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Abstract

Graph neural network (GNN) is a promising approach to learning and predicting
physical phenomena described in boundary value problems, such as partial dif-
ferential equations (PDEs) with boundary conditions. However, existing models
inadequately treat boundary conditions essential for the reliable prediction of such
problems. In addition, because of the locally connected nature of GNNg, it is
difficult to accurately predict the state after a long time, where interaction between
vertices tends to be global. We present our approach termed physics-embedded
neural networks that considers boundary conditions and predicts the state after
a long time using an implicit method. It is built based on an E(n)-equivariant
GNN, resulting in high generalization performance on various shapes. We demon-
strate that our model learns flow phenomena in complex shapes and outperforms
a well-optimized classical solver and a state-of-the-art machine learning model
in speed-accuracy trade-off. Therefore, our model can be a useful standard for
realizing reliable, fast, and accurate GNN-based PDE solvers. The code is available
athttps://github.com/yellowshippo/penn-neurips2022.

1 Introduction

Partial differential equations (PDEs) are of interest to many scientists because of their application in
various fields such as mathematics, physics, and engineering. Numerical analysis is used to solve
PDEs because most PDE problems in real life cannot be solved analytically. For example, predicting
fluid behavior in complex shapes is an essential topic because it is helpful for product design, disaster
reduction, weather forecasting, and many others; however, it is a difficult problem and takes time to
solve using classical solvers. Machine learning is a promising approach to predicting such phenomena
because it can utilize data similar to the state to be predicted, while classical solvers cannot.

However, the main challenge in dealing with complex phenomena such as fluids is to guarantee
generalization performance because possible states in complex systems can be huge and may not be
covered using a purely data-driven approach. Therefore, we must apply appropriate inductive biases
to machine learning models. Many approaches successfully introduced various inductive biases
such as local connectedness using graph neural networks (GNNs) and symmetry under coordinate
transformations using equivariance.

While these methods have made great progress in solving PDEs using machine learning, there is still
room for improvement. First, there is need for an efficient and provable way to respect boundary
conditions like Dirichlet and Neumann, i.e., mixed boundary conditions. Rigorous fulfillment
of Dirichlet boundary conditions is indispensable because they are hard constraints and different
Dirichlet conditions correspond to different problems users would like to solve. Second, there is need
to reinforce the treatment of global interaction to predict the state after a long time, where interactions

35th Conference on Neural Information Processing Systems (NeurIPS 2021).


https://github.com/yellowshippo/penn-neurips2022

Dirichlet layer + NeumannlsoGCN:
E(n)-Equivariant Graph Neural Network with boundary conditions

( )( Neural nonlinear solver }
a—2

Encoded Dirichlet
boundary condition

Dirichlet boundary
condition

WV
Boundary
Encoder

[mn Encoded Neumann
Input feature  boundary condition

[ammsss
Encoded feature Output feature

Neumann
boundary condition

Figure 1: Overview of the proposed method. On decoding input features, we apply boundary encoders
to boundary conditions. Thereafter, we apply a nonlinear solver consisting of an E(n)-equivariant
graph neural network in the encoded space. Here, we apply encoded boundary conditions for each
iteration of the nonlinear solver. After the solver stops, we apply the pseudoinverse decoder to satisfy
Dirichlet boundary conditions.

tend to be global. GNNs have excellent generalization properties because of their locally-connected
nature; however, they may miss global interaction due to their localness.

We propose physics-embedded neural networks (PENNSs), a machine learning framework to address
these issues by embedding physics in the models. We build our model based on IsoGCN (Horie et al.|
2021)), a lightweight E(n)-equivariant GNN to reflect physical symmetry and realize fast prediction.
Furthermore, we construct a method to consider mixed boundary conditions. Finally, we reconsider
a way to stack GNNs based on a nonlinear solver, which naturally introduces the global pooling
to GNNss as the global interaction with high interpretability. In experiments, we demonstrate that
our treatment of Neumann boundary conditions improves the predictive performance of the model,
and our method can fulfill Dirichlet boundary conditions with no error. Our method also achieves
state-of-the-art performance compared to a classical, well-optimized numerical solver and a baseline
machine learning model in speed-accuracy trade-off. Figure[I|shows the overview of the proposed
model. Our main contributions are summarized as follows:

* We construct models to satisfy mixed boundary conditions: the boundary encoder, Dirichlet
layer, pseudoinverse decoder, and NeumannlsoGCN (NIsoGCN). The considered models
show provable fulfillment of boundary conditions, while existing models cannot.

* We propose neural nonlinear solvers, which realize global connections to stably predict the
state after a long time.

* We demonstrate that the proposed model shows state-of-the-art performance in speed-
accuracy trade-off, and all the proposed components are compatible with E(n)-equivariance.

2 Background and related work

In this section, we review the foundation of PDEs to clarify the problems we solve and introduce
related works where machine learning models are used to solve PDEs.

2.1 Partial differential equations (PDEs) with boundary conditions

A general form of the d-dimensional temporal PDEs that we consider can be expressed as follows:

E(t,w) = D(u)(t, x) (t,x) € (0,T) x Q, (D
u(t=0,2) = ao(x xeQ, )

’U,(ﬁ, 17) = ﬁ(ta lli) (taw) S (O,T) X aQDirichleta (3)
f(Vu(t,z),n(z)) = 0 (t.z) € (0,T) X Necumann, )



where () is the domain, OS2 is the boundary of €2, and OQpirichiet and O Neumann are boundaries
with Dirichlet and Neumann (mixed) boundary conditions. * is a known function, and D is a known
nonlinear differential operator, which can be nonlinear and contain spatial differential operators
(see equationfor an example of D). n(x) is the normal vector at € 99Q. Equationis called
the Dirichlet boundary condition, where the value on 02piyichiet 1S Set as a constraint. Equation
corresponds to the Neumann boundary condition, where the value of the derivative w in the direction
of m is set on ONQNeumann rather than the value of u. When w : (0,7) x Q — R/ satisfies
Equations[I|—[4] it is called the solution of the (initial-) boundary value problem.

2.1.1 Discretization

PDEs are defined in a continuous space to make differentials meaningful. Discretization can be
applied in space and time so that computers can solve PDEs easily. In numerical analysis of complex-
shaped domains, we commonly use meshes (discretized data of shapes), which can be regarded as
graphs. We denote the position of the ith vertex as a; and the value of a function f at the x; as f,ﬂ

The simplest method to discretize time is the explicit Euler method formulated as:
u(t + At ;) = u(t, z;) + D(u)(t, z;) A, 4)

which updates u(t, x;) with a small increment D(u)(t, ;) At. Another way to have time discretiza-
tion is the implicit Euler method formulated as:

u(t + At,x;) = u(t,z;) + D(u)(t + At, x;) At, (6)

which solves Equation [6] rather than simply updating variables to ensure the original PDE is satisfied
numerically. The equation can be viewed as a nonlinear optimization problem by formulating it as:

R(v) :=v —u(t,-) — D(v)At, 7

Solve, R(v)(x;) = 0, Vi, 3)

where R(v) is the residual vector of the discretized PDE. The solution of Equation corresponds to

u(t+ At, x). By letting V¢ = R for an appropriate ¢, solving Equationcorresponds to optimizing

¢ in an (f x n)-dimensional space, where n is the number of vertices in the considered mesh. A
simple way to solve such an optimization problem is to apply gradient descent formulated as:

0O = u(t,), oY = o — oD R(®), )

where a?) € R is determined using line search. However, due to the high computational cost of the
search, « can be fixed to a small value, which corresponds to the explicit Euler method with the time
step size «At. Barzilai & Borwein| (1988)) suggested another simple yet effective way to determine the
step size using a two-point approximation to the secant equation underlying quasi-Newton methods.

2.2 Neural PDE solvers

We review machine learning models used to solve PDEs called neural PDE solvers, typically formu-
lated as w(tn41, ;) ~= FNN(w)(tn, ;) for (tn, x;) € {to,t1,...} X 2, where Fnn is a machine
learning model.

2.2.1 Physics-informed neural networks (PINNs)

Raissi et al.| (2019) made a pioneering work combining PDE information and neural networks, called
PINNSs, by adding loss to monitor how much the output satisfies the equations. PINNs can be used
to solve forward and inverse problems and extract physical states from measurements (Pang et al.|
2019; Mao et al., 2020; |(Cai et al., [2021). However, PINNs’ outputs should be functions of space
because PINNs rely on automatic differentiation to obtain loss regarding PDEs. This design constraint
significantly limits the model’s generalization ability because the solution of a PDE could be entirely
different when the shape of the domain or boundary condition changes. Besides, the loss reflecting
PDEs helps models learn physics at training time; however, prediction by PINN models can be out
of physics because of lacking PDE information inside the model. Therefore, these methods are not
applicable in building models that are generalizable over shape and boundary condition variations.
As seen in Section[3} our model contains PDE information inside and does not take absolute positions
of vertices, thus resulting in high generalizability (See Figure [3).

