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ABSTRACT

Changing the behavior of large language models (LLMs) can be as straightfor-
ward as editing the Transformer’s residual streams using appropriately constructed
“steering vectors.” These modifications to internal neural activations, a form of
representation engineering, offer an effective and targeted means of influencing
model behavior without retraining or fine-tuning the model. But how can such
steering vectors be systematically identified? We propose a principled approach,
which we call self-alignment, that uncovers steering vectors by aligning latent
representations elicited through behavioral methods (specifically, Markov chain
Monte Carlo with LLMs) with their neural counterparts. To evaluate this ap-
proach, we focus on extracting latent risk preferences from LLMs and steering
their risk-related outputs using the aligned representations as steering vectors. We
show that the resulting steering vectors successfully and reliably modulate LLM
outputs in line with the targeted behavior.

1 INTRODUCTION

LLMs are increasingly deployed in risk-sensitive domains such as finance (Niszczota & Abbas,
2023) and healthcare (Shmatko et al., 2025). In these high-stakes applications, it is essential to
develop reliable methods for aligning the behavior of LLMs with human values and safety require-
ments (Hendrycks, 2025; Mazeika et al., 2025). One solution to this problem is steering, a term that
refers to any targeted intervention (whether through model weights, decoding strategies, prompts,
or internal neural activations) intended to control or shape a model’s outputs. Steering risk-related
behavior in LLMs is one way to ensure alignment with humans in risky domains.

Steering the risk preferences of a pretrained LLM, however, is inherently challenging due to the
opacity of these models. LLMs operate over vast weight spaces, and their outputs are highly context-
dependent (Brown et al., 2020; Zhu & Griffiths, 2024b), making it difficult to isolate or manipulate
any specific internal variable that governs risk preference. Existing steering techniques, such as
prompt engineering or supervised fine-tuning, either lack the granularity needed to target specific
latent representation or require extensive retraining and human supervision (Qi et al., 2023; Ziegler
et al., 2019).

Given the context-dependent and probabilistic nature of LLM outputs, we propose that their under-
lying risk preferences are best characterized as probabilistic representations. That is, the same risky
decision may yield different completions depending on subtle variations in input phrasing or prompt
structure (Zhu & Griffiths, 2024b; Brown et al., 2020). This view suggests that an LLM’s under-
lying risk preferences can be recovered by sampling its behavior over many such comparisons. To
operationalize this idea, we measure the risk preferences of LLMs using a method based on Markov
chain Monte Carlo (MCMC), in which repeated choices made by the model define a Markov chain
that converges to a probability distribution representing these preferences. This approach has previ-
ously been used to elicit probabilistic representations in other settings from both humans and LLMs
(Noguchi et al., 2013; Sanborn & Griffiths, 2007; Harrison et al., 2020; Zhu et al., 2024).

Measuring the risk preferences of LLMs in this way creates the opportunity to build a bridge between
the observed behavior and the activations of nodes in the underlying neural network (Sucholutsky
et al., 2023). We can align the behavioral representations we find with the neural representations

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

within LLMs and use this alignment to derive a steering vector that captures underlying risk prefer-
ences. When this vector is injected back into the model at inference time, it enables precise control
of the model’s risk-related behavior. We refer to this approach as self-alignment, since it leverages
the model’s own emergent representations for behavior control.

To evaluate this method, we apply steering vectors derived from the aligned representation across
three domains: (i) risky decision-making, (ii) risk perception, and (iii) risk-related text generation.
Our results demonstrate that self-alignment yields substantially greater control over model behavior
than the alternative Contrastive Activation approach (Panickssery et al., 2023; Turner et al., 2023),
which derives steering vectors from prompt pairs. Our results also demonstrate that the modified
risk preferences transfer to tasks that are quite far away from the choices from which the steering
vectors were derived.

2 BACKGROUND

AI safety and value alignment. AI safety research has long emphasized the importance of aligning
artificial systems with human values, though explicitly encoding such values in machines remains
a formidable challenge (Russell, 2022). The emergence of LLMs presents new opportunities in
this regard, as LLMs have been shown to internalize commonsense knowledge and human norms
from large-scale training data (Hendrycks et al., 2020; Mazeika et al., 2025; Marjieh et al., 2024).
Consequently, many researchers now argue that, given sufficient data, LLMs can approximate shared
norms (Brown et al., 2020). At the same time, however, this capacity introduces new challenges for
interpretability, as it becomes increasingly difficult to discern the underlying factors that drive LLM
behavior. In this work, we propose a novel strategy that leverages emergent representations in LLMs
by eliciting the same latent construct through both behavioral and neural means. This dual elicitation
facilitates self-alignment between behavior and neural activations, providing an interpretable method
for steering LLM outputs.

