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ABSTRACT

We present a novel framework for online learning in Stackelberg general-sum games, where
two agents, the leader and follower, engage in sequential turn-based interactions. At the core
of this approach is a learned diffeomorphism that maps the joint action space to a smooth
Riemannian manifold, referred to as the Stackelberg manifold. This mapping, facilitated by
neural normalizing flows, ensures the formation of tractable isoplanar subspaces, enabling
efficient techniques for online learning. By assuming linearity between the agents’ reward
functions on the Stackelberg manifold, our construct allows the application of standard bandit
algorithms. We then provide a rigorous theoretical basis for regret minimization on convex
manifolds and establish finite-time bounds on simple regret for learning Stackelberg equi-
libria. This integration of manifold learning into game theory uncovers a previously unrec-
ognized potential for neural normalizing flows as an effective tool for multi-agent learning.
We present empirical results demonstrating the effectiveness of our approach compared to
standard baselines, with applications spanning domains such as cybersecurity and economic
supply chain optimization.

1 INTRODUCTION

A Stackelberg game consists of a sequential decision-making process involving two agents, a leader and a
follower. This framework, introduced in Stackelberg |1934| models hierarchical strategic interactions where the
leader moves first, anticipating the follower’s best response, and then the follower reacts accordingly. These
games have become central to understanding interactions in various fields, from economics to societal security,
providing a formal method for analyzing situations where one party commits to a strategy before the other,
affecting the subsequent decision-making process and reward outcomes. Over time, Stackelberg games have
evolved to address more complex environments, incorporating factors like imperfect information and no-regret
learning of system parameters. The solution to such a game typically revolves around finding a Stackelberg
equilibrium, where the leader optimizes his strategy assuming or knowing the follower type, which affects how
she optimizes her utility based on the leader’s action. (Kar et al.|2015; Korzhyk, Conitzer, and Parr|2010).

Several challenges arise in the practical applications of Stackelberg games. One key issue is the uncertainty
regarding the follower’s type or rationality (or sub-rationality). In many real-world scenarios, the follower
might not be fully rational or the leader might have incomplete knowledge of the follower’s preferences, leading
to uncertainty in the leader’s decision-making process. Additionally, imperfect information regarding reward
outcomes adds another layer of complexity, as the leader may not have accurate knowledge of the payoffs
associated with various strategies. These uncertainties have been addressed in domains such as security, where
randomized strategies and robust optimization approaches are deployed to mitigate risks arising from incomplete
information and unpredictable follower behaviour (Jiang et al. 2013 Kar et al.[2015; Debarun Kar et al. 2017).
For instance, in deployed systems like ARMOR at LAX or PROTECT at U.S. ports, leaders must make security
decisions under uncertainty, balancing multiple risks (Jain et al. 2011; Shieh et al. 2012). Stackelberg games
also feature prominently in supply chain optimization settings, where there exist areas of uncertainty, such as
demand manifestation (L. Liu and Rong [2024) (Cesa-Bianchi et al.|[2023). Stackelberg game models have also
found applications in novel areas like conversational agents using large language models (LLMs), where one
agent (the model) anticipates the user’s behaviour and adjusts its responses accordingly (Nguyen et al. 2014)).

For non-cooperative multi-agent games that exhibit additive noise, sublinear regret can be achieved via gradient
based optimization methods, such as AdaGrad (Duchi, Hazan, and Singer 2011)), in the face of Gaussian noise
but this is often subject to constraints on the magnitude of the noise (Hsieh et al. 2023)). Nevertheless, in these
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games, the problem settings are extended to an unlimited number of players - with regret performance degrading
as the number of players increases. We investigate the problem setting of a two-player Stackelberg game, with
a tractable best response function - commonplace in economics and adversarial machine learning in general
(Wang et al. 2024; Zhou and Kantarcioglu|[2016).

Problem Setting: We consider a two-player Stackelberg game where player A leads and player B responds.
Stackelberg games are sequential, meaning that the players take turns and, the follower can best respond to the
leader’s action, given information available to him. The best response of player B lies on a manifold within a
subspace of the joint action space A X 3. We define this Stackelberg game setting in the framework of optimal
transport, where the structure of the best response function B(-) gleans simplifications to the solution method-
ology to obtain Stackelberg regret. This research focuses on applying multi-armed bandit (MAB) methods,
particularly in Stackelberg equilibrium settings, to achieve sublinear regret. It explores causal game theory,
utilizing causal graphs to better understand agent behaviour and simplify computations.

Key Contributions: We introduce a novel algorithm that significantly advances the understanding of Stack-
elberg learning under imperfect information, akin to the problem settings covered in Balcan et al. 2015/ and
Haghtalab et al. 2022, presenting a systematic framework for how equilibrium can be efficiently solved in this
problem setting. Central to our contribution is the construction of a feature map using neural normalizing flows,
which transforms the ambient joint action space into a more tractable embedding, we define as the Stackelberg
manifold. By leveraging the geodesic properties of this manifold, our approach allows for more efficient com-
putation of Stackelberg equilibria with respect to no-regret learning, particularly in the presence of parameter
uncertainty. In addition to this, we offer a rigorous theoretical foundation for optimizing Stackelberg games
on spherical manifolds. This framework is validated via empirical simulations, stemming from applications in
supply chain management and cybersecurity, demonstrating that our method outperforms standard baselines,
offering improvements in both computational efficiency and regret minimization.

2  FORMAL DEFINITIONS

In a Stackelberg game, two players take turns executing their actions. Player A is the leader, she acts first with
action a selected from her action space A. Player B is the follower, he acts second with action b € B. The
follower acts in response to the leader’s action, and both players earn a joint payoff as function of their actions.

2.1 REPEATED STACKELBERG GAMES

In a repeated Stackelberg game, the leader chooses actions a* € A, and the follower reacts with actions bt € B
ateachround t = 1,2,...,T. The leader’s strategy 74 (-|H;) is a probability distribution over the action space
A which selects a’ based on past joint actions up to time ¢, i.e., H; := {(a”,b7)|7 < t}. Similarly, the
follower’s strategy g (-|H;) is a conditional probability distribution over B which determines b’ given the full
history, i.e., H; := H, U {a’}.

Best Response Strategy of the Follower: To be specific, the follower selects his best response strategy at round
t by maximizing his expected reward function ug(a,b) : A x B — R given that the leader has played action
a’. Since, we assume that the reward function solely depends on the most recent pairs of actions, the follower’s
best strategy is first order Markov, i.e., 5 (-|H;) = 75 (-|a’). Formally, the follower’s best response at round ¢
is given by,

n(bla) := argmax ., [up(a, b)|a = a'l, 2.1 B(a') := {b € B|rj(bla’) > 0}. (2.2)
wp€llp
where I15 is the space of probability distributions over the action space B and the expectation is taken with
respecter to the strategy of the follower. In this case, we can define the set of follower’s best responses in Eq.
(22). Analogously, the leader aims at maximizing the expected utility p4(af,b?) : A x B — R that is a
deterministic function solely driven by her action a® followed by the reaction of the follower b?.

Stackelberg Equilibrium: Consider a follower whose best response is optimal. We denote this scenario as
Stackelberg Oracle (SOC) learning. From the leader’s perspective, the uncertainty is not necessarily over the
system, but rather the strategy of the follower wp(-). Stackelberg equilibrium (7%, };) is achieved when the
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follower is best responding, according to Eq. (2.2), and the leader acts with an optimal policy given the best
response of the follower,

TA T arg max Er,y ny lpal; (2.3)
where
Er oy lia] = / 7a(a) / j1a(a, b)m5(bla) dbda. 2.4)
A B

2.2 THE STACKELBERG MANIFOLD

To address the complexity of solving for Stackelberg equilibrium under uncertainty, we propose the idea of
mapping actions from the ambient space onto a manifold ® leading to several key advantages. Simplifying the
problem by mapping to a geometric structure, such as a unit sphere, allows for significantly faster numerical
computation while optimizing directly on an intuitive intrinsic geometry, reducing redundancies and provides
ease with respect to enforcing constraints. Additionally, smoothness on such a structure enables computational
advantages through methods like Riemannian gradient descent (Bonnabel[2013), which exploits differentiability
for efficient optimization.

This concept of mapping the data from the ambient space, in our case defined by the joint action space A X B,
onto a latent space ® has been explored in several prior works. For a well defined manifold, typically the
approach is to learn a diffeomorphism between the ambient data space, and the objective manifold, which is
a subspace of the ambient data space (D. J. Rezende, Papamakarios, et al. 2020) (Gemici, D. Rezende, and
Mohamed |2016). Suppose the manifold is not given, or there lies flexibility in defining the structure of such
a manifold, the certain manifold learning techniques could be devised (Brehmer and Cranmer [2020). These
approaches typically define invertible, or pesudo-invertible, probability density maps between the ambient data
space, the latent space, and the manifold space.

2.2.1 NORMALIZING FLOWS FOR JOINT ACTION SPACE PROJECTION

We leverage normalizing flows to map a joint action space A x B C R onto a manifold, ® embedded in
RP (Dinh, Sohl-Dickstein, and Bengio 2016; Papamakarios et al. 2021} D. J. Rezende and Mohamed 2015).
Normalizing flows are a class of generative models that transform a high dimensional simple distribution (i.e.,
isotropic Gaussian) into a complex one through a series of invertible bijective mappings using neural networks
that are computationally tractable. The joint action space consists of actions taken by two agents, denoted as
a € Aand b € B, modelled via normalizing flows to ensure bijectivity and a tractable density estimate. Let
x € A x B, the model density px () for a data point z € RP is given by,

(o) = pz( o) e (520} 25

Here Z represents the latent space with a simple distribution, and |det (0 f(x)/0x)| is the Jacobian determinant
of the transformation f : R — RP”. Several open-source methodologies and codebases have been developed
to address this manifold mapping problem via normalizing flows (Brehmer and Cranmer 2020). We extend the
nflows package from Durkan et al. 2020 into our approach. The key contribution of our application is the
isolation of the input heads into two separate sections, before concatenating the inputs and feeding it through
the normalizing flow. This allows us to control the subspace induced by the leader’s action a € A. (We provide
detailed model specifications in Appendix [D})

2.2.2  SPECIFICATIONS OF THE FEATURE MAP ¢(a, b)

Feature Map ¢(-): We propose a function ¢, which is a feature map (Amani, Alizadeh, and Thrampoulidis
2019; Moradipari et al. [2022; Zanette et al. 2021). Let |.A| and |B| denote the finite dimension of the action
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Definition Expression

(D1) @ is measurable and reachable w.r.t. a o- D
algebra over A X B (denoted as € 4x5). PCAXBCRY, @®cCaxs. 2.7)

(D2) @ is compact and closed.

