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Abstract

Cross-device federated learning often faces heterogeneous clients. These
clients carry data with very different values for training high-performance,
generalized global models, calling for effective contribution estimation
mechanisms. Width scaling with thinner subnetworks and depth scaling
via early exits enable participation for heterogeneous clients but still suf-
fer from (i) noisy aggregation across mismatched subnetworks, (ii) under-
trained deep layers when few clients reach them, and (iii) costly, client-
isolated contribution estimates. We propose SNOWFL, which pairs server-
side single-shot pruning at initialization pruning (SNIP) with coalition-
structured Owen valuation. SNIP uses a small public, unlabeled set to
score connections by loss sensitivity and produce layer-consistent width
masks per tier aligned with fixed early exits. During training, we estimate
client contributions by first computing Owen values for coalitions and then
allocating credit within each coalition via update alignment and diversity.
These contribution estimates will be used in both weighted aggregation
and drive capacity-aware reassignment. We prove nonconvex convergence
to stationarity and, under strong convexity on the retained subspace, lin-
ear convergence to a neighborhood. Under matched FLOPs and param-
eter budgets, SNOWFL achieves state-of-the-art accuracy on vision and
language benchmarks, improving strong heterogeneous baselines by up to
15%, while valuation remains data-free except for the small public samples
used once for initialization.

1 Introduction

Federated learning (FL) trains a single global model across many clients without sharing
raw data McMahan et al. (2017). In cross-device settings, client hardware ranges from
GPUs to memory/compute-constrained phones and sensors Li et al. (2020b); Karimireddy
et al. (2020); Li et al. (2021b). Standard methods such as FedAvg assume one common
model on every client; in practice, the weakest devices cannot host or train it and are
dropped. Systematic exclusion slows convergence and introduces selection bias, leaving
data from weaker clients under-represented Li et al. (2020b); Karimireddy et al. (2020).
Training a single downsized model that everyone can handle is not a remedy either, since
a one-size-fits-all network typically underfits richer data on capable clients and sacrifices
accuracy Diao et al. (2020). Our goal is to engage all clients without degrading the global
model by assigning each client a compatible subnetwork and periodically regrouping clients
by estimated contribution, so participation and capacity are driven by utility rather than
hardware alone.
A common response to heterogeneity is dynamic model scaling. Width scaling assigns thin-
ner subnetworks to constrained clients Diao et al. (2020). Depth scaling equips backbones
with early exits so shallower models run on weaker devices Liu et al. (2022a); Kim et al.
(2022). Hybrids such as ScaleFL combine both and often add cross-exit distillation to align
representations Ilhan et al. (2023). Knowledge transfer via distillation or contrastive ob-
jectives further helps large and small models share information Zhu et al. (2021); Li et al.
(2021a). These techniques enable heterogeneous participation.
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Important gaps remain. Averaging width-pruned models can misalign parameters, and
naive width subsetting can underperform simply excluding weak clients Diao et al. (2020).
Multi-exit networks alleviate channel mismatch, but separate heads may compete without
careful coordination; deep layers can be under-trained because only strong clients traverse
them Kim et al. (2022); Ilhan et al. (2023); Lee et al. (2024). Subnetworks and exits also
accumulate different BatchNorm statistics, which destabilizes aggregation; turning off BN
tracking avoids drift but often reduces accuracy. Thus, while scaling enables participation,
it can compromise optimization stability or rely on heavy distillation.
A complementary lever is pruning at initialization. Single-shot network pruning (SNIP)
scores each connection at initialization by the loss gradient with respect to a binary mask
and keeps the most salient channels in one pass Lee et al. (2018). Examples of SNIP-based
methods include GraSP and SynFlow Wang et al. (2020a); Tanaka et al. (2020). In FL, a
server-side SNIP step can define data-aware, layer-consistent masks for each submodel so
clients train aligned, task-relevant subnetworks rather than ad hoc slices. A brief BatchNorm
calibration on public or unlabeled data then harmonizes statistics along pruned and exit
paths, stabilizing training and evaluation.
Fair and efficient training also requires weighting clients by the utility of their updates.
The Shapley value provides an axiomatic notion of marginal contribution but is intractable
at FL scale Ghorbani & Zou (2019). Approximations such as ShapFed and GTG-Shapley
reduce cost but largely treat clients independently Tastan et al. (2024); Liu et al. (2022b).
In practice, clients naturally cluster into a few coalitions that share submodel configurations.
The Owen value generalizes Shapley to such coalition structures by first valuing groups as
a quotient game and then allocating value within each group. We adopt this perspective to
compute group- then member-level contributions and to regroup clients by measured utility
over rounds, distinct from specific sampling estimators such as FedOwen KhademSohi et al.
(2025).
We propose SNOWFL, an Owen–value-based contribution weighting for heterogeneous tiers,
complemented by a single-shot, server-side SNIP step that produces task-aware, exit-
compatible width masks and a brief BN calibration for stability. Together, these pieces
stabilize aggregation across heterogeneous subnetworks and improve the accuracy, efficiency
and fairness trade-off. We list our contributions below:

• We formalize contribution estimation using the Owen value Owen (1977) over the
coalition structure induced by tier assignments: (i) group-level Shapley on the quo-
tient game to value coalitions; (ii) within-coalition allocation that rewards global
alignment and non-redundancy among client updates. These scores drive both ag-
gregation weights and capacity-aware reassignment, improving stability and conver-
gence under heterogeneity Ghorbani & Zou (2019); Tastan et al. (2024); Liu et al.
(2022b); KhademSohi et al. (2025).

• We derive task-aware, layer-consistent width masks aligned with fixed early exits
once at initialization without the need for client data. Then a brief BN calibration
harmonizes statistics along pruned paths. This reduces subnetwork mismatch and
keeps aggregation simple Lee et al. (2018); Diao et al. (2020).

• We evaluate SNOWFL against various heterogeneous FL baselines, including Het-
eroFL, DepthFL, ScaleFL, InclusiveFL, and ReeFL, on vision and language bench-
marks under non-iid partitions. SNOWFL improves accuracy by up to 15% rela-
tive. Ablations isolate the effects of SNIP pruning and Owen value weighting.

2 Related Work

2.1 Federated Learning with Heterogeneous Models

Width scaling via subnetwork training (e.g., HeteroFL) enables resource-aware participation
but can suffer from parameter mismatch and biased pruning when subnetworks are formed
naively Diao et al. (2020). Depth scaling through early exits (InclusiveFL, DepthFL) assigns
shallower models to weak devices and aggregates layer-wise, often coupled with distillation
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to align shallow and deep representations Liu et al. (2022a); Kim et al. (2022). ScaleFL
unifies width+depth scaling, adding multi-exit classifiers and cross-exit self-distillation for
consistent aggregation Ilhan et al. (2023). ReeFL refines multi-exit training by sharing a uni-
fied classifier across exits to mitigate conflicting objectives and uses dynamic self-distillation
Lee et al. (2024). Complementary FL optimizers (FedProx, SCAFFOLD, FedNova) reduce
client drift and normalize aggregation in heterogeneous networks but do not natively resolve
model-size heterogeneity Li et al. (2020b); Karimireddy et al. (2020); Wang et al. (2020b).
Batch normalization personalization (e.g., FedBN) mitigates feature shift by keeping BN
locally Li et al. (2021b), but it does not address the subnetwork and exit mismatch created
by width and depth scaling; our lightweight calibration is complementary and architecture
aware. Beyond width/depth sharing, knowledge-transfer routes enable heterogeneous ar-
chitectures to collaborate without strict parameter alignment: FedMD distills via a public
set across disparate models Li & Wang (2019), and FedGKT transfers knowledge between
large and small models through group distillation He et al. (2020). For nested subnetworks,
FjORD uses ordered dropout to yield consistent, width-scaled submodels that aggregate
cleanly Horvath et al. (2021). Finally, large-scale benchmarking such as FedScale highlights
practical, system-level heterogeneity patterns and evaluation protocols complementary to
algorithmic proposals Lai et al. (2022). In contrast, SNOWFL generates task-aware sub-
networks via SNIP at initialization and avoids iterative pruning or heavy distillation while
preserving a common parameterization for aggregation Lee et al. (2018).