LLM steering. A range of approaches has been proposed to influence the outputs of pretrained
LLMs, which can broadly be categorized as different forms of intervention. These interventions
vary in where and how they modify the model. Weight-level interventions include techniques
such as supervised fine-tuning (Qi et al., 2023) and reinforcement learning from human feedback
(Ziegler et al., 2019), which directly update model parameters. Alternatively, decoding-level inter-
ventions, such as trainable decoding, modify the output generation process while keeping model
weights fixed (Grover et al., 2019). Prompt engineering can be viewed as an intervention on the
input space, shaping model behavior through carefully constructed prompts (Zhou et al., 2022; Yao
et al., 2023). Moreover, activation-level interventions, which typically freeze the model weights
and instead search for steering vectors, offer an alternative to behavioral control. These vectors can
be discovered through gradient-based optimization (Hernandez et al., 2023) or computed directly
from contrastive prompt pairs (Li et al., 2023; Turner et al., 2023). In this work, we propose an
alignment-based method for deriving steering vectors by aligning behavioral and neural representa-
tions of latent constructs such as risk preference.

3 METHOD

The key idea behind our proposed method is to derive a steering vector that optimally aligns the
model’s behavioral and neural representations of risk preference (see Figure 1a). Our method pro-
ceeds in two main steps, described below.

Step 1: Eliciting behavioral representations of risk via MCMC. Risk preference, like many other
mental representations, is inherently unobservable. However, as demonstrated in cognitive psychol-
ogy, such latent constructs can be inferred from observed behavior (Kay & Cook, 2023; Sanborn
& Griffiths, 2007; Harrison et al., 2020). Drawing inspiration from recent work on behavioral elic-
itation in LLMs (Zhu & Griffiths, 2024a; Zhu et al., 2024; Capstick et al., 2024), we incorporate
LLMs into a MCMC sampler to effectively elicit their behavioral representation of risk. A variety
of sampling algorithms can be used for this purpose, including the Metropolis-Hastings algorithm
(Zhu et al., 2024; Sanborn & Griffiths, 2007) and Gibbs sampling (Harrison et al., 2020). The core
intuition is to use the LLM to define the proposal or acceptance mechanism, such that the result-
ing sequence of samples produced by the Markov chain converges to a stationary distribution that
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representation

Given the following gambles:  
Option A offers a 5% chance to win $100 and 95% 
chance to win $0;  
Option B offers a 100% chance to win $5.  
Please select either option A or option B to play.

Steering vector

Transformer 
residual stream

Layer n
positive 
steer

Option A

negative 
steer Option B

a b

Figure 1: Self-aligned steering vectors. (a) Overview of the proposed method for generating steer-
ing vectors by aligning representations of risk preference derived from behavioral and neural elic-
itation. (b) During inference, the steering vector is injected into the residual stream at all token
positions to control LLM outputs. When the steering vector is applied with a positive multiplier
(i.e., positive steering), the LLM is expected to exhibit more risk-seeking behavior. Conversely, ap-
plying a negative multiplier (i.e., negative steering) is expected to induce more risk-averse behavior.

reflects the model’s latent representations (Zhu et al., 2024; Noguchi et al., 2013; Harrison et al.,
2020; León-Villagrá et al., 2020; Yan et al., 2024; Sanborn & Griffiths, 2007).

Specifically, we adapted the procedure established by Noguchi et al. (2013), which has been success-
fully used to elicit human risk preferences, to the LLM setting. In each trial, the LLM is prompted
to choose between two gambles, A and B. In our implementation, all gambles consist of three pos-
sible outcomes: $0, $50, and $100. While the outcome values are fixed, the probabilities associated
with each outcome vary across gambles. After the LLM makes a choice, the selected gamble is
retained, and the unchosen option is replaced with a newly generated gamble. The probabilities
for this new gamble are randomly sampled from a Dirichlet distribution: Dir(1, 1, 1). In the next
trial, the retained and newly generated gambles are presented again (with their order randomized),
and the LLM is asked to make another choice. Importantly, no choice history is provided in the
prompt: each decision is made solely based on the current pair of gambles presented. The sequence
of choices made by the LLM forms the foundation for constructing its behavioral representation of
risk. Specifically, within the space of all possible gambles, represented as a probability triangle1,
the LLM’s choices allow us to infer a probability distribution over gambles reflecting its preferences
across risk profiles (see Figure 2b).

More formally, MCMC begins at an initial state z (i.e., a specific gamble from the probability trian-
gle). A proposed next state z′ is drawn from a proposal distribution q(z′|z), and is then evaluated
under the target distribution π (i.e., the LLM’s latent representation of risk) to determine whether it
should be accepted as the new state or rejected in favor of retaining the current state z. To guarantee
that the Markov chain converges to π, it is sufficient to satisfy the condition of detailed balance
(along with ergodicity):

π(z)q(z′|z)A(z′, z) = π(z′)q(z|z′)A(z, z′) (1)

where q(z′|z) is the probability of proposing z′ from state z, and A(z′, z) is the probability of
accepting proposal z′ over z. In our case, we use a symmetric proposal distribution (i.e., q(z′|z) =
q(z|z′)), which simplifies the detailed balance condition to: π(z)A(z′, z) = π(z′)A(z, z′). One
way to satisfy this condition is by using the Barker acceptance function (Barker, 1965):

A(z′, z) =
π(z′)

π(z) + π(z′)
(2)