See Appendix [A1]for detailed definition. (2.8)

(D3) @ is Lipschitz in the joint A X B.
19261, + IV69ll, - €| < L. 29)

(D4) P variational sensitivity in A X B, with high , ,
probability. lla—a’l|<e = [|¢(a’,b) —(a,b)|| <4,Vb (2.10)

IIb—b[|<e = |[¢(a,b’) — ¢(a,b)|| < 6,Va (2.11)

(D5) @ forms a smooth Riemannian manifold.
See Appendix [A-4]for detailed definition. (2.12)

(D6) @ has an approximate pullback. There exists .
571() : ® — A x B such that |67 @@ b))~ @b)| < vab @13

Table 1: Key assumptions of the Stackelberg Embedding ®.

space of the leader and follower respectively, the feature map ¢ : A X B +— RP, which effectively maps any A
by B combination of vectors to a D dimensional feature representation.

Further, we introduce a concept known as the Stackelberg embedding, denoted by ®, which is defined as the
image of ¢ over the joint action space domain A4 X B,

& := Im(¢) = {¢(a,b)lac A b € B}. 2.6)

The construction of ¢ : A X B+ RP can be via any means, in our case a normalizing neural flow network (but
possibly any other architecture), but should abide by the imposed assumptions in Table T}

Definition 2.1. Bipartite Spherical Map Q(a,b): Let a € A and b € B, and define a mapping Q : A x B —
SP=1) from Cartesian coordinates to spherical coordinates on the D-dimensional unit sphere S'°—1). The
spherical coordinates are partitioned such that, a parametrizes a subset of the spherical coordinates, and b
parametrizes the remaining coordinates v, (b). Also, va N1y, = ), meaning the partitions are disjoint. Thus,
the full mapping is given by:

Q(a,b) := (va(a), m(b))" € SV,

where v, and vy, represent distinct angular components of the spherical coordinates.

Mapping to a Spherical Manifold: The transformation from spherical coordinates to Cartesian coordinates
is used to map input features onto an D-dimensional spherical manifold. We define two heads in the neural
network input, the head from A specifically controls the azimuthal spherical coordinate and the head from B
specifically controls other coordinates. Formally, we define this as a bipartite spherical map Q(-) from Defini-
tion 2.1} which constructs a disjoint spherical mapping to parameterize two subspaces in ®. (A visualization of
the results, showcasing the learned bipartite mapping to ® as a 3D spherical surface, is provided in Appendix
This visualization is generated by varying a or b to create longitudinal or latitudinal subspaces.)

Constructing a sufficient map to ® involves specifying the architecture and training model parameters such that
it satisfies dynamics [(DT)] to [(D6)] as much as possible. This fundamentally requires a trade-off between being
well behaved on the manifold, as stipulated by and and having an accurate inverse Thus, we

train a neural network to approximate ¢, via ¢, with the loss function,

L(®) = anLl + arll + ap Var(({s(a, b) — (3. (a, b))) tar ]Hvaé

v

- O‘. (2.14)

Perturbation Loss: £ Lipschitz Loss: Lé
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The total loss E(c{)) is composed of multiple loss functions added together in a linear convex combination. Ef;’

represents the negative log-likelihood loss of the normalizing flow (;AS() Ef;’ ensures transformed data matches
the base distribution while adjusting for volume changes from invertible transformations, with respect to Eq.
(2:5). Minimizing ﬁf;’ allows the model to efficiently map complex data bijectively to simpler distributions.

(A detailed description of ,Cf;’ can be found in Appendix ) L’g represents the geodesic repulsion loss of
the output, which penalizes the concentration of elements being pairwise close to one another. (A detailed
description of Lg can be found in Appendix ) Jo(a,b) : Ax B +— A x Bis a Gaussian perturbation
function on the Cartesian product of the joint action space A x B to itself, subject to standard deviation o.
(A formal definition is provided in Appendix ) The variance of the difference between qAS(a7 b) and the

perturbed ¢(J, (a, b)) should be kept minimal. This variance is captured over all elements in ®. The Lipschitz
loss penalizes drastic deviations in the gradient with respect to a and b, provided that the sum of the absolute
values of the gradients does not deviate too far from some target C' € R. The aforementioned losses in Eq.

are linearly combined in a convex combination to form the total loss £(¢), denoted as a, g, ap, and
a7y, respectively. The hyperparameters were optimized via a selection process, leveraging empirical validation
to identify the settings that maximized performance. Experimental hyperparameters and architecture of the
normalizing neural flow network can be found in Appendix D}

2.3 REWARD FUNCTION

Reward Mechanisms: A Stackelberg game provides two reward functions 1 4(a,b) and pp(a,b). Both of
which are linearizable with sub-Gaussian noises, € 4 and €, i.e.,

pa(a,b) = (0%, 6(a,b)) +ea, (215 pp(ab) = (04, 6(a,b)) +e5.  (2.16)

We assume zero-mean sub-Gaussian distribution for both €4 and ep but they do not necessarily need to be
identical. The objective is to learn the parameters 8% € R, and possibly as an extension problem 6%. The
feature map ¢(-) maps the joint action space A X B, to a subspace in R”. The parameters of the model, can be
estimated via parameterized regression,

0, = (Pr.401.4 + )\regI)_lqut 1t for A and B, respectively, 2.17)

Where ¢+ represents the the sequence of ¢(-) values via the feature map given the action sequences a;.; and
b1.t, Areg serves as a regularization parameter, I is the identity matrix, and p.; are the historical rewards of
players A or B (depending on the subscript). Here, we extend the reward structure of classical linear bandits in
(Abbasi-Yadkori, Pél, and Szepesvari [2011}; Chu et al. 2011) to a setting where two players jointly decide on
the action sequence. We stipulate assumptions to ensure that the covariance matrix .~ is well-conditioned and
positive semi-definite (PSD), with a regularization parameter A, balancing bias and variance, while the norm

||¢(a’, b")||x-1 must remain small to facilitate efficient uncertainty reduction. (These assumptions are outlined
T
in detail in Appendix[A.2])

3  OPTIMIZATION OF STACKELBERG GAMES

Optimization under Perfect Information: We see that regardless of the convexity of A or B, so long as we are
dealing with compact spaces, under perfect information, we can solve the Stackelberg equilibrium by solving a
bilevel optimization problem expressed as,

Ty = arg WI:lEaXA IE[(HE, qS(WAJrE(ﬁA))}L 3.1
where 75(m4) := arg nax E[(05, ¢(7a,7B))], (3.2)

With a slight abuse of notation, we use ¢(ma,7g) and 75 (7w4) to denote E., ., [¢] and the best response
function in response to policy 74, respectively. The expectation are taken with respect to the sub-Gaussian
noises.
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Optimization under Parameter Uncertainty: For some no-regret learning algorithm suppose that after ob-
serving t samples, the uncertainty among the parameters 6 is characterized by,

Ball(6*,Co-(t)) i= {9 o — ) < cg*(t)}. (3.3)

with probability at least 1 — . In this formulation, ||-|| denotes some norm in the space of parameters. Assuming
a pessimistic leader, the optimization problem under parameter uncertainty at round ¢ can be expressed as

Ty 1= arg max H@lin E[(04, ¢(ma,75(ma)))], s.t. 04 €Ball(0},Co-(t)), (3.4
TA A A
where 7p5(ma) = arg max max E[(05, ¢(7a,7B))], s.t. 0p € Ball(0%,Co-(1)). (3.5)
mpellp OB

Given 75(+) in Eq. (3.3), let us define,

H(G%,t) == max Igin E[(04, ¢(ma,75(ma)))], st. 04 €Ball(6},Co-(1)), (3.6)
H(04,t) ;== max max E[(0a, ¢(ma,75(m4)))], s.t. 04 € Ball(6h,Co-(1)). 3.7)

mTA€lla 04

Bi-level Optimization Structure: The optimization problems represented by Eqs. (3.4) and (3.3) exhibit
the structure of a bi-level optimization problem (Balling and Sobieszczanski-Sobieski |[1995; Beck, Ljubié, and
Schmidt|[2023; Sinha, Malo, and Deb|2017). Generally, a bilevel optimization problem comprises an upper-level
optimization task with an embedded lower-level problem, where the solution to the upper-level problem depends
on the solution to the lower-level one. Two conventional methods have been employed to address the bilevel
optimization problem. The first leverages the Karush-Kuhn-Tucker (KKT) conditions to exploit the optimality
of the lower-level problem (see Appendix [B.T). The second employs gradient-based algorithms like gradient
ascent (discussed in Appendix [B.2). Both approaches, however, have notable limitations. KKT conditions
assume strong convexity or pseudo-convexity, making them unsuitable for many non-convex settings, while
gradient-based methods, in addition to being computationally inefficient, often struggle or converge poorly
when weak-convexity is not guaranteed. Moreover, these methods typically assume optimization under perfect
information, whereas we focus on learning-based frameworks with uncertainty due to sampling.

4  ONLINE LEARNING ON THE STACKELBERG MANIFOLD

Definition 4.1. Geodesically Convex Sets: Let (®, h) be a Riemannian manifold, where ® is a smooth manifold
and h(a,b) is a Riemannian metric on ® (i.e. innner product). A subset S C P is said to be geodesically
convex if for any two points a,b € Sg, there exists a geodesic T : d € [0,1] — ® parameterized by d such that,

7(0)=a, 7(1)=b,  and, 7(d) € Se, Vde€0,1]. @.1)

Where d can be viewed as a parameter proportional to the distance traveled along the geodesic. In other words,
a set Sg is geodesically convex if for any two points in Sg, there exists a geodesic between these points that
lies entirely within Sg.

Definition 4.2. Convex Manifolds: A convex manifold is a manifold where the geodesic between any two points
on the manifold falls within, or constitutes, a geodesically convex set Sg, as per Definition

4.1 STACKELBERG OPTIMIZATION UNDER PERFECT INFORMATION

Provided that we can transform data from the joint action space (or ambient data space) onto a spherical mani-
fold, we can leverage the properties of the D-sphere to determine the best response solution for the Stackelberg
follower and optimize the corresponding Stackelberg regret. Consider the reward function structure outlined in
Section In general, for each agent, u = (6, ¢). Here, 6 represents a D-dimensional vector in the manifold
space, and we must find the element in ® that maximizes this inner product. In the Stackelberg game, since
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the leader moves first, they define a restricted subspace on the ®. The follower must then optimize within this
subspace. Moving forward, 6 4 and 6 will be referred to as objective vectors.