! Strictly speaking, components of the PDE e.g. D and €2 can be different before and after discretization.
However, we use the same notation regardless of discretization to keep the notation simple.



2.2.2 Graph neural network based PDE solvers

As discussed in Section [2.1.1] one can regard a mesh as a graph. GNNs can take any graphs as
inputs (Gori et al.| 2005} [Scarselli et al.|, |2008} Kipt & Welling} 2017; |Gilmer et al.,|2017)), having the
possibility to generalize over various graphs, i.e., meshes. Therefore, GNNs are strong candidates
for learning mesh-structured numerical analysis data, as seen in |Alet et al.|(2019)); \Chang & Cheng
(2020); [Ptaff et al.| (2021). Brandstetter et al.| (2022) advanced these works for efficient and stable
prediction. Their method could also consider boundary conditions by feeding them to the models
as inputs. Here, one could expect the model to learn to satisfy boundary conditions approximately,
while there is no guarantee to fulfill hard constraints such as Dirichlet conditions. In contrast, our
model ensures the satisfaction of boundary conditions. Besides, most GNNs use local connections
with a fixed number of message passings, which lacks consideration of global interaction. We suggest
an effective way to incorporate a global connection with GNN through the neural nonlinear solver.

2.2.3 Equivariant models

In addition to GNNs, another essential concept to help machine learning models generalize is
equivariance. Equivariance is characterized by using group action as f(g - ) = g - f(x) for
f:X —Yandg € G acting on X and Y. In particular, E(n)-equivariance is essential to predict
the solutions of physical PDEs because it describes rigid body motion, i.e., translation, rotation, and
reflection. |Ling et al.| (2016) and [Wang et al.| (2021) introduced equivariance to a simple neural
network and CNN to predict flow phenomena. Both works showed that equivariance improved
predictive and generalization performance compared to models without equivariance. [Horie et al.
(2021) proposed E(n)-equivariant GNNs based on GCNs (Kipf & Welling} [2017)), called IsoGCN:ss.
A form of their model is formulated as:

—1
TL-Ti L T Z Vi = T —xy

la0j — 3| [lo; — il
(10)

where N is the neighborhood of the ith vertex, ® is the tensor product operator, and W is a trainable
matrix acting on feature index. Here, we denote IsoGCNy_,; an IsoGCN layer that converts the
input scalar (rank-0 tensor) field ¢/ to the output vector (rank-1 tensor) field. This layer corresponds
to the gradient operator, which helps learn PDEs because spatial derivatives such as gradient play an
essential role in PDEs. They applied the model to the heat equation problem, showing high predictive
performance and fast prediction, while boundary condition treatment was out of their scope.

VY], = [IsoGCNo1 (¥)], := Z

JEN;

3 Proposed method

We present our model architecture. We adopt an encode-process-decode architecture, proposed by
Battaglia et al.|(2018)), which has been applied successfully in various previous works, e.g.,[Horie et al.
(2021); Brandstetter et al.|(2022). Our key concept is to encode input features, including information
on boundary conditions, apply a GNN-based nonlinear solver loop reflecting boundary conditions in
the encoded space, then decode carefully to satisfy boundary conditions in the output space.

3.1 Dirichlet boundary model

As demonstrated theoretically and experimentally in literature (Hornikl [1991} |Cybenko, [1992;
Nakkiran et al.,[2021)), the expressive power of neural networks comes from encoding in a higher-
dimensional space, where the corresponding boundary conditions are not trivial. However, if there
are no boundary condition treatments in layers inside the processor, which resides in the encoded
space, the trajectory of the solution can be far from the one with boundary conditions. Therefore,
boundary condition treatments in an encoded space are essential for obtaining reliable neural PDE
solvers that fulfill boundary conditions.

To ensure the same encoded space between variables and boundary conditions, we use the same
encoder for variables and the corresponding Dirichlet boundary conditions, which we term the
boundary encoder, as follows:

hi = fencode (uz) in Q7 i"z = fencode("li) on aQDirichlet (1 1)



One can easily apply Dirichlet boundary conditions in the aforementioned encoded space using the
Dirichlet layer defined as:
h;, x; ¢ OQDirichlet
DirichletLayer(h;) =< " °° rene (12)
yer(hs) { hi, x; € Opirichlet
This process is necessary to return to the state respecting the boundary conditions after some
operations in the processor, which might disrespect the conditions.

After the processor layers, we decode the hidden features using functions satisfying:

fdecode o fencode(i"i) = ’f[,7 on aQDirichlet (13)

This condition ensures that the encoded boundary conditions correspond to the ones in the original
physical space. Demanding that Equationholds for arbitrary w; we obtain faecode © fencode = Ida,
resulting in faecode = f(fn code» Which we call the pseudoinverse decoder. 1t is pseudoinverse because
Sencode, 1n particular encoding in a higher-dimensional space, may not be invertible. Therefore, we
construct f; using pseudoinverse matrices. For more details, see Appendix

ncode

3.2 Neumann boundary model

Matsunaga et al.| (2020) proposed a wall boundary model to deal with Neumann boundary conditions
for the least squares moving particle semi-implicit (LSMPS) method (Tamai & Koshizuka, 2014), a
framework to solve PDEs using particles. The LSMPS method is the origin of the IsoGCN’s gradient
operator, so one can imagine that the wall boundary model may introduce a sophisticated treatment
of Neumann boundary conditions into Iso0GCN. We modified the wall boundary model to adapt to
the situation where the vertices are on the Neumann boundary, which differs from the situation of
particle simulations (see Appendix [A.2]for more details). Our formulation of IsoGCN with Neumann
boundary conditions, which is termed NeumannlsoGCN (NIsoGCN), is expressed as:

NIsoGONg_,1 () == M; ' [ 3 Vi Wi BT | W (14)
@) — @il [lo; — ]

JEN;
L — &; L — &;
M, = ® + w;n; @ n; (15)
' X”m—%HHM—%H e

lENi

where g, is the value of the Neumann boundary condition at x;, W is a trainable matrix, and w; > 0
is an untrainable parameter to control the strength of the Neumann constraint. As w; — oo, the model
strictly satisfies the given Neumann condition in the direction 7;, while the directional derivatives in
the direction of (; — x;) tend to be relatively neglected. Thus, we keep the value of w; moderate
to consider derivatives in both n and @ directions. In particular, we set w; = 10.0, assuming that
around ten vertices may virtually exist "outside" the boundary on a flat surface in a 3D space.

NIsoGCN is a straightforward generalization of the original IsoGCN by letting 7; = 0 when
; ¢ OQNeumann. This model can also be generalized to vectors or higher rank tensors, similarly to
the original IsoGCN’s construction (see Appendix[A.2). Therefore, NIsoGCN can express any spatial
differential operator, constituting D in PDE:s.

3.3 Neural nonlinear solver

As reviewed in Section [2.1] one can regard solving PDEs as optimization. Here, we adopt the
Barzilai-Borwein method (Barzilai & Borwein, [1988) to solve Equation [§in the encoded space. In
our case, the step size o(?) of gradient descent is approximated as:
i i—1 ' i—1
<h(7) — hG ),R(h(’)) — R(h(l ))>Q

(D) g oD = 16
¢ T OB T UR(WG) — R(RGD), R(RD) — R(WGD)), 1o

wherer R(h) is the residual vector in the encoded space and (f,g)q = >, cq f(z:) - g(zi)
denotes the inner product over the mesh. Because the inner product is taken all over the mesh (graph),
computing (11(3% corresponds to global pooling. With that view, one can find similarities between
Equation E] and deep sets (Zaheer et al.,[2017), which is a successful method to learn point cloud data

and has a strong background regarding permutation equivariance. For more details, see Appendix [A.3]



Table 1: MSE loss (= the standard error of the mean) on test dataset of gradient prediction. gNeumann
is the loss computed only on the boundary where the Neuman condition is set.

Method v¢(><1073) gNeumann(XlOiS)
Original [soGCN  192.72 4+ 1.69 1390.95 + 7.93
NIsoGCN (Ours) 6.70 = 0.15 3.52 £ 0.02

¥

Ground truth Original IsoGCN NIsoGCN

Figure 2: Gradient field (top) and the magnitude of error between the predicted gradient and the
ground truth (bottom) of a test data sample, sliced on the center of the mesh.