This acceptance rule is particularly appropriate for modeling LLM behavior, as it closely resem-
bles well-known stochastic choice models such as Luce’s choice rule (Luce et al., 1959) and the
Bradley–Terry model (Rafailov et al., 2023), which has been applied in LLM post-training and pref-
erence alignment. As a result, by sequentially presenting pairs of risky choice alternatives to an

1In the economics literature, this triangle is also known as the Marschak–Machina probability triangle
(Marschak, 1950; Machina, 1982), a method traditionally used to qualitatively differentiate among competing
theories of risky choice (Wu & Gonzalez, 1998). Our MCMC approach basically provides a non-parametric
estimation of the LLM’s risk representation within this triangle.
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a Certainty Equivalent

60% $0; 

20% $100; 

20% $50

20% $0; 

80% $100; 

0% $50

Markov chain Monte Carlob

Figure 2: Elicited risk preferences from Gemma-2-9B-Instruct using behavioral methods. (a)
Certainty Equivalent method. (b) Markov chain Monte Carlo with LLM. Each triangle represents
the probability simplex over three-outcome gambles ($0, $50, and $100), where the sum of outcome
probabilities equals one. The MCMC-with-LLM elicitation reveals more nuanced and structured
contours of risk preference compared to the Certainty Equivalent method. Higher values indicate a
stronger preference for the gamble by the Gemma model.

LLM, the set of selected options can be interpreted as samples from a probability distribution whose
density is proportional to the LLM’s latent representation of risk.

Step 2: Aligning behavioral and neural representations to compute steering vectors. Given
the behavioral representations of risk elicited via MCMC with LLM, we next sought to align them
with the model’s internal neural activations. To obtain corresponding neural representations of risk
preference for each gamble within the triangle, we prompted the same LLM to evaluate the attrac-
tiveness of the gamble when hypothetically offered (see Appendix A.4 for details). We then aligned
the two representations by regressing the behavioral estimates onto the neural activations. Specif-
ically, we treated the neural activations as independent variables and the behavioral responses as
dependent variables, using Lasso regression with an L1 penalty of 10. The resulting regression
coefficients, corresponding to neurons in the Transformer’s residual stream, are interpreted as re-
flecting the LLM’s risk preference and are thus used as the steering vector. That is, this steering
vector identifies the specific neural directions in the residual stream that are most predictive of the
model’s expressed risk preferences.

4 OTHER METHODS

Contrastive Activation. Another simple yet effective method for computing steering vectors is
to contrast intermediate neural activations on carefully selected prompt pairs—a technique known
as Contrastive Activation (Panickssery et al., 2023; Turner et al., 2023). For example, to steer
LLM outputs toward more positive sentiment, Contrastive Activation compares the model’s internal
activations on a contrasting pair of prompts such as “Love” and “Hate” (Turner et al., 2023). The
difference between these activations is treated as the steering vector, which is then added to the
model’s residual stream during inference. This shifts the model’s internal representations along the
desired semantic direction (e.g., toward “Love” and away from “Hate”), resulting in completions
that reflect more positive sentiment.

To adapt Contrastive Activation to the task of steering LLM risk preferences, we constructed a list of
words associated with “Risk” and “Safety” (see Appendix A.1 for details). Following the standard
procedure for computing steering vectors in Contrastive Activation, we extracted the residual stream
activations of the LLM for each word across multiple layers. The steering vector was computed as
the average difference in residual activations between the risk-related and safety-related word pairs.
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Certainty Equivalent. Finally, we consider an alternative behavioral method for eliciting individ-
uals’ risk preferences that is widely used in economics and psychology: the Certainty Equivalent.
The Certainty Equivalent refers to the sure amount of money a person is willing to accept in place
of a risky gamble (von Neumann & Morgenstern, 1947; Kahneman et al., 1979). In other words,
it represents the value at which an individual is indifferent between receiving a certain payoff or a
probabilistic outcome. This measure serves as a behavioral proxy for risk preference: individuals
are classified as risk-averse if their Certainty Equivalent is lower than the gamble’s expected value,
risk-neutral if it is equal, and risk-seeking if it is higher.

In our task, the Certainty Equivalent serves as a direct control condition for the risk representa-
tions elicited via MCMC. Specifically, we elicited the LLM’s Certainty Equivalent for all gambles
previously used in the MCMC procedure. This produces an alternative behavioral representation
of risk, based on Certainty Equivalents rather than MCMC, while holding the set of gambles con-
stant. In other words, both the Certainty Equivalent and MCMC methods rely on the same neural
representation of risk but differ in their behavioral representations.

5 EXPERIMENTS

In this work, we focus on steering the risk preferences of Gemma-2-9B-Instruct (Team et al., 2024),
which serves as our primary target LLM. We also replicate the main experiments using Gemma-2-
2B-Instruct (see Appendix F). The temperature was fixed at 1 for behavioral elicitation.

