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ABSTRACT

Recent researches have showcased the significant effectiveness of deep learn-
ing techniques for multivariate time series forecasting (MTSF). Broadly speak-
ing, these techniques are bifurcated into two categories: Channel-independence
and Channel-mixing approaches. While Channel-independence models have
generally demonstrated superior outcomes, Channel-mixing methods, especially
when dealing with time series that display inter-variable correlations, theoreti-
cally promise enhanced performance by incorporating the correlation between
variables. However, we contend that the unnecessary integration of informa-
tion through Channel-mixing can curtail the potential enhancement in MTSF
model performance. To substantiate this claim, we introduce the Cross-variable
Decorrelation Aware feature Modeling (CDAM) for Channel-mixing approaches.
This approach is geared toward reducing superfluous information by minimizing
the mutual information between the latent representation of a single univariate
sequence and its accompanying multivariate sequence input. Concurrently, it op-
timizes the joint mutual information shared between the latent representation, its
univariate input, and the associated univariate forecast series. Notably, prevailing
techniques directly project future series using a single-step forecaster, sidelining
the temporal correlation that might exist across varying timesteps in the target se-
ries. Addressing this gap, we introduce the Temporal correlation Aware Modeling
(TAM). This strategy maximizes the mutual information between adjacent sub-
sequences of both the forecasted and target series. By synergizing CDAM and
TAM, we sculpt a pioneering framework for MTSF, named as InfoTime. Com-
prehensive experimental analysis have demonstrated the capability of InfoTime to
consistently outpace existing models, encompassing even those considered state-
of-the-art.

1 INTRODUCTION

Multivariate time series forecasting (MTSF) plays a pivotal role in diverse applications ranging from
traffic flow estimation (Bai et al., 2020), weather prediction (Chen et al., 2021), energy consump-
tion (Zhou et al., 2021) and healthcare (Bahadori & Lipton, 2019). Deep learning has ushered in
a new era for MTSF, with methodologies rooted in RNN-based (Franceschi et al., 2019; Liu et al.,
2018; Salinas et al., 2020; Rangapuram et al., 2018) and CNN-based models (Lea et al., 2017; Lai
et al., 2018), that surpass the performance metrics set by traditional techniques (Box et al., 2015).
A notable breakthrough has been the advent of Transformer-based models (Li et al., 2019; Zhou
et al., 2021; Chen et al., 2021; Zhou et al., 2022). Equipped with attention mechanisms, these
models adeptly seize long-range temporal dependencies, establishing a new benchmark for fore-
casting efficacy. While their primary intent is to harness multivariate correlations, recent research
indicates a potential shortcoming: these models might not sufficiently discern cross-variable depen-
dencies (Murphy & Chen, 2022; Nie et al., 2022; Zeng et al., 2022). This has spurred initiatives to
tease out single variable information for more nuanced forecasting.

When it comes to modeling variable dependencies, MTSF models can be broadly classified into
two categories: Channel-mixing models and Channel-independence models, as highlighted in Fig-
ure 1 (a) (Nie et al., 2022). Specifically, Channel-mixing models ingest all features from the
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Figure 1: (a) The framework of Channel-independence models and Channel-mixing models. Given
historical series X = {Xi} where i denotes the channel index, the Channel-mixing model tends
to maximize the mutual information between X and the latent representation Zi, and the mutual
information between Zi and the i-th future series Y i. The Channel-independence models maximize
the mutual information between the i-th historical series Xi and Zi while ignoring the mutual in-
formation between Zi and other channels; (b) Traffic flow of 5 adjacent detectors in the PEMS08
dataset; and (c) Prediction results of Channel-independence model (PatchTST), Channel-mixing
model(Informer), and that with our framework, respectively.

time series, projecting them into an embedding space to blend information. Conversely, Channel-
independence models restrict their input token to information sourced from just one channel. Re-
cent studies (Murphy & Chen, 2022; Nie et al., 2022; Zeng et al., 2022) indicates that Channel-
independence models significantly outpace Channel-mixing models on certain datasets. Yet, this
advantage comes with a trade-off: the omission of crucial cross-variable information. Such an omis-
sion can be detrimental, especially when the variables inherently correlate. Illustratively, Figure 1 (b)
showcases traffic flow variations from six proximate detectors in the PEMS08 dataset (Chen et al.,
2001) . A discernible trend emerges across these detectors, suggesting that exploiting their inter-
related patterns could bolster predictive accuracy for future traffic flows. In a comparative experi-
ment, we trained both a Channel-independence model (PatchTST) and a Channel-mixing model (In-
former) using the PEMS08 dataset. The outcome, as visualized in Figure 1 (c), unequivocally shows
Informer’s superior performance over PatchTST, underscoring the importance of cross-variable in-
sights. Motivated by these findings, we introduce the Cross-Variable Decorrelation Aware Feature
Modeling (CDAM) for Channel-mixing methodologies. CDAM aims to hone in on cross-variable
information and prune redundant data. It achieves this by minimizing mutual information between
the latent depiction of an individual univariate time series and related multivariate inputs, while con-
currently amplifying the shared mutual information between the latent model, its univariate input,
and the subsequent univariate forecast.

Apart from modeling channel dependence, another significant challenge in MTSF is the accumu-
lation of errors along time, as shown in Figure 1 (a). To mitigate this, a number of studies (Nie
et al., 2022; Zeng et al., 2022; Zhou et al., 2021; Zhang & Yan) have adopted a direct forecasting
strategy using a single-step forecaster that generates multi-step predictions in a single step, typically
configured as a fully-connected network. Although often superior to auto-regressive forecasters,
this method tends to neglect the temporal correlations across varied timesteps in the target series,
curtailing its potential to capture series inter-dependencies effectively. Drawing inspiration from the
notable temporal relationships observed in adjacent sub-sequences post-downsampling (Liu et al.,
2022a), we propose Temporal Correlation Aware Modeling (TAM), which iteratively down-samples
and optimizes mutual information between consecutive sub-sequences of both the forecasted and
target series.
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In essence, this paper delves into two pivotal challenges in multivariate time series forecasting:
cross-variable relationships and temporal relationships. Drawing inspiration from these chal-
lenges, we develop a novel framework, denoted as InfoTime. This framework seamlessly integrates
CDAM and TAM. Our paper’s key contributions encompass:

• We introduce Cross-Variable Decorrelation Aware Feature Modeling (CDAM) designed
specifically for Channel-mixing methods. It adeptly distills cross-variable information,
simultaneously filtering out superfluous information.

• Our proposed Temporal Correlation Aware Modeling (TAM) is tailored to effectively cap-
ture the temporal correlations across varied timesteps in the target series.

• Synthesizing CDAM and TAM, we unveil a cutting-edge framework for MTSF, denomi-
nated as InfoTime.

Through rigorous experimentation on diverse real-world datasets, it’s evident that our InfoTime
consistently eclipses existing Channel-mixing benchmarks, achieving superior accuracy and no-
tably mitigating overfitting. Furthermore, InfoTime enhances the efficacy of Channel-Independent
models, especially in instances with ambiguous cross-variable traits.

2 RELATED WORK

2.1 MULTIVARIATE TIME SERIES FORECASTING

Multivariate time series forecasting is the task of predicting future values of variables, given his-
torical observations. With the development of deep learning, various neural models have been pro-
posed and demonstrated promising performance in this task. RNN-based (Franceschi et al., 2019;
Salinas et al., 2020; Rangapuram et al., 2018) and CNN-based (Lea et al., 2017; Lai et al., 2018)
models are proposed for models time series data using RNN or CNN respectively, but these mod-
els have difficulty in modeling long-term dependency. In recent years, a large body of works try
to apply Transformer models to forecast long-term multivariate series and have shown great po-
tential (Li et al., 2019; Zhou et al., 2021; Chen et al., 2021; Zhou et al., 2022; Nie et al., 2022),
Especially, LogTrans (Li et al., 2019) proposes the LogSparse attention in order to reduce the com-
plexity from O(L2) to O(L(logL)2). Informer (Zhou et al., 2021) utilizes the sparsity of attention
score through KL-divergence estimation and proposes ProbSparse self-attention mechanism which
achieves O(L logL) complexity. Autoformer (Chen et al., 2021) introduces a decomposition archi-
tecture with the Auto-Correlation mechanism to capture the seasonal and trend features of historical
series which also achieves O(L logL) complexity and has a better performance. Afterword, FED-
former (Zhou et al., 2022) employs the mixture-of-expert to enhance the seasonal-trend decompo-
sition and achieves O(L) complexity. The above methods focus on modeling temporal dependency
yet omit the correlation of different variables. Crossformer (Zhang & Yan) introduces Two-Stage
Attention to effectively capture the cross-time and cross-dimension dependency. Recently, several
works (Murphy & Chen, 2022; Nie et al., 2022; Zeng et al., 2022) observe that modeling cross-
dimension dependency makes neural models suffer from overfitting in most benchmarks, therefore,
they propose Channel-Independence methods to avoid this issue. However, the improvement is
based on the sacrifice of cross-variable information. Besides, existing models primarily focus on
extracting correlations of historical series while disregarding the correlations of target series.