2.2 Early-Exit Architectures

Classic early-exit networks such as BranchyNet Teerapittayanon et al. (2016), MSDNet
Zhang et al. (2022), and Shallow-Deep Networks Lei et al. (2020) reduce inference cost by
exiting confidently at intermediate layers. FL variants (DepthFL, ScaleFL, ReeFL) adapt
these ideas to cross-device training with multi-exit heads and inter-exit knowledge transfer
Kim et al. (2022); Ilhan et al. (2023); Lee et al. (2024). Our method adopts a simple, fixed
set of exits for compatibility but focuses the novel contributions on (i) SNIP-guided width
selection per resource group and (ii) Owen-based contribution weighting and regrouping; this
separates efficiency (architecture) from fairness (valuation) without adding complex exit
policies.

2.3 Pruning at Initialization

PaI methods rank parameters/units by saliency at initialization and prune in one shot.
SNIP computes connection sensitivity to the loss Lee et al. (2018); GraSP preserves gradient
flow via a Hessian-based criterion Wang et al. (2020a); SynFlow avoids data dependence
by maximizing synaptic flow Tanaka et al. (2020). Unlike iterative pruning, PaI minimizes
retraining overhead. In FL, PaI can predefine compatible sparse subnetworks across clients.
SNOWFL uses SNIP server-side with a small public set, producing layer-consistent masks for
groups (width) and designated exits (depth) before training. Complementarily, LotteryFL
shows that lottery-ticket subnetworks can be found and exploited in federated training for
personalized, communication-efficient models, further motivating one-shot sparsification in
FL Li et al. (2020a).

2.4 Client Contribution Evaluation and Fairness in FL

Shapley-value-based approaches (e.g., Data Shapley Ghorbani & Zou (2019)) provide prin-
cipled attributions but are expensive in FL. ShapFed computes class-wise Shapley to drive
weighted aggregation Tastan et al. (2024); GTG-Shapley accelerates estimation via guided
truncation Liu et al. (2022b); ShapleyFL treats FL as a sequential cooperative game to adapt
weights robustly Sun et al. (2023); SPACE estimates contributions in a single round using
knowledge amalgamation and prototypes Chen et al. (2023). Secure protocols enable pri-
vate Shapley computation in cross-silo settings Zheng et al. (2022). In VFL, VerFedSV and
surveys discuss fair and efficient vertical contribution measurement Fan et al. (2022); Cui
et al. (2024). FedOwen introduces Owen sampling to reduce variance and budget in client
valuation and to guide adaptive selection KhademSohi et al. (2025). Orthogonal to Shapley-
based scoring, Agnostic FL (Q-FFL) formalizes worst-case fairness objectives under client
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shifts Mohri et al. (2019), while clustered-diverse client sampling improves exploration–ex-
ploitation in selection under heterogeneity Fraboni et al. (2021). These insights motivate
SNOWFL’s alignment-aware utility, Owen-style group allocation, and contribution-weighted
aggregation/regrouping.

3 Preliminaries

3.1 Federated learning and heterogeneous depth/width

Let N clients minimize the standard FL objective

F (w) =

N∑
i=1

ni∑N
j=1 nj

E(x,y)∼Di

[
L(w; x, y)

]
, (1)

with w ∈ Rd. FedAvg alternates local SGD on selected clients and weighted averaging
McMahan et al. (2017); Li et al. (2020b). Under system heterogeneity, clients may train
scaled submodels while sharing a common parameterization. We distinguish two orthogonal
scaling axes: width scaling removes channels/neurons to respect compute or memory
budgets; depth scaling equips the backbone with early-exit heads and allows truncated
forward/backward passes so weaker devices stop earlier Diao et al. (2020); Liu et al. (2022a);
Kim et al. (2022); Ilhan et al. (2023); Lee et al. (2024). Aggregation aligns the shared
parameters of the underlying backbone; exit heads map intermediate features to the common
prediction task.
When the backbone admits multiple exits, we train with a standard multi-exit objective

Lmulti(w; x, y) =

B∑
b=1

λb

(̀
hb(f≤db

(x;w)) , y
)
, λb ≥ 0,

B∑
b=1

λb > 0, (2)

where f≤db
denotes the backbone truncated at depth db and hb is the associated head. The

choices of B, exit placements {db}, and coefficients {λb} are architecture-level hyperparam-
eters fixed outside the theory; they are specified with the models in Section 5. Throughout,
client sampling follows the protocol in Section 4, and the aggregation rule is contribution-
weighted and privacy preserving.

3.2 Client valuation

Given a utility ν(S) for any coalition S⊆{1, . . . , N}, the Shapley value

φi =
∑

S⊆{1,...,N}\{i}

|S|! (N − |S| − 1)!

N !

[
ν(S ∪ {i})− ν(S)

]
(3)

allocates contributions in a way that uniquely satisfies efficiency, symmetry, dummy, and
additivity Ghorbani & Zou (2019). Exact computation is exponential, motivating estimators
and structure-exploiting variants in FL Tastan et al. (2024); Liu et al. (2022b); Sun et al.
(2023). The Owen value extends Shapley to a priori coalition structures, enabling stratified
valuation that first attributes mass to groups and then divides within groups according to
within-group signals.
SNOWFL adopts this two-level perspective: round-wise, we evaluate group contributions
in a quotient game and perform an intra-group allocation that respects efficiency while
remaining data-free. Concretely, the utility employed later in Section 4.3 depends only on
model updates and their alignment with the aggregated direction; no client examples or
labels are accessed. A small public or unlabeled pool is used solely for initialization-time
saliency scoring and BN calibration, keeping valuation strictly privacy preserving.
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4 Methodology

4.1 Overview

SNOWFL couples a server-side, one-shot pruning-at-initialization stage with a round-wise,
coalition-structured client valuation mechanism. Phase I constructs, for each resource tier,
a task-aware width mask that is compatible with a designated early-exit depth, obtained
via SNIP on a small public or unlabeled set (no private data). Phase II performs federated
optimization over these pruned, multi-exit architectures while computing Owen-style client
contributions each round; these contributions govern aggregation weights and the reassign-
ment of clients to tiers. A lightweight batch-normalization (BN) calibration aligns statistics
to the current model structure using only public or unlabeled data. See Algorithm 1 for the
full SNOWFL training loop.

