
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ICAM:RETHINKING INSTANCE-CONDITIONED ADAP-
TATION IN NEURAL VEHICLE ROUTING SOLVER

Anonymous authors
Paper under double-blind review

ABSTRACT

The neural combinatorial optimization (NCO) method has shown great potential
for solving routing problems without requiring expert knowledge. However, exist-
ing constructive NCO methods still struggle to solve large-scale instances, which
significantly limits their application prospects. To address these crucial shortcom-
ings, this work proposes a novel Instance-Conditioned Adaptation Model (ICAM)
for better large-scale generalization of neural routing solvers. In particular, we de-
sign a simple yet efficient instance-conditioned adaptation function to significantly
improve the generalization performance of existing NCO models with a small time
and memory overhead. In addition, with a systematic investigation on the perfor-
mance of information incorporation between different attention mechanisms, we
further propose a powerful yet low-complexity instance-conditioned adaptation
module to generate better solutions for instances across different scales. Experi-
mental results show that our proposed method is capable of obtaining promising
results with a very fast inference time in solving Traveling Salesman Problems
(TSPs), Capacitated Vehicle Routing Problems (CVRPs) and Asymmetric Trav-
eling Salesman Problems (ATSPs). To the best of our knowledge, our model
achieves state-of-the-art performance among all RL-based constructive methods
for TSPs and ATSPs with up to 1,000 nodes and extends state-of-the-art perfor-
mance to 5,000 nodes on CVRP instances, and our method also generalizes well
to solve cross-distribution instances.

1 INTRODUCTION

The Vehicle Routing Problem (VRP) plays a crucial role in various logistics and delivery applica-
tions, where the solution quality directly affects the transportation cost and service efficiency (Tiwari
& Sharma, 2023; Sar & Ghadimi, 2023). However, efficiently solving VRPs is a challenging task
due to their NP-hard nature. Over the past few decades, extensive heuristic algorithms, such as
LKH3 (Helsgaun, 2017) and HGS (Vidal, 2022), have been proposed to address different VRP vari-
ants. Although these approaches have shown promising results for specific problems, the algorithm
designs heavily rely on expert knowledge and a deep understanding of each problem. Moreover, the
runtime required for a heuristic algorithm often increases exponentially as the problem scale grows.
These limitations greatly hinder the practical application of classical heuristic algorithms.

Over the past few years, different neural combinatorial optimization (NCO) methods have been
explored to solve various routing problems (Li et al., 2022; Bengio et al., 2021). In this work,
we focus on the constructive NCO method (also known as the end-to-end method) that builds a
learning-based model to directly construct an approximate solution for a given instance without any
expert knowledge (Vinyals et al., 2015; Kool et al., 2019; Kwon et al., 2020). These methods usually
have a faster runtime compared to classical heuristic algorithms, making them a desirable choice to
tackle real-world problems with real-time requirements. Existing constructive NCO methods can be
divided into two categories: supervised learning (SL)-based (Vinyals et al., 2015; Xiao et al., 2024)
and reinforcement learning (RL)-based ones (Nazari et al., 2018; Bello et al., 2016). The SL-based
method requires a lot of problem instances with labels (i.e., the optimal solutions of these instances)
as its training data. However, it could be extremely hard to obtain sufficient optimal solutions for
some complex problems, which impedes its practicality. RL-based methods can learn NCO models
by repeatedly interacting with the environment without any labeled data. Nevertheless, due to the

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) TSP instance with 100 nodes. (b) TSP instance with 1, 000 nodes.

Figure 1: Comparison of two TSP instances and their optimal solutions with different scales (Left:
Instance, Right: Solution). The patterns and geometric structures are quite different for these in-
stances. In this work, we propose a powerful Instance-Conditioned Adaptation Model (ICAM) to
leverage these instance-specific patterns to directly generate promising solutions for instances across
quite different scales.

high memory and computational overhead, it is unrealistic to train the RL-based NCO model directly
on large-scale problem instances.

Current RL-based NCO methods typically train the model on small-scale instances (e.g., with 100
nodes) (Kool et al., 2019; Kwon et al., 2020) and then generalize it to tackle larger-scale instances
(e.g., with 1, 000 nodes). Although these models demonstrate good performance on instances of
similar scales to the ones they were trained on, they struggle to generate reasonable good solutions
for instances with much larger scales. Recently, two different types of attempts have been explored
to address the crucial limitation of RL-based NCO on large-scale generalization. The first one is
to perform an extra search procedure on model inference to improve the quality of solution over
greedy generation Hottung et al. (2022); Choo et al. (2022). However, this approach typically re-
quires expert-designed search strategies and can be time-consuming when dealing with large-scale
problems. The second approach is to train the model on instances of varying scales Khalil et al.
(2017); Cao et al. (2021); Zhou et al. (2023). However, learning cross-scale features effectively for
better generalization performance remains a key challenge for NCO methods.