2.2 MUTUAL INFORMATION AND INFORMATION BOTTLENECK

Mutual Information (MI) is an entropy-based measure that quantifies the dependence between ran-
dom variables which has the form:

I(X;Y ) =

∫
p(x, y)log

p(x, y)

p(x)p(y)
dxdy = Ep(x,y)

[
log

p(x, y)

p(x)p(y)

]
(1)

Mutual Information was used in a wide range of domains and tasks, including feature selec-
tion (Kwak & Choi, 2002), causality (Butte & Kohane, 1999), and Information Bottleneck (Tishby
et al., 2000). Information Bottleneck (IB) was first proposed by Tishby et al. (2000) which is an
information theoretic framework for extracting the most relevant information in the relationship of
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the input with respect to the output, which can be formulated as max I(Y ;Z) − βI(X;Z). Sev-
eral works (Tishby & Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017) try to use the Information
Bottleneck framework to analyze the Deep Neural Networks by quantifying Mutual Information be-
tween the network layers and deriving an information theoretic limit on DNN efficiency. Variational
Information Bottleneck (VIB) was also proposed (Alemi et al., 2016) to bridge the gap between In-
formation Bottleneck and deep learning. In recent years, many lower-bound estimations (Belghazi
et al., 2018; Oord et al., 2018) and upper-bound estimations (Poole et al., 2019; Cheng et al., 2020)
have been proposed to estimate MI effectively which are useful to estimate VIB. Nowadays, MI
and VIB have been widely used in computer vision (Schulz et al., 2020; Luo et al., 2019), natural
language processing (Mahabadi et al., 2021; West et al., 2019; Voita et al., 2019), reinforcement
learning (Goyal et al., 2019; Igl et al., 2019), and representation learning (Federici et al., 2020;
Hjelm et al., 2018). However, Mutual Information and Information Bottleneck are less researched
in Multivariate Long-term series forecasting.

3 METHOD

In multivariate time series forecasting, one aims to predict the future value of time series yt =
st+T+1:t+T+P ∈ RP×C given the history xt = st:t+T ∈ RT×C , where T and P is the number of
time steps in the past and future. C ≥ 1 is the number of variables. Given time series s, we divide it
into history set X = {x1, ..., xN} and future set Y = {y1, ..., yN}, where N is the number of sam-
ples. As shown in Figure 1 (a), deep learning methods first extract latent representation Zi from X
(Channel-mixing), or Xi (Channel-independent), and then generate target series Y i from Zi. A nat-
ural assumption is that these C series are associated which helps to improve the forecasting accuracy.
Therefore, to utilize the cross-variable dependencies while eliminating superfluous information, in
Section 3.1, we propose the Cross-Variable Decorrelation Aware Feature Modeling (CDAM) to ex-
tract cross-variable dependencies. In section 3.2, we introduce Temporal Aware Modeling (TAM)
to predict the future series.

3.1 CROSS-VARIABLE DECORRELATION AWARE FEATURE MODELING

Recent studies (Nie et al., 2022; Zeng et al., 2022; Zhou et al., 2021; Zhang & Yan) have demon-
strated that Channel-independence is more effective in achieving high-level performance than
Channel-mixing. However, multivariate time series contain correlations among variables. Channel-
mixing aims to take advantage of these cross-variable dependencies to predict future series. In fact,
it fails to improve the performance of MTSF. This may be because Channel-mixing introduces that
superfluous information. To verify this, we introduce CDAM to extract cross-variable information
while eliminating superfluous information. Specifically, inspired information bottlenecks, CDAM
maximizes the joint mutual information among the latent representation Zi, its univariate input Xi

and the corresponding univariate target series Y i while minimizing the mutual information between
latent representation Zi of one single univariate time series and other multivariate series input Xo.
Thus, we have the objective:

max I(Y i, Xi;Zi) s.t. I(Xo;Zi) ≤ Ic, (2)
where Ic is the information constraint, X is the set of multivariate historical series, Xi is the histor-
ical series of i-th variable , Xo is the other multivariate series, Zi ∈ Rd is the representation of Xi

via mixing Xo and used to predict the i-th future series Y i.

With the introduction of a Lagrange multiplier β, we can maximize the objective function for i-th
channel:

Ri
IB = I(Y i, Xi;Zi)− βI(Xo;Zi)

= I(Y i;Zi|Xi) + I(Xi;Zi)− βI(Xo;Zi),
(3)

where β ≥ 0 controls the tradeoff between I(Y i;Zi|Xi), I(Xi;Zi) and I(Xo;Zi), the larger β
corresponds to lower mutual Information between Xo and Zi, and also means that Zi needs to
retain the important information in Xo and eliminate the irrelevant information to ensure Y i can be
accurately predicted. However, the Mutual Information I(Xi, Y ;Zi) and I(Xo;Zi) are intractable,
we now provide the variational lower bound and upper bound for I(Xi, Y i;Zi) and I(Xo;Zi),
respectively.
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Lower bound for I(Xi, Y i;Zi). The joint mutual information between latent representation Zi,
i-th historical series Xi, and i-th target series Y i is defined as (More details are shown in Ap-
pendix A.3.1):

I(Xi, Y i;Zi) = I(Zi;Xi) + I(Zi;Y i|Xi)

= Ep(zi,yi,xi)

[
log p(yi|xi, zi)

]
+ Ep(zi,xi)

[
log p(xi|zi)

]
+H(Y i, Xi),

(4)

where the joint entropy H(Y i, Xi) = −
∫
p(yi, xi)dxidyi is only related to the dataset and cannot

be optimized, so can be ignored. Therefore, MI can be simplified as:

I(Xi, Y i;Zi) = Ep(zi,yi,xi)

[
log p(yi|xi, zi)

]
+ Ep(zi,xi)

[
log p(xi|zi)

]
+ constant. (5)

Since p(yi|xi, zi) and p(xi|zi) are intractable, we introduce pθ(y
i|zi, xi) and pθ(x

i|zi) to be the
variational approximation to p(yi|xi, zi) and p(xi|zi), respectively. Thus the variational lower
bound is as follows (More details are shown in Appendix A.3.2):

I(Xi, Y i;Zi)− constant ≥ Ep(zi,yi,xi)

[
log pθ(y

i|xi, zi)
]
+ Ep(zi,xi)

[
log pθ(x

i|zi)
]

= Iv(X
i, Y i;Zi). (6)

Hence, we can achieve the maximization of I(Xi, Y i;Zi) by maximizing Iv(X
i, Y i;Zi). We

assume the variational distribution pθ(y
i|zi, xi) and pθ(x

i|zi) as the Gaussion distribution. Thus,
the first term of Iv(Xi, Y i;Zi) is the negative log-likelihood of the prediction of Y i given Zi and
Xi, and the second term aims to the reconstruction of Xi given Zi.

Upper bound for I(Xo;Zi). Next, to minimize the MI between the latent representation Zi and
historical series Xo, we adopt the sampled vCLUB (Cheng et al., 2020), which is defined as:

IvCLUB−S(X
o;Zi) =

1

N

N∑
n=1

[
log qθ(z

i
n|xo

n)− log qθ(z
i
n|xo

k′
n
)
]
, (7)

where (zin, x
o
k′
n
) is a negative pair and k′n is uniformly selected from indices 1, 2, ...N . Thus we

can minimize I(Xo;Zi) by minimizing IvCLUB−S(X
o;Zi). It enables the model to extract useful

cross-variable information while eliminating irrelevant information.

Finally, We can convert the intractable objective function Ri
IB of all channels in Eq. 3 as:

LIB =
1

C

C∑
i=1

[
−Iv(X

i, Y i;Zi) + βIvCLUB−S(X
o;Zi)

]
≥ − 1

C

C∑
i=1

Ri
IB . (8)

3.2 TEMPORAL CORRELATION AWARE MODELING
Target series Generated series

Figure 2: Architecture of TAM with 4x dowmsam-
pling. We downsample the target series and fore-
casted series utilizing single-forecaster into four sub-
sequences, respectively. And then we maximize
the mutual information between the adjacent sub-
sequences of forecasted series and target series.