4.2 Phase I: Saliency-Guided Width Pruning at Initialization

Saliency and privacy-preserving scoring. Let the model have parameters w ∈ Rm

and binary masks c ∈ {0, 1}m defining a pruned subnetwork w′ = c�w. On a small, fixed
public/unlabeled set Dvalid used only at initialization (and later BN calibration), we define
connection saliencies

sj =

∣∣∣∣ ∂L(c�w;Dvalid)

∂cj

∣∣∣∣
∣∣∣∣∣
c=1

=
∣∣ 〈∇wL(w;Dvalid), ej �w

〉 ∣∣ . (4)

Thus sj measures the instantaneous loss sensitivity to removing parameter wj at initializa-
tion. No client-local examples or labels are ever touched by Phase I.

From parameter scores to tier-consistent channel masks. Saliencies are aggregated
to unit-level quantities s

(l)
k (filters/channels or neurons) within each layer l; this respects

structured pruning and preserves tensor shapes. Given a per-layer budget κ(l)
g for tier g, we

keep the κ
(l)
g most salient units:

I(l)
g = TopK

(
{s(l)k }K

(l)

k=1 ; κ
(l)
g

)
, c

(l)
k,g = I{k ∈ I(l)

g }, (5)

and enforce cross-layer channel consistency (e.g., pruning an output channel in layer l implies
pruning the corresponding input channel in l+1). Skip connections are handled by pruning
aligned branches so residual additions remain shape-compatible; BN parameters follow their
associated channels.

Geometric compute schedule across tiers. We order tiers so that g=1 is the full
model, and impose a multiplicative compute budget ρ∈(0, 1), with

Fg = ρ g−1 F1,

where Fg is the target FLOPs for tier g and F1 is the FLOPs of the full backbone with
final exit. In Phase I we jointly choose per-layer budgets {κ(l)

g } and an exit depth dg
so that the estimated FLOPs of the masked, truncated network f≤dg (·; w � cg) satisfies
FLOPs(cg, dg) ≤ Fg. When multiple ({κ(l)

g }, dg) meet the constraint, we pick the deepest
feasible exit dg and let width pruning absorb the compute reduction; this matches practice
where stronger pruning permits later exits at the same budget. The pair (cg, dg) is computed
once and frozen.

Depth compatibility with early exits. Exit placements {db} are fixed at the architec-
ture level. For tier g, pruning is applied only up to dg so that the designated exit receives
a well-formed representation; layers deeper than dg are inactive for that tier but remain
available to higher tiers. Phase I yields a ladder {(cg, dg)}Gg=1 of task-aware subnetworks,
all subgraphs of one global model. Masks and the geometric FLOPs targets {Fg} are com-
puted once and then frozen for the remainder of training.

5
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Why SNIP here. SNIP’s first-order criterion provides a stable, data-light proxy for pa-
rameter importance at initialization, aligning with our privacy constraints and avoiding mul-
tiple costly retraining cycles. Because masks are derived from a single model (not per-client
fine-tuned copies), they align channels across tiers, simplifying aggregation in Phase II.

4.3 Phase II: Owen-Style Valuation, Weighted Aggregation, and Tier
Reassignment

Masked updates and a geometry of progress. At round t, selected client i trains only
within its assigned masked subspace, returning ∆wi,t with zeros on pruned coordinates. Let

vt =

∑
i∈St

αi,t ∆wi,t∥∥∑
i∈St

αi,t ∆wi,t

∥∥
2

(6)

be the normalized aggregate direction with provisional nonnegative weights αi,t (e.g., uni-
form or proportional to ni). We measure contribution using a purely data-free utility

Ut(A) =
∑
i∈A

(
max{〈∆wi,t, vt〉, 0}

)1/2
. (7)

Geometrically, 〈∆wi,t,vt〉 = ‖∆wi,t‖2 cos θi,t is the signed projection of i’s update onto the
global target. Clipping at zero ignores antagonistic directions; the square root is a concave
tempering that reduces winner-take-all effects while still rewarding alignment. Because all
∆wi,t are represented in the same ambient space (with zeros on out-of-tier coordinates),
inner products are well-defined across heterogeneous tiers.

Tier-level (quotient-game) Shapley with efficiency. Let Pt = {P1,t, . . . , PG,t} be
the partition of participants by current tier. Defining Ugrp

t (Q) = Ut

(⋃
g∈Q Pg,t

)
for Q ⊆

{1, . . . , G}, we estimate each tier’s Shapley value
φg,t = Eπ

[
Ugrp
t

(
Predπ(g) ∪ {g}

)
− Ugrp

t

(
Predπ(g)

)]
, (8)

by Monte Carlo permutations of tiers, clamping negative increments to zero. We then rescale
so
∑G

g=1 φg,t = Ugrp
t ({1, . . . , G}), ensuring efficiency. If Pg,t = ∅ at round t, we set φg,t = 0.

Within-tier allocation: alignment and diversity. Owen’s within-coalition division is
guided by two signals. The first is global alignment ai,t = max{〈∆wi,t,vt〉, 0}. The second
is a peer-diversity term computed via within-tier cosine similarities:

di,t = 1− 1

|Pg,t| − 1

∑
j∈Pg,t\{i}

〈∆wi,t, ∆wj,t〉
‖∆wi,t‖2 ‖∆wj,t‖2

, (9)

with standard stabilization (small ε in denominators; if |Pg,t| = 1 then di,t = 1). Intuitively,
clients that explore complementary directions (high di,t) add robustness; clients tightly
clustered around the same direction share credit. We combine signals using within-tier
min–max normalization norm(·),

zi,t = (1− γt)norm(di,t) + γt norm(ai,t) + αt norm(logni), (10)
forming soft weights wi,t = exp(zi,t)/

∑
j∈Pg,t

exp(zj,t) and allocating vi,t = φg,twi,t. This
respects efficiency within each tier (

∑
i∈Pg,t

vi,t = φg,t) while balancing aligned progress and
exploratory diversity.

Aggregation and reassignment with capacity constraints. The global model is up-
dated by

wt+1 = wt + ηt
∑
i∈St

βi,t ∆wi,t, βi,t ∝ vi,t α̃i,t,
∑
i

βi,t = 1. (11)

At scheduled intervals, clients are reassigned by sorting the most recent available v (partic-
ipants use vi,t; non-participants carry forward their last estimate) and partitioning into G
tiers under fixed capacity constraints. This prevents collapse to the deepest configuration
and yields a stable resource allocation. Reassignment uses the frozen masks (cg, dg) from
Phase I, so clients move between compatible subgraphs without architectural churn.
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Warm-up, smoothing, and stability. A brief warm-up can avoid noisy early valuations:
during the first few rounds one may (i) aggregate uniformly, (ii) accumulate stable estimates
of vt, and (iii) delay the first reassignment. Thereafter, applying a short exponential moving
average to {vi,t} before normalization reduces oscillations without biasing across tiers. These
stability controls are architectural-agnostic and reported with training schedules in Section 5.

4.4 Batch Normalization Calibration

Pruned pathways and early exits induce heterogeneous activation statistics. To mitigate
BN mismatch without private data, we refresh BN buffers either server-side (forward passes
on Dvalid after aggregation) or client-side (brief forward-only passes on local unlabeled
data before training when public data are unavailable or shifted). The calibration budget
(samples/iterations; which exits are refreshed) is fixed per experiment and listed in Section 5.