We define the divergence angle, ap;y, as the angle between the two objective vectors. Further, we can define the
geodesic distance between two vectors, denoted as &(0 4,05), as follows. For a unit-spherical manifold, this
has the definition,

(04,08)

cos(apiy) 1= ——-2
A T

,_ ( (04,05)
&(04,0p) := arccos <|9A||9B||) ) 4.2)

In a D-dimensional sphere, for a cooperative game with no divergence angle, the optimal solution that maxi-
mizes the inner product is an element in ® that is collinear with 6 4, mutatis mutandis for 3. Lemmas to
M.2)establishes a link between solving for the follower’s best response, from Eq. (2.2), and minimizing geodesic
distance, in a general sum game. Moving forward, we use the convention #’; and 6’; to denote the projection of
the objective vectors 6 4 and 65 onto P.

Lemma 4.1. Geodesic Distance and Closeness: Let ® C R” be a manifold serving as a boundary of a convex
set in RP. Given 0, let & € ® be the point on the manifold that maximizes the dot product (0, &), and is
orthogonal to ® at the point of intersection. For any two points on the manifold 0'y,0'; € ®, if the geodesic
distance between £y and 0’y is greater than the geodesic distance between &g and 0'g, 05(59, 04) > (&, 0%),
then the dot product satisfies (0,0'y) < (0,0'). (Proof in Appendix|C.1})

Lemma 4.2. Pure Strategy of the Follower: While optimizing over a convex manifold, proposed in Definition
given any objective vector 0, the linear structure of the reward functions from Eq. 2.13) and Eq. (2.16),
and that the subspace induced by a € A forms a geodesically convex subset, as defined in Definition the
optimal strategy of the follower will be that of a pure strategy, such that w4 (bla) € {0, 1}. (Proof provided in

Appendix )

The intuition behind Lemmas 4.1|and[4.2]is that the maximum the dot product between ¢’y and 6’5 on the convex
manifold must be collinear with each other, ensuring the optimal reward. In the case of a convex subspace, the
follower acting optimally has no viable alternatives other than a single choice.

4.2 REGRET DEFINITIONS

Definition 4.3. Stackelberg Regret: We define Stackelberg regret, denoted as R for the leader, measuring
the difference in cumulative rewards between a best responding follower and an optimal leader in a perfect
information setting, against best responding follower and leader exhibiting bounded rationality. The leader
policy stipulates that the she acts rationally given the estimates of the expected reward function from the data

gathered, as in Eq. (3.7) and Eq. (3.6),

RT ;_éE[riaXUA(a,%(a))—uA(a B(a } XT:( H(O%, 1) — H(0%, )) 4.3)

t=1

The leader selects a* from policy 4 according to their best estimate of 4 and 0p, following the maximization
equations in Eq. (3.4) and Eq. (3.5)) respectively.

The leader commits to a strategy 74 aimed at maximizing her reward while accounting for the uncertainty in the
follower’s response. The leader is free to estimate the follower’s response rationally, and within the confidence
interval. Our algorithm minimizes the Stackelberg regret, providing a no-regret learning process for the leader.
To compute the Stackelberg regret of the algorithm, which is defined from the leader’s perspective, we must
derive a closed form expression for the gap over time between the expected reward under the optimal policy and
the expected reward under any algorithm.

Definition 4.4. Simple Regret: Let us define the simple regret, where with probability 1 — § at time t,
reg(t) := (07, ¢(a”, B(a"))) — (04, d(a’, B(a"))) < H(04,t) — H(04, ) (4.4)

This assumes that the leader is acting under the bounded rationality assumption.
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4.3 QUANTIFYING UNCERTAINTY ON THE STACKELBERG MANIFOLD

We now revisit the parameter uncertainty constraints introduced in Sec. 2.3] which dictate the uncertainty of
a given learning algorithm, characterized by an uncertainty radius Cy«(t). Given the feature map ¢(-), which
adheres to the linear reward assumptions, particularly with respect to the covariance matrix of the regression (as
outlined in Sec. 2.3)), the learning leader can apply any bandit learning algorithm that imposes a high-probability
bound on the parameter estimate. This constraint is formalized in Eq. (3.3) by the uncertainty region Cy- ().

g <
Let us define ® , and P, as two subspaces, which we will use to analyze the leader’s actions under these
uncertainty constraints.
g Rrd
®,:={¢(a,b)|b’ € B}, 4.5) ® 4, = {¢(a’,b)|a’ € A}, (4.6)

> >
where ® , and @4, are the sub-spaces formed when we fix one of the leader or follower’s action, and let the
other action vary freely.
> >
Lemma 4.3. Intersection of ® , and ®1,: Given a bipartite spherical map Q(-) from Deﬁnition with a

parameterizing the azimuthcﬂ latitginal ) coordinates, the cardinality of the intersect between ® , and Py,
P, N ®y| > 0. (Proof provided in Appendix)

will be non-empty. That is,

The derivation of Lemma [4.3] first comes by isolating the subspaces in terms of angular coordinates. Next,
due to the Poincare-Hopf theorem (Hopf |1927; Poincaré [1885), the compactness of the smooth Riemmanian
manifold imposes strong geometric constraints such that the two subspaces cannot avoid eachother.

A A A g
Lemma 4.4. Orthogonality of Subspaces ® , and ®v,: The two submanifolds ® 5 and Py, are orthognal
to eachother within ®. (Proof provided in Appendix|C.3])

Lemma[4.4]is proven by isolating and taking the partial derivatives of the cartesian coordinates with respect to
their spherical coordinates to obtain tangent vectors. Afterwards, by computing the dot product between these
two tangents and demonstrating that it equates to 0, we establish their orthogonality.

Geodesic Isoplanar Subspace Alignment (GISA): The general methodology in which we can compute the
optimal leader strategy for a Stackelberg game, for manifold ® that forms a convex boundary, is that the leader
can anticipate the follower strategy based on knowledge of follower’s reward parameters 6 and the isoplane
Ard Ard
® ,. We denote this homeomorphism as fi1( ® ,,0%) : o — @ bz- Thereafter, we compute the geodesic
= =

distance minimizing distance from ® - to 0’, via injective map fo( ® p;,0’) : ®p; — R. Leader’s objective
is to find a € A such that it minimizes the composition of f; o fo, giving us the geodesic distance. This
composition is abstractly defined as,

= 0
a — ®Pp: — &(a,bl) €R, where, ¢ = —— for AandB. 4.7
AGOL) T fa(05) 1]

Rrd
(o]
Theorem 1. Isoplane Stackelberg Regret: For D-dimensional spherical manifolds embedded in R” space,
where ¢(a, -) generates an isoplanes ® o, and the linear relationship to the reward function in Eq. (2.13) and

Eq. (2.16) and Eq. (2.15) and Eq. (2.10), the simple regret, defined in Eq. (4.4), of any learning algorithm
with uncertainty parameter uncertainty Cy- (t), refer to in Eq. (3.3), is bounded by O(arccos(1 — Co«(t)?/2)).

(Proof provided in Appendix )

The proof of Theorem|[T|focuses on analyzing the geodesic distances on ® due to uncertainty. First, we argue that
any norm-like confidence ball in Cartesian coordinates, Bal1(-), can be transformed into a confidence bound
into a geodesic distance-based confidence ball, Ball@(')z_iil spherical coordinates (discussed in Lemma
of the Appendix.) Due to orthogonality between ® , and ® ,, we argue that that tlggeodesic distance either
remains the same or decreases when we projected from any Ball(-) from ® , to @, (discussed in Lemma
[C.3]of the Appendix.) This naturally extends to a bound on the maximum diameter of the projected confidence

ball on @ ,. This constitutes the best and worst possible outcomes due to misspecification in accordance with
the formulas in Eq. and Eq. (3.7), as expressed in Eq. (4.4), which upper bounds the simple regret.



Under review as a conference paper at ICLR 2025

Figure 1: Illustration of isoplanar subspaces for Figure 2: Illustration of geodesic confidence balls
players A and B. for players A and B.

Diagram Description: A visualization of the isoplanes ® 5 and ®1, on a 2-sphere embedded in three dimensions is
shown in Fig. [I} The isoplanes are depicted relative to the normalized objective vectors 64 and 6’5, which lie on the
manifold surface, separated by a divergence angle ap.. Figure2]illustrates the geodesic conﬁdence balls, positioned on the
surface of the spherical manifold. In three d1mens1ons it becomes evident that ® 5 and ‘I> b are orthogonal at any point of
intersection. This intersection, denoted by *1> ba» 1S Where the joint action emerges, represented by a purple geodesic square
indicating the uncertainty region.

Algorithm 1 Geodesic Isoplanar Subspace Alignment (GISA) Algorithm

1: Input: Time horizon 7, and confidence ball C} ().
2: Output: Estimated optimal leader action a*.
3: fort € 1...T do:

4 if &(04,05) < 2Cy-(t) then

5 Phase 1: Select uniformly a random action on the boundary of A’s geodesic confidence ball.

6: 04 ~ Uniform[@Balle(Ce=(t))] (See Lemma)

7: else

8 Phase 2: Select f4 that minimizes the geodesic distance to 0 from Balle(Co-(t)).

9 00+ argmin  &(0,0p).

0€Ballg (Cyx (1))

10: end if ~
11: al <+ ¢ 1(0,) > Perform a inverse map back to the joint action space.
12: yield &’ > (uly, uty) is revealed when the leader selects a' to play.
13: end for

14: return &'

Lemma 4.5. Pure Strategy of the Leader: Given a spherical manifold, ®, and isoplanar subspace, <I’ and

<I> b for the longitudinal and lattitudinal subspaces respectively, the optimal strategy of the leader is that of a
pure strategy, that is, 7% (a) € {0, 1}. (Proof is provided in Appendtxn )

Lemma argues that the intersection between ?a and ?b contains at most one element due to their orthog-
onality. Consequently, no other actions on the manifold can further maximize the leader’s reward. Intuitively,
the positive curvature of the manifold ensures that once two non-degenerate isoplanes intersect, the intersection
is a unique point that maximizes the dot product between the action and the objective vector.

5 EMPIRICAL EXPERIMENTS

We provide three practical instances of Stackelberg games in practice. We benchmark the GISA from Algorithm
against a dual-UCB algorithm, where both agents are running a UCB algorithm. Although a simplistic,
benchmark, the dual-UCB algorithm does constitute a no-regret learning algorithm (Blum and Mansour 2007)).
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R! Stackelberg Game: In this Stackelberg game, the leader selects an action while anticipating the follower’s
best response. The action spaces of both the leader and the follower are one-dimensional, a,b € R!. The
interaction between nonlinear rewards and penalties requires numerical methods to determine optimal strategies.
However, the nonlinear reward functions introduce complexity, resulting in a non-trivial equilibrium. A practical
application is energy grid management, where a utility company (leader) sets energy prices or output levels,
anticipating the aggregate consumers’ (followers) energy usage while accounting for nonlinear feedback such
as fluctuating demand or storage limits. (Details and additional experiments are provided in Appendix [G.1])

Average Regret Average Regret Average Regret

— GIsA Algorithm 45| — GisAAigorithm 1200 ] — GISA Algorithm
— UCB Algorithm — Liu-Rong (2024) Algorithm — UCB Algorithm
o

600

1000

Cumulative Regret
Cumulative Regret
Cumulative Regret

0 5 50 125 150 s 200 Bo w5 200

B w0 ws T 3
Time Step (T) Time Step (T) Time Step (T)

R' Stackelberg Regret. NPG Regret. SSG Regret.