Behavioral elicitation of risk representations. For both the MCMC with LLM and Certainty
Equivalent methods, we derive steering vectors from self-aligned representations of risk. That is,
these approaches rely on first eliciting the model’s risk preferences through behavioral methods. To
obtain a quantitative characterization of these preferences, we focus on the space of gambles defined
over the probability triangle (see Figure 2). In the Certainty Equivalent method, we probed Gemma-
2-9B-Instruct by densely sampling gambles across the probability triangle. For each gamble, the
model was prompted to report its certainty equivalent. These responses were then aggregated and
normalized across all sampled gambles to produce the density plot shown in Figure 2a.

Similarly, for the MCMC with LLM method, we embedded the Gemma model within a MCMC
sampler, prompting it to accept or reject newly proposed gambles through binary choices. The
space of gambles was identical to that used in the Certainty Equivalent method (i.e., the probability
triangle). The Markov chain consisted of 3,000 such binary choices. The resulting risk representa-
tion elicited via MCMC (smoothed using a Dirichlet kernel of width 0.09 that preserves probability
triangle boundaries) is shown in Figure 2b. Note that the behavioral representation derived from
MCMC reveals more nuanced gradients in the density plot, highlighting a stark contrast with the
coarser structure observed in the Certainty Equivalent method.

Steering vectors for both the MCMC and Certainty Equivalent methods were computed using Lasso
regression to align behavioral and neural representations (see Appendix B for a comparison). In
contrast, the steering vector for the Contrastive Activation method was derived by computing the
difference in neural activations between pairs of risk-related and safety-related words. To enable
more effective comparisons across methods, all steering vectors were normalized by division by
their Euclidean norm before applying the steering multipliers.

Steering LLM risky choices. Having obtained three steering vectors (derived from MCMC with
LLM, Contrastive Activation, and Certainty Equivalent methods), we now evaluate the effectiveness
of the three steering vectors in controlling LLM’s risky decision-making. Our analysis focuses on a
set of four gambles that have been foundational in the study of the fourfold pattern of risk preferences
(Kahneman et al., 1979). This well-documented pattern describes how human decision-makers tend
to be risk-seeking when the probability of a positive outcome is low and when the probability of a
negative outcome is high; conversely, they tend to be risk-averse when the probability of a positive
outcome is high and when the probability of a negative outcome is low (see Table 1 for examples).

To steer the LLM’s decisions toward greater risk-seeking or risk-aversion, we prompted the Gemma
model with the gambles shown in Table 1, framed as binary choices between options A and B.
During inference, steering vectors (scaled by a predefined multiplier ranging between -900 to +900)
were added to the model’s residual stream at each token position. The model then continued its
forward pass to the output layer, where we extracted the token probabilities for “A” and “B” from
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Table 1: Gambles used to evaluate the effectiveness of steering LLMs’ risky decision-making. Risky
options are expressed in the format {probability, outcome}; the remaining probability corresponds
to receiving nothing.

Outcome probability
High Low

Gains {80%, $4000} vs $3000 {5%, $100} vs $5
Losses {80%, -$4000} vs -$3000 {5%, -$100} vs -$5

the final logits. These probabilities were normalized and then used to quantify the model’s choice
behavior under different steering conditions.

We first evaluated which Transformer layer contains the most effective residual stream for steering.
To do so, we examined the model’s behavior under extreme steering conditions, using multipliers
of –900 and +900. For each layer, we computed the steered choice probabilities with each steering
multiplier. We then quantified steerability as the average difference in choice probabilities across
four gambles (see Figure 3a), defined as:

Steerability =
1

4

4∑
i=1

(
ppositive(zi)− pnegative(zi)

)
(3)

where zi denotes the i-th gamble prompted to the LLM, ppositive(zi) is the model’s probability of
choosing the risky option under positive steering, and pnegative(zi) is the corresponding probability
under negative steering of equal magnitude.

As shown in Figure 3b, we compared the steered choice probabilities for the risky option by sub-
tracting the baseline (unsteered) choice probabilities. A value of zero therefore indicates no change
relative to the unsteered baseline. We find that the steering vector derived from the Contrastive Ac-
tivation method has limited impact on altering the Gemma model’s choice behavior. In contrast,
steering vectors computed by aligning behavioral and neural representations (i.e., both Certainty
Equivalent and MCMC methods) are effective in controlling the Gemma model’s risky decision-
making, shifting it toward greater risk-seeking under positive steering and greater risk aversion under
negative steering.
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Figure 3: Steering risky decisions of Gemma-2-9B-Instruct. (a) Steerability results using steering
vectors derived from Contrastive Activation (blue), Certainty Equivalent (green), and MCMC (red).
Darker colors indicate larger steering multipliers. The optimal layers for steering, identified by the
highest steerability at the maximum multiplier, are layers 41, 39, and 39 for the three methods, re-
spectively (marked with stars). (b) Change in choice probabilities for the risky option after steering,
using the best layer for each method. The vertical axis reflects the difference from the unsteered
baseline probabilities across the four gambles.
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As summarized in Table 2, the maximal ranges of steered risky choices (calculated using the optimal
layer for each method) are wider for our proposed self-aligned methods (i.e., Certainty Equivalent
and MCMC) than for the Contrastive Activation method. This pattern is consistent across all four
gambles.