Our aim is to use Equation [I6] approximating the nonlinear differential operator D in Equation [7]
with NIsoGCN. By doing this, we expect the processor to consider both local and global information,
which may have an advantage over simply stacking GNNs corresponding to the explicit method as
discussed in Section[2.1.1] Combinations of solvers and neural networks are already suggested in,
e.g., NeuralODE (Chen et al.,2018). The novelty of our study is the extension of existing methods for
solving PDEs with spatial structure and the incorporation of global pooling into the solver, enabling
us to capture global interaction, which we refer to as the neural nonlinear solver. Finally, the update
from the state at the ith iteration h(¥) to the (i + 1)th in the neural nonlinear solver is expressed as:

R+ — DirichletLayer (h“) —ai) [h“) —pO _ DNIs()GCN(h(”)AtD Can

where h(%) is the encoded w(t, -) reflecting EquationE] and DNisogen is an E(n)-equivariant GNN
reflecting the structure of D using differential operators provided by NIsoGCN. Here, Equation[I7]
enforces hidden features to satisfy the encoded PDE, including boundary conditions, motivating us to
call our model physics-embedded neural networks because it embeds physics (PDEs) in the model
rather than in the loss.

4 Experiments

Using numerical experiments, we demonstrate the proposed model’s validity, expressibility, and
computational efficiency. We use two types of datasets: 1) the gradient dataset to verify the correctness
of NIsoGCN and 2) the incompressible flow dataset to demonstrate the speed and accuracy of
the model. The implementation of our model is based on the original IsoGCN’s codef| Our
implementation is available online The details of the experiments including ablation study and
another simple one can be found in Appendix and[D}

4.1 Gradient dataset

As done in Horie et al,| (2021), we conducted experiments to predict the gradient field from a
given scalar field to verify the expressive power of NIsoGCN. We generated cuboid-shaped meshes
randomly with 10 to 20 cells in the X, Y, and Z directions. We then generated random scalar fields
over these meshes using polynomials of degree 10 and computed their gradient fields analytically.
Our training, validation, and test datasets consisted of 100 samples. Table[T]and Figure 2] show that
the proposed NIsoGCN improves gradient prediction, especially near the boundary, showing that our
model successfully considers Neumann boundary conditions.

>https://github.com/yellowshippo/isogen-iclr2021, Apache License 2.0.
*https://github.com/yellowshippo/penn-neurips2022, Apache License 2.0.
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Table 2: MSE loss (£ the standard error of the mean) on test dataset of incompressible flow. If
"Trans." is "Yes," it means evaluation is done on randomly rotated and transformed test dataset.
“Dirichlet 18 the loss computed only on the boundary where the Dirichlet condition is set for each
u and p. MP-PDE’s results are based on the time window size equaling 40 as it showed the best
performance in the tested MP-PDEs. For complete results, see Table@

u p ’&'Dirichlet pDirichlet

Method Trans. (104 (x10~2) (x10~%) (x10~2)
MP-PDE No 1.30 +0.01 1.32 4+ 0.01 0.45 + 0.01 0.28 & 0.02
TW =20 Yes 1953.62 + 7.62 281.86 +£0.78 924.73+6.14 202.97 + 3.81
PENN (Ours) No 4.364+0.03 1.174+0.01 0.00+=0.00  0.00 4 0.00
Yes 4.36+0.03 1.17+0.01 0.002+0.00 0.00 =+ 0.00

1.5e+00
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Figure 3: Comparison of the velocity field without (top row) and with (bottom row) random ro-
tation and translation. PENN prediction is consistent under rotation and translation due to the
E(n)-equivariance nature of the model, while MP-PDE’s predictive performance degrades under
transformations.

Velocity magnitude

4.2 Incompressible flow dataset

We tested the expressive power our model by learning incompressible flow in complex shapes. The
corresponding nonlinear differential operator is denoted as:

1
Re

with the incompressible condition V - u = 0, where, in the present case, w is the flow velocity field,
p is the pressure field, and Re is the Reynolds number.

Drns(u) := —(u-V)u+ —V - Vu — Vp, (18)

4.2.1 Data

To generate the dataset, we first generated pseudo-2D shapes, with one cell in the Z direction, by
changing design parameters, starting from three template shapes. Thereafter, we performed numerical
analysis using a classical solver, OpenFOAMﬂ with At = 1073, and the initial conditions were the
solutions of potential flow, which can be computed quickly and stably using the classical solver. The
Reynolds number Re was around 103. The linear solvers used were generalized geometric-algebraic
multi-grid for p and the smooth solver with the Gauss—Siedel smoother for w. Template shapes,
design parameters, and boundary conditions used can be found in Appendix[C.2]

To confirm the expressive power of the proposed model, we used coarse input meshes for machine
learning models. We generated these coarse meshes by setting cell sizes roughly four times larger
than the original numerical analysis. We obtained ground truth variables using interpolation. The
task was to predict flow velocity and pressure fields at ¢ = 4.0 using information available before
numerical analysis, e.g., initial conditions and the geometries of the meshes. Training, validation, and
test datasets consisted of 203, 25, and 25 samples, respectively. We generated the dataset by randomly
rotating and translating test samples to monitor the generalization ability of machine learning models.

*https://www.openfoam.com/
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4.2.2 Machine learning models

We constructed the PENN model corresponding to the incompressible Navier—Stokes equation. In
particular, we adopted the fractional step method, where the pressure field was also obtained as a PDE
solution along with the velocity field. We encoded each feature in a 4, 8, or 16-dimensional space.
After features were encoded, we applied a neural nonlinear solver containing NeumanIsoGCNs and
Dirichlet layers, reflecting the fractional step method (See Equations[51]and [52). Inside the nonlinear
solver’s loop, we had a subloop that solved the Poisson equation for pressure, which also reflected
the considered PDE (See Equation[50). We looped the solver for pressure five times and four or eight
times for velocity. After these loops stopped, we decoded the hidden features to obtain predictions
for velocity and pressure, using the corresponding pseudoinverse decoders.

For the state-of-the-art baseline model, we selected MP-PDE (Brandstetter et al., 2022)) as it also
provides a way to deal with boundary conditions. We used the authors’ codeﬂ with minimum
modification to adapt to the task. We tested various time window sizes such as 2, 4, 10, and 20, where
one step corresponds to time step size At = 0.1. With changes in time window size, we changed
the number of hops considered in one operation of the GNN of the baseline to have almost the same
number of hops visible from the model when predicting the state at ¢ = 4.0. The numbers of hidden
features, 32, 64, and 128, were tested. All models were trained for up to 24 hours using one GPU
(NVIDIA A100 for NVLink 40GiB HBM2).

4.2.3 Results

Table[2]and Figure 3]show the comparison between MP-PDE and PENN. The predictive performances
of both models are at almost the same level when evaluated on the original test dataset. The results
show the great expressive power of the MP-PDE model because we kept most settings at default
as much as possible and applied no task-specific tuning. However, when evaluating them on the
transformed dataset, the predictive performance of MP-PDE significantly degrades. Nevertheless,
PENN shows the same loss value up to the numerical error, confirming our proposed components are
compatible with E(n)-equivariance. In addition, PENN exhibits no error on the Dirichlet boundaries,
showing that our treatment of Dirichlet boundary conditions is rigorous.

Figure[]shows the speed-accuracy trade-off for Open-

FOAM, MP-PDE, and PENN. We varied mesh cell 100 -
size, the time step size, linear sover settings for Open- "
FOAM to have different computation speeds and ac- "
. \ =]
curacy. The proposed model achieved the best per- \ @ . v
. el N
formance in speed-accuracy trade-off between all the ; ; ° R vv
tested methods under fair comparison conditions. 2 \ISi ® e . °
K] o A v
} 10' 4 \\\ & 4 4 v
Y A v
5 Conclusion v oo S L4 v
- .
# OpenFOAM ~e
We have presented an E(n)-equivariant, GNN-based R o = e T
neural PDE solver, PENN, which can fulfill bound- ToalMSe

ary conditions required for reliable predictions. The Figure 4: Comparison of computation time
model has superiority in embedding the information .4 total MSE loss (u and p) on the test

of PDEs (physics) in the model and speed-accuracy  yataset (with and without transformation) be-

trade-off. Therefore, our model can be a useful stan- tween OpenFOAM, MP-PDE, and PENN.
dard for realizing reliable, fast, and accurate GNN- The error bar repre’sents the s;andard error

based PDE solvers. Although the property of our ¢ (he mean. All computation was done us-

model is preferable, it also limits the applicable do- ing one core of Intel Xeon CPU E5-2695
main of the model because we need to be familiar 5> @2 40GHz. Data used to plot this figure

with the concreFe form of the PDE of interest to CON- ,re shown in Tables @ E]’ and@
struct the effective PENN model. Therefore, combin-
ing PINNs and PENNs could be the next direction of the research community.