Figure 3: Average cumulative regret performance across three Stackelberg games. Parameters of the simulations outlined in
Appendices [G.1]-|G.3] Uncertainty region denote upper and lower quartile of experimental results.

The Newsvendor Pricing Game (NPG): We model two agents in a Newsvendor pricing game, with a supplier
(leader) and a retailer (follower), inspired by the work of Cesa-Bianchi et al.|[2023|and L. Liu and Rong 2024,
The action space of the leader is denoted as a € R!, and for the follower as b € R2. The leader and follower
interact with each other in a repeated Stackelberg game, modelling a leader-follower supply chain game. The
supplier dynamically prices the product, aiming to maximize her reward, while the retailer determines the
optimal pricing and order quantity based on the demand distribution according to classical Newsvendor theory
(Arrow, Harris, and Marschak |1951}; Petruzzi and Dada 1999). The reward function is an abstraction that is a
function of stochastic demand, and the reward formats are asymmetric, rendering computation and learning of
the Stackelberg equilibrium non-trivial. (We specify the details and additional experiments in Appendix[G.2])

Stackelberg Security Game (SSG) in IR°: In this Stackelberg security game (SSG), inspired by the frameworks
developed in Balcan et al. 2015|and Zhang and Malacaria 2021} the defender (leader) allocates limited resources
across multiple targets, anticipating the attacker’s (follower) strategy (i.e. to protect a computer network from
malicious intruders). In our example, both players select actions from R®, where the rewards are governed by
the relative difference between their actions (i.e., a— b) and are subject to quadratic penalties for overextension.
Furthermore, resource constraints are modelled via weighted L;-norms, imposing additional limitations on the
feasible actions. The Stackelberg equilibrium in this setting is characterized by the leader’s optimal resource
allocation, taking into account the adversary’s best response. The interplay between nonlinear penalties and
resource constraints renders the equilibrium computation non-trivial, requiring advanced numerical techniques
for tractable solutions. (We specify the details and additional experiments in Appendix[G.3])

6 CONCLUSION

This work establishes a foundational connection between Stackelberg games and normalizing neural flows,
marking a significant advancement in the study of equilibrium learning and manifold learning. By utilizing
normalizing flows to map joint action spaces onto Riemannian manifolds, particularly spherical ones, we offer
a novel, theoretically grounded framework with formal guarantees on simple regret. This approach represents
the first application of normalizing flows in game-theoretic settings, specifically Stackelberg games, thereby
opening new avenues for learning on convex manifolds. Our empirical results, grounded in realistic simula-
tion scenarios, highlight promising improvements in both computational efficiency and regret minimization,
underscoring the broad potential of this methodology across multiple domains in economics and engineering.
Despite potential challenges related to numerical accuracy for the neural flow network, this integration of man-
ifold learning into game theory nevertheless exhibits strong implications for online learning, positioning neural
flows as a promising tool for both machine learning and strategic decision-making.

10
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A KEY ASSUMPTIONS AND DEFINITIONS

A.1 COMPACT AND CLOSED SETS

In this formal definition, ® is both compact and closed in the product space A x . A set ® is compact if for
every open cover {U; };cr of ®, there exists a finite subcover such that ® C UZ 1 Ui, where U;, are open
sets in A x B. This ensures that ® is “contained” in a finite manner within the space, even if 4 x B is infinite.
Furthermore, ® is closed if its complement, @ = (A x B) \ ®, is open. This implies that ® contains all its
limit points, making it a complete set within the topological space. Thus, ® is a compact and closed subset of
A x B, meaning that it is both bounded and contains its boundary, providing useful properties for convergence
and stability in this space.

Ml

WUitier, ®<|JUi = HU,, Ui, ...

n
} such that & C U ins (A X B)\ ®isopen. (A.1)
i€l k=1

A.2 ASSUMPTIONS ON LINEAR REWARD FUNCTION

1. Covariance Matrix:

T
Sri= Y d(al, bh)g(al, b) T+ Al (A2)

t=1

¢(a’, b") must ensure that the covariance matrix Z;l (a.k.a. the inverse of the covariance matrix) is
sufficiently large for effective learning.

2. Norm Bounds:

d(al,bt)||w-1 = 1/d(at,bt) T tp(at, bt)T (A.3)
b T
lo(at, bt) ||2;1 must be small to ensure efficient uncertainty reduction.

3. Regularization Effect: Regularization parameter )\, balances bias and variance, affecting sample
complexity.

4. Positive Semi-Definiteness: Z;l is positive semi-definite (PSD).

A.3 DISCRETE MEASURE INTERPRETATION

Let {1, 22, ...,2,} be aset of discrete points in R". We define the measure « on these points as,

= a({wi})da, (A.4)

=1

where J,, is the Dirac measure centered at x;. The integral of a function f : R™ — R with respect to the
measure « is given by,

k
/ = 5" a{w ) () (A5)
" i=1
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A.4 DEFINITION OF RIEMANN MANIFOLD

A Riemannian manifold, expressed as ®, consists of a smooth manifold ® equipped with a smoothly varying
collection of inner products w, on each tangent space 7,® at every point p € ®. This assignment w,, :
T,® xT,® — Ris positive-definite, meaning it measures angles and lengths in a consistent and non-degenerate

manner. Consequently, each vector v € T, ® inherits a smoothly defined norm ||v|, = /w,(v,v). This
structure allows @ to possess a locally varying yet smoothly coherent geometric framework.

A.5 STOCHASTIC PERTURBATION FUNCTION

To model uncertainty in the joint action space, we introduce a stochastic perturbation over the leader and fol-
lower actions. Specifically, we define a small, one-step random perturbation function J(a, b), where a € R™
and b € R” are the actions of the leader and follower, respectively. The perturbed joint action is given by:

J(a,b) = (a’,b") = (a+ €4, b+ €) (A.6)

where €, € R™ and ¢, € R™ are independent Gaussian perturbations with zero mean and variance o2 and o7,
respectively:

€a ~N(0,021,,), € ~N(0,021,) (A7)

Here, o, and oy are scalar diffusion parameters controlling the magnitude of the perturbation, and I,,, and I,

are identity matrices of size m x m and n X n, ensuring isotropic perturbations in each component of a and b.
In component form, this perturbation can be written as:

a = a; +€a;, €q; ~N(0,02) (A8)

by =bj+e,, e, ~N(0,0}) (A.9)

This formulation introduces small, independent, and isotropic random deviations from the original actions,
modeling the stochastic uncertainty in the decision-making process.

A.6 GEODESIC REPULSION LOSS

To encourage an even distribution of points on the spherical manifold, we employ the Geodesic repulsion loss,
which penalizes pairs of points that are too close in geodesic distance. This loss function facilitates the spreading
out of points uniformly over the sphere, preventing clustering.

Geodesic Distance: Lety;,y; € RP be points on the surface of a Riemmanian manifold denoted as &(y;, Vi)
in the abstract sense. For a unit sphere it would hold that ||y;|| = |ly;|| = 1). The geodesic distance between
two points on the sphere is the angle between them, which can be computed from their dot product,

&(yi,y;) = arccos (y;—yj) , (A.10)

where y,iT y; is the dot product of y; and y ;.

Repulsion Term: To penalize pairs of points that are close in geodesic distance, we use an exponential decay
function, which strongly penalizes small distances:

exp (—ﬁ(y;’ yi)) : (A.11)

where v > 0 is a sensitivity parameter controlling how strongly the loss reacts to small distances. A smaller «y
enforces stronger repulsion between nearby points.
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Geodesic Repulsion Loss: The total Geodesic Repulsion Loss is computed as the sum of repulsion terms over
all pairs of points, excluding the diagonal (self-repulsion),

n n Te .
Lopasin = > exp (W) (A.12)

i=1j=1j#i

where 7 is the number of points on the manifold. The geodesic distance &(y;,y;) is computed using the angle
between y; and y;, ensuring that points are uniformly spaced across the spherical manifold.

To avoid penalizing points for being close to themselves, we exclude the self-repulsion terms by masking the
diagonal elements in the pairwise distance computation,

&(yi,y:) =0, foralli. (A.13)

This formulation ensures that points are pushed apart when their geodesic distances are too small, leading
to a more uniform distribution on the manifold, which is critical for preserving the geometry of the learned
representation.

A.7 NEGATIVE LOG-LIKELIHOOD LOSS FOR NORMALIZING FLOWS

Let 2 € R be an input data point, and let f : R? — R be an invertible transformation defined by the
normalizing flow. The transformation f maps the input data x to a latent variable z = f(x) that follows a simple
base distribution pz(z). Assume that the base distribution is a standard normal distribution, Z ~ N (0, I;), with
the probability density function (PDF) given by,

1 1
pz(z) = Wexp (—2|z||2> . (A.14)

The log probability under this distribution is,

1 d
logpz(z) = 77|\z||2 — — log(27). (A.15)
2 2

Using the change of variables formula, the probability density of x under the model is related to the base
distribution via the transformation f as follows,

px (@) = pz(f(x)) ]det @)

(A.16)

is the absolute value of the determi-

Where % is the Jacobian matrix of f with respect to =, and )det %
nant of the Jacobian.

NLL Loss: The negative log-likelihood (NLL) loss for a single data point x is defined as,

0
,Cf;’(x) = —logpx(z) = — [1ogpz(f(x)) + log |det % } . (A.17)
Substituting the log probability of z = f(x) under the base distribution:
1 d
Eg(x) = §||f(;1:)H2 + 3 log(27) — log ‘det a‘ggj) . (A.18)
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For a dataset {x; }"_;, the total NLL loss is the average over all data points:

1

N_ 1 1 Lz, d B
£ = 23 (G + § togtom) — tog

=1

det

Of ()
0

Ly

> . (A.19)

The objective of training is to minimize £, ensuring that the transformed latent variables z = f(z) follow the
base distribution and the transformation f appropriately adjusts the volume of space via the Jacobian determi-
nant.
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B OPTIMIZATION ALGORITHMS

B.1 KKT REFORMULATION FOR SOLVING STACKELBERG OPTIMIZATION PROBLEMS

The bi-level optimization structure can be solved via reformulating the problem as a bilevel optimization prob-
lem via the Karush-Kuhn-Tucker (KKT) conditions. It assumes convexity and differentiability in the embedded
space and transforms the original bilevel problem into a single-stage optimization problem via the KKT condi-
tions.

max (04, ¢(ma,mR))

TA,TB,
st.maq €114
¢
Vi (0s, ¢(ma,7B)) + Z AiVarpgi(mp) =0 (B.1)
i=1
9(mp) > 0
A>0
Mg(rp)=0

where IIg = {mp|g(mp) > 0} and g; represents the i-th constraint of IIz. Specifically, it requires the con-
vexity of the lower level problem (3.2). Otherwise, KKT complementarity conditions turns the problem into
a nonconvex and nonlinear problem even 7p is a set of linear constraints. And the problem is incapable to
solve under normal nonconvex and nonlinear algorithm. In addition, Slater’s constraint qualification is required
to ensure that the solution under KKT reformulation is the solution of original bilevel problem.(Allende and
Still 2013)The reformulation involves converting non-linear constraints into a convex hull, thus simplifying the
problem into a linear program (LP). Sensitivity analysis can be then performed to understand how changes in
constraints impact the solution, with particular attention to the effects of shrinking parameters on the objective
function. The approach is utilizes the application of the Weak Duality Theorem to analyze sensitivity.