4.5 Computation and Privacy

One-shot pruning. Phase I performs G saliency computations (one per tier), each a single
backward pass on Dvalid with per-layer aggregation and cross-layer consistency checks.
Per-round valuation. Tier-level Shapley uses Monte Carlo permutations over G tiers;
utilities reuse cached inner products to compute equation 7. Complexity is O(MG) for
permutations and O(|St|) for dot-products; within-tier allocation is up to O(

∑
g |Pg,t|2) and

can be reduced via caps or pair subsampling.
Privacy. Neither phase accesses client raw data. Phase I and BN use only public/unlabeled
data; valuation depends solely on model deltas {∆wi,t}.

5 Experiments

5.1 Benchmarks and data partitions

We evaluate on CIFAR-10/100 Krizhevsky (2009), FEMNIST and Shakespeare (LEAF)
Caldas et al. (2018). For CIFAR-10/100 we create N=100 clients via Dirichlet sampling
with α ∈ {0.1, 0.5} Hsu et al. (2019). FEMNIST uses per-writer user partitions; Shakespeare
uses speaker partitions. Vision metrics are top-1 accuracy; language metrics are character
accuracy and perplexity. All methods share identical training schedules and sampling.

5.2 Models, exits, and tiers

Backbones and exits. Vision uses ResNet-110 He et al. (2016) with four exits (after
conv2_x, conv3_x, conv4_x, and the final head). Shakespeare uses a 4-layer GRU Cho
et al. (2014) with exits after each layer; the multi-exit objective in Eq. 2 is used throughout.
Compute schedule. We fix a geometric per-tier budget: base FLOPs F1 (full model) and
Fg = ρg−1F1 with ρ = 0.5 for g = 2, 3, 4. In SNOWFL Phase I we choose (dg, cg) to satisfy
FLOPs(cg, dg) ≤ Fg; masks are frozen. Baselines are compute-matched to the same tier
budgets (within ±2%).
Baselines We compare against HeteroFL Diao et al. (2020), DepthFL Kim et al. (2022),
ScaleFL Ilhan et al. (2023), InclusiveFL Liu et al. (2022a), and ReeFL Lee et al. (2024),
each tuned to match Fg.

5.3 Main results

Table 1 reports test accuracy (best-exit/exit-all, compute-matched) on CIFAR-10/100 at
α ∈ {0.1, 0.5} and FEMNIST and Shakespeare. SNOWFL consistently outperforms base-
lines. On CIFAR-10, it is ahead by +3.26 points against the next best at α=0.5 and by
+9.05 points at α=0.1. On CIFAR-100, it reaches 41.0% at α=0.5 (best baseline: 36.0%),
and is slightly ahead at α=0.1. SNOWFL is best on both FEMNIST and Shakespeare,
with a +3.0 point gap on Shakespeare. Overall, the best rational relative improvement is
15%.
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Algorithm 1 SNOWFL: One-shot SNIP pruning with data-free Owen valuation and
capacity-constrained reassignment
Require: Base model f(·;w) with exits {db}Bb=1; public/unlabeled set Dvalid; tiers g =

1..G; compute ratio ρ ∈ (0, 1); capacities C = (C1, . . . , CG); rounds T ; local steps K;
permutations M ; reassignment period Treg; warm-up Twarm; mixture weights {γt, αt}.

1: Phase I (one shot): Saliency-guided tier masks
2: Compute SNIP saliencies on Dvalid (Eq. 4); set Fg = ρg−1F1.
3: For each g: aggregate to unit-level scores; choose deepest feasible exit dg and per-layer

TopK {κ(l)
g } s.t. FLOPs(cg, dg) ≤ Fg; enforce cross-layer consistency; freeze cg.

4: Phase II (federation across heterogeneous tiers)
5: for t = 1 to T do
6: Sample clients St; send masked models (wt � cg(i,t)).
7: for i ∈ St do
8: Train K local steps with the multi-exit loss (Eq. 2) restricted to tier g(i, t); return

∆wi,t (zeros on pruned coords).
9: end for

10: Compute normalized target direction vt (Eq. 6) and tier partition Pt = {Pg,t}.
11: Tier valuation (quotient game): with Ut(A) =

∑
i∈A[〈∆wi,t,vt〉]1/2+ , estimate

{φg,t} via M random permutations (Eq. 8); clamp negatives; normalize
∑

g φg,t =

Ugrp
t ({1..G}).

12: for each g with Pg,t 6= ∅ do
13: For i ∈ Pg,t: compute alignment ai,t = [〈∆wi,t,vt〉]+ and peer-diversity di,t

(Eq. 9).
14: Combine (Eq. 10) to zi,t; set wi,t = exp(zi,t)/

∑
j∈Pg,t

exp(zj,t); allocate vi,t =

φg,t wi,t.
15: end for
16: Size weights: α̃i,t = ni/

∑
j∈St

nj .
17: Contribution-weighted aggregation: wt+1 = wt+ηt

∑
i∈St

βi,t∆wi,t, βi,t ∝ vi,t α̃i,t,∑
i βi,t = 1.

18: BN stabilization: refresh BN stats on Dvalid or via a brief unlabeled client pass.
19: if t > Twarm and t mod Treg = 0 then
20: Rank clients by recent v (carry-forward for non-participants); reassign into G

tiers under capacities C; reuse frozen (cg, dg).
21: end if
22: end for

Table 1: Mean test accuracy (%) on CIFAR-10/100, FEMNIST, and Shakespeare. Best in bold.

CIFAR-10 CIFAR-100
Method α=0.1 α=0.5 α=0.1 α=0.5 FEMNIST Shakespeare
HeteroFL Diao et al. (2020) 31.74 67.58 20.80 32.96 80.42 51.0
DepthFL Kim et al. (2022) 33.59 69.49 24.89 36.04 83.18 52.0
InclusiveFL Liu et al. (2022a) 29.26 70.97 23.38 34.94 82.91 52.8
ReeFL Lee et al. (2024) 32.70 70.37 23.78 35.20 84.20 52.4
ScaleFL Ilhan et al. (2023) 36.88 71.58 23.63 34.53 83.30 52.3
SNOWFL (ours) 45.93 74.84 24.95 41.00 84.22 55.4

5.4 Per-tier budgets and system details

Per-tier compute. Table 2 reports FLOPs (per forward, MMac) and parameters (K) at
each exit of ResNet-110 for two families of baselines. InclusiveFL, DepthFL and ReeFL use
the canonical early-exit computation schedule; ScaleFL, HeteroFL and SNOWFL share a

8
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Table 2: Per-tier compute for ResNet-110. Comparison of FLOPs (MMac) and parameters (K) at
designated network exits for three groups of methods.

InclusiveFL / DepthFL / ReeFL ScaleFL / SNOWFL HeteroFL
Tier FLOPs Params (K) FLOPs Params (K) FLOPs Params (K)
1 98.75 130.23 99.20 132.00 97.70 129.20
2 163.36 384.09 158.00 360.00 159.10 368.00
3 207.63 800.06 201.40 760.00 203.20 770.00
4 286.00 2030.00 286.00 2030.00 286.00 2030.00

slightly lighter schedule at exits 2–3 with the same final budget. These are the budgets used
to compute-match all methods.