Table 2: Maximal range of steered risky choices for the three steering vectors (see Table 1 for
the corresponding gambles). CA refers to Contrastive Activation, CE to Certainty Equivalent, and
MCMC to Markov chain Monte Carlo with LLM.

Methods Low Probability
(Gains)

High Probability
(Gains)

Low Probability
(Losses)

High Probability
(Losses)

CA 0.16 0.08 0.06 0.05
CE 0.93 0.95 0.90 0.92
MCMC 0.92 0.94 0.89 0.92

Steering LLM risk perception. While studying abstract gambles provides valuable insights into
an agent’s risk preferences, psychologists have also used more naturalistic stimuli to assess people’s
perception of risk in real-world contexts such as “cheating on an exam” or “forging someone’s
signature” (Weber et al., 2002; Slovic, 1987). LLMs, by virtue of their broad training data, are
capable of forming meaningful risk perceptions about such real-world events (Mazeika et al., 2025;
Turner et al., 2023). Indeed, recent work has shown that LLM embeddings account for a substantial
portion of the variance in human risk perception (Bhatia, 2024). Here, we investigate the extent to
which an LLM’s risk perception can be steered using the same set of steering vectors derived in the
preceding analyses.

We prompted Gemma-2-9B-Instruct to rate real-world risky events using integers from 1 (not risky at
all) to 7 (extremely risky). The full set included 150 risky events curated by Bhatia (2024), spanning
a range of domains: ethical (e.g., “passing off somebody else’s work as your own”), financial (e.g.,
“betting at the horse races”), health-related (e.g., “consuming excessive amounts of alcohol”), sports
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Figure 4: Steering risk perception of Gemma-2-9B-Instruct. (a) Steerability results using steering
vectors derived from Contrastive Activation (blue), Certainty Equivalent (green), and MCMC (red).
Darker colors represent larger steering multipliers. The optimal layers for steering, identified by the
highest steerability at the maximum multiplier, are layers 2, 28, and 8 for the respective methods
(marked with stars). (b) Change in average risk ratings for real-world events after steering, using the
optimal layer for each method. The vertical axis reflects the deviation from the unsteered baseline
rating. Each violin plot displays the distribution of ratings, with the white bar indicating the median
and the black box representing the interquartile range up to the 75th percentile.
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(e.g., “bungee jumping”), and social (e.g., “trusting a stranger with your personal information”). As
in previous experiments, we modified the residual stream during inference by injecting the steering
vectors. However, instead of focusing on choices between options A and B, we extracted the model’s
output logits for the integer tokens “1” through “7.” These token probabilities were then normalized
to yield a distribution reflecting the model’s perceived risk level for each event.

Analogous to the steerability metric used for risky decisions, we define steerability for risk per-
ception as the average difference in risk ratings across all real-world events between positive and
negative steering conditions. However, by comparing the most steerable layers for risky decisions
(Figure 3a) and risk perceptions (Figure 4a), we find that risk perceptions are more effectively influ-
enced at earlier layers, whereas risky decisions are more steerable in later layers closer to the output
of the Gemma model. This finding aligns with psychological evidence suggesting that perceptual
processes occur earlier than decision-making processes in the cognitive hierarchy (VanRullen &
Thorpe, 2001).

We calculated the maximal range of steered ratings, averaged across 150 real-world risky events,
using the optimal layer for each method. The mean steered ranges are 4.68 (SD = 0.0148) for
Contrastive Activation, 4.93 (SD = 0.4211) for Certainty Equivalent, and 5.84 (SD = 0.0108)
for MCMC. These results indicate that the steering vectors derived by aligning the neural represen-
tations of gambles with the behavioral representations of risk elicited using MCMC produced the
widest range of steered behavior.

Finally, we assessed responsiveness of steered ratings to the steering multiplier by computing the
ratio between changes in steered ratings and changes in the multiplier. Note that, as mentioned
above, all steering vectors were normalized prior to applying the steering multiplier. The mean
responsiveness across the 150 events are 0.52 (SD = 0.0016) for Contrastive Activation, 0.55
(SD = 0.0468) for Certainty Equivalent, and 0.65 (SD = 0.0012) for MCMC. These results
suggest that, in steering risk perceptions, MCMC is more effective, as its ratings are more responsive
to changes in the multiplier.

Steering text generation for risky events in LLM. Finally, beyond quantitative evaluations based
on choice probabilities and risk ratings, we also examine whether modifying the penultimate layer’s
residual stream at inference time systematically alters the textual outputs of the Gemma model.
Using the same set of 150 real-world risky events described above (Bhatia, 2024), we prompted the

a

b

Contrastive Activation

Certainty Equivalent

c Markov chain Monte Carlo

Positive steer (risk seeking)Negative steer (risk averse)

-500-900 500 900

-500-900 500 900

-500-900 500 900

Figure 5: Steering text generation for real-world risky events in Gemma-2-9B-Instruct. Text
outputs generated by injecting steering vectors into the residual stream at the penultimate layer of
the model during inference. Steering vectors are derived from (a) Contrastive Activation, (b) Cer-
tainty Equivalent, and (c) MCMC with LLM methods. Each word cloud represents the frequency
distribution of words used in the model’s completions under different steering conditions. The cor-
responding steering multiplier is indicated below each word cloud.
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model with the sentence “I think {event}”, where {event} is replaced with each risky scenario (e.g.,
“I think cheating on an exam ” or “I think consuming excessive amounts of alcohol ”). Steering
vectors were injected into the penultimate layer’s residual stream at each subsequent token position
during generation.