B.2 GRADIENT ASCENT APPROACH FOR SOLVING BILEVEL OPTIMIZATION PROBLEMS

Another approaches is transforming Stackelberg game into the the bilevel optimization problem. Namely, we
are interested in the following problem,

min f(z,y), (Upper-Level)
z€R4 yey*(z) (B.2)
s.t. y*(x) = arg mi}r} g(z,y). (Lower-Level) '
ye

The gradient-based algorithms have seen a growing interest in the bilevel problem (Huang 2024; Huang et al.
2022; Ji, J. Yang, and Liang [2021} R. Liu et al. 2021; Sato, Tanaka, and Takeda [2021} Xiao, Lu, and Chen
2023). To measure the stationarity of the lower-level problem, Polyak-Lojasiewicz(PL) condition on g(z, -) is
widely applied to show the last-iterate convergence of ||V, f (2!, y*(z!))|], i.e,

IVyg(z,9)I* = 2p(g(,y) — min g(x, 2)). (B.3)

where p is a positive constant. This condition relaxes the strong convexity but is still not satisfied for the
polynomial function g(z,y) = y*. Also, the lower level function g(z, -) needs to be differentiable in R%. For
the Stackelberg game, this is not the case since the follower’s strategy mp € Ilp.

Interestingly, should the objective functions be differentiable, one strategy to do this optimization is via gradient
descent. Of course the gradient descent algorithm would have to be reformulated to accommodate to a finite
amount of traversals based on the gradient update (Sato, Tanaka, and Takeda 2021) (Franceschi et al. |2017)
(Naveiro and Insua 2019).
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B.3 TECHNICAL NOTE: CONVERSION OF ABSOLUTE VALUE CONSTRAINTS INTO REGULAR LP
CONSTRAINTS

Suppose there exists D dimensions on the L1 norm. Wnd we have the constraint,

D
|x —c|l; £ D, expressed as, Z |z, —ci| < C (B.4)
i=1
This can be expressed as,

Z; > X — Cq fori=1,2,...,D (B.5)
2 > —(zi — cq) fori =1,2,...,D (B.6)

D
Y m<cC (B.7)

i=1
z; >0 fori=1,2,...,D (B.8)

By introducing a new dummy variable z;, we and adding 2D + 1 additional constraints, we can express this
now as a standard linear program.
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C ToPOLOGY & GEODESY

C.1 PROOF OF LEMMA [4.1]

Geodesic Distance and Closeness to y: Let ® C R” be a manifold serving as a boundary of a convex set in
RP. Given 0, let £ € ® be the point on the manifold that maximizes the dot product (6, £y), and is orthogonal
to @ at the point of intersection. For any two points on the manifold ¢’y,0%; € ®, if the geodesic distance
between &y and ¢, is greater than the geodesic distance between &y and 67, & (&g, 6’y) > &(&p, 05), then the
dot product satisfies (0, 6’,) < (6,0').

Proof. Geodesic Distance and Closeness to £y: Since M is a smooth, compact manifold bounding a convex
region, the geodesic distance between two points on M, say £1,£2 € M, is defined as the shortest path along
the manifold &(&1,&2) between & and £». For convex manifolds, the geodesic distance behaves similarly to
the distance on the surface of a sphere: an increase in the geodesic distance from &y to another point on the
manifold corresponds to an increase in the angle between the tangent vector at &y and the vectors corresponding
to points on the manifold. Hence, if &(&g,6’,) > &(&p, 03), the angle between & and ' is larger than the
angle between &y and 0';.

Dot Product and Angle: The dot product (6, &) between a normal vector 6§ at £y and a point £ on the manifold
is given by:

(6,€) = [10[l[I€]| cos() (C.1)

where « is the angle between the vectors # and £. Since 6 = ﬁ (as &p is a unit vector), the angle between

6 and any point £ on the manifold depends only on the angle between &y and £. Since &(&p, 0'y) > &(&p, )
implies that the angle between &y and 6, is larger than the angle between &y and 0’5, we have:

cos(ag/A) < cos(a%), (C.2)

where g, is the angle between 6 and ¢, and ay, is the angle between ¢ and 075.

Conclusion on Dot Products: Since the dot product is proportional to the cosine of the angle between the
vectors, and cos(ozng) < cos(oz%), it follows that:

(0,07) = 110]|[|€o, || cos(argr, ) < (0,0%) = [10]l[|€as, || cos(agy,). (C.3)

Therefore,
(0,0%4) < (0,0%). (C4
O

C.2 LeEmMMAI[CT]

Lemma C.1. Maximization on a Manifold: Given a smooth manifold ®, and objective vector 0, the element
on a manifold which optimizes (¢, 0) is the element whose normal vector’s tangent plane o & is collinear with

0. (Proof in Appendix|C.2])
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Proof. Let® C RP be the unit sphere, defined as:

¢ ={peR”||¢] =1}.

Given a vector 4 € R, we aim to find the point ¢* on the sphere that maximizes the inner product (¢, 6 4).
This can be formally stated as the following optimization problem:

maximize %)
HERD <¢7 A>
subject to llo|l = 1.

Optimization Formulation: The problem is a constrained optimization problem where the objective is to
maximize the dot product (¢, 6 4) and the constraint ensures that ¢ lies on the unit sphere. Mathematically:

maximize 0
HERD <¢7 A>

subject to g(¢) =l¢||* —1=0.

Here, g(¢) represents the constraint that ¢ lies on the unit sphere. O

C.3 PROOF OF LEMMA [4.2]

Pure Strategy of the Follower: While optimizing over a convex manifold, proposed in Definition #.2] given
any objective vector 6, the linear structure of the reward functions from Eq. (2.13) and Eq. (2.16), and that
the subspace induced by a € A forms a geodesically convex subset, as defined in Definition [4.1] the optimal
strategy of the follower, will be that of a pure strategy, such that 74 (b|a) € {0, 1}.

Proof. The goal is to show that the follower’s optimal strategy 74 (b|a) is a pure strategy, such that w4 (bl|a) €
{0, 1}. Let the objective vector § € RP define the direction of optimization, with the reward function given by,

n(a,b) = (¢(a,b),0), (C.5)

where ¢ : A x B — RP is a feature map.

Since ® is geodesically convex, for any point a € A, there exists a unique geodesic that connects the subspace
formed by fixing a, denoted as ®, = ¢(a, -) to any other point g € ®. By Lemma4.1]in order to maximize the
follower’s reward 115, we must find the shortest geodesic distance, &(+), to Q'A within Sg. We express this as,

¢(a,b*) = arg min G(a,b), (C.6)
g

€Sa

Since ® is convex, this minimizer is unique. The reward function up(a,b) depends on the inner product
(¢(a,b),fp). As this structure is linear with respect to ¢(a, b), maximizing the reward is equivalent to mini-
mizing the geodesic distance from ¢(a, b) to the objective vector 6. Since this minimizer is unique by geodesic
convexity, the follower’s optimal strategy will correspond to this unique solution b* given a. As there are no
alternative solutions for ¢(b*, -) given a. Because ¢(-) is a bijective mapping, we conclude that any probablistic
mapping function must adhere to 74 (bla) € {0, 1}.

O
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C.4 PROOF OF LEMMA [£.3]

> >
Intersection of ® , and ® ,: Given a bipartite spherical map Q(-) from Definition , with a parameterizing
the azimgt_h)al (lat(_igudinal) coordinates, the cardinality of the intersect between ® , and ® , will be non-empty.
Thatis, | @, N @] > 0.

Ard
Proof. Given two distinct points 6’, and 6’5, we define the isoplane, ® ,, as the submanifold formed by fix-

ing a subset of spherical coordinates (7§A), e ,fy](cA)), including the azimuthal angle ©(4), and allowing the

remaining coordinates to vary. Similarly, the isoplane at 65 is formed by fixing a different subset of spherical
. (B) (B) . .
coordinates (7,7, - -,Vp_2), While allowing the rest to vary.

If @ is a compact, orientable, smooth manifold without boundary, and X is a smooth vector field on ® with
isolated zeros, the Poincaré-Hopf theorem states that,

> Index(X,P) = x(®), (C.7)
P cZeroes(X)

where x(®) is the Euler characteristic of the manifold, and Index (X, P) denotes the index of the vector field
at point P. The compactness of S”~! imposes strong geometric constraints: subspaces or submanifolds (such
as isoplanes) embedded within S”~! must intersect unless they are specifically configured to avoid each other
(e.g., in certain degenerate cases of orthogonality). To dive deeper, and provide a more fundamental and intuitive
analysis, let Wy represent the intersection of isoplanar subspaces,

Uy=B,.NTD, (C.8)

First, the compactness of the unit sphere SP~! implies that any sufficiently dimensional subspaces embedded
in the manifold cannot be disjoint. The intersection may be a single point or a higher-dimensional subset,
depending on the number of coordinates fixed and the degrees of freedom allowed for the remaining coordinates.

Secondly, even in the case where the isoplanes at ® , and ® 1, are orthogonal, the fact that the subspaces are
embedded in a compact, orientable manifold forces them to intersect. This intersection result is a consequence of
the general principles of intersection theory in compact manifolds, which asserts that two subspaces of sufficient
dimension within a compact manifold must intersect unless they are orthogonal in all directions. However, since
we are working with constrained isoplanes that do not span the entire manifold, even orthogonal subspaces are
forced to intersect due to the lack of space for complete disjointness. Therefore,

|Wo| > 0. (C.9)

C.5 PROOF OF LEMMA [4.4]

> > > >
Orthogonality of Subspaces ® , and ® ,: The two submanifolds ® , and ® y,, are orthognal to eachother
within ®.