Further results. Detailed ablations, sensitivity and convergence panels appear in Ap-
pendix C.

6 Conclusion

We presented SNOWFL, a federated learning framework that combines one-shot, server-
side SNIP pruning, a fixed ladder of early exits, and Owen-style contribution weighting.
The result is a single global model that different devices can train at different depths and
widths, while still aggregating cleanly. A brief BN calibration keeps statistics consistent
across pruned paths. Together, these pieces lower compute and communication without
adding heavy coordination. Under matched FLOPs/parameter budgets, SNOWFL attains
the highest accuracy across all datasets and heterogeneity levels. On CIFAR-10 it leads at
both α=0.5 and α=0.1, and on CIFAR-100 it reaches 41% at α=0.5 and 36% at α=0.1. In
the most heterogeneous scenario, SNOWFL achieves a relative accuracy gain of up to 15%
over the next best method. Ablations show Owen contribute has a slightly larger standalone
effect, while using them together yields the strongest results. On the theory side, we prove
a non-convex convergence-to-criticality rate and, under strong convexity, linear convergence
to a neighborhood. The bounds account for per-coordinate coverage, grouped heterogeneity,
local-step drift, staleness, and early-exit effects, adapting standard smoothness arguments
to masked, multi-exit training.
Limitations and future work. Our calibration uses public or unlabeled data that may be
imperfect; differentially private or synthetic options are worth exploring. The current masks
are one-shot and tier-structured; hardware-aware structured sparsity could yield further
speedups. Learned tier/exit policies and privacy-preserving contribution estimators are
promising directions for improving stability, fairness, and robustness. Overall, SNOWFL
offers a simple, low-overhead path to training heterogeneous subnetworks with principled
client weighting, delivering a strong accuracy–efficiency trade-off for cross-device FL.

Reproducibility Statement. An anonymized repository is available at https://
anonymous.4open.science/r/snowfl-648D/. The src/ directory contains reference imple-
mentations of Owen-based valuation, SNIP pruning, early-exit models, server strategies, and
client code; the provided bash scripts reproduce our runs without additional configuration
(Python 3.9, PyTorch 2.3 with CUDA 12.4, NVIDIA RTX 3070 8 GB, driver 550.163.01).
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A Convergence of grouping (Owen) to Shapley under
iterative regrouping

Plain-language summary. As we keep splitting client groups into smaller ones, the set
of “legal” permutations used by the Owen value grows. Once groups are singletons, those
permutations are all permutations, so the Owen value matches the Shapley value.
We show that the grouping-only (Owen-style) valuation used in Section 4.3 converges to the
Shapley value under mild, checkable conditions on per-round utilities and the regrouping
schedule. The result is independent of any Owen sampling (multilinear-extension) estima-
tors; it relies purely on the coalition-structure (grouping) viewpoint.

Standing notation. Let N = {1, . . . , |N |} be the client set and ν : 2N → R a coalition
utility (e.g., one induced by equation 7). The Shapley value (per round or for a fixed game)
is

φi(ν) =
1

|N |!
∑

π∈Π(N)

[
ν(Pπ

i ∪ {i})− ν(Pπ
i )
]
, (12)

with Π(N) the set of all permutations of N and Pπ
i the set of predecessors of i in π Shapley

(1953). A partition (coalition structure) P = {P1, . . . , Pm} induces the set Π(P) of com-
patible permutations: each block Pg appears contiguously, but the blocks themselves are
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permuted arbitrarily, and clients inside each block are internally permuted Owen (1977).
The Owen value of player i ∈ Pg is the compatible-permutation average

Owi(ν,P) =
1

|Π(P)|
∑

ρ∈Π(P)

[
ν(P ρ

i ∪ {i})− ν(P ρ
i )
]
. (13)

See Owen (1977). Intuition. Pπ
i are simply the clients that appear before i in the ordering

π; the bracketed term is i’s marginal gain when added after its predecessors.

A.1 Assumptions and definitions

Assumption A.1 (Bounded marginals). There exists B < ∞ such that for all i ∈ N and
S ⊆ N \ {i},

∣∣ν(S ∪ {i})− ν(S)
∣∣ ≤ B.

Comment. With equation 7, vt is unit length and each ∆wi,t is bounded in norm (via
clipping or step-size caps). Then every marginal gain is bounded, so a uniform constant B
exists and the assumption holds.
Definition A.2 (Refinement). A partition P ′ = {P ′

1, . . . , P
′
m′} is a refinement of P =

{P1, . . . , Pm}, written P ′ � P, if every P ′
j is contained in some Pg. Equivalently, P ′ is

obtained from P by splitting blocks (no cross-block merges) Owen (1977).
Assumption A.3 (Eventual refinement). Let {Pt}t≥0 denote the round-t partition used
by Section 4.3. There exists (possibly random) T such that for all t ≥ T , Pt+1 � Pt, and
the process almost surely reaches the finest partition Pfine =

{
{i} : i ∈ N

}
in finite time

or as t → ∞.

Comment. In our implementation, reassignment respects capacity and only splits tiers by
valuation (no merging previously separated clients), which operationalizes Assumption A.3.
If occasional merges are allowed, the theorem below still holds along any subsequence of
pure refinements; see Remark A.9.
In words. After some time, we only split existing groups and never merge them, and we
eventually end up with groups of size one.

A.2 Two basic lemmas

Lemma A.4 (Permutation support under refinement). If P ′ � P then Π(P) ⊆ Π(P ′) ⊆
Π(N) and

|Π(P)| = m!

m∏
g=1

|Pg|! , |Π(P ′)| = m′!

m′∏
j=1

|P ′
j |! . (14)

In particular, splitting a block strictly increases |Π(·)| and, at singletons, |Π(Pfine)| = |N |!.

Proof. Every ordering that is compatible with P remains compatible after splitting its
blocks, hence Π(P) ⊆ Π(P ′). Counting equation 14 follows from permuting m blocks and,
inside each block, permuting its members Owen (1977).

Lemma A.5 (A TV-distance bias bound). Let U be the uniform distribution on Π(N) and
UP the uniform distribution on Π(P). For any function f bounded by ‖f‖∞ ≤ B,∣∣∣EU [f ]− EUP [f ]

∣∣∣ ≤ B · TV
(
U,UP

)
= B

(
1− |Π(P)|

|N |!

)
,

where TV is total-variation distance.1

Meaning. Averaging over a subset of permutations (Owen) instead of all permutations
(Shapley) introduces at most a B-scaled bias that shrinks as the subset approaches the full
set.

1Standard inequality: for probability measures P,Q on a common space, |EP f − EQf | ≤
‖f‖∞ TV(P,Q). Any probability text suffices.
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A.3 Main convergence theorem

Idea in one line. Refinement increases the set of compatible permutations until it equals
all permutations; the corresponding averages of the same bounded marginal function must
converge.
Theorem A.6 (Owen (Pt) → Shapley under refinement). Under Assumptions A.1 and
A.3, for every i ∈ N ,

lim
t→∞

E
[
Owi(ν,Pt)

]
= φi(ν).

