset Montoya et al. (2018) and a dataset previously released by Lending Club
Wagh (2017). The details of the experimental setup are provided in Appendix C.

We compare our methods to three baselines: (1) PPO Schulman et al. (2017), a variant of the vanilla
PPO algorithm incorporating a KL-divergence penalty; (2) A-PPO Yu et al. (2022), which intro-
duces additional regularizations to penalize the advantage function in order to enforce equalized
opportunity; and (3) F-PPO-L Hu et al. (2023), which also applies a regularization term to penalize
the advantage function, but with the objective of reducing the 1-Wasserstein distance between group
feature distributions.

Due to the large variance in a model’s performance in both training and evaluation due to the highly
stochastic nature of the system, for all results and methods, we perform multiple training runs with
different random seeds for initialization and then take an average to better gauge performance.

4.2 RESULTS

Evaluating long-term fairness. We first evaluate the effectiveness of our proposed approaches in
achieving qualification gain parity. We compare PPC-C and PPC-Cb against the baseline methods
PPO, which purely optimizes for utility, as well as A-PPO and F-PPO-L which optimize for utility
and their own fairness objectives. In Figure 3, we see that PPO-C, the constraint-only variant, is
fairly competitive with regard to utility when compared to the baselines. While the inclusion of the
additional benefit fairness term in PPO-Cb tends to decrease the performance, it manages to produce
a profit in Setting 2, where A-PPO fails to do so. Since PPO-C and PPO-Cb both optimize for the
qualification gain disparity, it is unsurprising that they both outperform the baselines in this regard
as shown in Figure 4. However, it is interesting that there is no clear pattern here when looking at
only our methods. They both perform similarly in Setting 3 but flip when looking at Settings 1 and
2, which is in contrast to the clear differences when looking at the utility in Figure 3. This may
be attributed to the connection between qualification gain disparity and benefit fairness, which is
further analyzed in the following.

Evaluating causal decomposition. We then evaluate the causal decomposition and how different
components are impacted in the training. In Figure 5, we show Cπ(θ) together with the decompo-
sition of the constraint into its constituent components that are IPE, DPE, and SPE for PPO-C and
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(a) Setting 1 (b) Setting 2

Figure 5: Qualification gain disparity decompositions.

Figure 6: Benefit fairness and DPE for PPO-C and PPO-Cb model variants.

PPO-Cb. For Setting 1, we see that there is a marked reduction in the DPE for both methods. While
the DPE does appear to somewhat mirror and slowly approach Cπ(θ) for PPO-C, this behavior is
noticeably more pronounced with PPO-Cb. Looking at the decomposition for Setting 2 in Figure
5b, DPE approaches Cπ(θ) much earlier in training before diverging some towards the end. It also
shows an increase in the IPE, which is not as obvious in Figure 5a. This contrast and behavior imply
that policy optimization is more effective in decreasing DPE, the instantaneous impact of the policy,
than IPE, the delayed impact of the policy.

Evaluating benefit fairness. Finally, we evaluate the effectiveness of objective function Eq. (5)
in ensuring benefit fairness as well as the connection between benefit fairness and DPE. Figure 6
is a demonstration of the effect of increasing the βΛ parameter to increase the enforcement of the
benefit fairness constraint in PPO-Cb, with PPO-C included as further reference. The first two plots
are generated using the environment Setting 1, with the left corresponding to the base setting for βΛ

and the right for the relatively large setting. With the smaller βΛ, we see that although the DPE is
better for PPO-Cb for a good portion of the policy iterations, by the end of training it is around the
same as PPO-C. When βΛ is increased, we see the benefit fairness improve as well as a reduction
in the DPE. This similarly manifests in the last two figures, where Setting 2 is used. This pattern
reflects the connection between benefit fairness and DPE as demonstrated in our theoretical analysis.

5 CONCLUSIONS

In this paper, we explored the achievement of long-term fairness in reinforcement learning (RL) from
a causal perspective. We proposed a general RL framework where long-term fairness is quantified by
the difference in the average expected qualification gain that individuals from different groups could
obtain. Through a causal decomposition of this disparity, we identified three key components: the
Direct Policy Effect (DPE), the Indirect Policy Effect (IPE), and the Spurious Policy Effect (SPE).
Our analysis revealed an intrinsic connection between benefit fairness—an emerging short-term
fairness concept—and DPE, which is particularly sensitive to policy optimization. Furthermore, we
developed a simple yet effective approach to balance qualification gain parity with benefit fairness.
Experimental results demonstrated the efficacy of our methods. In future work, we aim to conduct
a more in-depth analysis of the qualification gain function’s design to account for differences in
benefits and align various fairness notions in sequential decision-making.
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APPENDIX A: DERIVING ∇θCπ(θ)

To derive ∇θVdo(π,s)(x), we have

∇θVdo(π,s)(x) = ∇θ

∑
d

π(d|s,x)Qdo(π,s)(x, d)

=
∑
d

(
∇θπ(d|s,x)Qdo(π,s)(x, d) + π(d|s,x)∇θQdo(π,s)(x, d)

)
=
∑
d

(
∇θπ(d|s,x)Qdo(π,s)(x, d) + π(d|s,x)∇θ

∑
x′

P (x′|x, d, s) (g(x,x′) + V π(s,x′))

)

=
∑
d

(
∇θπ(d|s,x)Qdo(π,s)(x, d) + π(d|s,x)

∑
x′

P (x′|x, d, s)∇θV
π(s,x′)

)

If we let ϕ(x) =
∑

d ∇θπ(d|s+,x)Qdo(π,s)(x, d), then

∇θVdo(π,s)(x) = ϕ(x) +
∑
d

π(d|s,x)
∑
x′

P (x′|x, d, s)∇θV
π(s,x′)