To alleviate the error accumulation ef-
fects, previous works (Nie et al., 2022;
Zeng et al., 2022; Zhou et al., 2021;
Zhang & Yan) use a single-step forecaster
which is usually a fully-connected net-
work to predict the future series. Differ-
ent from auto-regressive forecaster, single-
step forecaster assumes the predicted fu-
ture time steps are independent of each
other given the historical time series.
Then, the training objective of the single-
step forecaster can be expressed as follows
:

p(yi|zi, xi) =

P∏
j=1

p(yij |zi, xi) (9)

Although the single-step forecaster out-
performs the auto-regressive forecaster, it
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fails to model the temporal correlations of
different timesteps in the target series. In contrast to NLP, time series data is a low-density informa-
tion source (Lin et al., 2023), and one unique property of time series is that the temporal relations
(e.g., the trend and the seasonal) between downsampling adjacent sub-sequences are largely pre-
served (Liu et al., 2022a). Based on the above observations, we propose TAM which improves the
correlation of predicted future time steps by iteratively down-samples and optimizes mutual infor-
mation between consecutive sub-sequences of both the forecasted and target series.

After extracting cross-variable feature Zi, We first generate Ŷ i using a single-step forecaster by
utilizing the historical data of the i-th channel Xi and cross-variable Zi , the forecasted series Ŷ and
target series Y are then downsampled N times. For the n-th (n ≤ N ) downsampling, we generate
m sub-sequences Ŷ = {Ŷ1, ..., Ŷm},Y = {Y1, ..., Ym}, where m = 2n and Ŷj ∈ R

P
2n ×C . Then

we maximize the mutual information between Ŷ i
j and Y i

j−1, Y i
j+1, given Xi, where 1 < k < m.

Therefore, the loss function of n-th downsampling can be calculated as:

Ln = − 1

mC

C∑
i=1

I(Y i
2 ; Ŷ

i
1 |Xi) + I(Y i

m−1; Ŷ
i
m|Xi) +

m−1∑
j=2

I(Y i
j−1; Ŷ

i
j |Xi) + I(Y i

j+1; Ŷ
i
j |Xi)


(10)

And the variational lower bound of I(Y i
j−1; Ŷ

i
j |Xi) is as follows (More details are shown in Ap-

pendix A.3.2):
I(Y i

j−1; Ŷ
i
j |Xi) ≥ Ep(yi

j−1,ŷ
i
j ,x

i)

[
pθ(y

i
j−1|ŷij , xi)

]
(11)

Furthermore, considering the efficiency, we assume that the time steps of a sub-sequence are
independent given the adjacent sub-sequence. Therefore, I(Y i

j−1; Ŷ
i
j |Xi) can be simplified as

I(Y i
j−1; Ŷ

i
j |Xi) =

∑ P
2n

k=1

[
I(Y i

j−1,k; Ŷ
i
j |Xi)

]
and we can generate the entire sub-sequence in a

single step without auto-regression.

For the n-th downsampling, TAM will generate 2 × (2n − 1) sub-sequences Ŷ ′ =

{Ŷ r
1 , Ŷ

l
2 , Ŷ

r
2 , ..., Ŷ

l
m}, these sub-sequences that are not at ends are predicted by its left and right

adjacent sub-sequences respectively. We splice these 2× (2n − 1) sub-sequences into a new series

Ŷn = {Ŷ r
1 ,

Ŷ l
2+Ŷ r

2

2 , ..., Ŷ l
m}. After N times downsampling, we have generated N + 1 series. And

we use these N + 1 series as the final forecasting results, thus we have the following loss function:

Lp = ||Y − (λ

N∑
n=1

Ŷn

N
+ (1− λ)Ŷ )||22 (12)

In contrast to single-step forecasters that generate multi-step predictions without considering the
correlation between the predicted series, our proposed method, referred to as TAM, explicitly mod-
els the correlation of predicted future time steps. It achieves this by iteratively down-sampling and
optimizing the mutual information between consecutive sub-sequences of both the forecasted and
target series. This approach allows the model to establish more accurate representations of future
sequences, thereby enhancing the overall predictive performance. By incorporating the correlation
between predicted time steps, TAM considers the temporal dependencies within the forecasted series
and captures the underlying patterns in the data. This iterative down-sampling and mutual informa-
tion optimization procedure ensures that the model effectively leverages the available information to
generate more accurate and coherent predictions.

Integrating CDAM and TAM, the total loss of InfoTime can be written as :

Ltotal = LIB +

N∑
n=1

Ln + Lp (13)

4 EXPERIMENTS

In this section, we extensively evaluate the proposed InfoTime on nine real-world benchmarks using
various Channel-mixing and Channel-Independence models, including state-of-the-art models.
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(b) Test error on Stationary
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(c) Test error on Crossformer

Figure 3: Test error for each training epoch. We train the baselines and integrated with our
InfoTime for 50 epochs on ETTh1 when the history and prediction length are both 96.

Baselines. Since our method can be easily applied to deep-learning-based forecasting models, we
evaluate InfoTime adopted by several popular baselines including the state-of-the-art method. For
Channel-mixing models, we select Informer (Zhou et al., 2021), Non-stationary Transformer (Liu
et al., 2022b), denoting as Stationary, and Crossformer (Zhang & Yan). For Channel-Independence
models, we use PatchTST (Nie et al., 2022) and also propose RMLP which consists of two linear
layers with relu activation, and also uses the reversible instance normalization (Kim et al., 2021).
(see Appendix A.1 for more details)

Datasets. We evaluate the performance of InfoTime in nine widely-used real-world datasets. Here
is a detailed description of these datasets. (1) The ETT (Zhou et al., 2021) (Electricity Transformer
Temperature) dataset contains two years of data from two separate countries in China with intervals
of 1-hour level (ETTh) and 15-minute level (ETTm) collected from electricity transformers. Each
time step contains six power load features and oil temperature. (2) The Electricity 1 dataset describes
321 clients’ hourly electricity consumption from 2012 to 2014. (3) The Traffic 2 dataset contains the
road occupancy rates from various sensors on San Francisco Bay area freeways, which is provided
by California Department of Transportation. (4) the Weather 3 dataset contains 21 meteorological
indicators collected at around 1,600 landmarks in the United States. (5)The PEMS (Chen et al.,
2001) (PEMS03, PEMS04, and PEMS08) measures the highway traffic of California in real-time
every 30 seconds. We follow the standard protocol that divides each dataset into the training, vali-
dation, and testing subsets according to the chronological order. The split ratio is 6:2:2 for the ETT
dataset and 7:1:2 for others.

4.1 MAIN RESULTS

Table 1 compares the forecasting accuracy of the Channel-mixing baselines and InfoTime. The
results show that InfoTime consistently outperforms all three baselines, Informer, Stationary, and
Crossformer, by a large margin. Moreover, the effectiveness of InfoTime is more evident for the
long sequence prediction which may be long sequence prediction is more difficult and more likely
to lead the model depending on superfluous cross-variable information. InfoTime shows a stable
performance in contrast to the baselines, which show a high increase in error as prolonging the pre-
diction length. For example, when the prediction length increases from 96 to 720 on the ETTm2
dataset, the forecasting error of Informer significantly increases from 0.365 to 3.379. In contrast,
InfoTime shows a much slight increase in error. A similar tendency appears with the other predic-
tion lengths, datasets, and baseline models as well. These results demonstrate that InfoTime makes
the baseline models more robust to prediction target series. Additionally, to study how InfoTime
can perform better than baselines, we visualize the testing error for each epoch in Figure 3. Overall,
InfoTime shows lower and more stable test errors compared to the baselines. Moreover, the base-
lines are extremely prone to overfitting in the early stages of training, and InfoTime can effectively
alleviate this problem.

1https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014.
2http://pems.dot.ca.gov.
3https://www.bgc-jena.mpg.de/wetter/.
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Table 1: Multivariate long-term series forecasting results on Channel-mixing models with different
prediction lengths O ∈ {96, 192, 336, 720}. We set the input length I as 96 for all the models. The
best result is indicated in bold font. Avg is averaged from all four prediction lengths and Pro means
the relative MSE or MAE reduction.