In solving routing problems, some recent works reveal that incorporating auxiliary information (e.g.,
node-to-node distances) in training can improve the model’s convergence efficiency and final per-
formance (Son et al., 2023; Jin et al., 2023; Li et al., 2023a; Gao et al., 2024; Wang et al., 2024).
However, regarding the information incorporation strategy, existing methods either simply utilize
the node-to-node distances to bias the output score in the decoding phase (Son et al., 2023; Jin
et al., 2023; Wang et al., 2024) or refine the information via a complex policy (Li et al., 2023a; Gao
et al., 2024). Some recent methods, such as ELG (Gao et al., 2024) and DAR (Wang et al., 2024),
have shown good performance on large-scale routing instances. However, for routing instances with
different scales, the general RL-based methods cannot truly capture instance-specific features ac-
cording to the changes in geometric structures, which results in still unsatisfactory generalization
performance.

In this work, we propose a powerful Instance-Conditioned Adaptation Model (ICAM) to improve
the large-scale generalization performance for RL-based NCO. Our contributions can be summa-
rized as follows:

• We design a simple yet efficient instance-conditioned adaptation function to adaptively
incorporate the geometric structure of cross-scale instances with a small computational
overhead.

• We propose a powerful yet low-complexity Adaptation Attention Free Module (AAFM) to
explicitly capture instance-specific features into the NCO inference process.

• We conduct a thorough experimental study to show ICAM can achieve promising general-
ization performance on different large-scale TSP, CVRP, and ATSP instances with a very
fast inference time.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Comparison between our ICAM and existing RL-based neural vehicle routing solvers with
information incorporation.

Neural Vehicle Routing Solvers Information Module Varying-scale
Scale Node-to-node distances Embedding† Attention Compatibility Training

S2V-DQN (Khalil et al., 2017) × × × × × ✓
DAN (Cao et al., 2021) × × × × × ✓
SCA (Kim et al., 2022) ✓ × ✓ × × ×
Meta-AM (Manchanda et al., 2022) × × × × × ✓
Pointerformer (Jin et al., 2023) × ✓ × ✓‡ × ×
Meta-SAGE (Son et al., 2023) ✓ ✓ ✓ × ✓ ×
FER (Li et al., 2023a) × ✓ ✓ × × ×
Omni VRP (Zhou et al., 2023) × × × × × ✓
ELG (Gao et al., 2024) × ✓ × × ✓ ×
DAR (Wang et al., 2024) × ✓ × × ✓ ✓

ICAM (Ours) ✓ ✓ ✓ ✓ ✓ ✓

† The embedding includes node embedding and context embedding. In FER, the information is used to refine node embeddings via an
extra network, and SCA and Meta-SAGE use the scale information to update context embedding. Unlike them, ICAM updates node
embeddings by incorporating information into the attention calculations in the encoding phase.
‡ In Pointerformer, node-to-node distances are used in the attention calculation of the decoder but are not employed in the encoder.

2 INSTANCE-CONDITIONED ADAPTATION

2.1 MOTIVATION AND KEY IDEA

For solving routing problems, the instance-specific pattern could be very helpful in finding a better
solution for each instance. As shown in Figure 1, with different numbers of nodes, the geomet-
ric structures of two instances and their optimal solutions are quite different, which could provide
valuable information for the solvers. For classic heuristic algorithms, the node-to-node distance
information has been utilized to adapt the search behaviors for different instances (Yu et al., 2009;
Arnold & Sörensen, 2019).

The instance-specific information has also been leveraged by different RL-based NCO methods as
shown in Table 1. However, they still struggle to achieve a satisfying generalization performance,
especially for large-scale instances. We provide a detailed review of different information incor-
poration strategies in Appendix A. By systematically analyzing the existing works, we find that
the following three aspects are very important in properly incorporating the instance-conditioned
information into the NCO model:

• Effectively Leverage Instance-conditioned Information: Given the diverse geomet-
ric structures and patterns of instances across different scales, effectively capturing the
instance-specific features (e.g., distance and scale) is crucial for achieving good general-
ization performance.