= ϕ(x) +
∑
x′

∑
d

π(d|s,x)P (x′|x, d, s)∇θV
π(s,x′)

= ϕ(x) +
∑
x′

ρπ(x → x′, 1)∇θV
π(s,x′)

= ϕ(x) +
∑
x′

ρπ,s(x → x′, 1)

(
ϕ(x′) +

∑
x′′

ρπ,s(x′ → x′′, 1)∇θV
π(s,x′′)

)
= ϕ(x) +

∑
x′

ρπ,s(x → x′, 1)ϕ(x′) +
∑
x′′

ρπ,s(x → x′′, 2)∇θV
π(s,x′′)

= · · ·

=
∑
x∗

∞∑
k=0

ρπ,s(x → x∗, k)ϕ(x∗)

By denoting ηπ,s(x → x∗) =
∑∞

k=0 ρ
π,s(x → x∗, k), then we can rewrite ∇θV

π(s,x) as∑
x∗ ηπ,s(x → x∗)ϕ(x∗).

Plugging these results into ∇θCπ(θ) for s+, s−, we have that

∇θCπ(θ) = α
(
Eπ|s+

[
∇θ lnπ(d|x, s+)Qdo(π,s+)(x, d)

]
− Eπ|s−

[
∇θ lnπ(d|x, s−)Qdo(π,s−)(x, d)

])
where

α = 2
(
E[Vdo(π,s+)(x0)]− E[Vdo(π,s−)(x0)]

)
.

APPENDIX B: PROOF OF PROPOSITION 1

Based on the definition, we have that

Vdo(π,s)(x) =
∑
d

π(d|x, s)
∑
x′

P (x′|x, d, s)
(
gs(x,x′) + Vdo(π,s)(x

′)
)
,

and

Vdo(πPS ,s)(x) =
∑
x′

P (x′|x, d0, s)gs(x,x′) +
∑
d

π(d|x, s)
∑
x′

P (x′|x, d, s)Vdo(πPS ,s)(x
′).

It follows that
Vdo(π,s)(x)− Vdo(πPS ,s)(x)

= Gπ,s(x) +
∑
d

π(d|x, s)
∑
x′

P (x′|x, d, s)
(
Vdo(π,s)(x

′)− V PS
do(π,s)(x

′)
)
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where

Gπ,s(x) =
∑
x′

(∑
d

π(d|x, s)P (x′|x, d, s)gs(x,x′)− P (x′|x, d0, s)gs(x,x′)

)
By writing P (x′|x, d0, s)gs(x,x′) as (π(d1|x, s)+π(d0|x, s)P (x′|x, d0, s)gs(x,x′)) and rearrange
the above expression, we have

Gπ,s(x) = π(d1|x, s)
∑
x′

(
P (x′|x, d1, s)− P (x′|x, d0, s)

)
gs(x,x′) = π(d1|x, s)∆(x, s)

By similarly following the policy gradient theorem, we have

Vdo(π,s)(x)− Vdo(πPS ,s)(x) =
∑
x′

ηπ,s(x → x′)Gπ,s(x
′)

The second equation in the proposition can be similarly derived.

APPENDIX C: EXPERIMENTAL SETUP DETAILS

Qualification gain function. We would like the qualification gain function to reflect real-world
phenomena to some extent. One viewpoint is that as an individual’s qualification level increases,
further progression becomes increasingly more difficult. Progression from beginner to intermediate
takes less effort than progression from advanced to expert, so the qualification gain at high levels
should have more weight. To encapsulate this idea, the qualification gain function for a single
transition is defined as

g(xt,xt+1) =
x3
t+1 − x3

t∣∣∣∣ max
|i−j|=1

g(xi, xj)

∣∣∣∣
where the denominator serves to reduce the range of possible values.

Transition probability. The distribution P (xt+1|xt, s) is a deterministic function of
(st,xt, xdrift, yt, dt) where a small amount of mass representing an individual is moved from
P (xt|st) to P (xt+1|st), i.e.,

xt+1 =


xt + xdrift + 1 if(dt = 1, yt = 1),

xt + xdrift − 1 if(dt = 1, yt = 0),

xt + xdrift if(dt = 0).

Enviroment settings. In the evaluation of our proposed algorithms, we use three different settings
for the simulation environment which we will simply refer to as Setting 1,2, and 3. These settings
differ from each other in initial distributions over credit scores, repayment probabilities, and credit
drift likelihoods.

We generated the repayment probabilities by fitting a logistic regression model to credit score
datasets and used the predicted repayment probability from each credit score level. Setting 1 and
2 both use the same distribution over initial credit scores where Ex0∼s− [x0] < Ex0∼s+ [x0]. They
differ in the repayment probabilities where Setting 1 uses probabilities generated using the Home
Credit Default Risk dataset Montoya et al. (2018), and the probabilities for Setting 2 are from a
dataset previously released by Lending Club Wagh (2017), a type of peer-to-peer lending market.

In Setting 3, however, the initial distribution for both groups is the same. What does differ between
groups are the credit drift probabilities p(xdrift), which is now dependent on the sensitive attribute.
Here, p(xdrift = −1|s−) > p(xdrift = −1|s+) while p(xdrift = 1|s−) < p(xdrift = 1|s+).

APPENDIX D:
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Figure 7: Utility comparison .

Figure 8: Lending rates for the PPO-Cb variant in setting 2.

(a) Utility comparison accross different settings.

(b) Qualification gain disparity comparison accross different settings.

Figure 9: Figures 9a and 9b are the same results as shown in figures 3 and 4, but with the inclusion
of standard deviation values which were ommitted from the originals for presentation clarity.
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