We consider the spherical manifold SP~!, embedded in R, where points are parameterized using D — 1
angular coordinates. These coordinates are composed of latitude-like angles 11, ..., vp_o and a longitude-like
angle . The Cartesian coordinates, X = |11, 2, ...,2p|T, of a point on SP~1 are expressed as:
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D—2
x = sin(v;) cos(7),
=1
D—2
xg = sin(y;) sin(y),
i=1
D-3
x3 = sin(v;) cos(vp—2),
i=1
D—4

Ty = H Sin(Vi) COS(VD73),

i=1
xp—1 = sin(vy) cos(vz),
xp = cos(vy).

We aim to show that the subspaces generated by fixing #’,, the set of latitude-like angles, and fixing 6’5, the
longitude-like angle, are orthogonal. To this end, we compute the tangent vectors of the manifold in the direc-
tions of these angular coordinates.

First, we compute the partial derivative of each coordinate with respect to . The coordinates x; and x5 explic-
itly depend on y, while the other coordinates x3, . .., xp do not. Therefore, we have,
D-2 D-2
81‘1 a . . .
—_— == sin(v;) cos =— sin(v;) sin(vy),
5= g (T st ) = = T st siny

or, 0 (07 E
EN =5 (H sin(v;) sin(’y)) = H sin(v;) cos(7),

Oz;

=0, Vj>3.
oy ) J =z

Thus, the complete partial derivative with respect to 7 is,

P D—2 D—2
5 (z1,22,...,2p) = ( ;E[l sin(v;) sin(y), };[1 sin(v;) cos(v), 0, ... ,O) .

Next, we compute the partial derivative of the coordinates with respect to v;. This affects all coordinates
x1,Z2,...,Tp. Specifically:

02, 5 (D=2 D—2
T (H sin(v;) cos(7)> = cos(v1) H sin(v;) cos(v),

i=1 =2

oz 5 (D=2 D—2
a—yf = o0 <H sin(v;) sin(v)) = cos(v1) H sin(v;) sin(y),

i=1 =2
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, D-3 D-3
O3 = 9 <H sin(v;) cos(VD_2)> = cos(v1) H sin(v;) cos(vp_2),

ov ov
1 L\ izt i=2

Dy - .= @ = —sin(1y).

Tyl 81/1

Thus, the complete partial derivative with respect to v is:

P D2 D—2
— (%1, x9,...,2p) = (cos(yl) H sin(v;) cos(7), cos(vy) H sin(v;) sin(vy), —sin(14), 0, ... ,O) .

v
O i=2 i=2

Dot Product of Tangent Vectors: To prove orthogonahty of the subspaces spanned by these vectors, we
compute the dot product of the tangent vectors a and 5-. The dot product is given by,

0 D—2
87 8V1 ( H sin(v;) sin(y ) . (cos(z/l) H sin(v;) cos(*y)) +...,

i=2
which simplifies to zero, as the terms corresponding to the components in x1, x2, and x3 do not align. Conse-

quently, we have,

9.9 _
87 81/1_

Since the dot product of the tangent vectors is zero, the subspaces spanned by fixing A and fixing B are orthog-
onal at every point on SP~1. This orthogonality arises from the fact that the angular coordinates for latitude
and longitude parameterize independent directions in the tangent space of the spherical manifold. Thus, we
conclude that the subspaces resulting from fixing A and B are mutually orthogonal.

C.6 PROOF OF LEMMA
Pure Strategy of the Leader: Given a spherical manifold, ®, and isoplanar subspace, ® 5 and ®y, for the

longitudinal and lattitudinal subspaces respectively, the optimal strategy of the leader is that of a pure strategy,
that is, 7 (a) € {0,1}.

Proof. Let SP~1 C RP be the unit sphere embedded in D-dimensional Euclidean space. Consider two dis-

tinct points 6’y and 6%z on the manifold, each with spherical coordinates (’yi ),fyéA), e ,fy(DA_)Q, V(A)) and
(vi ), wéB), . ,7(3) V(B)) respectively. We aim to demonstrate that the isoplanes formed by fixing half

of the spherical coordmates at 0, and 0z must intersect, and this intersection Uy is a s1ngleton By Lemma

— —
we infer that ® , and ‘I) b must form a non-empty intersect in ®. Follower by Lemmau P, and Py, are
orthognal to eachother in ®.

Singleton Intersection due to Orthogonality: Consider the isoplanes formed by fixing the angular coor-
dinates ¢’ (latitude-like) and 65 (longitude-like) on the unit sphere SP=1 These isoplanes correspond to
submanifolds of the sphere, which are defined by holding certain angular coordinates constant while allowing
others to vary. In the special case where the isoplanes at 8’y and 6’5 are orthogonal, we argue that the intersection
set of these submanifolds is reduced to a single element (singleton). Let P be the point where the isoplanes
associated with fixed ¢, and #’; intersect. The tangent space at P, denoted as TpS D=1 consists of vectors
tangent to the sphere at P.
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Rrd Arg
The isoplane formed by fixing ¢’; corresponds to a submanifold ® , whose tangent space at p, denoted T, @ ,,
is spanned by the partial derivatives with respect to the longitude-like angular coordinates ~;. Similarly, the

isoplane formed by fixing 6% corresponds to a submanifold ®1,, and the tangent space T, ® , is spanned
by the partial derivatives with respect to the latitude-like angular coordinates v;. Orthogonality between the

Rrd Ard
isoplanes at #’, and 7; implies that the tangent spaces Tp, ® » and T}, ® , are mutually orthogonal. This means

< . .
that the dot product of any vector from T, ® 5 with any vector from T}, @y, is zero:

Ry <=
va-vp =0, VVAEqu)a, VBETp@b.

Geometrically, this implies that the submanifolds ® , and ® , intersect at a right angle at P. Since the sub-
manifolds are orthogonal, no other points of intersection can occur, and the intersection set is reduced to the
single point P. Therfore,

[Wy| = 1. (C.10)
Minimal Geodesic Distance from Up: Let W, = (z{™ 2§™ . 2(") be the unique intersection point of
the two isoplaness. Now, we consider the geodesic distance from this intersection point to any other point on the
sphere. The geodesic distance between two points Py = (xgl), zgl), . ,xg)) and Py = (xf), xg), . ,x(g))

on the unit sphere is given by,

& (P, Psy) = arccos(Py - Pa).
At the intersection point Wy, the geodesic distance is minimized, thus,

Pi=VYy = Qﬁ(Pl,‘lfg) =0.

Suppose we move away from W, along either the longitude isoplanes (by changing x1) or the latitude isoplanes
(by changing x2, x3,...,xp). Any such deviation implies a change in the dot product Py - P5, which results
in an increase in the geodesic distance. Specifically, if we move along the longitude isoplanes, we are changing
x1, while the other coordinates remain constant, resulting in a decrease in the dot product. Similarly, if we move
along the latitude isoplanes, we are changing x», z3, . . . , T p, again causing a decrease in the dot product. Since
the geodesic distance is a monotonically increasing function of the angular separation, any deviation from W
leads to an increase in the geodesic distance,

Qj(PQ,Pl) > @(Pl, \II’Y) = 0.

Thus, any deviation from the intersection point of the longitude and latitude isoplaness must result in an increase
in the geodesic distance, &(-). By Lemmal4.1] this increase in the geodesic distance will decrease the expected
reward 4. As the cardinality of ¥ is |¥, | = 1 from Eq. (C.I0), this implies no optimal mixed strategies exist
for the leader, and thus, 7% (a) € {0, 1}.

O

C.7 CONVERSION OF CARTESIAN UNCERTAINTY TO SPHERICAL

Lemma C.2. Given two points 0 4, 64 € RP, denoting points on the surface of a unit spherical manifold, the
uncertainty in Cartesian coordinates expressed as |04 — 04| < Co=(t) can be expressed as uncertainty in

geodesic distance as ®(A,0,) < cos™! (1 - C"Qﬂ)
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Proof. Given two points 4,0, € RP, with || A|| = ||#.4] = 1, denoting points on the surface of a unit sphere,
the uncertainty in Cartesian coordinates is expressed as:

164 = 0all < Co- (1)
where Cyp- (t) € R is the uncertainty bound. We aim to translate this uncertainty into spherical coordinates.

Cartesian Coordinates on the Unit Sphere: In R”, the spherical coordinates of a point # 4 on the surface of
the unit sphere can be represented as:

0541) = cos(r1),
fo) = sin(v4) cos(va),
gff) = sin(l/1) SiIl(Vz) COS(V3)7
91(4D_1) = sin(v) sin(ve) . . . sin(vp—_2) cos(7y),

G(AD) = sin(vy) sin(vz) . .. sin(vp—_2) sin(y),

where v1, s, ..., Vp_o represent the latitude angles, and  represents the longitude angle. Similarly, the point
6 4 can be written in terms of spherical angles v}, v4, ..., .

Uncertainty in Cartesian Coordinates: The uncertainty in Cartesian space is given by:
104 =047 = (09 = 637)2 + (07 —09) +... + (09 —6)” < Co- ().

However, it is more efficient to relate this uncertainty directly to spherical angular distance.

Spherical Angular Distance: The squared Euclidean distance between two points 6 4 and 64 on the surface
of the unit sphere is related to their angular distance v by the spherical law of cosines:

164 — 64> = 2(1 — cos(v)),

where v is the angular distance between the two points, and cos(v) is given by:
cos(v) = cos(vy) cos(vy) + sin(vq) sin(v]) ( cos(vo) cos(vh) + sin(vy) sin(v}) - - - )
This expression provides the exact angular distance between points 6 4 and 6 4 on the unit sphere.

Uncertainty in Spherical Coordinates: The inequality ||#4 — 04| < C- (t) implies that the angular distance
v between the two points satisfies:
2(1 — cos(v)) < Co-(t)?,
which simplifies to:
Co- (1)

>1 - —.
cos(v) 5

Since cos(v) ranges from 1 (when 64 = 04) to -1 (for antipodal points), the angular distance v is bounded by:

2
v < cos ! (1— 692(t)>

This inequality describes the exact spherical uncertainty region. Thus, the uncertainty ||04 — 0.4 < Cp-(¢) in

2
Cartesian space corresponds to an angular uncertainty v < cos ™! (1 — %) on the unit sphere. O
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C.8 DISTANCE PRESERVING ORTHOGONAL PROJECTION:

Lemma C.3. Consider a unit sphere SP~1 C RP. Given a point 0, € SP~' and a geodesic ball B; ¢ SP~1
centered at 6 5, we are interested in the behaviour of this ball under orthogonal projection onto a subspace of
RP. Specifically, we aim to rigorously show that the diameter of the orthogonally projected ball does not exceed
the diameter of the original geodesic ball.