To give a visual idea of how steering influences model-generated text, we created word clouds
that reflect the frequency of word usage following the application of steering vectors (see Figure
5). Overall, Gemma-2-9B-Instruct recognizes the inherent risk in the real-world events presented.
However, when the residual stream at the penultimate layer is positively steered toward risk-seeking
behavior using the vector derived from the MCMC method, we observe a noticeable attenuation
in the model’s perceived risk. For example, completions more frequently include phrases such as
“slightly risky” and “a minor offense” (see Figure 5c). In contrast, applying the same steering vector
with a negative multiplier leads the model to amplify perceived risk, generating more cautionary or
morally disapproving language, such as “wrong,” “never right,” and “not something I would ever
do.” Table 3 in Appendix E presents representative examples of text completions generated by the
model under different steering conditions.

We also observed that injecting steering vectors at early layers of the LLM typically leads to more
unstable text generations (e.g., nonsensical or gibberish text completions) compared to injections at
later layers. Consistent with this finding, prior work has shown that noise injection in early layers
produces only limited semantic changes, which reflects their lower levels of abstraction; however,
mid-depth layers yield the most pronounced and stable deviations (Zhang et al., 2025).

6 DISCUSSION

We investigated the use of aligned behavioral and neural representations of risk to steer LLM be-
havior across three risk-related domains: risky decision-making, risk perception, and text generation
involving real-world risky events. In all three domains, steering vectors derived from self-aligned
representations (i.e., the Certainty Equivalent and MCMC methods) consistently outperformed those
generated via Contrastive Activation. These results suggest that self-alignment methods offer a more
effective and principled means of controlling LLM behavior in risk-sensitive contexts.

Generalizing from gambles to real-world risky events. Both neural and behavioral representa-
tions of risk were elicited using the set of three-outcome gambles defined in the Marschak–Machina
triangle (see Figures 2 and 7). Across a series of experiments, we found that the self-aligned rep-
resentations provide precise control over risk in both rating tasks and text continuations involving
real-world risky events. These results demonstrate that representations elicited in the domain of ab-
stract gambles generalize effectively to more naturalistic settings. Moreover, the proposed methods
can be applied to any model architecture that incorporates residual streams.

The range and responsiveness of steered behavior using self-aligned steering vectors further suggest
that representation engineering can provide precise behavioral control. While prompt engineering
may offer a simpler alternative for altering risky behavior in LLMs, prompts often lack the nu-
ance required to finely control model responses. Methods such as soft prompting, which optimize
prompts via gradient descent, may achieve a similar level of precision, but the computational costs
of identifying effective soft prompts can be substantial (Genewein et al., 2025).

Limitations and future research. While it is intuitive that self-aligned representations can be used
to steer model behavior related to the underlying latent construct, further theoretical and mechanistic
interpretability research is needed to establish a more concrete link between behaviorally elicited
representations and their corresponding neural activations. Moreover, modifying a Transformer’s
residual stream is not uniformly effective across all layers; the success of such interventions is highly
dependent on the layer selected. Identifying optimal layers for steering remains an open question
for future research. Finally, this form of steering is limited in scope for proprietary models where
weights are not accessible, restricting its broader applicability.

Potential misuse. The same techniques that enable fine-grained modulation of risk preferences
could, in principle, be misused to steer models toward undesirable or manipulative behaviors. Be-
cause the method operates directly on LLMs’ internal representations, it bypasses the transparency
of prompt-based interventions, making misuse more difficult to detect. These risks highlight the
need for safeguards to ensure that representation-level steering is deployed responsibly.

9
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ETHICS STATEMENT

Some of the real-world risky events used in our experiments include language that may be perceived
as offensive. In addition, representation engineering methods such as those proposed here may be
difficult to detect when deployed, raising potential concerns about transparency and misuse.

REPRODUCIBILITY STATEMENT

We provided complete descriptions of our proposed methods in the paper. All experiments were im-
plemented using standard Python packages from Hugging Face. The code will be released publicly
upon acceptance of the paper.
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A PROMPTS

A.1 WORDS FOR CONTRASTIVE ACTIVATION

Risk words: ‘risk’, ‘uncertainty’, ‘danger’, ‘volatility’, ‘loss’, ‘gamble’, ‘exposure’, ‘threat’,
‘hazard’, ‘insecurity’, ‘unpredictability’, ‘peril’, ‘chance’, ‘vulnerability’, ‘instability’, ‘jeopardy’,
‘speculation’, ‘probability’, ‘accident’, ‘daring’