Models Informer Stationary Crossformer
Original w/Ours Original w/Ours Original w/Ours

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.865 0.713 0.381 0.394 0.598 0.498 0.375 0.388 0.457 0.463 0.379 0.392
192 1.008 0.792 0.435 0.430 0.602 0.520 0.425 0.417 0.635 0.581 0.433 0.427
336 1.107 0.809 0.485 0.461 0.677 0.573 0.463 0.436 0.776 0.667 0.482 0.458
720 1.181 0.865 0.534 0.524 0.719 0.597 0.463 0.459 0.861 0.725 0.529 0.517
Avg 1.040 0.794 0.458 0.452 0.649 0.547 0.431 0.425 0.682 0.609 0.455 0.448
Pro - - 55.9% 43.0% - - 33.5% 22.3% - - 33.2% 26.4%

E
T

T
h2

96 3.755 1.525 0.336 0.390 0.362 0.393 0.286 0.335 0.728 0.615 0.333 0.386
192 5.602 1.931 0.468 0.470 0.481 0.453 0.371 0.388 0.898 0.705 0.455 0.453
336 4.721 1.835 0.582 0.534 0.524 0.487 0.414 0.425 1.132 0.807 0.554 0.513
720 3.647 1.625 0.749 0.620 0.512 0.494 0.418 0.437 4.390 1.795 0.757 0.619
Avg 4.431 1.729 0.534 0.504 0.470 0.457 0.372 0.396 1.787 0.981 0.525 0.493
Pro - - 87.9% 70.9% - - 20.9% 13.3% - - 70.6% 49.7%

E
T

T
m

1 96 0.672 0.571 0.326 0.367 0.396 0.401 0.326 0.362 0.385 0.409 0.323 0.362
192 0.795 0.669 0.371 0.391 0.471 0.436 0.366 0.379 0.459 0.478 0.366 0.386
336 1.212 0.871 0.408 0.416 0.517 0.464 0.392 0.398 0.649 0.583 0.403 0.414
720 1.166 0.823 0.482 0.464 0.664 0.527 0.455 0.434 0.756 0.669 0.473 0.460
Avg 0.961 0.733 0.396 0.409 0.512 0.457 0.384 0.393 0.562 0.534 0.391 0.405
Pro - - 58.7% 44.2% - - 25.0% 14.0% - - 30.4% 24.1%

E
T

T
m

2 96 0.365 0.453 0.187 0.282 0.201 0.291 0.175 0.256 0.281 0.373 0.186 0.281
192 0.533 0.563 0.277 0.351 0.275 0.335 0.238 0.297 0.549 0.520 0.269 0.341
336 1.363 0.887 0.380 0.420 0.350 0.377 0.299 0.336 0.729 0.603 0.356 0.396
720 3.379 1.338 0.607 0.549 0.460 0.435 0.398 0.393 1.059 0.741 0.493 0.482
Avg 1.410 0.810 0.362 0.400 0.321 0.359 0.277 0.320 0.654 0.559 0.326 0.375
Pro - - 74.3% 50.6% - - 13.7% 10.8% - - 50.1% 32.9%

W
ea

th
er 96 0.300 0.384 0.179 0.249 0.181 0.230 0.166 0.213 0.158 0.236 0.149 0.218

192 0.598 0.544 0.226 0.296 0.286 0.312 0.218 0.260 0.209 0.285 0.202 0.272
336 0.578 0.523 0.276 0.334 0.319 0.335 0.274 0.300 0.265 0.328 0.256 0.313
720 1.059 0.741 0.332 0.372 0.411 0.393 0.351 0.353 0.376 0.397 0.329 0.366
Avg 0.633 0.548 0.253 0.312 0.299 0.317 0.252 0.281 0.252 0.311 0.234 0.292
Pro - - 60.0% 43.0% - - 15.7% 11.3% - - 7.1% 6.1%

Tr
af

fic

96 0.719 0.391 0.505 0.348 0.599 0.332 0.459 0.311 0.609 0.362 0.529 0.334
192 0.696 0.379 0.521 0.354 0.619 0.341 0.475 0.315 0.623 0.365 0.519 0.327
336 0.777 0.420 0.520 0.337 0.651 0.347 0.486 0.319 0.649 0.370 0.521 0.337
720 0.864 0.472 0.552 0.352 0.658 0.358 0.522 0.338 0.758 0.418 0.556 0.350
Avg 0.764 0.415 0.524 0.347 0.631 0.344 0.485 0.320 0.659 0.378 0.531 0.337
Pro - - 31.4% 16.3% - - 23.1% 6.9% - - 19.4% 10.8%

E
le

ct
ri

ci
ty 96 0.274 0.368 0.195 0.300 0.168 0.271 0.154 0.256 0.170 0.279 0.150 0.248

192 0.296 0.386 0.193 0.291 0.186 0.285 0.163 0.263 0.198 0.303 0.168 0.263
336 0.300 0.394 0.206 0.300 0.194 0.297 0.178 0.279 0.235 0.328 0.200 0.290
720 0.373 0.439 0.241 0.332 0.224 0.316 0.201 0.299 0.270 0.360 0.235 0.323
Avg 0.310 0.397 0.208 0.305 0.193 0.292 0.174 0.274 0.218 0.317 0.188 0.281
Pro - - 32.9% 23.1% - - 9.8% 6.1% - - 13.7% 11.3%

We also list the forecasting results of Channel-independence baselines in Table 2. It is worth noting
that InfoTime also outperforms Channel-independence baselines, indicating that although Channel-
independence models exhibit promising results, incorporating cross-variable features can further
enhance their effectiveness. Additionally, we evaluate InfoTime on the PEMS datasets, which con-
sist of variables with clear geographical correlations. The results in Table 3 demonstrate a significant
performance gap between PatchTST and RMLP in comparison to Informer, suggesting that Channel-
independence models may not be optimal in scenarios where there are clear correlations between
variables. In contrast, our framework exhibits improved performance for both Channel-mixing and
Channel-independence models (We also verify the effectiveness of InfoTime on synthetic data, as
show in Appendix A.2).
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Table 2: Multivariate long-term series forecasting results on Channel-Independent models with dif-
ferent prediction lengths. We set the input length I as 336 for all the models. The best result is
indicated in bold font. See Table 6 in the Appendix for the full results.

Models Metric ETTh1 ETTm1 Traffic
96 192 336 720 96 192 336 720 96 192 336 720

Pa
tc

hT
ST Original MSE 0.375 0.414 0.440 0.460 0.290 0.332 0.366 0.420 0.367 0.385 0.398 0.434

MAE 0.399 0.421 0.440 0.473 0.342 0.369 0.392 0.424 0.251 0.259 0.265 0.287

w/Ours MSE 0.365 0.403 0.427 0.433 0.283 0.322 0.356 0.407 0.358 0.379 0.391 0.425
MAE 0.389 0.413 0.428 0.453 0.335 0.359 0.382 0.417 0.245 0.254 0.261 0.280

R
M

L
P Original MSE 0.380 0.414 0.439 0.470 0.290 0.329 0.364 0.430 0.383 0.401 0.414 0.443

MAE 0.401 0.421 0.436 0.471 0.343 0.368 0.390 0.426 0.269 0.276 0.282 0.309

w/Ours MSE 0.367 0.404 0.426 0.439 0.285 0.322 0.358 0.414 0.364 0.384 0.398 0.428
MAE 0.391 0.413 0.429 0.459 0.335 0.359 0.381 0.413 0.249 0.258 0.266 0.284

Table 3: Multivariate long-term series forecasting results on three baselines and PEMS datasets with
different prediction lengths. We set the input length I as 336 for all the models. The best result is
indicated in bold font. (See Table 9 for the ablation results of PEMS datasets.)

Models Metric PEMS03 PEMS04 PEMS08
96 192 336 720 96 192 336 720 96 192 336 720

Pa
tc

hT
ST Original MSE 0.180 0.207 0.223 0.291 0.195 0.218 0.237 0.321 0.239 0.292 0.314 0.372

MAE 0.281 0.295 0.309 0.364 0.296 0.314 0.329 0.394 0.324 0.351 0.374 0.425

w/Ours MSE 0.115 0.154 0.164 0.198 0.110 0.118 0.129 0.149 0.114 0.160 0.177 0.209
MAE 0.223 0.251 0.256 0.286 0.221 0.224 0.237 0.261 0.218 0.243 0.241 0.281

R
M

L
P Original MSE 0.160 0.184 0.201 0.254 0.175 0.199 0.210 0.255 0.194 0.251 0.274 0.306

MAE 0.257 0.277 0.291 0.337 0.278 0.294 0.306 0.348 0.279 0.311 0.328 0.365

w/Ours MSE 0.117 0.159 0.146 0.204 0.103 0.114 0.130 0.154 0.116 0.156 0.175 0.181
MAE 0.228 0.252 0.246 0.285 0.211 0.219 0.236 0.264 0.215 0.235 0.242 0.255

In
fo

rm
er Original MSE 0.139 0.152 0.165 0.216 0.132 0.146 0.147 0.145 0.156 0.175 0.187 0.264

MAE 0.240 0.252 0.260 0.290 0.238 0.249 0.247 0.245 0.262 0.266 0.274 0.325

w/Ours MSE 0.109 0.120 0.144 0.194 0.107 0.124 0.124 0.136 0.099 0.123 0.147 0.196
MAE 0.216 0.228 0.247 0.282 0.215 0.230 0.231 0.245 0.204 0.224 0.242 0.278

St
at

io
na

ry Original MSE 0.120 0.143 0.156 0.220 0.109 0.116 0.129 0.139 0.151 0.180 0.252 0.223
MAE 0.222 0.242 0.252 0.300 0.214 0.220 0.230 0.240 0.235 0.247 0.262 0.285

w/Ours MSE 0.101 0.131 0.153 0.190 0.096 0.114 0.125 0.135 0.103 0.144 0.184 0.217
MAE 0.206 0.229 0.245 0.273 0.199 0.217 0.229 0.243 0.200 0.220 0.245 0.278