Proof. Geodesic Uncertainty Balls: Let 04,604 € R” be two points on the unit sphere, i.e., [|04]| = ||64] = 1,
and let the geodesic distance between 6 4 and 6 4 be denoted by (64, 6 4). The geodesic distance between any
two points on SP~1 is given by,

7(9,4,9,4) = arccos(@A . éA),

where 04 - 0 4 is the Euclidean dot product between 64 and 7] 4. A geodesic ball B;(64) centered at 64 with
radius J is defined as the set of points on the unit sphere such that their geodesic distance from 6 4 is less than
or equal to J: }

Bj(0a) = {0, € SP~ | 4(04,04) < J}.

2
We are particularly interested in the case where J < arccos (1 — %) , where Cy~ (t) is a positive value

corresponding to the uncertainty radius in the Euclidean distance.

Orthogonal Projection and Geodesic Distance: Given a subspace V C RP, let Py, : RP — V denote the

orthogonal projection onto V. For any points 6 4, 04 € RP, the Euclidean distance between their projections is
bounded by:

1Py (84) = Py ()] < 1104 — O.all.

Since the geodesic distance on the unit sphere is a measure of arc length between points, it follows that the
geodesic distance between two points is non-increasing under orthogonal projection. We aim to show that the
diameter of the projected geodesic ball onto the subspace V' does not exceed the diameter of the original ball.

Diameter of a Geodesic Ball: The diameter of a set S C SP~! is defined as the greatest geodesic distance
between any two points in S:
diam(S) = sup (z,y).
z,yeS
For a geodesic ball B;(6 4), the maximum geodesic distance occurs between two antipodal points on the bound-
ary of the ball. Therefore, the diameter of the geodesic ball is:

diam(By(04)) = 2.J.

_ Cox(®)?
2

In particular, for J = arccos ( 1 ), we have:

diam(B;(04)) = 2 arccos (1 — 69*2(]5)2> .

C.9 DIAMETER PRESERVING ORTHOGONAL PROJECTION

We now formalize the behaviour of the geodesic ball under orthogonal projection.

Lemma C4. Let Bj(04) be a geodesic ball of radius J < arccos (1 - %ﬁ) on the unit sphere SP~1 C

RP. Let V C RP be a subspace, and let Pyy : RP — V be the orthogonal projection onto V. Then, the
diameter of the orthogonally projected ball Py, (Bj(04)) satisfies:

diam(Py (B;(04))) < diam(B;(04)) = 2.J.
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Proof. Consider two points 6 4, 61 cB 7(0.4). By the definition of a geodesic ball, we know that:
Y04, 9~A) <2J.

Next, project 64 and 64 orthogonally onto the subspace V, yielding the points Py (f4) and Py (6,4). Since
orthogonal projection reduces or preserves Euclidean distances, we have:

1Py (04) = Py ()l < 104 — 0al-

Moreover, since the geodesic distance between points on the sphere is a function of their Euclidean distance, it
follows that the geodesic distance between the projected points Py (64) and Py (64) is also bounded by:

Y(Py(0a), Py (04)) < 7(04,04).
Thus, for all pairs 6 4, 04 € Bj(04), we have:

Y(Py(04), Py(04)) < 2.
This shows that the diameter of the projected geodesic ball Py (B;(64)) is at most 2.J, i.e.,

diam(Py (Bj(04))) < diam(Bj(04)) = 2.J.

C.10 PROOF OF THEOREM[I]

Isoplane Stackelberg Regret: For D-dimensional spherical manifolds embedded in R? space, where ¢(a, -)

>
generates an isoplanes @ ,, and the linear relationship to the reward function in Eq. (Z.13)) and Eq. (2Z.16) holds,
the simple regret, defined in Eq. (#.4), of any learning algorithm with uncertainty parameter uncertainty Cyp» (t),
refer to in Eq. (3:3), is bounded by O(2 arccos(1 — Cp-(t)?/2)).

Proof. The proof of Theorem [I] hinges on the aforementioned arguments in Lemma [C.2} Lemma [C.3] and
Lemma [C.4]sequentially, but in the context of parameter estimation.

First, Lemma argues that one can transform a confidence bound |#4 — 0 Al < Cp+(t) into a confidence

bound on geodesic distance & (64, 0 a) < cos™1 (1 — %) Let us denote this as the geodesic confidence

. = R
ball Ballg(6%,Ce+(t)). Nevertheless, due to the separation of subspaces ® , and ®1,, we must find the
projection of Ballg (6*,Cyp«(t)) onto @, such that we can obtain a diameter measure on the new intersecting
subspace ® 5, N ® . Next, Lemma argues that godesic distances will either be preserved or reduced

when making a projection to an orthogonal subspace ® y,, the orthogonality of this subspace was previously
established in Lemmal4.4] Thereafter, Lemma[C.4]specifies that the maximum diameter of this new confidence

ball Ballls(6*,Co-(t)) thatis projected onto @ y, is confined to a maximum diameter of 2 cos ! (1 — C"*T(t)z> .

Thus, this constitutes the best and worst possible outcomes due to misspecification in accordance with the
formulation in Eq. (3.6) and Eq. (3.7), denoted as H (6% ,t) — H(67%,1), also expressed in Eq. (#.4), which
upper bounds the simple regret.

O
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D NEURAL FLOW ARCHITECTURAL SPECIFICATIONS

We present the mathematical foundations of the normalizing flow architecture used to model spherical map-
pings. Our method combines a spherical coordinate transformation with normalizing flows to provide an invert-
ible mapping between input features and a latent space, with applications to tasks requiring smooth transforma-
tions on a manifold.

Mapping to a Spherical Manifold: The transformation from Cartesian coordinates to spherical coordinates
is used to map input features onto an D-dimensional spherical manifold. We define two heads in the neural
network input, the head from A specifically controls the azimuthal spherical coordinate and additional coordi-
nates, and the head from B %peciﬁcally controls other coordinates. The output sizes of the neural network that
transforms the inputs are | 21| + 1 for A and | 25| for B. The conversion from spherical coordinates to

Cartesian coordinates, x € R”, is defined in Appendix

Affine Coupling Layers: A normalizing flow consists of a series of invertible transformations, including affine
coupling layers, which divide the input into two parts and transform one part conditioned on the other. Let the
input be x = [x1, X2], where x; and x5 are disjoint subsets of the input. The affine coupling transformation is
defined as,

yi1 =Xy, (D.1)
y2 = X2 O exp(s(x1)) + t(x1), (D.2)

where ® denotes element-wise multiplication, and s(x;) and ¢(x;) are the scaling and translation functions,
respectively, parameterized by a neural network. The inverse of this transformation is straightforward:

X1 = yi, (D.3)
xg = (y2 — t(y1)) © exp(—s(y1))- (D.4)

This transformation is invertible by design, making it suitable for use in flow-based models.

Log Determinant of the Jacobian: The log-likelihood calculation requires computing the log determinant of
the Jacobian matrix for the transformation. For the affine coupling layer, the Jacobian matrix is triangular, and
the log determinant is simply the sum of the scaling terms:

log

B
det 8:’(‘ = Zs(xl). (D.5)

This term contributes to the overall log probability during training.

Normalizing Flow Forward Transform: A normalizing flow is constructed by stacking several affine coupling
layers and random permutation layers. Let x € R? be the input, and z € R be the transformed latent variable
after L layers of flow. Each layer applies a transformation f; such that:

Z(+D) — fl(z(l))7 (D.6)

where f; represents either an affine coupling transformation or a random permutation. After L layers, the final
output is denoted as z = z(%). The forward transformation can thus be written as:

z,logdet J = fiow (%), D.7)

where log det J is the log determinant of the Jacobian matrix for the entire flow.
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To compute the log-likelihood of the input x, we map it to the latent space z under the flow transformation. The
probability of x is computed as:

p(x) = p(z) |det %Z( : (D.8)
where p(z) is the probability of z under the base distribution (typically a standard normal distribution):
p(z) = N(z;0,1). (D.9)
The log probability is then given by:
log p(x) = log p(z) + log |det :;))Z(‘ . (D.10)

Inverse Transform: The invertibility of the flow allows for both density estimation and sampling. To sample
from the model, we draw samples z ~ A/ (0, I') from the base distribution and apply the inverse transformation:

X = fron(2). (D.11)

Each affine coupling layer and random permutation is applied in reverse order to recover the original inputs.

Random Permutation Layer: The random permutation layer permutes the features of the input vector to
ensure that different parts of the input are transformed at each layer. Let x € R? be the input, and let P be a
permutation matrix. The permutation transformation is defined as:

x' = Px. (D.12)

Since permutation matrices are orthogonal, the Jacobian determinant of this transformation is always 1, and it
does not contribute to the log determinant calculation.

Overview: In summary, the normalizing flow architecture combines spherical mapping, affine coupling trans-
formations, and random permutations to form a powerful framework for invertible transformations. The model
leverages the flexibility of normalizing flows to map inputs to a spherical manifold, enabling efficient density
estimation and sampling from a base Gaussian distribution.

H Parameter Value H
Np Batch Size 2048
an (Negative Log Liklihood Loss Coef.) 0.5
ar (Repulsion Loss Coef.) 1.0
ap (Perturb. Loss Coef.) 0.5
oy, (Lipschitz Loss Coef.) 1.5
No. Epochs 20,000
arr (Learning Rate) 0.05
C', (Lipschitz Constant) 0.5

Table 3: Hyper parameters used for normalizing neural flow network training.
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Layer Description Output Size

Input Head A Input head A Np x |A|

Input Head B Input head B Ng x |B|

Input Features Input features Np x D

Affine Coupling No. of Affine Coupling layers Np x 64

Layer

fc_Al Hidden Dim. Number of hidden dimensions in first fully connected B x 1024
layer A.

fc_.Bl Hidden Dim. Number of hidden dimensions in first fully connected B x 1024
layer B.

Hidden Dim. No.of hidden layers for A and B. Np x 16

fc Al Final Layer
Dim.

Number of hidden dimensions in final layer A

Np x (1252 +1)

fc Bl Final Layer
Dim.

Number of hidden dimensions in final layer B

Ng < (1 25))

Output

Output features after flow transformation

NBXD

Table 2: Normalizing Flows Neural Architecture Specifications.
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E VISUALIZATIONS

E.1 COMPUTATIONAL RESULTS OF ISOPLANE BEHAVIOUR

Longitudinal Isolines

ol

100075 L
030025000 .35, ¢ a7 i
Dimengign , 000078100 1 o

Longitudinal Isolines: Visualization of longitudinal iso-

lines generated by the normalizing neural flow network.

Lattitudinal Isolines

Latitudinal Isoplanes: Visualization of lattitudinal iso-
lines generated by the normalizing neural flow network.