>https://github.com/brandstetter- johannes/MP-Neural-PDE-Solvers


https://github.com/brandstetter-johannes/MP-Neural-PDE-Solvers

References

Ferran Alet, Adarsh Keshav Jeewajee, Maria Bauza Villalonga, Alberto Rodriguez, Tomas Lozano-Perez, and
Leslie Kaelbling. Graph element networks: adaptive, structured computation and memory. In /CML, 2019.

Jonathan Barzilai and Jonathan M Borwein. Two-point step size gradient methods. IMA journal of numerical
analysis, 8(1):141-148, 1988.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz
Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al. Relational inductive
biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.

Johannes Brandstetter, Daniel E. Worrall, and Max Welling. Message passing neural PDE solvers. In Inter-
national Conference on Learning Representations, 2022. URL https://openreview.net/forum?id=
vSix3HPYKSU.

Shengze Cai, Zhicheng Wang, Frederik Fuest, Young Jin Jeon, Callum Gray, and George Em Karniadakis.
Flow over an espresso cup: inferring 3-d velocity and pressure fields from tomographic background oriented
schlieren via physics-informed neural networks. Journal of Fluid Mechanics, 915, 2021.

Kai-Hung Chang and Chin-Yi Cheng. Learning to simulate and design for structural engineering. arXiv preprint
arXiv:2003.09103, 2020.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential
equations. Advances in neural information processing systems, 31, 2018.

George Cybenko. Approximation by superpositions of a sigmoidal function. Math. Control. Signals Syst., 5(4):
455, 1992.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message passing
for quantum chemistry. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 1263-1272. JMLR. org, 2017.

Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph domains. In
Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., volume 2, pp. 729-734.
IEEE, 2005.

Deguang Han, Keri Kornelson, Eric Weber, and David Larson. Frames for undergraduates, volume 40. American
Mathematical Soc., 2007.

Masanobu Horie, Naoki Morita, Toshiaki Hishinuma, Yu Ihara, and Naoto Mitsume. Isometric transforma-
tion invariant and equivariant graph convolutional networks. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=FX0vR395J5q.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2):251-257,
1991.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations, 2017. URL https://openreview.net/forum?
1d=SJU4ayVgll

Julia Ling, Andrew Kurzawski, and Jeremy Templeton. Reynolds averaged turbulence modelling using deep
neural networks with embedded invariance. Journal of Fluid Mechanics, 807:155-166, 2016.

Zhiping Mao, Ameya D Jagtap, and George Em Karniadakis. Physics-informed neural networks for high-speed
flows. Computer Methods in Applied Mechanics and Engineering, 360:112789, 2020.

Takuya Matsunaga, Axel Sodersten, Kazuya Shibata, and Seiichi Koshizuka. Improved treatment of wall
boundary conditions for a particle method with consistent spatial discretization. Computer Methods in Applied
Mechanics and Engineering, 358:112624, 2020.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep double
descent: Where bigger models and more data hurt. Journal of Statistical Mechanics: Theory and Experiment,
2021(12):124003, 2021.

Guofei Pang, Lu Lu, and George Em Karniadakis. fpinns: Fractional physics-informed neural networks. SIAM
Journal on Scientific Computing, 41(4):A2603-A2626, 2019.


https://openreview.net/forum?id=vSix3HPYKSU
https://openreview.net/forum?id=vSix3HPYKSU
https://openreview.net/forum?id=FX0vR39SJ5q
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-based simulation
with graph networks. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=roNqYLO_XP.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal
of Computational physics, 378:686-707, 2019.

Siamak Ravanbakhsh, Jeff Schneider, and Barnabas Péczos. Equivariance through parameter-sharing. In Doina
Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pp. 2892-2901. PMLR, 06-11 Aug 2017. URL
https://proceedings.mlr.press/v70/ravanbakhshl7a.html.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph
neural network model. /IEEE Transactions on Neural Networks, 20(1):61-80, 2008.

Tasuku Tamai and Seiichi Koshizuka. Least squares moving particle semi-implicit method. Computational
Particle Mechanics, 1(3):277-305, 2014.

Rui Wang, Robin Walters, and Rose Yu. Incorporating symmetry into deep dynamics models for improved
generalization. In International Conference on Learning Representations, 2021. URLhttps://openreview,
net/forum?id=wta_8Hx2KD.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and Alexander J
Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

10


https://openreview.net/forum?id=roNqYL0_XP
https://openreview.net/forum?id=roNqYL0_XP
https://proceedings.mlr.press/v70/ravanbakhsh17a.html
https://openreview.net/forum?id=wta_8Hx2KD
https://openreview.net/forum?id=wta_8Hx2KD

A Details of the proposed method

A.1 Construction of pseudoinverse decoder

We can construct the pseudoinverse decoders for a wide range of neural network architectures. For in-
stance, the pseudoinverse decoder for an multilayer perceptron (MLP) with one hidden layer f(z) =
o2 (Wao1(Wiz + b1) + b2) can be constructed as:

FH(h) = Wity (Wyoy ' (R) — b2) — b, (19)

where W7 is the pseudoinverse matrix of T and o is an invertible activation function whose Dom(c) =
Im(o) = R. We chose LeakyReLU

z  (x>0)

ax  (z<0), (20)

LeakyReLU(x) = {

where set a = 0.5 because an extreme value of a (e.g., 0.01) could lead to an extreme value of gradient for the
inverse function. In addition, one may choose activation functions whose Im (o) # R, such as tanh. However,
in that case, we must ensure that the input value to the pseudoinverse decoder is in Im (o) (in case of tanh, it is
(—1, 1)); otherwise, the computation would be invalid.

Besides, similar to the Dirichlet encoder and pseudoinverse decoder, we could define the specific encoder and
decoder for the Neumann boundary condition. However, this is not included in the contributions of our work
because it does not improve the performance of our model, which may be because the Neumann boundary
condition is a soft constraint in contrast to the Dirichlet one and expressive power seems more important than
that inductive bias.

A.2 Derivation of NIsoGCN

Matsunaga et al.[(2020) derived a gradient model that can treat the Neumann boundary condition with an arbitrary
convergence rate with regard to spatial resolution. Here, we derive our gradient model, i.e., NIsoGCN, in a
different way to simplify the discussion because we only need the first-order approximation for fast computation.

Before deriving NIsoGCN, we review introductory linear algebra using simple normation. Using a unit basis
{e; € R?: |le;|| = 1}, one can decompose a vector v € R? using:

v = Z('v -ej)e;. (21)
Now, consider replacing the basis {e; € Rd}‘f:l with a set of vectors B = {b; € Rd}?lzl, called a frame,

that spans the space but is not necessarily independent (thus, d’ > d). Using the frame, one can assume v is
decomposed as:

v = Z(’U . bl)Abl, (22)
where A is a matrix that corrects the "overcount” that may occur using the frame (for instance, consider
expanding (1,0) " with the frame {(1,0)", (=1,0)",(0,1) " }). A set { Ab;}¢_, is called a dual frame for B.
We can find the concrete form of A considering:

=A> (bi@b)v. (24)

Requiring that Equationholds for any v € R?, one can conclude A = > ® b;)~!. Finally, we obtain
v=[b;@b] "> (v-bi)bs (25)

i

For more details on frames, see, e.g.,|Han et al.|(2007).

Then, we can derive NIsoGCN at the ith vertex on the Neumann boundary, by letting

T, —; T, — T; T, — i
B:{ I L2 O et 2 ,\/w-n-}, (26)
@, — @il llaog, — ] [, — Y
where {j1,72,...,Jm} are indices of neighboring vertices to the ith vertex. In addition, we assume the
approximated gradient of a scalar field ¢ at the ith vertex, (V1)),, satisfies the following conditions:
(V) TS Y T (k=1,...,m), @7)
), —zill g, — il
(VY), - n = gi. (28)
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Equationis a natural assumption because we expect the directional derivative in the direction of (xj;, —
x;)/||z;, — x| should correspond to the slope of ¢ in the same direction. Equation [28|is the Neumann
boundary condition, which we want to satisfy. Finally, by substituting Equations 26] 27] and 28] we obtain
NIsoGCN, i.e., Equation[T4]

To apply NIsoGCN to ¢, the rank k tensors (K > 1), one can recursively define the operation as:

NISOGCN}Cfl*}k (tl)
NIsoGCNg_k+1(t) := NIsoGCNg—1-5(t2) ) 29)
NISOGCNkflﬁk (t3)

where t; is the ith component of ¢, resulting in the rank (k — 1) tensor. In case of the rank 1 tensor v, it can be
formulated as:

NIsoGCNo—1(v1) Ov1/0x Ovi /Oy Ovi/0z
NIsoGCNi,2(v) = NIsoGCNo_,1(v2) ~ Ova /0 Ova /Oy Ova/0z = V. (30)
NIsoGCNo—1(v3) Ous/0x Ovs/dy Ovs/0z

Please note that each component v; has multiple features in the encoded space, e.g., 16 or 64, resulting in
NIsoGCNi_2(v) represents multiple rank 2 tensors for each vertex (see Figure 1 of|Horie et al.|(2021)).