Moreover, at any t,∣∣∣E[Owi(ν,Pt)
]
− φi(ν)

∣∣∣ ≤ B

(
1− |Π(Pt)|

|N |!

)
= B

(
1−

mt!
∏mt

g=1 |Pg,t|!
|N |!

)
, (15)

where Pt = {P1,t, . . . , Pmt,t}.

Proof. By equation 13 and equation 12, both values are uniform averages of the same
bounded marginal function over two permutation sets. Lemma A.5 gives the bias bound
equation 15. Lemma A.4 plus Assumption A.3 imply |Π(Pt)| ↑ |N |!, so the bound goes to
zero and the Owen value converges to the Shapley value.

Corollary A.7 (Singletons). If Pt = Pfine for some t, then Owi(ν,Pt) = φi(ν) for all i.
Remark A.8 (Averaging across coalition structures). There is a complementary, classical
identity: the Shapley value equals a suitable average of Owen values over coalition structures
with the same block-size multiset López & Saboya (2009). Thus, even without reaching
singletons, a policy whose long-run distribution over partitions matches those weights yields
time-average Owen → Shapley. We cite this only for context; our proof does not rely on it.
Remark A.9 (Subsequence of refinements). If reassignment occasionally merges across pre-
viously split blocks, consider the subsequence of refinement times where Ptk+1

� Ptk . The
bound equation 15 and the same limit apply along {tk} as soon as Ptk → Pfine.

A.4 Link to our per-round implementation

Utilities. With standard training controls (clipping or LR caps), equation 7 yields bounded
nonnegative marginals, so Assumption A.1 holds.
Quotient game and intra-block split. The tier-level Shapley on the quotient game,
followed by an efficiency-preserving split within each tier, is exactly the Owen two-step.
Refinement. Our capacity-constrained reassignment can be run in “split-only” mode,
satisfying Assumption A.3; if merges occur, the convergence still holds along any refinement
subsequence (Remark A.9).

B Convergence of SNOWFL

Plain-language summary. The server updates using a lightly noisy averaged gradient
built from masked local steps. We bound that noise in terms of group similarity, coverage
of each coordinate, staleness, masking, and local drift. Summing the descent shows the
gradient norms average to a small value (non-convex case), and under strong convexity we
contract linearly to a fixed neighborhood.
We analyze the global update

wt+1 = wt − η ĝt, η > 0, (16)

where ĝt is a coordinate-wise normalized, group-aware gradient estimator. Each client runs
E local masked-SGD steps with stepsize γ starting from wt. Let St be the participating
set at round t, and let Pg,t denote the participants in group g. Let Pg ∈ {0, 1}d×d denote

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

the diagonal mask for group g (retained coordinates are ones). For coordinate j, define the
per-coordinate participation count

Γ
(j)
t :=

∑
i∈St

I
{
(Pg(i,t))jj = 1

}
,

and the normalized per-coordinate weights

α
(j)
i,t :=

βi,t(Pg(i,t))jj∑
k∈St

βk,t(Pg(k,t))jj
, α

(j)
i,t ≥ 0,

∑
i∈St

α
(j)
i,t = 1, (17)

for nonnegative aggregation weights βi,t with
∑

i∈St
βi,t = 1. Well-definedness. By coverage

(Assumption A5), Γ(j)
t ≥ 1 for all active j, so the denominator in equation 17 is nonzero.

The server estimator and local iterates are

(ĝt)j =
∑
i∈St

α
(j)
i,t (g

t
i )j , g t

i = −wt,E
i −wt

γE
, wt,e+1

i = wt,e
i − γ Pg(i,t) g̃

t,e
i , (18)

for e = 0, . . . , E − 1 with wt,0
i = wt. We write g(w) = ∇F (w), gi(w) = ∇Fi(w), and

gg,t(w) = |Pg,t|−1
∑

i∈Pg,t
gi(w).

Weights and conditioning. Let pi be the (round-t) client weight (uniform over cur-
rent participants by default), Pg,t =

∑
i∈Pg,t

pi the group mass, g(w) =
∑

i pi gi(w), and
gg,t(w) = P−1

g,t

∑
i∈Pg,t

pi gi(w). We write Ei[·] for expectation w.r.t. pi and Eg[·] w.r.t. Pg,t.
All expectations below are taken conditional on the current partition Pt.
Throughout, define

et := ĝt − g(wt), σ̄2 :=
1

N

N∑
i=1

σ2
i , πg,t :=

∑
i∈Pg,t∩St

βi,t, π̄g :=
1

T

T−1∑
t=0

πg,t,

and the average squared step ∆w2 := 1
T

∑T−1
t=0 E‖wt+1 −wt‖22.

Roadmap. (i) Decomposition: Lemma B.1 splits global gradient variance into within–
and across–group parts. (ii) Local drift: Lemma B.2 bounds the bias from E masked local
steps. (iii) Masked aggregation: Lemma B.3 controls et via coverage Γmin, per–coordinate
balancing cw, staleness K, and masking noise δ. (iv) Descent and summation: the one–step
inequality follows from smoothness and Young’s inequality, then summation yields the non-
convex rate (Theorem B.4), a similarity refinement (Corollary B.5), and the strongly convex
neighborhood (Theorem B.6). Our descent pattern follows standard FL proofs (cf. Wang
et al. (2023); Tan et al. (2022)).

Assumptions used throughout this appendix. We collect the standing conditions
referenced by Lemmas B.1–B.3 and Theorems B.4–B.6. These mirror the main text.
(A1) L-smoothness. Each Fi and F =

∑
i piFi is L-smooth: F (y) ≤ F (x) + 〈∇F (x),y −

x〉+ L
2 ‖y − x‖22.

(A2) Unbiased stochastic gradients with bounded variance. For minibatch ξ,
E[g̃i(w; ξ)] = gi(w) and E‖g̃i(w; ξ)− gi(w)‖22 ≤ σ2

i .
(A3) Grouped heterogeneity (intra/inter). For all w and groups Pg,t,

Ei∈Pg,t
‖gi(w)− gg,t(w)‖22 ≤ σ2

intra,g, Eg‖gg,t(w)− g(w)‖22 ≤ σ2
inter.

(A4) Gradient norm bound (used in similarity corollary). ‖gi(w)‖2 ≤ G for all i,w.

(A5) Per-coordinate coverage. For Γ
(j)
t =

∑
i∈St

I{(Pg(i,t))jj = 1}, mint,j Γ
(j)
t ≥ Γmin ≥

1.
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(A6) Per-coordinate balancing cap. For all active j,
∑

i∈St
(α

(j)
i,t )

2 ≤ cw/Γ
(j)
t . (Uniform

per-coordinate averaging satisfies cw=1.)
(A7) Bounded staleness. Each local gradient is evaluated on an iterate at most K rounds
old.
(A8) Masking/model-reduction error. For all i, g,w, E‖Pggi(w)− gi(w)‖22 ≤ δ2.

(A9) Early-exit Lipschitzness. For each exit b, ‖f≤db
(x;w) − f≤db

(x;w′)‖2 ≤ Lb‖w −
w′‖2 for all (x,w,w′).
(A10) Strong convexity (used only in Theorem B.6). F is µ-strongly convex on the
retained subspace.

We use C1, C2, C̃ > 0 for universal constants that do not depend on t or problem size.