• Multiple Modules Integration: Incorporating instance-conditioned information into mul-
tiple modules (e.g., embedding, attention, and compatibility) can make the model better
aware of instance-specific information throughout the solution construction process.

• Expanding Training Scale: Training the NCO model on instances with a large scale range
is very helpful in learning more scale-independent features, thereby achieving better large-
scale generalization performance.

In the following subsections, we describe in detail how the proposed ICAM effectively obtains a
better generalization performance on routing instances with different scales.

2.2 INSTANCE-CONDITIONED ADAPTATION FUNCTION

In this work, we propose a straightforward yet efficient instance-conditioned adaptation function
f(N, dij) to incorporate the instance-specific information into the NCO model:

f(N, dij) = −α · log2 N · dij ∀i, j ∈ 1, . . . , N, (1)

where N is the scale information (e.g., the total number of nodes), dij represents the distance be-
tween node i and node j, and α > 0 is the learnable parameter. We take the logarithm for scale N

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

to avoid extremely high values on large-scale instances. According to the definition, this adaptation
function should have a larger score for a nearer distance dij . As shown in Figure 2, by providing
f(N, dij) in the whole neural solution construction process, the model is expected to be better aware
of the instance-specific information and hence generate a better solution for each instance.

It can be seen that the proposed function imposes only one learnable parameter to enable the model
to automatically learn the degree of adaptability across varying-scale instances. Compared with
recent works that also incorporate auxiliary information, our function has the following advantages:

• We effectively leverage scale and node-to-node distances that are specific to the instances
to incorporate the geometric structures of cross-scale instances.

• By incurring small time and memory overhead, the function enables the model to keep a
high efficiency when facing large-scale instances.

Table 2: Comparison on TSP1000 instances with different
instance-specific information incorporation approaches.

Method Params Avg.memory Gap Time

POMO 1.27M 107.50MB 25.916% 63.80 s
POMO + dist. 1.27M 124.22MB 22.696% 83.85s
POMO + α * dist. 1.27M 124.22MB 14.517% 86.23s
POMO + Local policy 1.30M 163.44MB 14.821% 130.26s
POMO + f(N, dij) 1.27M 124.22MB 10.812% 86.92s

Less Is More To demonstrate
the superiority of our proposed
function f(N, dij), we report
its performance on solving the
TSP1000 instances using the
seminal POMO model (Kwon
et al., 2020), and compare
it with three typical informa-
tion incorporation approaches:
(1) Simple node-to-node dis-
tances (Jin et al., 2023; Wang
et al., 2024); (2) Node-to-node distances with a bias coefficient α introduced (Son et al., 2023); and
(3) An extra local policy as adopted in Gao et al. (2024). As shown in Table 2, our proposed function
can significantly improve the generalization performance of the original model with a small time and
memory overhead. For detailed experimental settings and results, please refer to Appendix B.

2.3 INSTANCE-CONDITIONED ADAPTATION MODEL

In addition to the instance-conditioned adaptation function, the NCO model structure is also crucial
to achieve a promising generalization performance. Most existing models adopt the encoder-decoder
structure, which is developed from Transformer (Kool et al., 2019; Gao et al., 2024). Without
loss of generality, taking well-known POMO (Kwon et al., 2020) as an example, this subsection
briefly reviews the prevailing neural solution construction pipeline and discusses how to efficiently
incorporate the instance-specific information.

Rethinking Attention Mechanism in NCOs Given an instance S = {si}Ni=1, si represents the
features of each node (e.g., the coordinates of each city in TSPs). These features are transformed
into initial embeddings H(0) = (h

(0)
1 , . . . ,h

(0)
N ) via a linear projection. The initial embeddings pass

through L attention layers to get node embeddings H(L) = (h
(L)
1 , . . . ,h

(L)
N ). The attention layer

consists of a Multi-Head Attention (MHA) sub-layer (Vaswani et al., 2017) and a Feed-Forward
(FF) sub-layer. During the decoding process, POMO model generates a solution in an autoregressive
manner. For the example of TSP, in the t-step construction, the context embedding is composed of
the first visited node embedding and the last visited node embedding, i.e., ht

(C) = [h
(L)
π1 ,h

(L)
πt−1 ]. The

new context embedding ĥt
(C) is then obtained via the MHA operation on ht

(C) and H(L). Finally, the
model yields the selection probability for each unvisited node pθ(πt = i | S, π1:t−1) by calculating
compatibility on ĥt

(C) and H(L).