As discussed in|Horie et al.| (2021), IsoGCNs (NIsoGCNs) correspond to spatial differential operators as:

* NIsoGCNo—;1(¢): Gradient V) (rank O tensor to rank 1 tensor)
¢ NIsoGCN;_,0(v): Divergence V - v (rank 1 tensor to rank 0 tensor)

e NIsoGCNo—1-0(%) := NIsoGCN10 0 NIsoGCNo_,1(%): Laplacian V - V) (rank 0 tensor to
rank 1 tensor to rank O tensor)

NIsoGCNi_,2(v): Jacobian Vv (rank 1 tensor to rank 2 tensor)

* NIsoGCNo—152(¢)) := NIsoGCN;_2 o NIsoGCNo_,1(1)): Hessian V'V (rank O tensor to rank
1 tensor to rank 2 tensor)

Because NIsoGCN contains a learnable weight matrix (see Equation [T4), the component learns to predict the
derivative of the corresponding tensor rank in an encoded space. This feature of NIsoGCNs enables us to
construct machine learning models corresponding to PDE in the encoded space.

A.3 Derivation of the step size in the Barzilai-Borwein method
We derive Equation [T6]by applying the Barzilai-Borwein method to our case. We start with Equation[8] which
corresponds to a nonlinear problem:
R(v) :=v — u(t,-) — D(v)At, (31)
Solve, R(v)(xz;) = 0, Vi, (32)

We consider solving it by applying the linear iterative method using the Taylor expansion, assuming the update
Av® = D — @ ig small enough. The iterative method is expressed as:

U(O) _ ’u,(t7 ), (33)
0D — 4 4 A, (34)
R 4+ Av?) ~ R(v?) + Vo R(v™) A0 = 0, (35)

where VvR('v(i)) denotes the Jacobian matrix with the shape of n X n (n roughly corresponds to the number
of vertices of the mesh). To optain update, we may solve Equation [33]as:

Ao = [V R )] " R®), (36)

corresponding to the Newton—Raphson method. However, it may take enormous computation resources because
VvR('u“)) is usually a huge matrix. Instead, we can approximate:

[VUR(M)] e, 37)
which corresponds to gradient descent:

AvD ~ oD R(v™). (38)
Substituting Equation [37)into Equation 33} we obtain:

. ) 1 )
Rv"™Y) = R(v") + Wmﬂ“. (39)
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Figure 5: Architecture used for (a) original IsoGCN and (b) NIsoGCN training. In each cell, we put
the number of units in each layer along with the activation functions used.

We want to find a good all satlsfymg Equatlonthe best. Thus, we obtain a through:

ag])g = arg min £(«), (40)

R > £(a) HAv( D , where AR® = R(v"T1)) — R(v™). @41)

Because of the convexity of the problem, it is enough to find alpha satisfying:

dL

== <Av("> — o ARV, —ARY) =0, 42)

(4)
BB

where < -, - > denotes the inner product in the corresponding space. Using the linearity of the inner product, we
obtain:

<Av(i) —aLARY, ~AR") =0, 43)

— (a0, ARY) + o} (ARV, ARV =0, (44)
< v ARU >>

(%) (45)

“BB = (ARG, ARD)"
Equation 3] is equivalent to Equation[T6]

As seen from the derivation, agé is determined to satisfy Equationas much as possible for all vertices and all

feature components. That means a](3])3 has global information because it considers all vertices, making the global

interaction possible. In addition, a(l)
Therefore, ag])g is suitable for realizing efficient PDE solvers with E(n)-equivariance.

is equivariant because it is scalar, which does not depend on coordinate.

B Experiment details: gradient dataset

Figureshows the architectures we used for the gradient dataset. The dataset is uploaded onlineE] We followed
the instruction of |Horie et al.| (2021) (in particular, Appendix D.1 of their paper) to make the features and models
equivariant. To facilitate a fair comparison, we made input information for both models equivalent, except for
M~ in Equation Equation which is a part of our novelty. For both models, we used Adam (Kingma & Bal
2014) as an optimizer with the default setting. Training for both models took around ten minutes using one GPU
(NVIDIA A100 for NVLink 40GiB HBM2). Figure [5]shows model architectures used for the experiment.

Shttps://drive.google.com/uc?export=download&id=113nzfpwRZSsDjZeNU9kg0j9X7QBSC49Y
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Figure 6: Three template shapes used to generate the dataset. a1, b1, b2, ¢1, and ¢, are the design
parameters.

C Experiment details: incompressible flow dataset

C.1 Governing equation

The incompressible Navier—Stokes equations, the governing equations of incompressible flow, are expressed as:

ou 1

E:—(U~V)u+ReV~VU—Vp (t,x) € (0,T) x Q, (46)
u=1u (t,z) € aQ](Duir)ichch 47
[VU n (VU)T] n = (t,x) e 0@ . . (48)
We also consider the following incompressible condition:
V-u=0 (t,z)e(0,T)x8Q, (49)

which may be problematic when solving these equations numerically. Therefore, it is common to divide the
equations into two: one to obtain pressure and one to compute velocity. There are many methods to make such a
division; for instance, the fractional step method derives the Poisson equation for pressure as follows:

1

V- Vp(t+ At,x) = E(V -a)(t,x), (50)
where
ﬂ:u—At<u~Vu—iV‘Vu> (51)
Re

is called the intermediate velocity. Once we solve the equation, we can compute the time evolution of velocity as
follows:

u(t+ At,x) = a(t,x) — AtVp(t + At, ). (52)

Because the fractional step method requires solving the Poisson equation for pressure, we also need the boundary
conditions for pressure as well:

p=0 (t,x) € ani)richlew (53)
Vp -m=0 (t7 :E) € 8Q§\?e)umann' (54)

Our machine learning task is also based on the same assumption: motivating pressure prediction in addition to
velocity with boundary conditions of both.
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Figure 7: Boundary conditions of u used to generate the dataset. The continuous lines and dotted
lines correspond to Dirichlet and Neumann boundaries.
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Figure 8: Boundary conditions of p used to generate the dataset. The continuous lines and dotted
lines correspond to Dirichlet and Neumann boundaries.

C.2 Dataset

We generated numerical analysis results using various shapes of the computational domain, starting from three
template shapes and changing their design parameters as shown in Figure [6] For each design parameter, we
varied from O to 1.0 with a step size of 0.1, yielding 11 shapes for type A and 121 shapes for type B and C.
The boundary conditions were set as shown in Figures[7]and[8] These design and boundary conditions were
chosen to have the characteristic length of 1.0 and flow speed of 1.0. The viscosity was set to 10>, resulting in
Reynolds number Re ~ 103. The linear solvers used were generalized geometric-algebraic multi-grid for p and
the smooth solver with the Gauss—Siedel smoother for w. Numerical analysis to generate each sample took up to
one hour using CPU one core (Intel Xeon CPU E5-2695 v2@2.40GHz). The dataset is uploaded onlinem

"https://drive.google.com/uc?export=download&id=1x10-rsRp1XckS-0iXpFCMI16f2xMOvOI,
https://drive.google.com/uc?export=download&id=1Q08cC5Lh3LYsesdt6LveFPzBLoLQVuliT,
https://drive.google.com/uc?export=download&id=15eH9jvUWHvGrWldBOBcwugRtqR8Unz1S,
https://drive.google.com/uc?export=download&id=1GdntVtfG6wgU_8FQMXsCmpylhylWCo8B, and
https://drive.google.com/uc?export=download&id=1alykQ2Yyp-591GMhIX5dHkt0d6hevtYB.
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Figure 9: The overview of the PENN architecture for the incompressible flow dataset. Gray boxes
with continuous (dotted) lines are trainable (untrainable) components. Arrows with dotted lines
correspond to the loop. In each cell, we put the number of units in each layer along with the activation
functions used.