Assumption usage. L–smoothness: Lemma B.2, Lemma B.3. Bounded variance {σ2
i }:

Lemma B.2, Lemma B.3. Grouped heterogeneity (σ2
intra,g, σ

2
inter): Lemma B.1, Lemma B.3.

Coverage Γmin and balancing cw: Lemma B.3. Staleness K: Lemma B.3. Masking error δ:
Lemma B.3. Early–exit Lipschitz Lb: equation 25. Strong convexity µ: Theorem B.6.

B.1 Variance decomposition and local-step drift

Intuition (decomposition). Grouping helps by shrinking within–group dispersion while
leaving the dispersion of group means unchanged.
Lemma B.1 (Variance decomposition (grouped; conditional on Pt)). For any w,

Ei ‖gi(w)− g(w)‖22 = Eg Ei∈Pg,t
‖gi(w)− gg,t(w)‖22 + Eg ‖gg,t(w)− g(w)‖22. (19)

Proof. Expand gi − g = (gi − gg,t) + (gg,t − g) and square; the cross term averages to 0 by
centering within each group.

Intuition (local drift). Masked local SGD deviates from the instantaneous client gradi-
ent because of stochastic noise and movement of the iterate during the E steps; smoothness
converts iterate motion to gradient mismatch, yielding a γLE scaling.
Lemma B.2 (Local-step drift after E masked steps). Under L-smoothness and bounded
variance,

E‖g t
i − gi(w

t)‖22 ≤ C2 γLE (σ2
i +G2), (20)

for a universal constant C2.

Proof. Write

g t
i =

1

E

E−1∑
e=0

g̃ t,e
i (wt,e

i ) = gi(w
t) +

1

E

E−1∑
e=0

(
g̃ t,e
i − gi(w

t,e
i )
)
+

1

E

E−1∑
e=0

(
gi(w

t,e
i )− gi(w

t)
)
.

Use ‖a+b‖2 ≤ 2‖a‖2+2‖b‖2, bounded variance for the first sum, and L-smoothness with
‖wt,e

i −wt‖ ≤
∑

s<e γ‖Pg(i,t)g̃
t,s
i ‖ plus E‖g̃‖2≤σ2

i+G2 for the second, to obtain equation 20.

B.2 Masked aggregation error (coordinate-wise chain)

Intuition (masked aggregation). Per–coordinate normalization averages only across
clients that retained that coordinate. Coverage Γmin and the balancing cap cw yield a
1/Γmin improvement; masking noise δ and staleness K appear additively in second moment.
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Lemma B.3 (Masked aggregation error). Let et = ĝt − g(wt). Under coverage Γmin and
the per-coordinate cap

∑
i(α

(j)
i,t )

2 ≤ cw/Γ
(j)
t , staleness K, and masking error δ,

E‖et‖22 ≤ cw
Γmin

∑
g

πg,t σ
2
intra,g + σ2

inter︸ ︷︷ ︸
group heterogeneity

+ C1K
2σ̄2︸ ︷︷ ︸

staleness

+ δ2︸︷︷︸
masking

+ C2 γLE (σ̄2 +G2)︸ ︷︷ ︸
local drift

.

(21)

Step-by-step chain. For coordinate j,

etj =
∑
i

α
(j)
i,t (g

t
i )j − gj(w

t)

=
∑
i

α
(j)
i,t

[
(g t

i )j − (gi(w
t))j

]
︸ ︷︷ ︸

=:aj

+
∑
i

α
(j)
i,t

[
(gi(w

t))j − (g(wt))j

]
︸ ︷︷ ︸

=:bj

.

Then Eet2j ≤ 2Ea2j +2Eb2j . For aj , Lemma B.2 and the cap give Ea2j ≤ cw
Γ
(j)
t

C2γLE(σ̄2+G2).

For bj , decompose (gi−g) = (gi−gg,t) + (gg,t−g), use Lemma B.1 and the same cap:

Eb2j ≤ cw

Γ
(j)
t

∑
g

πg,t σ
2
intra,g + σ2

inter.

K-delayed evaluations add C1K
2σ̄2 (iterate drift under smoothness and bounded noise).

Masking contributes δ2 by assumption. Sum over j, and use Γ
(j)
t ≥ Γmin to obtain equa-

tion 21.

B.3 One-step descent inequality (full chain)

Intuition (descent). Write the server step as true gradient plus error; Young’s inequality
trades a quarter of descent for bounded error growth; choosing ηL ≤ 1/2 controls the
quadratic term.
By L-smoothness (cf. Wang et al. (2023)), for U1 := E〈g(wt), wt+1 − wt〉 and U2 :=
L
2E‖w

t+1 −wt‖22,
E[F (wt+1)− F (wt)] ≤ U1 + U2 + Et

exit. (22)

Displayed chain for equation 22.
U1 = E〈g(wt),−η (g(wt) + et)〉

= −η E‖g(wt)‖22 − η E〈g(wt), et〉
≤ −η E‖g(wt)‖22 + η

(
1
4E‖g(w

t)‖22 + E‖et‖22
)

(Young)
= − 3η

4 E‖g(wt)‖22 + η E‖et‖22, (23)

U2 = L
2 E‖ − η(g(wt) + et)‖22

= Lη2

2 E‖g(wt)‖22 + Lη2 E〈g(wt), et〉 + Lη2

2 E‖et‖22
≤ Lη2

2 E‖g(wt)‖22 + Lη2
(
1
4E‖g(w

t)‖22 + E‖et‖22
)
+ Lη2

2 E‖et‖22
= 3Lη2

4 E‖g(wt)‖22 + 2Lη2 E‖et‖22 ≤ η
4 E‖g(w

t)‖22 + η E‖et‖22, (ηL ≤ 1
2 ), (24)

and early exits contribute

Et
exit ≤ Cexit

B∑
b=1

λbL
2
b E‖wt+1 −wt‖22. (25)

Here {λb}Bb=1 are the exit-loss weights from the multi-exit objective. Combining equation 22,
equation 23, equation 24, equation 25 gives

E[F (wt+1)− F (wt)] ≤ −η
2 E‖g(w

t)‖22 + 2η E‖et‖22 + Et
exit. (26)
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B.4 Main rates (non-convex, similarity refinement, strongly convex)

Theorem B.4 (Non-convex rate to criticality). Fix η ≤ 1/(2L) and run T rounds. Then

1

T

T−1∑
t=0

E‖g(wt)‖22 ≤
4
(
F (w0)− F?

)
ηT

+ 8

[ cw
Γmin

∑
g

π̄g σ
2
intra,g + σ2

inter

+ C1K
2σ̄2 + δ2

+ C2 γLE (σ̄2 +G2)

]

+
4Cexit

η

B∑
b=1

λbL
2
b ∆w2.

(27)

Meaning. The average squared gradient decays like 1/T plus fixed error terms that shrink
with better grouping (higher similarity), wider coverage, smaller staleness, milder masking,
and shorter/softer local steps.

Proof. From equation 26,
−η

2 E‖g(w
t)‖22 ≥ E[F (wt+1)− F (wt)]− 2η E‖et‖22 − Et

exit.