C
ro

ss
fo

rm
er

Original MSE 0.159 0.233 0.275 0.315 0.149 0.216 0.230 0.276 0.141 0.162 0.199 0.261
MAE 0.270 0.319 0.351 0.383 0.261 0.320 0.324 0.369 0.253 0.269 0.306 0.355

w/Ours MSE 0.119 0.166 0.189 0.223 0.114 0.139 0.161 0.171 0.088 0.108 0.134 0.171
MAE 0.217 0.250 0.265 0.293 0.215 0.236 0.258 0.275 0.190 0.206 0.222 0.251

4.2 ABLATION STUDY

In our approach, there are two components: CDAM and TAM. We perform an ablation study on
the ETTh1, ETTh2, and Weather datasets with Informer and PatchTST. +TAM means that we add
TAM to these baselines and +InfoTime means that we add both CDAM and TAM to baselines.
We analyze the results shown in Table 4. Compared with baselines using the single-step forecaster,
TAM performs better in most settings, which indicates the importance of cross-time correlation. For
Channel-mixing models, we find that InfoTime can improve the performance of Channel-mixing
models significantly, and alleviate the overfitting problem effectively. For Channel-Independence
models, InfoTime can still improve the performance of Channel-Independence models, which indi-
cates that correctly establishing the dependency between variables is an effective way to improve
performance.
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Table 4: Component ablation of InfoTime. We set the input length I as 336 for PatchTST and 96 for
Informer. The best results are in bold and the second best are underlined. (See Table 8 and Table 7
in the Appendix for the full ablation results.)

Models Informer PatchTST
Original +TAM +InfoTime Original +TAM +InfoTime

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.865 0.713 0.598 0.565 0.381 0.394 0.375 0.399 0.367 0.391 0.365 0.389
192 1.008 0.792 0.694 0.640 0.435 0.430 0.414 0.421 0.405 0.414 0.403 0.413
336 1.107 0.809 0.853 0.719 0.485 0.461 0.440 0.440 0.429 0.430 0.427 0.428
720 1.181 0.865 0.914 0.741 0.534 0.524 0.460 0.473 0.435 0.455 0.433 0.453

W
ea

th
er 96 0.300 0.384 0.277 0.354 0.179 0.249 0.152 0.199 0.149 0.197 0.144 0.194

192 0.598 0.544 0.407 0.447 0.226 0.296 0.197 0.243 0.192 0.238 0.189 0.238
336 0.578 0.523 0.529 0.520 0.276 0.334 0.250 0.284 0.247 0.280 0.239 0.279
720 1.059 0.741 0.951 0.734 0.332 0.372 0.320 0.335 0.321 0.332 0.312 0.331
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(a) Informer on ETTh1
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(c) PatchTST on ETTh1
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(d) RMLP on ETTh1

Figure 4: Evaluation on hyper-parameter β and λ. We evaluate the impact of β with Informer
and Stationary on the ETTh1 dataset, we also evaluate λ with PatchTST and RMLP on the ETTh1
dataset.

4.3 EFFECT OF HYPER-PARAMETERS

We evaluate the effect of hyper-parameter β on the ETTh1 and ETTm2 datasets with two baselines.
In Figure 4, we increase the value of β from 0 to 1e5 and evaluate MSE with different prediction
windows on two datasets and two baselines. When β is small, baselines perform poorly and unstably
As β increases, baselines perform better and more stable. In addition, as the prediction window
increases, the overfitting problem of baselines is more and more serious, so a larger β is needed to
remove superfluous information. We also evaluate λ with PatchTST and RMLP, we observe that the
larger the λ, the better models’ performance, and when λ ≥ 0.8, the performance is stable.

5 CONCLUSION

This paper investigates two key factors in MTSF: temporal correlation and cross-variable correlation.
To utilize the cross-variable correlation while eliminating the superfluous information, we introduce
Cross-Variable Decorrelation Aware Modeling (CDAM). In addition, we also propose Temporal
Correlation Aware Modeling (TAM) to model temporal correlations of predicted series. Integrating
CDAM and TAM, we build a novel time series modeling framework for MTSF termed . Extensive
experiments on various real-world MTSF datasets demonstrate the effectiveness of our framework.
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current hidden semi-markov model. In Jérôme Lang (ed.), Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018,
Stockholm, Sweden, pp. 2447–2453, 2018.

Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet:
Time series modeling and forecasting with sample convolution and interaction. Advances in
Neural Information Processing Systems, 35:5816–5828, 2022a.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
the stationarity in time series forecasting. Advances in Neural Information Processing Systems,
35:9881–9893, 2022b.

Yawei Luo, Ping Liu, Tao Guan, Junqing Yu, and Yi Yang. Significance-aware information bottle-
neck for domain adaptive semantic segmentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 6778–6787, 2019.

Rabeeh Karimi Mahabadi, Yonatan Belinkov, and James Henderson. Variational information bottle-
neck for effective low-resource fine-tuning. arXiv preprint arXiv:2106.05469, 2021.

William Michael John Murphy and Ke Chen. Univariate vs multivariate time series forecasting with
transformers. 2022.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730, 2022.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi, and George Tucker. On variational
bounds of mutual information. In International Conference on Machine Learning, pp. 5171–5180.
PMLR, 2019.

Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang Wang, and
Tim Januschowski. Deep state space models for time series forecasting. Advances in neural
information processing systems, 31, 2018.

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic fore-
casting with autoregressive recurrent networks. International Journal of Forecasting, 36(3):1181–
1191, 2020.

Karl Schulz, Leon Sixt, Federico Tombari, and Tim Landgraf. Restricting the flow: Information
bottlenecks for attribution. arXiv preprint arXiv:2001.00396, 2020.

Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via informa-
tion. arXiv preprint arXiv:1703.00810, 2017.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In
2015 ieee information theory workshop (itw), pp. 1–5. IEEE, 2015.

Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. arXiv
preprint physics/0004057, 2000.

Elena Voita, Rico Sennrich, and Ivan Titov. The bottom-up evolution of representations in the
transformer: A study with machine translation and language modeling objectives. arXiv preprint
arXiv:1909.01380, 2019.

12



Under review as a conference paper at ICLR 2024

Peter West, Ari Holtzman, Jan Buys, and Yejin Choi. Bottlesum: Unsupervised and self-
supervised sentence summarization using the information bottleneck principle. arXiv preprint
arXiv:1909.07405, 2019.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? arXiv preprint arXiv:2205.13504, 2022.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In The Eleventh International Conference on Learning
Representations.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International Conference
on Machine Learning, pp. 27268–27286. PMLR, 2022.

A APPENDIX

A.1 BASELINES

We choose SOTA and the most representative LTSF models as our baselines, including Channel-
Independence models and Channel-mixing models.

• PatchTST (Nie et al., 2022): the current SOTA LTSF models. It utilizes channel-
independence and patch techniques and achieves the highest performance by utilizing the
native Transformer. We directly use the public official source code.4

• Informer (Zhou et al., 2021): it proposes improvements to the Transformer model by uti-
lizing the a sparse self-attention mechanism. We take the official open source code.5

• NSformer Liu et al. (2022b): NSformer is to address the over-stationary problem and it
devises the De-stationary Attention to recover the intrinsic non-stationay information into
temporal dependencies by approximating distinguishable attentions learned from raw se-
ries. We also take the official implemented code.6

• Crossformer Zhang & Yan: similar to PatchTST, it also utilizes the patch techniques. Un-
like PatchTST, it leverages cross-variable and cross-time attention. We utilize the official
code. 7 and fix the input length to 96.

• RMLP: it if a linear-based models which consists of two linear layers with relu activation.

For the ETT, Weather, Electricity, and traffic datasets, we set I = 96 for Channel-mixing models and
I = 336 for Channel-Independence models, as longer input lengths tend to yield better performance
for Channel-Independence models. For PEMS03, PEMS04, and PEMS08 datasets, we set I = 336
for all of these models since all of them perform better in a longer input length.

A.2 SYNTHETIC DATA

To demonstrate that InfoTime can take advantages of cross-variable correlation while avoiding un-
necessary noise, we also conducted experiments on simulated data. The function for the synthetic
data is yi =

∑J
j=1 A

j
isin(ω

j
i x + φj

i ) for xi ∈ [0, 1], where the frequencies, amplitude and phase
shifts are randomly selected via ωj

i ∼ U(0, π), Aj
i ∼ U(0, 1), φj

i ∼ U(0, π), and we set J = 5.
Meanwhile, we add Gaussian noise ϵ ∼ N (0, σ)to simulate the noise situation, which is independent
of y. And the experimental settings are shown in Table 5.