Safe words: ‘safety’, ‘certainty’, ‘stability’, ‘gain’, ‘assurance’, ‘protection’, ‘security’, ‘safe-
guard’, ‘reliability’,‘predictability’, ‘refuge’, ‘guarantee’, ‘resilience’, ‘steadiness’, ‘shelter’, ‘cau-
tion’, ‘inevitability’, ‘prevention’, ‘prudence’

A.2 PROMPTS FOR CERTAINTY EQUIVALENT

Starting with $100 in capital, what is the maximum dollar amount you are willing to pay to par-
ticipate in this gamble: the gamble offers a {p1}% chance to win $100, a {p2}% chance to win
$50, a {p3}% chance to win $0. Respond with a single numeric value only. Do not explain your
reasoning.
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A.3 PROMPTS FOR MCMC WITH LLM

You are participating in a gambling game where you will be shown two options, Gamble A and
Gamble B:

Gamble A offers a {p1}% chance to win $100, a {p2}% chance to win $50, and a {p3}% chance to
win $0.

Gamble B offers a {p′1}% chance to win $100, a {p′2}% chance to win $50, and a {p′3}% chance to
win $0.

Your task is to choose between the two. Do not explain your reasoning, just limit your answer to
either ‘A’ or ‘B’.

A.4 PROMPTS FOR NEURAL ACTIVATIONS

You are offered a gambling game: the gamble offers a {p1}% chance to win $100, a {p2}% chance
to win $50, a {p3}% chance to win $0. Respond with a single word only to express how much does
this gambling appeal to you. Do not explain your reasoning.

A.5 PROMPTS FOR STEERING RISKY DECISION-MAKING

Given the following gambles: Option A offers a 5% chance to win $100 and 95% chance to win $0;
Option B offers a 100% chance to win $5. Please select either option A or option B to participate.

A.6 PROMPTS FOR STEERING RISK PERCEPTION

Please rate how risky this behavior is with a single numeric value ranging from 1 (Not at all) to 7
(Extremely risky): {event}

B COMPARING STEERING VECTORS

In this section, we compare steering vectors derived from the MCMC and Certainty Equivalent meth-
ods across different layers of the Gemma-2-9B-Instruct model (see Figure 6). The only difference
between the two approaches lies in the behavioral representation of risk used to compute alignment;
the underlying neural representation remains identical. We observe a clear trend: as we move from
earlier to later layers, the similarity between the two steering vectors increases, suggesting greater
convergence in their influence on model behavior at deeper levels of information processing.
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Figure 6: Comparison of steering vectors derived from MCMC with LLM (horizontal axis) and
Certainty Equivalent (vertical axis) across selected layers of Gemma-2-9B-Instruct. Pearson corre-
lation coefficients between the two steering vectors at layers 1, 10, 25, and 41 are −0.63 (p < .01),
0.04 (p = 0.02), 0.48 (p < .01), and 0.64 (p < .01), respectively.

C DETAILS OF REPRESENTATION ENGINEERING

In this section, we describe the procedure for injecting a steering vector, hl
A, into the residual stream

of a Transformer at layer l. At inference time, we first obtain the model’s neural activation at layer l
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for a given prompt p∗:

hl ←M.forward(p∗).activations[l]

where M denotes the LLM and hl represents the original activation at layer l. Next, we modify this
activation by injecting the steering vector scaled by a steering multiplier c:

hl
S ← hl + chl

A

where hl
S is the steered activation. The model then resumes its forward computation, beginning

from layer l with the modified activation:

S ←M.continue forward(hl
S)

where S denotes the final output generated by the steered model.

D UNDERSTANDING THE MARSCHAK-MACHINA TRIANGLE

As illustrated in Figure 2, behavioral representations of risk are defined over the Marschak–Machina
triangle (Marschak, 1950; Machina, 1982), a method used to characterize preferences over three-
outcome gambles. To provide additional context, we visualize the theoretical predictions of two
influential models of human risky choice within this triangle. Figure 7a depicts predictions from
Expected Utility Theory (EUT), a normative model of decision-making under risk (von Neumann &
Morgenstern, 1947), which assumes that individuals evaluate gambles based on the weighted sum
of utility. Under EUT, indifference curves are always straight and parallel, reflecting consistent
trade-offs between outcomes. In contrast, Prospect Theory (PT), a descriptive model that accounts
for empirical deviations from EUT, generates indifference curves that exhibit a “fanning out” pat-
tern (see Figure 7b). This curvature reflects increasing risk aversion as the probability of extreme
outcomes changes, leading to steeper indifference curves in some regions of the triangle (Machina,
1982; Harless, 1992).

a Prospect TheoryExpected Utility Theory b

Figure 7: Predicted preferences under classical theories of human risky choice visualized in the
Marschak–Machina probability triangle. (a) Expected utility theory (von Neumann & Morgenstern,
1947). (b) Prospect theory (Tversky & Kahneman, 1992) using parameters α = 0.88, γ = 0.52. In
both panels, each point within the triangle represents a three-outcome gamble, and color intensity
reflects the model’s predicted preference for that gamble. Higher values correspond to stronger
preferences.