Sum t = 0, . . . , T − 1, telescope, divide by ηT , and multiply by −2:

1

T

T−1∑
t=0

E‖g(wt)‖22 ≤
2
(
F (w0)− F (wT )

)
ηT

+
4

T

∑
t

E‖et‖22 +
2

ηT

∑
t

Et
exit.

Lower-bound F (wT ) ≥ F?, substitute Lemma B.3, and use equation 25 with the definition
of ∆w2 to obtain equation 27.

Constant accounting. The factor 4 in front of (F (w0)−F?)/(ηT ) and the error average
stems from the − η/2 and +2η coefficients in equation 26 after summation and normal-
ization. The aggregated 8 multiplying the heterogeneity-drift block reflects that et also
enters once inside U1 via Young’s inequality (cf. equation 23), which doubles the block upon
collecting terms. The exit term picks up 4/η by the same algebra applied to equation 25.
Corollary B.5 (Similarity refinement). Assume ‖gi(·)‖2 ≤ G. Define the within–group
cosine similarity

ρg,t =
2

|Pg,t|(|Pg,t| − 1)

∑
i<j∈Pg,t

〈gi, gj〉
‖gi‖ ‖gj‖

, ρ̄g =
1

T

T−1∑
t=0

E[ρg,t]. (28)

Then σ2
intra,g ≤ G2(1− ρg,t). Let

Esim :=
cwG

2

Γmin

∑
g

π̄g (1− ρ̄g) + σ2
inter + C1K

2σ̄2 + δ2 + C2 γLE (σ̄2 +G2). (29)

With η ≤ 1/(2L),

1

T

T−1∑
t=0

E‖g(wt)‖22 ≤
4
(
F (w0)− F?

)
ηT

+ 8 Esim +
4Cexit

η

B∑
b=1

λbL
2
b ∆w2. (30)

Theorem B.6 (Strongly convex: linear convergence to a neighborhood). If F is µ-strongly
convex on the retained subspace and η ≤ min{1/(2L), µ/(8L2)}, then

E‖wt+1 −w?‖22 = E‖wt −w? − η(g(wt) + et)‖22
= E‖wt −w?‖22 − 2η E〈g(wt), wt −w?〉+ η2 E‖g(wt)‖22 + η2 E‖et‖22
≤ (1− ηµ)E‖wt −w?‖22 +

η
4 E‖g(w

t)‖22 + 2η2 E‖et‖22
≤ (1− ηµ

2 )E‖wt −w?‖22 +Rt,
(31)
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where

Rt := C̃

(
η cw

Γmin

∑
g

πg,tσ
2
intra,g + η σ2

inter + η C1K
2σ̄2 + δ2 + C2 γLE (σ̄2 +G2)

)
, (32)

for a universal constant C̃. Meaning. The error contracts by a factor (1−ηµ/2) each round,
up to a fixed radius set by the same heterogeneity, masking, staleness, and drift terms.
Remark B.7 (Per–coordinate unbiasedness under coverage). If for each coordinate j the
active set is a random subset independent of gradients and

∑
i α

(j)
i,t = 1, then E[(ĝt)j |

wt] = gj(w
t). Lemma B.3 then quantifies the residual second moment when actives vary

across j and t.
Remark B.8 (FedAvg as a special case). If Pg = I for all groups (no masking), then δ = 0,
Γmin = |St|, and cw = 1 under uniform averaging. Bound equation 27 recovers the standard
FedAvg nonconvex rate with staleness and local-step drift terms (cf. Tan et al. (2022)).
Remark B.9 (One group). With G=1, we have σ2

inter = 0, π1,t = 1; the grouped heterogeneity
reduces to one intra term, retaining coverage and masking benefits.

Tuning guide (practical). (i) Grouping helps: increase within-group similarity ⇒ lower
σ2

intra,g. (ii) Coverage matters: enforce quotas so Γmin stays away from 0. (iii) Local steps:
keep γE moderate to control local drift. (iv) Staleness: smaller K or smaller η helps. (v)
Exits: as training stabilizes, ∆w2 shrinks and the exit penalty vanishes.

Symbol mini-glossary. Γmin: minimum per-coordinate participation count; cw: per-
coordinate balancing cap; δ: masking-model-reduction noise; K: staleness bound (delayed
gradients); π̄g: average group participation weight; ∆w2: average squared update size.

C Additional experimental results

C.1 Ablations

We ablate SNIP (uniform per-layer width), Owen (tier-permutation aggregation), and
their combination. All settings are compute-matched per tier. Table 3 shows that removing
either component consistently hurts across all datasets; dropping Owen yields a larger drop
than dropping SNIP, and removing both is worst. This supports our design choice: SNIP
stabilizes per-layer capacity while Owen aligns tiers during aggregation.

Table 3: Ablation study (mean).

Configuration CIFAR-10 (%) CIFAR-100 (%) FEMNIST (%) Shake. (%)
Full SNOWFL 74.8 41.0 84.2 55.4
Without SNIP 73.6 39.3 84.1 54.2
Without Owen 72.7 38.5 83.7 53.0
Without Both 71.2 37.0 83.5 52.1

C.2 Convergence (all methods)

Figure 1 reports test accuracy vs. round (best-so-far, lightly smoothed). Methods are close
for the first 20 rounds; gaps widen later. SNOWFL consistently reaches the highest ac-
curacy by late rounds, while ReeFL is typically the strongest baseline. Gains are most
pronounced on CIFAR-100; FEMNIST shows a smaller but persistent edge; Shakespeare
saturates smoothly near table values.

C.3 Per-tier convergence (SNOWFL)

Figure 2 shows exits 0–3 (best-so-far, lightly smoothed). Later exits consistently achieve
higher accuracy; the ordering is stable throughout training. The inter-exit gap narrows on
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(c) CIFAR-100, α=0.1
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(d) CIFAR-100, α=0.5
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Figure 1: Convergence (all methods). Test accuracy vs. round (best-so-far, lightly smoothed).
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(b) CIFAR-10, α=0.5
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(c) CIFAR-100, α=0.1
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(d) CIFAR-100, α=0.5
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Figure 2: Per-tier convergence for SNOWFL. Exits 0–3 (best-so-far, lightly smoothed).

FEMNIST, while on CIFAR-100 it persists longer. This indicates tiering preserves utility
across device classes without sacrificing the strongest exit.

C.4 Sensitivity to permutations M

Figure 3 sweeps M without seed shadows. A broad optimum occurs around M≈128 across
datasets; gains saturate beyond, with mild degradation at the extremes (very small or very
large M), suggesting sufficient but not excessive permutation diversity.
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(c) CIFAR-100, α=0.1
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(d) CIFAR-100, α=0.5
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(e) FEMNIST
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Figure 3: Sensitivity to permutations M . Accuracy vs. M (no seed shadow).
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(a) CIFAR-10, α=0.1
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(b) CIFAR-10, α=0.5
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(c) CIFAR-100, α=0.1
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(d) CIFAR-100, α=0.5
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Figure 4: Sensitivity to Treg. Accuracy vs. reassignment interval (no seed shadow).

C.5 Sensitivity to reassignment Treg

Figure 4 sweeps the reassignment cadence. A short interval performs best: Treg=2 tends
to be the strongest; Treg=1 is competitive but slightly noisier; performance degrades for
Treg≥5 as tiers overfit to stale assignments.
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