4https://github.com/yuqinie98/PatchTST
5https://github.com/zhouhaoyi/Informer2020
6https://github.com/thuml/Nonstationary Transformers
7https://github.com/Thinklab-SJTU/Crossformer
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Table 5: Experimental settings on Synthetic Data.

Channel-mixing Channel-Independence CDAM

Input

it = yt−T :t it = yt−T :t it = yt−T :t

Amplitude At+1:t+P At+1:t+P

Frequency ωt+1:t+P Frequency ωt+1:t+P

Phase Shifts φt+1:t+P Phase Shifts φt+1:t+P

Variable xt+1:t+P Variable xt+1:t+P

Noise ϵ Noise ϵ
Output ot = yt+1:t+P ot = yt+1:t+P ot = yt+1:t+P

Time Mixing 3-layers MLP 3-layers MLP -
Channel Mixing 2-layers MLP - Directly add to CM Model
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Figure 5: Experimental results on synthetic data.

The experimental results on synthetic data are presented in Figure 5. Since the Channel-
Independence model only takes into account the historical value and variables such as A,ω, φ, x
change over time and are not fixed, its performance is notably inferior to that of the Channel-mixing
model and CDAM. Additionally, we conducted experiments to investigate the impact of noise by
training these three models using different noise levels, manipulated through the adjustment of σ,
while maintaining a consistent σ during testing. The experimental results are shown in Figure 5
(b). We observed that when the noise in the training set and the test set follows the same distribu-
tion, noise has a minimal effect on the models’ performance, resulting in only a slight reduction.
Notably, compared to the Channel-mixing model, our CDAM model performs consistently well
across various noise levels. To further demonstrate the noise reduction capability of CDAM, we set
σ = 1 during training and modified the variance σ during testing. As depicted in Figure 5 (c), we
observed that the performance of CDAM remains relatively stable, while the effectiveness of the
Channel-mixing model is significantly impacted. This observation highlights the ability of CDAM
to effectively minimize the influence of irrelevant noise, despite the fact that complete elimination
is not achieved.
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A.3 LOWER BOUND FOR I(Xi, Y i;Zi)

A.3.1 DERIVATION OF I(Xi, Y i;Zi)

The Mutual Information between the i-th historical series Xi, i-th future series Y i and latent repre-
sentation Zi is defined as:

I(Xi, Y i;Zi) = I(Xi;Zi) + I(Zi;Y i|Xi)

=

∫
p(zi, xi) log

p(zi, xi)

p(zi)p(xi)
dzidxi +

∫
p(zi, yi, xi) log

p(xi)p(zi, yi, xi)

p(zi, xi)p(yi, xi)
dzidyidxi

=

∫
p(zi, yi, xi) log

p(zi, xi)

p(zi)p(xi)
dzidyidxi +

∫
p(zi, yi, xi) log

p(xi)p(zi, yi, xi)

p(zi, xi)p(yi, xi)
dzidyidxi

=

∫
p(zi, yi, xi) log

p(zi, yi, xi)

p(zi)p(yi, xi)
dzidyidxi

=

∫
p(zi, yi, xi) log

p(xi, yi|zi)
p(yi, xi)

dzidyidxi

=

∫
p(zi, yi, xi) log p(yi, xi|zi)dzidyidxi −

∫
p(zi, yi, xi) log p(yi, xi)dzidyidxi

=

∫
p(zi, yi, xi) log p(yi|xi, zi)p(xi|zi)dzidyidxi −

∫
p(yi, xi) log p(yi, xi)dyidxi

= Ep(zi,yi,xi)

[
log p(yi|xi, zi)

]
+ Ep(zi,xi)

[
log p(xi|zi)

]
+H(Y i, Xi)

(14)

Therefore, I(Xi;Y i;Zi) can be represented as:

I(Xi, Y i|Zi) = Ep(zi,yi,xi)

[
log p(yi|xi, zi)

]
+ Ep(zi,xi)

[
log p(xi|zi)

]
+H(Y i, Xi) (15)

A.3.2 VARIATIONAL APPROXIMATION OF I(Xi, Y i;Zi)

I(Xi, Y i;Zi) = Ep(zi,yi,xi)

[
log p(yi|xi, zi)

]
+ Ep(zi,xi)

[
log p(xi|zi)

]
+ constant (16)

We introduce pθ(x
i|zi) to be the variational approximation of p(xi, yi). Since the Kullback Leibler

(KL) divergence is always non-negetive, we have:

DKL

[
p(Xi|Zi)||pθ(Xi|Zi)

]
=

∫
p(xi|zi)log p(xi|zi)

p(xi)p(zi)
dxidzi ≥ 0

Ep(zi,xi)

[
log p(xi|zi)

]
≥ Ep(zi,xi)

[
log pθ(x

i|zi)
] (17)

In the same way, we have:

Ep(zi,yi,xi)

[
log p(yi|xi, zi)

]
≥ Ep(zi,yi,xi)

[
log pθ(y

i|xi, zi)
]

(18)

Therefore, the variational lower bound is as follows:

I(Xi, Y i;Zi)−constant ≥ Iv(X
i, Y i;Zi) = Ep(zi,yi,xi)

[
log pθ(y

i|xi, zi)
]
+Ep(zi,xi)

[
log pθ(x

i|zi)
]

(19)
I(Xi, Y i;Zi) can thus be maximized by maximizing its variational lower bound.

A.4 DERIVATION AND VARIATIONAL APPROXIMATION OF I(Y i
j ;Y

i
j−1|Xi)

The Mutual Information between the j-th downsampling predicted subsequence Ŷ i
j and (j − 1)-th

target downsampling subsequence Y i
j−1 given historical sequence Xi is defined as:

I(Ŷ i
j ;Y

i
j−1|Xi) =

∫
p(ŷij , y

i
j−1, x

i) log
p(ŷij , y

i
j−1|xi)

p(ŷij |xi)p(yij−1|xi)
dŷijdy

i
j−1dx

i (20)
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I(Y i
j−1; Ŷ

i
j |Xi) =

∫
p(yij−1, x

i, ŷij) log
p(xi)p(yij−1, ŷ

i
j , x

i)

p(yij−1, x
i)p(ŷij , x

i)
dŷij−1dy

i
jdx

i

=

∫
p(yij−1, x

i, ŷij) log
p(yij−1|ŷij , xi)

p(yij−1|xi)
dŷij−1dy

i
jdx

i

=

∫
p(yij−1, x

i, ŷij) log p(y
i
j−1|ŷij , xi)dyij−1dŷ

i
jdx

i +H(Y i
j−1, X

i)

≥
∫

p(yij−1, x
i, ŷij) log p(y

i
j−1|ŷij , xi)dyij−1dŷ

i
jdx

i

(21)

Since p(yij−1|ŷij , xi) is intractable, we use pθ(yij−1|ŷij , xi) to approximate p(ŷij |yij−1, x
i), therefore,

we have:

I(Y i
j−1; Ŷ

i
j |Xi) ≥

∫
p(yij−1, x

i, ŷij) log p(y
i
j−1|ŷij , xi)dyij−1dŷ

i
jdx

i

≥
∫

p(yij−1, ŷ
i
j , x

i) log
p(yij−1|ŷij , xi)pθ(y

i
j−1|ŷij , xi)

pθ(yij−1|ŷij , xi)
dyij−1dŷ

i
jdx

i

≥
∫

p(yij−1, ŷ
i
j , x

i) log pθ(y
i
j−1|ŷij , xi)dyij−1dŷ

i
jdx

i

≥ Ep(yi
j−1,ŷ

i
j ,x

i)

[
pθ(y

i
j−1|ŷij , xi)

]
(22)

Therefore, the Mutual information I(Y i
j−1; Ŷ

i
j |Xi) can be maximized by maximizing

Ep(yi
j−1,ŷ

i
j ,x

i)

[
pθ(y

i
j−1|ŷij , xi)

]
.

A.5 EXTRA EXPERIMENTAL RESULTS

A.5.1 FULL RESULTS OF CHANNEL-INDEPENDENCE MODELS

In this section, we provide the full experimental result of Channel-Independence models in Table 6
which is an extended version of Table 2

A.5.2 ADDITIONAL ABLATION STUDY

In this section, we provide the full ablation experimental results of the Channel-mixing models
and Channel-Independence models in Table 8 and Table 7, respectively, which are the extended of
Table 4. We also provide Table 9, which contains the full results of ablation experiments on the
PEMS (PEMS03, PEMS04, PEMS08) dataset.
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Table 6: Multivariate long-term series forecasting results on Channel-Independence models with
different prediction lengths O ∈ {96, 192, 336, 720}. We set the input length I as 336 for all the
models. The best result is indicated in bold font. (Avg is averaged from all four prediction lengths
and Pro means the relative MSE and MAE reduction.)