C.3 Model architectures
The input features of the model are:

* u(t = 0.0): The initial velocity field, the solulsion of potential flow
¢ u: The Dirichlet boundary condition for velocity

* p(t = 0.0): The initial pressure field

* p: The Dirichlet boundary condition for pressure

o 7054 =1.0d o=2.0d; Reatures computed from d, the distance from the wall boundary condition

and the output features are:

* u(t = 4.0): The velocity field at t = 4.0
e p(t = 4.0): The pressure field at t = 4.0

The strategy to construct PENN for the incompressible flow dataset is the following:

 Consider the encoded version of the governing equation

* Apply the neural nonlinear solver containing the Dirichlet layer and the NIsoGCN to the encoded
equation

¢ Decode the hidden feature using the pseudoinverse decoder.
Reflecting the fractional step method, we build PENN using spatial differential operators provided by NIsoGCN.

We use a simple linear encoder for the velocity and the associated Dirichlet boundary conditions. For pressure and
its Dirichlet constraint, we use a simple MLP with one hidden layer. We encode each feature in a 16-dimensional
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Figure 10: The neural nonlinear solver for velocity. Gray boxes with continuous (dotted) lines are
trainable (untrainable) components. Arrows with dotted lines correspond to the loop. In each cell, we
put the number of units in each layer along with the activation functions used.

space. After features are encoded, we apply a neural nonlinear solver containing NeumanIsoGCNs and Dirichlet
layers, reflecting the fractional step method (Equations[51]and[52).

The encoded equations are expressed as:

[NIsoGCNj 0 0 NIsoGCNo_ 1 (hy)](t + At, @) = é [leoGCNHO (Bu)] (t,2), (55)
Pa : = by — At | By, - NIsSoGCN 0 (B ) — éNIsoGCNg_A o NIsoGCN o (hu)] ,

(56)

ha(t + At, ) = ho(t, @) — At NIsoGCNo_1 (hy) (t + At, x), (57)

where h., is the encoded w and h,, is the encoded p. Note that these equations correspond to Equations[50] [51]
and[52] by regarding IsoGCNs as spatial derivative operators. The corresponding neural nonlinear solvers are
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trainable (untrainable) components. In each cell, we put the number of units in each layer along with
the activation functions used.

expressed as:

RUTD = R — o) [h&? — b9~ Dyroconins (hi}'), h}j*”) At] : (58)

DN1soGCN;NS (h&i), hgﬂ))

= {hﬁf)  NIsoGCNi2 (hY))) L NIsoGON,1 0 NIsoGON s (n) + NIsoGCN (h;i“))} ,
Re
(59)
for h,, and

h;’i%j‘f’l) — h;’h]) — agg)DNIsoGCN;prcssurc(héi;j)% (60)

DNISOGCN;pressure (hl(;ZJ)) L= <NISOGCN1~>O o NISOGCNO%I (hgd>) - iNISOGCNlﬁo (ili?)) s
(61)
for hp, where Y = h.(t,-), héo) = hyp(t,-), and héi;o) = hg). For notation regarding NIsoGCNs, please

see Appendix [A.2] Figures[9] [T0] and[IT]present the PENN model architecture used for the incompressible flow
dataset.

As seen in Figure[T0] we have a subloop that solves the Poisson equation for pressure in the nonlinear solver’s
loop for velocity. We looped the solver for pressure five times and eight times for velocity. After these loops
stopped, we decoded the hidden features to obtain predictions for velocity and pressure, using the corresponding
pseudoinverse decoders.

C.4 Implementation details

As discussed in|Horie et al.|(2021), nonlinearity can be applied to the scalar but cannot be applied to the tensors
with a rank equal to or greater than one. For such a tensor, nonlinearity can be applied to its norm as:

MLP:ensor (v) := MLP(]||v||)v. (62)
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This strategy to apply nonlinearity is used not only in the MLP blocks but also NIsoGCN blocks. To facilitate
the smoothness of pressure and velocity fields, we apply GCN layers corresponding to numerical viscosity in the
standard numerical analysis method. Here, please note that the PENN model consists of components that accept
arbitrary input lengths, e.g., pointwise MLPs, deep sets, and NIsoGCNs. Thanks to the model’s flexibility, we
can apply the same model to arbitrary meshes similar to other GNNs.

C.5 Training details

Because the neural nonlinear solver applies the same layers many times during the loop, the model behaved
somehow similar to recurrent neural networks during training, which could cause instability. To avoid such
unwanted behavior, we simply retried training by reducing the learning rate of the Adam optimizer by a factor of
0.5. We found our way of training useful compared to using the learning rate schedule because sometimes the
loss value of PENN can be extremely high, resulting in difficulty to reach convergence with a lower learning
rate after such an explosion. Therefore, we applied early stopping and restarted training using a lower learning
rate from the epoch with the best validation loss. Our initial learning rate was 5.0 x 10™*, and we restarted
the training twice, which was done automatically, within the 24-hour training period of PENN. For the ablation
study, we used the same setting for all models. For PENN and ablation models, we used Adam (Kingma & Ba,
2014) as an optimizer. For MP-PDE solvers, we used the default setting written in the paper and the code.

C.6 Result details

Table ] presents the detailed results of the comparison between MP-PDE and PENN. Interestingly, the perfor-
mance of MP-PDE gets better as the time window size increases. Therefore, our future direction may be to
incorporate MP-PDE’s temporal bundling and pushforward trick into PENN to enable us to predict the state
after a far longer time than we do in the present work.

Tables[]and[5]show the speed and accuracy of the machine learning models tested. PENN models show excellent
performance with a lot smaller number of parameters compared to MP-PDE models. It is achieved due to
efficient parameter sharing in the proposed model, e.g., the same weights are used repeatedly in the neural
nonlinear encoder. Also, as pointed out in |Ravanbakhsh et al.| (2017), there is a strong connection between
parameter sharing and equivariance. PENN has equivariance in, e.g., permutation, time translation, and E(n)
through parameter sharing, which is in line with them.

Table[6] presents the speed and accuracy with various settings of OpenFOAM to seek a speed-accuracy tradeoff.
We tested three configurations of linear solvers:

* Generalized geometric-algebraic multi-grid (GAMG) for p and the smooth solver for u

* Generalized geometric-algebraic multi-grid (GAMG) for both p and ©

¢ The smooth solver for p and
In addition, we tested different resolutions for space and time by changing:

¢ The number of divisions per unit length: 22.5, 45.0, 90.0
* Time step size: 0.001, 0.005, 0.010, 0.050
Ground truth is computed using the number of divisions per unit length of 90.0 and time step size of 0.001; thus,

this combination is eliminated from the comparison because the MSE error is underestimated (in particular,
Z€er10).

C.7 Ablation study details
To validate the effectiveness of our model through an ablation study on the following settings:
(A) Without encoded boundary: In the nonlinear loop, we decode features to apply boundary conditions to

fulfill Dirichlet conditions in the original physical space

(B) Without boundary condition in the neural nonlinear solver: We removed the Dirichlet layer in the
nonlinear loop. Instead, we added the Dirichlet layer after the (non-pseudoinverse) decoder.

(C) Without neural nonlinear solver: We removed the nonlinear solver from the model and used the explicit
time-stepping instead

(D) Without boundary condition input: We removed the boundary condition from input features

(E) Without Dirichlet layer: We removed the Dirichlet layer. Instead, we let the model learn to satisfy
boundary conditions during training.
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Figure 12: Visual comparison of the ablation study of (i) ground truth, (ii) the model without the
neural nonlinear solver (Model (C)), (iii) the model without pseudoinverse decoder with Dirichlet
layer after decoding (Model (G)), and (iv) PENN. It can be observed that PENN improves the
prediction smoothness, especially for the velocity field.

(F) Without pseudoinverse decoder: We removed the pseudoinverse decoder and used simple MLPs for
decoders.

(G) Without pseudoinverse decoder with Dirichlet boundary layer after decoding: Same as above, but with
Dirichlet layer after decoding.

We again put the results of the ablation study in Table [7] which is already presented in Table ??, for the
convenience of the readers.

Comparison with Model (A) shows that the nonlinear loop in the encoded space is inevitable for machine
learning. This result is quite convincing because if the loop is made in the original space, the advantage of the
expressive power of the neural networks cannot be leveraged. Comparison with Model (C) confirms that the
concept of the solver is effective compared to simply stacking GNNSs, corresponding to the explicit method.