Comparing the theoretical predictions within the probability triangle to the behavioral representation
elicited via MCMC (Figure 2b), we find that neither EUT nor PT qualitatively captures the risk
preferences exhibited by the Gemma-2-9B-Instruct model. This suggests that existing models of
human risky choice may not be directly transferable to explaining LLM behavior (Liu et al., 2024;
Zhu et al., 2025). Future research should consider developing new descriptive frameworks tailored
to characterizing and predicting the risky choices of LLMs.
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E EXAMPLES OF STEERING TEXT GENERATIONS

Table 3: Example steered text completions generated by Gemma-2-9B-Instruct using a steering
multiplier of 900. CA refers to Contrastive Activation, CE to Certainty Equivalent, and MCMC to
Markov chain Monte Carlo with LLM.
Risky event Steering

method
Negative steer
(risk averse)

Positive steer
(risk seeking)

I think cheating on an exam... CA

is wrong because
it undermines the

integrity of the educational
system and devalues

the achievements of those
who uphold ethical standards.

is wrong.

CE
is absolutely wrong
and absolutely not

worth the consequences.
is a weak move.

MCMC is wrong.

is a very bad idea.
I mean, sure, maybe

you might get a slightly
better grade, but in
the long run, it’s

just going to compromise
your learning.

I think stealing an additional
TV cable connection off

the one you pay for...
CA is unethical. is stealing.

CE
is not ethical and

could have serious
consequences.

is slightly unethical.

MCMC is not ethical.
is a slightly more minor

offense compared to some
other types of theft.

I think riding a motorcycle... CA

is a great way to
experience freedom and

independence, especially for
those who enjoy the outdoors

and the wind in their hair.
However, it’s important

to remember that motorcycling
involves inherent risks.

is about more than just getting
from point A to point B.

It’s about the feeling.

CE

is absolutely amazing.
The open air, the
wind in your hair,

the feeling of freedom
and escape - it’s

truly unique.

is a rewarding but risky
passtime. I enjoy the feeling

of freedom and control
I get while riding,

but I also understand
the dangers involved.

MCMC

is not for everyone.
It’s not just about

physical ability, it’s also
about mental and emotional

preparedness.

is a very exhilarating
experience. I enjoy the

feeling of the wind
in my hair and the freedom

of the open road.
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F REPLICATION WITH AN ADDITIONAL LLM
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Figure 8: Steering risk perception of Gemma-2-2B-Instruct. (a) Steerability results using steering
vectors derived from Contrastive Activation (blue), Certainty Equivalent (green), and MCMC (red).
Darker colors represent larger steering multipliers. The optimal layers for steering, identified by the
highest steerability at the maximum multiplier, are layers 3, 15, and 15 for the respective methods
(marked with stars). (b) Change in average risk ratings for real-world events after steering, using the
optimal layer for each method. The vertical axis reflects the deviation from the unsteered baseline
rating. Each violin plot displays the distribution of ratings, with the white bar indicating the median
and the black box representing the interquartile range up to the 75th percentile.

We replicated the main experiment using a smaller LLM: Gemma-2-2B-Instruct (Team et al., 2024).

Steering risky choices. For the four gambles presented in Table 1, Gemma-2-2B-Instruct exhibited
a ceiling effect, consistently preferring the risky option with 100% choice probability. As a result,
all three steering vectors showed negligible steerability in this condition.

Steering risk perception. Next, we examined the effects of steering vectors on the Gemma-2B
model’s ratings of real-world risky events (see Figure 8). The most steerable layer in the 2B model
occurred at a similar relative depth as in the 9B model.

We conducted two separate two-way repeated-measures ANOVAs to evaluate the effects of steering
method and multiplier on model ratings under positive and negative steering conditions.

For positive steering, the analysis revealed significant main effects of steering method, F (2, 298) =
1710.77, p < .01, and steering multiplier, F (4, 596) = 5092.48, p < .01, as well as a significant
interaction between the two factors, F (8, 1192) = 599.96, p < .01. Follow-up paired t-tests showed
that the MCMC method significantly outperformed both the Certainty Equivalent method (t(149) =
55.63, p < .01) and the Contrastive Activation method (t(149) = 35.35, p < .01). Additionally,
the Contrastive Activation method outperformed the Certainty Equivalent method (t(149) = 27.22,
p < .01).

For negative steering, we again found significant main effects of steering method, F (2, 298) =
5786.59, p < .01, and multiplier, F (4, 596) = 2838.58, p < .01, along with a significant interac-
tion, F (8, 1192) = 2640.75, p < .01. Paired t-tests indicated that the MCMC method significantly
outperformed the Certainty Equivalent method (t(149) = 100.00, p < .01) and the Contrastive
Activation method (t(149) = 11.47, p < .01), while the Contrastive Activation method again out-
performed the Certainty Equivalent method (t(149) = 89.19, p < .01).
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Under review as a conference paper at ICLR 2026

G IMPLEMENTATION DETAILS

Steered model completions were executed on a single A100 GPU, requiring approximately 50 hours
for the 9B model and 40 hours for the 2B model. Computing steering vectors via self-alignment
took an additional 2 hours on a single A100 GPU.
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