Models PatchTST RMLP
Original w/Ours Original w/Ours

Metric MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.375 0.399 0.365 0.389 0.380 0.401 0.367 0.391
192 0.414 0.421 0.403 0.413 0.414 0.421 0.404 0.413
336 0.440 0.440 0.427 0.428 0.439 0.436 0.426 0.429
720 0.460 0.473 0.433 0.453 0.470 0.471 0.439 0.459
Avg 0.422 0.433 0.407 0.420 0.426 0.432 0.409 0.423
Pro - - 3.5% 3.0% - - 3.9% 2.1%

E
T

T
h2

96 0.274 0.335 0.271 0.332 0.290 0.348 0.271 0.333
192 0.342 0.382 0.334 0.373 0.350 0.388 0.335 0.374
336 0.365 0.404 0.357 0.395 0.374 0.410 0.358 0.395
720 0.391 0.428 0.385 0.421 0.410 0.439 0.398 0.432
Avg 0.343 0.387 0.337 0.380 0.356 0.396 0.34 0.384
Pro - - 1.7% 1.8% - - 4.5% 3.0%

E
T

T
m

1 96 0.290 0.342 0.283 0.335 0.290 0.343 0.285 0.335
192 0.332 0.369 0.322 0.359 0.329 0.368 0.322 0.359
336 0.366 0.392 0.356 0.382 0.364 0.390 0.358 0.381
720 0.420 0.424 0.407 0.417 0.430 0.426 0.414 0.413
Avg 0.352 0.381 0.342 0.373 0.353 0.381 0.344 0.372
Pro - - 2.8% 2.1% - - 2.5% 2.3%

E
T

T
m

2 96 0.165 0.255 0.161 0.250 0.177 0.263 0.162 0.252
192 0.220 0.292 0.217 0.289 0.233 0.302 0.217 0.289
336 0.278 0.329 0.271 0.324 0.283 0.335 0.270 0.324
720 0.367 0.385 0.362 0.381 0.367 0.388 0.357 0.380
Avg 0.257 0.315 0.252 0.311 0.265 0.322 0.251 0.311
Pro - - 1.9% 1.3% - - 5.2% 3.4%

W
ea

th
er 96 0.152 0.199 0.144 0.194 0.147 0.198 0.144 0.196

192 0.197 0.243 0.189 0.238 0.190 0.239 0.187 0.237
336 0.250 0.284 0.239 0.279 0.243 0.280 0.239 0.277
720 0.320 0.335 0.312 0.331 0.320 0.332 0.316 0.330
Avg 0.229 0.265 0.221 0.260 0.225 0.262 0.221 0.260
Pro - - 3.5% 1.8% - - 1.6% 0.9%

Tr
af

fic

96 0.367 0.251 0.358 0.245 0.383 0.269 0.364 0.249
192 0.385 0.259 0.379 0.254 0.401 0.276 0.384 0.258
336 0.398 0.265 0.391 0.261 0.414 0.282 0.398 0.266
720 0.434 0.287 0.425 0.280 0.443 0.309 0.428 0.284
Avg 0.396 0.265 0.388 0.260 0.410 0.284 0.393 0.264
Pro - - 2.0% 1.8% - - 5.2% 8.4%

E
le

ct
ri

ci
ty 96 0.130 0.222 0.125 0.219 0.130 0.225 0.125 0.218
192 0.148 0.242 0.143 0.235 0.148 0.240 0.144 0.236
336 0.167 0.261 0.161 0.255 0.164 0.257 0.160 0.253
720 0.202 0.291 0.198 0.287 0.203 0.291 0.195 0.285
Avg 0.161 0.254 0.156 0.249 0.161 0.253 0.156 0.248
Pro - - 3.1% 1.9% - - 3.1% 2.1%
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Table 7: Component ablation of InfoTime for RMLP and PatchTST. We set the input length I as
336. The best results are in bold and the second best are underlined.

Models RMLP PatchTST
Original +TAM +InfoTime Original +TAM +InfoTime

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.380 0.401 0.371 0.392 0.367 0.391 0.375 0.399 0.367 0.391 0.365 0.389
192 0.414 0.421 0.406 0.414 0.404 0.413 0.414 0.421 0.405 0.414 0.403 0.413
336 0.439 0.436 0.427 0.428 0.426 0.429 0.440 0.440 0.429 0.430 0.427 0.428
720 0.470 0.471 0.450 0.465 0.439 0.459 0.460 0.473 0.435 0.455 0.433 0.453

E
T

T
h2

96 0.290 0.348 0.278 0.337 0.271 0.333 0.274 0.335 0.271 0.332 0.271 0.332
192 0.350 0.388 0.340 0.377 0.335 0.374 0.342 0.382 0.334 0.373 0.334 0.373
336 0.374 0.410 0.366 0.402 0.358 0.395 0.365 0.404 0.357 0.393 0.357 0.395
720 0.410 0.439 0.404 0.435 0.398 0.432 0.391 0.428 0.386 0.422 0.385 0.421

E
T

T
m

1 96 0.290 0.343 0.285 0.337 0.285 0.335 0.290 0.342 0.286 0.337 0.283 0.335
192 0.329 0.368 0.321 0.360 0.322 0.359 0.332 0.369 0.326 0.366 0.322 0.359
336 0.364 0.390 0.357 0.382 0.358 0.381 0.366 0.392 0.359 0.388 0.356 0.382
720 0.430 0.426 0.415 0.415 0.414 0.413 0.420 0.424 0.408 0.413 0.407 0.417

E
T

T
m

2 96 0.177 0.263 0.166 0.255 0.162 0.252 0.165 0.255 0.162 0.251 0.161 0.250
192 0.233 0.302 0.222 0.294 0.217 0.289 0.220 0.292 0.218 0.290 0.217 0.289
336 0.283 0.335 0.274 0.328 0.270 0.324 0.278 0.329 0.273 0.326 0.271 0.324
720 0.367 0.388 0.362 0.384 0.357 0.380 0.367 0.385 0.364 0.382 0.362 0.381

W
ea

th
er 96 0.147 0.198 0.146 0.197 0.144 0.196 0.152 0.199 0.149 0.197 0.144 0.194

192 0.190 0.239 0.189 0.238 0.187 0.237 0.197 0.243 0.192 0.238 0.189 0.238
336 0.243 0.280 0.241 0.278 0.239 0.277 0.250 0.284 0.247 0.280 0.239 0.279
720 0.320 0.332 0.319 0.332 0.316 0.330 0.320 0.335 0.321 0.332 0.312 0.331

Tr
af

fic

96 0.383 0.269 0.366 0.252 0.364 0.249 0.367 0.251 0.359 0.245 0.358 0.245
192 0.401 0.276 0.386 0.260 0.384 0.258 0.385 0.259 0.380 0.255 0.379 0.254
336 0.414 0.282 0.400 0.268 0.398 0.266 0.398 0.265 0.391 0.262 0.391 0.261
720 0.443 0.309 0.432 0.286 0.428 0.284 0.434 0.287 0.424 0.279 0.425 0.280

E
le

ct
ri

ci
ty 96 0.130 0.225 0.127 0.221 0.125 0.218 0.130 0.222 0.129 0.223 0.125 0.219

192 0.148 0.240 0.145 0.238 0.144 0.236 0.148 0.242 0.147 0.240 0.143 0.235
336 0.164 0.257 0.162 0.255 0.160 0.253 0.167 0.261 0.165 0.258 0.161 0.255
720 0.203 0.291 0.199 0.288 0.195 0.285 0.202 0.291 0.204 0.292 0.198 0.287
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Table 8: Component ablation of InfoTime for Informer, Stationary, and Crossformer. We set the
input length I as 96. The best results are in bold and the second best are underlined.