If the boundary condition input is excluded (Model (D)), the performance degrades in line with[Brandstetter et al|
(2022). That model also has an error on the Dirichlet boundaries. Model (E) shows a similar result, improving
performance using the information of the boundary conditions. If the pseudoinverse decoder is excluded (Model
(F)), the output may not satisfy the Dirichlet boundary conditions as well. Besides, the decoder has more effect
than expected because PENN is better than Model (G). Both models satisfy the Dirichlet boundary condition,
while PENN has significant improvement. This may be because the pseudoinverse decoder facilitates the spatial
continuity of the outputs in addition to the fulfillment of the Dirichlet boundary condition. In other words, using
a simple decoder and the Dirichlet layer after that may cause spatial discontinuity of outputs. Visual comparison
of part of the ablation study is shown in Figure[T2]
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Table 3: MSE loss (£ the standard error of the mean) on test dataset of incompressible flow. If
"Trans." is "Yes", it means evaluation on randomly rotated and transformed test dataset. n denotes
the number of hidden features, » denotes the number of iterations in the neural nonlinear solver used
in PENN models, and TW denotes the time window size used in MP-PDE models.

Method Trans. (x 116,4) (x 178,3) 1(‘510‘:14; 1(7 5101“33

PENN No 4.36 £+ 0.03 1.17+£0.01 0.00 + 0.00 0.00 £ 0.00
n=16,7 =8 Yes 4.36 £+ 0.03 1.17 £0.01 0.00 % 0.00 0.00 % 0.00
PENN No 29.09+0.17  11.35+0.04 0.00 + 0.00 0.00 + 0.00
n=16,r =4 Yes 29.09+0.17  11.3540.04 0.00 % 0.00 0.00 % 0.00
PENN No 177424093  35.70 +0.12 0.00 + 0.00 0.00 + 0.00
n=38r=38 Yes 177.4240.93  35.70 £0.12 0.00 + 0.00 0.00 + 0.00
PENN No 26.82 + 0.16 7.86 4+ 0.03 0.00 + 0.00 0.00 + 0.00
n=_8r=4 Yes 26.82 + 0.16 7.86 + 0.03 0.00 + 0.00 0.00 £ 0.00
PENN No 92.80+0.52  31.47+0.13 0.00 + 0.00 0.00 £ 0.00
n=4,r=38 Yes 92.80 +£0.52  31.47+0.13 0.00 =+ 0.00 0.00 £ 0.00
PENN No 120.354+0.65  35.53 +0.12 0.00 + 0.00 0.00 + 0.00
n=4,r=4 Yes 120.35+0.65  35.53+0.12 0.00 £ 0.00 0.00 £ 0.00
MP-PDE No 1.30 £ 0.01 1.32+0.01 0.45 £ 0.01 0.28 £ 0.02
n =128, TW =20 vyes 1953.62 + 7.62  281.86 +0.78 924.73 +£6.14  202.97 + 3.81
MP-PDE No 12.08 +0.11 6.49 £ 0.03 1.36 4+ 0.01 2.57 + 0.05
n =128, TW =10 ves 1468.12 +£5.75  192.97 + 0.57 767.17 + 4.36 51.87 + 1.07
MP-PDE No 32.07 4+ 0.33 6.22 + 0.05 0.85 + 0.01 0.92 +0.03
n=128,TW =4 vyes 2068.99 +8.30  180.54 & 0.57 284.72 +1.69 59.21 + 1.32
MP-PDE No 58.88 + 0.60 9.62 + 0.07 1.02 +0.02 2.83 £ 0.10
n=128,TW =2 ves 1853.27 £ 7.89 219.59 +0.53  965.90 = 28.61  358.53 £ 2.13
MP-PDE No 6.09 + 0.05 5.39 + 0.03 1.65 + 0.02 2.16 + 0.08
n=064,TW =20  Yes 1969.34 + 7.50 388.54 +1.12 720.35 +5.15  218.06 + 8.01
MP-PDE No 38.54+0.32  31.33+0.09 2.04 +0.02 5.87 + 0.09
n=064,TW =10  Yes 2738.84 £9.37 171.32+0.60 417.57 + 2.49 28.34 + (.92
MP-PDE No 125.09+£1.11  21.93+0.09 2.27 +0.03 5.92 +0.16
n =064, TW =2 Yes 1402.01 £ 6.03  435.75 + 2.41 384.30 +4.13 57.26 + 1.90
MP-PDE No 32.46 £0.24  17.40 £0.07 5.92 £ 0.05 5.94+0.17
n=32,TW =20  Yes 2201.16 + 7.59  351.66 + 0.82 429.30 +3.27  562.16 + 11.62
MP-PDE No 11530 £1.01  34.97+0.15 10.26 4 0.09 6.84 4+ 0.14
n=32TW =10  Yes 2824.76 +8.60 496.33+1.33 2276.11 £ 10.57  488.50 £ 5.01
MP-PDE No 272.73+2.07  94.27 +0.45 11.50 4+ 0.12 35.76 + 0.29
n=32TW =4 Yes 1973.35 +8.29  554.69 + 4.26 647.31 £7.40  157.85+ 8.41
MP-PDE No 794.90 + 4.68  82.61 + 0.40 50.23 + 0.91 31.41 +1.88
n=32,TW =2 Yes 3240.69 +21.91 443.10£2.56 2885.30 +41.17 562.08 + 19.28
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Table 4: MSE loss (& the standard error of the mean) of PENN models on test dataset of incompress-

ible flow.
# hidden # iterati(?n in 4 Total MSE Total time [s
feature  the neural nonlinear solver " Parameter (x1073) (5]
16 8 8,432 1.61 +£0.01 5.33 £0.13
16 4 8,432 14.26 +£0.03 2.52 £0.06
8 8 2,100 53.44+0.11 3.54 £0.08
8 4 2,100 10.54 +0.03 2.16 = 0.04
4 8 596 40.75+0.10 2.86 = 0.06
4 4 596 47.57+0.10 1.35£0.04

Table 5: MSE loss (£ the standard error of the mean) of MP-PDE models on test dataset of
incompressible flow.

#f:;‘tilfri:n Time window size # parameter T(o)t(allol\iIBS)E Total (h:?lg_(?:l“)rans.) Total time [s]
128 20 709,316 1.454+0.01 477.23 £0.77  51.61£1.41
128 10 673,484 7.70 £ 0.02 339.78 £ 0.57  94.01 & 2.66
128 4 651,972 9.43 £0.04 387.44+0.71 137.32+£3.91
128 2 644,548  15.51 £0.07 404.92+0.67  57.28+1.91
64 20 204,004 6.00 &= 0.02 585.48 +0.95  13.6240.38
64 10 185,356  35.19 £0.07 44520+ 0.79  23.73+0.67
64 2 174,740  34.44 £0.10 575.95£1.76  32.61+£1.02
32 20 63,964  20.64 4= 0.05 571.77+£0.79 7.64 &+ 0.24
32 10 55,348  46.50£0.13 778.80 £1.12  12.93+0.39
32 4 49,948 121.55+0.35 752.03 £3.07  13.994+0.41
32 2 47,924 162.10+£0.44 767.17 £ 2.38 4.55 £0.13
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Table 6: MSE loss (£ the standard error of the mean) of OpenFOAM computations on test dataset of
incompressible flow.

# division

Solver for u  Solver for p per unit length At Total MSE (x10~3) Total time [s]
GAMG Smooth 22.5 0.050 Divergent Divergent
GAMG Smooth 22.5 0.010 6.09 + 0.02 6.08 £ 0.17
GAMG Smooth 22.5 0.005 6.04 +0.02 11.57 £ 0.32
GAMG Smooth 22.5 0.001 4.80 + 0.02 51.43 £1.39
GAMG Smooth 45.0 0.050 Divergent Divergent
GAMG Smooth 45.0 0.010 0.46 4+ 0.00 25.12+0.81
GAMG Smooth 45.0 0.005 0.78 +0.00 46.71 £ 1.53
GAMG Smooth 45.0 0.001 1.04 +£0.00 201.11 £6.29
GAMG Smooth 90.0 0.050 Divergent Divergent
GAMG Smooth 90.0 0.010 Divergent Divergent
GAMG Smooth 90.0 0.005 0.15 4+ 0.00 231.18 £10.38
GAMG GAMG 22.5 0.050 Divergent Divergent
GAMG GAMG 22.5 0.010 6.05 + 0.02 6.41 +0.18
GAMG GAMG 22.5 0.005 6.00 + 0.02 12.21+£0.34
GAMG GAMG 22.5 0.001 4.80 + 0.02 55.51 £ 1.52
GAMG GAMG 45.0 0.050 Divergent Divergent
GAMG GAMG 45.0 0.010 0.46 4+ 0.00 26.00 £ 0.85
GAMG GAMG 45.0 0.005 0.77 +£0.00 48.78 £ 1.57
GAMG GAMG 45.0 0.001 1.03 +£0.00 214.29 £ 6.62
GAMG GAMG 90.0 0.050 Divergent Divergent
GAMG GAMG 90.0 0.010 Divergent Divergent
GAMG GAMG 90.0 0.005 0.14 +£0.00 238.94 £10.70
Smooth Smooth 22.5 0.050 Divergent Divergent
Smooth Smooth 225 0.010 5.59 £ 0.02 85.50 + 3.05
Smooth Smooth 22.5 0.005 5.41 +0.02 164.36 + 7.57
Smooth Smooth 22.5 0.001 4.19 +0.02 765.50 £ 29.65
Smooth Smooth 45.0 0.050 Divergent Divergent
Smooth Smooth 45.0 0.010 51.10 £ 0.05 426.07 £ 22.51
Smooth Smooth 45.0 0.005 2.09 £ 0.00 824.71 £ 39.90
Smooth Smooth 45.0 0.001 1.124+0.00 3960.88 £ 151.93
Smooth Smooth 90.0 0.050 Divergent Divergent
Smooth Smooth 90.0 0.010 Divergent Divergent
Smooth Smooth 90.0 0.005 4493.78 = 1.88  3566.05 £ 183.75
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Table 7: Ablation study on 2D incompressible flow dataset. The value represents MSE loss (£
standard error of the mean) on the test dataset. "Divergent" means the implicit solver does not
converge and the loss gets extreme value (~ 10'%). This presents the same results as Table ??.