Figure 4: Formation of isolines (or isoplanes in higher dimensions) forming on the spherical manifold ® as we fix a and
vary b (longitudinal), and fix b and vary a (lattitudinal).
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F ALGORITHMS

F.1 MAPPING BETWEEN SPHERICAL AND CARTESIAN COORDINATES

Algorithm 2 Spherical to Cartesian Conversion in n-Dimensions

1: function SPHERICAL_TO_CARTESIAN(T, )

2: Input: r (radius), v (Spherical coordinates D — 1 dimensions.)
3 Output: Cartesian coordinates p = [x1, 2, ..., Zp]

4 21 < r-cos(vy)

5 fori =2to D —1do

6: x; < r-sin(vy) - sin(va) -+ - - sin(v;—1) - cos(v;)

7: end for

8 ZTp < resin(vy) - -+ - sin(vp_1)

9: return [z1, 22, ...,2Zp]
10: end function

Algorithm 3 Cartesian to Spherical Conversion in n-Dimensions

1: function CARTESIAN_TO_SPHERICAL(p)

2: Input: Cartesian coordinates p = [x1, 2, ..., Zp]

3 Output: r (radius), v = [v1, v, ..., vp_1] (Spherical coordinates D — 1 dimensions.)

4 72 tai+ o +ad > Compute the radius
5: V] 4— arccos (‘%}) > First spherical angle
6: fori =2ton —1do

7 v; < arctan 2 (\/m% + 23+ + a2, .Ti+1) > Spherical angles fori = 2to D — 1
8 end for

9 return v, v = [V, V2, ..., Vp—_1]
10: end function

32



Under review as a conference paper at ICLR 2025

G EXPERIMENTAL RESULTS

G.1 R! STACKELBERG GAME
Problem Setup: We consider a Stackelberg game with a leader 4 and a follower B, both operating in con-
tinuous action spaces a,b € R!. The leader chooses an action 6 4, and the follower responds by choosing an

action b based on the leader’s decision. The reward functions for both players are linear in structure but include
nonlinear components to model real-world constraints and interactions.

Leader’s Reward Function: The leader’s reward function p 4 (a, b) is defined as follows:

pra(a,b) = 61a + 02 log(1 + %) — %az +e, €€ N(0,0) (G.1)

where,

e 01,65 > 0 are weight parameters that control the trade-off between the leader’s direct action 64 and
the follower’s response b.

. log(l + b2) introduces nonlinearity with respect to the follower’s action b.

. — %3(12 is a quadratic penalty on large leader actions to avoid extreme behaviour by the leader.

Follower’s Reward Function: The follower’s reward function p5(a, b) is given by:

pp(a,b) = a;(—b?) + asab+e, €€ N(0,0) (G.2)
where,

* «ay, g > 0 are parameters that determine the influence of the follower’s own action b and the leader’s
action 6 4 on the follower’s reward.

» —b? represents a concave cost function for the follower, preferring smaller values of b.

¢ ab introduces an interaction term between the leader’s action and the follower’s action.

Follower’s Best Response: The follower maximizes their reward function p(a, b) by choosing b given 6 4.
To determine the follower’s best response 2B (a), we compute the first-order condition with respect to b:

E
OE[up(a, b)] — —2a1b + asa =0 (G.3)
0b
Solving for b, the follower’s best response is:
a2a

a2a

Sets the leader maximizes

Leader’s Optimization Problem: Given that the follower’s best response is B (a) =
their reward function p14(a, B(a)) as,
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2
El[pa(a,B(a))] = 61a + 02 1log (1 + (;Z?) > - %a? (G.35)

This results in the following optimization problem for the leader,

2.2 0
max (91a +6,log (1 + 222 ) = 3a2> : (G.6)
a 40[1 2

Non-Trivial Solution for the Leader: To solve for the leader’s optimal action a*, we take the derivative of the
leader’s reward function with respect to 6 4 and set it equal to zero,

d aa? 03
Ora+60rlog (1 + 25 | — =a*) =0 G.7
o (mras oatog (14225 ) - Ba?) @)
2 (52) (52)
01 — 03a + 65 - az =0 (G.3)
1+ 35
Which simplifies to,
a2a
02 : (32
91 — 93& + 71112 =0. (G9)
1+ 4"‘a§

This equation has no simple closed-form solution and must be solved numerically. The interplay between
the nonlinear logarithmic term and the quadratic penalty introduces complexity into the leader’s optimization,
making the optimal value of ¢* non-trivial.
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Figure 5: Mean values are calculated over 1,000 trials, with shaded regions representing confidence intervals, all of which
fall within the first quartile.
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G.2 THE NEWSVENDOR PRICING GAME SPECIFCATIONS (NPG)

We model the two learning agents in a Newsvendor pricing game, involving a supplier A and a retailer B. The
leader, a supplier, is learning to dynamically price the product for the follower, a retailer, aiming to maximize
her reward. To achieve this, the follower adheres to classical Newsvendor theory, which involves finding the
optimal order quantity given a known demand distribution before the realization of the demand.

Rules of the Newsvendor Pricing Game: We explicitly denote a = a € R!, and b = [b,p]T € R?. Where
a denotes wholesale price from the supplier firm, p and b denote the retail price and order amount of the retail
firm.

1. The supplier selects wholesale price a, and provides it to the retailer.

N

Given wholesale cost a, the retailer reacts with his best response [b, p]T, consisting of retail price p,
and order amount b.

As the retailer determines the optimal order amount b, he pays G4 (a, b) = ab to the supplier.
At time ¢, nature draws demand d' ~ d,(p), and it is revealed to the retailer.

The retailer makes a profit of Gp(a,b) = p min{d', b} — ab.

Steps[I]to 5 are repeated for ¢ € 1...T iterations.

AN

Leader (Supplier)  Follower (Retailer) Market

A==

ab, gB pm a = Pa mln{d pa b }

Figure 6: The Newsvendor Pricing Game. From (L. Liu and Rong 2024), in this Stackelberg game, there a logistics
network between a supplier (leader) and retailer (follower), where utility functions are not necessarily supermodular, the
supplier issues a wholesale price a, and the retailer issues a purchase quantity b, and a retail price p in response.

Demand Function: Stochastic demand is represented in Eq. [G.I1] which is governed by a linear additive
demand function I, (p) representing the expected demand, IE[d(p)], as a function of p in Eq. The demand
function is governed by parameters p.

I'y(p) = max{0, po — p1p}, po >0, pr 20 (G.10)
d,(p) =T,(p) +¢, e€N(0,0) (G.11)

This problem combines the problem of the price-setting Newsvendor (Petruzzi and Dada|1999) (Arrow, Harris,
and Marschak|1951]), with that of a bilateral Stackelberg game under imperfect information. Even in the scenario
of perfect information, the price-setting Newsvendor has no closed-form solution, therefore no exact solution
to the Stackelberg equilibrium. We apply the algorithm from (L. Liu and Rong [2024) to learn a Stackelberg
equilibrium under a risk-free pricing strategy assumption, and apply Algorithm 4] from (L. Liu and Rong[2024)
as a baseline against Algorithm [I](GISA).
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Algorithm 4 Learning Algorithm for Newsvendor Pricing Game from (L. Liu and Rong|2024)

1: fort € 1...T do:

2: Leader and follower estimates a confidence interval Cy« (t) from available data.

33 H(p)= po/p1-

4: Leader plays action a, where a = argmax aF,{a1 (1 — 8 ) from Eq. (3.8) in (L. Liu and Rong

ac€A,peCt Hip)+a
2024).
5: Follower sets price p = (H(p) + a)/2. -
6: Follower estimates their optimistic parameters p,, and best response b, from from Eq. (3.4) and (3.5a)

respectively in (L. Liu and Rong|[2024).
7: Leader obtains reward, G4 = ab.
8: Follower obtains reward, Gg = pmin{b, d(p)}.
9: end for
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G.2.1 NPG RESULTS
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G.3 MULTI-DIMENSIONAL STACKELBERG GAME (SSG)

We consider a two-player Stackelberg game where the leader A and the follower B choose their actions from
a shared action space R"™. The leader chooses an action a € R", anticipating the follower’s response b € R",
where n = 5. Both players’ rewards are influenced by a combination of the difference in their actions and
quadratic penalties on their individual actions. The problem is constrained by weighted L;-norm bounds on
both a and b, which limit the magnitude of their respective actions.

The leader’s reward function u 4 is defined as:
pala,b)=01(a—b)—0if(a)+e ecN(0,0) (G.12)
where:

e a € R" is the leader’s action,

b € R" is the follower’s action,
* 04 € R" is a weight vector for the leader,

* f(a) is the quadratic penalty function applied elementwise, such that f(a) = [aZ,a3,...,a2].

T

The leader seeks to maximize 14 (a, b) by selecting a, knowing that the follower will respond optimally.

The follower’s reward function p g is defined as:
pp(a,b) =05(a—b) —05g(b) (G.13)
where:

¢ a € R" is the leader’s action,
¢ b € R" is the follower’s action,
* Op € R™ is a weight vector for the follower,

* g(b) is the quadratic penalty function applied elementwise, such that g(b) = [b?,b3, ..., b2].

r¥n

The follower seeks to maximize pp(a, b) by choosing b, given the leader’s action a.

Both players are subject to weighted L;-norm constraints on their actions:

Z |04,:a;] < Cy4 for the leader (G.14)
i=1

Z |05,:bi| < Cp for the follower (G.15)
i=1

where C'4 and C'p are constants that limit the magnitude of the actions a and b, respectively, and 04 ;, 0 ; are
the elements of 64 and 0p.

Follower’s Optimization Problem (Best Response): Given the leader’s action a, the follower solves the fol-
lowing optimization problem:

b*(a) = arg max (65(a—b) —059(b)) (G.16)

subject to:

> 10p.:bi| < Cp (G.17)

i=1
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This is a quadratic optimization problem due to the quadratic penalty g(b), and the constraint enforces that the
weighted L;-norm of the follower’s action does not exceed C'p.

Leader’s Optimization Problem: Given the follower’s best response b*(a), the leader solves the following
optimization problem:

a* = arg max (9}(& —b*(a)) — QZf(a)) (G.18)

subject to:

n

> 0aai] < Ca (G.19)

i=1

This is also a quadratic optimization problem due to the quadratic penalty f(a), and the constraint enforces that
the weighted L;-norm of the leader’s action does not exceed C'4.

Stackelberg equilibrium: The Stackelberg equilibrium is reached when:
a* = argmax (04 (a—b*(a)) — 0, f(a)), b*(a)=arg max (65(a—Db)—059(b)) (G.20)

subject to the respective L;-norm constraints. At equilibrium, the leader chooses a* that maximizes their reward
given the follower’s optimal response b*(a), and the follower chooses b*(a) that maximizes their reward given
the leader’s action.
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G.3.1 SSG EMPIRICAL RESULTS
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Figure 8: Mean values are computed over 1,000 trials. All shaded areas, denoting confidence intervals, are within a quarter
quantile. UCB arms were discretized to increments of 200, with an exploration constant aycp = 0.01.
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