Models Informer Stationary Crossformer
Original +TAM +InfoTime Original +TAM +InfoTime Original +TAM +InfoTime

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.865 0.713 0.598 0.565 0.381 0.394 0.598 0.498 0.455 0.452 0.375 0.388 0.457 0.463 0.396 0.411 0.379 0.392
192 1.008 0.792 0.694 0.640 0.435 0.430 0.602 0.520 0.491 0.478 0.425 0.417 0.635 0.581 0.541 0.511 0.433 0.427
336 1.107 0.809 0.853 0.719 0.485 0.461 0.677 0.573 0.611 0.530 0.463 0.436 0.776 0.667 0.759 0.651 0.482 0.458
720 1.181 0.865 0.914 0.741 0.534 0.524 0.719 0.597 0.594 0.542 0.463 0.459 0.861 0.725 0.845 0.711 0.529 0.517

E
T

T
h2

96 3.755 1.525 0.502 0.538 0.336 0.390 0.362 0.393 0.330 0.371 0.286 0.335 0.728 0.615 0.364 0.415 0.333 0.386
192 5.602 1.931 0.821 0.701 0.468 0.470 0.481 0.453 0.456 0.440 0.371 0.388 0.898 0.705 0.470 0.481 0.455 0.453
336 4.721 1.835 1.065 0.823 0.582 0.534 0.524 0.487 0.475 0.463 0.414 0.425 1.132 0.807 0.580 0.547 0.554 0.513
720 3.647 1.625 1.489 1.022 0.749 0.620 0.512 0.494 0.506 0.486 0.418 0.437 4.390 1.795 0.768 0.648 0.757 0.619

E
T

T
m

1 96 0.672 0.571 0.435 0.444 0.326 0.367 0.396 0.401 0.375 0.396 0.326 0.362 0.385 0.409 0.388 0.401 0.323 0.362
192 0.795 0.669 0.473 0.467 0.371 0.391 0.471 0.436 0.441 0.432 0.366 0.379 0.459 0.478 0.436 0.428 0.366 0.386
336 1.212 0.871 0.545 0.518 0.408 0.416 0.517 0.464 0.472 0.455 0.392 0.398 0.645 0.583 0.483 0.457 0.403 0.414
720 1.166 0.823 0.669 0.589 0.482 0.464 0.664 0.527 0.532 0.489 0.455 0.434 0.756 0.669 0.548 0.498 0.473 0.460

E
T

T
m

2 96 0.365 0.453 0.258 0.378 0.187 0.282 0.201 0.291 0.185 0.276 0.175 0.256 0.281 0.373 0.223 0.321 0.186 0.281
192 0.533 0.563 0.439 0.515 0.277 0.351 0.275 0.335 0.254 0.318 0.238 0.297 0.549 0.520 0.347 0.404 0.269 0.341
336 1.363 0.887 0.836 0.728 0.380 0.420 0.350 0.377 0.343 0.372 0.299 0.336 0.729 0.603 0.528 0.506 0.356 0.396
720 3.379 1.338 3.172 1.322 0.607 0.549 0.460 0.435 0.440 0.421 0.398 0.393 1.059 0.741 0.895 0.665 0.493 0.482

W
ea

th
er 96 0.300 0.384 0.277 0.354 0.179 0.249 0.181 0.230 0.178 0.226 0.166 0.213 0.158 0.236 0.154 0.225 0.149 0.218

192 0.598 0.544 0.407 0.447 0.226 0.296 0.286 0.312 0.261 0.296 0.218 0.260 0.209 0.285 0.202 0.27 0.202 0.272
336 0.578 0.523 0.529 0.520 0.276 0.334 0.319 0.335 0.318 0.333 0.274 0.300 0.265 0.328 0.263 0.320 0.256 0.313
720 1.059 0.741 0.951 0.734 0.332 0.372 0.411 0.393 0.387 0.378 0.351 0.353 0.376 0.397 0.353 0.382 0.329 0.366

Tr
af

fic

96 0.719 0.391 0.577 0.356 0.505 0.348 0.599 0.332 0.503 0.313 0.459 0.311 0.609 0.362 0.490 0.308 0.529 0.334
192 0.696 0.379 0.556 0.357 0.521 0.354 0.619 0.341 0.488 0.309 0.475 0.315 0.623 0.365 0.493 0.310 0.519 0.327
336 0.777 0.420 0.580 0.370 0.520 0.337 0.651 0.347 0.506 0.318 0.486 0.319 0.649 0.370 0.53 0.328 0.521 0.337
720 0.864 0.472 0.668 0.430 0.552 0.352 0.658 0.358 0.542 0.329 0.522 0.338 0.758 0.418 0.591 0.348 0.556 0.350

E
le

ct
ri

ci
ty 96 0.274 0.368 0.228 0.333 0.195 0.300 0.168 0.271 0.152 0.252 0.154 0.256 0.170 0.279 0.151 0.251 0.150 0.248

192 0.296 0.386 0.238 0.344 0.193 0.291 0.186 0.285 0.166 0.265 0.163 0.263 0.198 0.303 0.168 0.266 0.168 0.263
336 0.300 0.394 0.254 0.358 0.206 0.300 0.194 0.297 0.180 0.280 0.178 0.279 0.235 0.328 0.197 0.292 0.200 0.290
720 0.373 0.439 0.288 0.379 0.241 0.332 0.224 0.316 0.208 0.305 0.201 0.299 0.27 0.36 0.238 0.328 0.235 0.323
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Table 9: Component ablation of InfoTime for PatchTST, RMLP, Informer, Stationary, and Cross-
former on PEMS (PEMS03, PEMS04, and PEMS08) datasets. We set the input length I as 336 for
all of these base models.

Models Metric PEMS03 PEMS04 PEMS08
96 192 336 720 96 192 336 720 96 192 336 720

Pa
tc

hT
ST

Original MSE 0.180 0.207 0.223 0.291 0.195 0.218 0.237 0.321 0.239 0.292 0.314 0.372
MAE 0.281 0.295 0.309 0.364 0.296 0.314 0.329 0.394 0.324 0.351 0.374 0.425

+TAM MSE 0.159 0.189 0.193 0.263 0.170 0.198 0.204 0.257 0.186 0.244 0.257 0.307
MAE 0.270 0.293 0.286 0.350 0.276 0.297 0.299 0.345 0.289 0.324 0.320 0.378

+InfoTime MSE 0.115 0.154 0.164 0.198 0.110 0.118 0.129 0.149 0.114 0.160 0.177 0.209
MAE 0.223 0.251 0.256 0.286 0.221 0.224 0.237 0.261 0.218 0.243 0.241 0.281

R
M

L
P

Original MSE 0.160 0.184 0.201 0.254 0.175 0.199 0.210 0.255 0.194 0.251 0.274 0.306
MAE 0.257 0.277 0.291 0.337 0.278 0.294 0.306 0.348 0.279 0.311 0.328 0.365

+TAM MSE 0.143 0.171 0.186 0.234 0.153 0.181 0.189 0.222 0.158 0.215 0.236 0.264
MAE 0.241 0.264 0.276 0.316 0.259 0.280 0.289 0.321 0.255 0.288 0.302 0.333

+InfoTime MSE 0.117 0.159 0.146 0.204 0.103 0.114 0.130 0.154 0.116 0.156 0.175 0.181
MAE 0.228 0.252 0.246 0.285 0.211 0.219 0.236 0.264 0.215 0.235 0.242 0.255

In
fo

rm
er

Original MSE 0.139 0.152 0.165 0.216 0.132 0.146 0.147 0.145 0.156 0.175 0.187 0.264
MAE 0.240 0.252 0.260 0.290 0.238 0.249 0.247 0.245 0.262 0.266 0.274 0.325

+TAM MSE 0.126 0.142 0.157 0.207 0.118 0.128 0.134 0.138 0.126 0.149 0.172 0.237
MAE 0.230 0.245 0.254 0.284 0.226 0.232 0.235 0.240 0.232 0.247 0.265 0.316

+InfoTime MSE 0.109 0.120 0.144 0.194 0.107 0.124 0.124 0.136 0.099 0.123 0.147 0.196
MAE 0.216 0.228 0.247 0.282 0.215 0.230 0.231 0.245 0.204 0.224 0.242 0.278

St
at

io
na

ry Original MSE 0.120 0.143 0.156 0.220 0.109 0.116 0.129 0.139 0.151 0.180 0.252 0.223
MAE 0.222 0.242 0.252 0.300 0.214 0.220 0.230 0.240 0.235 0.247 0.262 0.285

+TAM MSE 0.118 0.143 0.156 0.208 0.104 0.115 0.123 0.136 0.134 0.160 0.191 0.231
MAE 0.219 0.241 0.252 0.285 0.209 0.218 0.223 0.234 0.224 0.237 0.251 0.289

+InfoTime MSE 0.101 0.131 0.153 0.190 0.096 0.114 0.125 0.135 0.103 0.144 0.184 0.217
MAE 0.206 0.229 0.245 0.273 0.199 0.217 0.229 0.243 0.200 0.220 0.245 0.278

C
ro

ss
fo

rm
er Original MSE 0.159 0.233 0.275 0.315 0.149 0.216 0.230 0.276 0.141 0.162 0.199 0.261

MAE 0.270 0.319 0.351 0.383 0.261 0.320 0.324 0.369 0.253 0.269 0.306 0.355

+TAM MSE 0.134 0.179 0.217 0.264 0.133 0.171 0.186 0.240 0.112 0.136 0.156 0.196
MAE 0.237 0.270 0.298 0.335 0.237 0.270 0.284 0.329 0.220 0.235 0.252 0.289

+InfoTime MSE 0.119 0.166 0.189 0.223 0.114 0.139 0.161 0.171 0.088 0.108 0.134 0.171
MAE 0.217 0.250 0.265 0.293 0.215 0.236 0.258 0.275 0.190 0.206 0.222 0.251
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