Method

(xll(;%)

p
(x1073)

UDirichlet

ﬁDirichl[et

(x10~%) (x10~%)

(A) Without encoded boundary Divergent Divergent Divergent Divergent
(B) Without boundary condition 65.10£0.38 21.70+£0.09  0.0040.00  0.00 = 0.00
in the neural nonlinear solver

(C) Without neural nonlinear solver 31.03 £0.19 9.81+0.04 0.00+0.00 0.004+0.00
(D) Without boundary condition input  20.08 + 0.21 3.61 £0.02 59.60+0.89 1.43+0.05
(E) Without Dirichlet layer 8.22+0.07 1.4140.01 1820+£0.28 0.38+0.01
(F) Without pseudoinverse decoder 8.91£0.06 2.36+0.02 1.97£0.06 0.00=£0.00
(G) Without pseudoinverse decoder

with Dirichlet layer after decoding 6.65 + 0.05 1.71+£0.01 0.00+0.00 0.00+0.00
PENN 4.36 £0.03 1.17+0.01 0.00+0.00 0.00+0.00
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D Experiment details: advection-diffusion dataset

To test the generalization ability of PENNs regarding PDE’s parameters and time series, we run an experiment
with the advection-diffusion dataset. The governing equation regarding the temperature field 7" used for the
experiment is expressed as:

1
%f ——| o) vr+pv.vr (t,@) € (0,1) x O, ©63)
0
Tt=0,2)=0 x € Q, (64)
T = T (t7 15) € aQDirichlet, (65)
VT n=0 (t7 il:) € aQNeumanrn (66)

where ¢ € R is the magnitude of a known velocity field, and D € R is the diffusion coefficient. We set
Q:{m€R3|O<I1 <1IAO0< 22 <1A0< 23 <0.01}, ONDirichiet = {& € 9N | z1 = 0} and
aQNeumann = 00 \ 8QDirichlct .

D.1 Dataset

We varied ¢ and D from 0.0 to 1.0, eliminating the condition ¢ = D = 0.0 because nothing drives the
phenomena, and and varied T from 0.1 to 1.0. Like the incompressible flow dataset, we generated fine meshes,
ran computation with OpenFOAM, and interpolated the obtained temperature fields onto coarser meshes. We
split the generated data into training, validation, and test dataset containing 960, 120, and 120 samples. The
dataset is uploaded onlineﬁ

D.2 Model architecture

The strategy to construct PENN for the advection-diffusion dataset is consistent with one for the incompressible
flow dataset (see Appendix [C.3). The input features of the model are:

e T(t = 0.0): The initial temperature field

« T": The Dirichlet boundary condition for the temperature field
* (c,0,0)": The velocity field

¢ ¢: The magnitude of the velocity

¢ D: The diffusion coefficient

—0.5d _—1.0d
) )

s e e e~294; Features computed from d, the distance from the Dirichlet boundary

and the output features are:

o T(t = 0.25): The temperature field at t = 0.25
* T(t = 0.50): The temperature field at t = 0.50
o T(t = 0.75): The temperature field at t = 0.75
o T(t =1.00): The temperature field at t = 1.00

The encoded governing equation is expressed as:
hr(t+ At,z) = hr(t,z) + Dnisocen;a-p (hr) (t + At, @) (67)
DrisoGenN;A-D (A1) : = —he - NIsoGCNo_ 1 (hr) + hp NIsoGCNo—1-0(hT) (68)

The corresponding neural nonlinear solver is:

B = h — o) [pS) = A — Daisocona-n (h)AY (69)

Because the task is to predict time series data, we adopt autoregressive architecture for the nonlinear neural
solver, i.e., input the output of the solver of the previous step (which is in the encoded space) to predict the
encoded feature of the next step (see Figure[I3). Figures[I4]and[T5]present the detailed architecture of the PENN
model for the advection-diffusion dataset experiment.

To confirm the PENN’s effectiveness, we ran the ablation study similar to that in the incompressible flow dataset.
The training is performed for up to ten hours using the Adam optimizer for each setting.

8 https://drive.google.com/uc?export=download&id=1bQ6RKcSbHsg2D0gikYRe1CBu6bN88Lk2
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Figure 13: The concept of the neural nonlinear solver for time series data with autoregressive
architecture. The solver’s output is fed to the same solver to obtain the state at the next time step
(bold red arrow). Please note that this architecture can be applied to arbitrary time series lengths.

Table 8: MSE loss (£ the standard error of the mean) on test dataset of the advection-diffusion
dataset.

Method T (x107%)  Toisichlet (x10™4)

(A) Without encoded boundary 54.191 + 6.36 0.0000 =+ 0.0000
(B) Without boundary condition

in the neural nonlinear solver 390.828 + 24.58 0.0000 =+ 0.0000
(C) Without neural nonlinear solver 6.630 £ 1.21 0.0000 =+ 0.0000
(D) Without boundary condition input  465.492 4+ 26.47  868.7009 £ 15.5447
(E) Without Dirichlet layer 2.860 + 2.46 1.1703 £ 0.0328
(F) Without pseudoinverse decoder 44.947 + 6.00 9.7130 + 0.1201
With Dirichleslayer aer qecodmg.  +90TE48T  0.0000:+0.0000
PENN 1.795 + 1.33 0.0000 +£ 0.0000

D.3 Results

Table 8] presents the results of the ablation study. As well as the incompressible flow dataset, we found that the
PENN model with all the proposed components achieved the best performance. Because the boundary condition
applied is relatively simple compared to the incompressible flow dataset, the configuration without the Dirichlet
layer (Model (E)) showed the second best performance; however, the fulfillment of the Dirichlet condition of
that model is not rigorous.

Figures [T6] and[T8]show the visual comparison of the prediction with the PENN model against the ground
truth. As seen in the figures, one can see that our model is capable of predicting time series under various
boundary conditions and PDE parameters, e.g., pure advection (Figure[T6), pure diffusion (Figure [I7), and
mixed advection and diffusion (Figure[I8).
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Figure 14: The overview of the PENN architecture for the advection-diffusion dataset. Gray boxes
with continuous (dotted) lines are trainable (untrainable) components. Arrows with dotted lines

correspond to the loop. In each cell, we put the number of units in each layer along with the activation
functions used. The bold red arrow corresponds to the one in Figure@
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Figure 15: The overview of the PENN architecture for the advection-diffusion dataset. Gray boxes
with continuous (dotted) lines are trainable (untrainable) components. In each cell, we put the number

of units in each layer along with the activation functions used.
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Figure 16: Visual comparison on a test sample between (left) ground truth obtained from OpenFOAM
computation with fine spatial-temporal resolution and (right) prediction by PENN. Here, ¢ = 0.9,
D =0.0,and T = 0.4.
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Figure 17: Visual comparison on a test sample between (left) ground truth obtained from OpenFOAM

computation with fine spatial-temporal resolution and (right) prediction by PENN. Here, ¢ = 0.0,
D =0.4,and T = 0.3.
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Figure 18: Visual comparison on a test sample between (left) ground truth obtained from OpenFOAM
computation with fine spatial-temporal resolution and (right) prediction by PENN. Here, ¢ = 0.6,
D =0.3,and T = 0.8.
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