From the above description, MHA operation is the core component of Transformer-like NCO mod-
els. In the mode of self-attention, MHA performs a scaled dot-product attention for each head. The
self-attention calculation is written as

Q = XWQ, K = XWK , V = XWV , (2)

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V, (3)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

𝑓 𝑵, 𝒅𝒊𝒋 = −𝛼 ∗ log2𝑵 ∗ 𝒅𝒊𝒋

Instance-Conditioned Adaptation Bias Matrix

Adaptation Attention Free Module

Compatibility with Adaptation Bias

Decoder

𝐻(𝐿)

Encoder

(L×)

Policy

Instance-Conditioned Adaptation ModelVarying-scale Instances Adaptive Solutions

…

Figure 2: The proposed ICAM. Taking the TSP as an example, comprehensive instance-conditioned
information is incorporated into the whole solution construction process. ICAM solves the specific
instance by adaptively updating the corresponding adaptation bias matrix. Specifically, we utilize
AAFM to replace all MHA operations and combine f(N, dij) with the compatibility calculation.

where X represents the input, WQ, WK and WV are three learning matrices, and dk is the di-
mension for K. In a Transformer-based NCO model, the MHA incurs primary memory usage and
computational cost. In addition, the MHA calculation is not convenient for capturing the relationship
between nodes. It cannot directly take advantage of the pair-wise distances between nodes.

Adaptation Attention Free Module As shown in Figure 2, the proposed ICAM is also developed
from the encoder-decoder structure, we remove all high-complexity MHA operations in both the en-
coder and decoder, and replace them with the proposed novel module, named Adaptation Attention
Free Module (AAFM). AAFM is based on the AFT-full operation (Zhai et al., 2021), which offers
more excellent speed and memory efficiency than MHA. Further details about AFT are available in
Appendix C. As shown in Figure 3, the proposed AAFM can be expressed as

AAFM(Q,K, V,A) = σ(Q)⊙ exp(A)(exp(K)⊙ V )

exp(A) exp(K)
, (4)

where Q,K, V are also separately obtained via Equation (2), σ represents Sigmoid function, ⊙ rep-
resents the element-wise product, and A = {aij}, ∀i, j ∈ 1, . . . , N denotes the pair-wise adaptation
bias computed by our adaptation function f(N, dij) in Equation (1).

Through the proposed AAFM, the model is enabled to learn instance-specific knowledge via up-
dating pair-wise adaptation biases. Unlike traditional MHA-based NCO models, AAFM-based
ICAM explicitly captures relative position biases between different nodes via adaptation function
f(N, dij). This ability to maintain direct interaction between any two nodes in the context is a ma-
jor advantage of AAFM. Furthermore, AAFM exhibits a lower computational overhead than MHA,
resulting in a lower complexity and faster model.

To investigate the effectiveness of AAFM compared to MHA for information integration, we train
two different models in the same settings, both adding the proposed adaptation function. The only
difference between the two models is the attention mechanism (AAFM vs. MHA). For detailed
analysis and experimental results, please refer to Appendix D.

Compatibility with Adaptation Bias To further improve the solving performance, we integrate
f(N, dij) into the compatibility calculation (Son et al., 2023; Gao et al., 2024). The new compati-
bility ut

i can be expressed as

ut
i =

{
ξ · tanh(

ĥt
(C)(h

(L)
i )T

√
dk

+ at−1,i) if i ̸∈ {π1:t−1}
−∞ otherwise

, (5)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

𝑎11 𝑎12 … 𝑎1𝑁

𝑎21 𝑎22 … 𝑎2𝑁

… … … …

𝑎𝑁1 𝑎𝑁2 … 𝑎𝑁𝑁

Linear LinearLinear

𝐾 ∈ ℝ𝑁×dh 𝑉 ∈ ℝ𝑁×dh 𝑄 ∈ ℝ𝑁×dh𝐴 ∈ ℝ𝑁×𝑁

Adaptation Attention Free Module

𝑌 ∈ ℝ𝑁×dh

𝐡𝟏
(ℓ−1)

𝐡𝟐
(ℓ−1) … 𝐡𝑵

(ℓ−1)

Scale

Node-to-node distances
S ∈ ℝ𝑁×2

𝑄𝐾 𝑉

Sigmoid

Mul

Exp Exp

MatMul Mul

+ Mask (opt.)

𝐴

MatMul

Div

Figure 3: The proposed AAFM.

pθ(πt = i | S, π1:t−1) =
eu

t
i∑N

j=1 e
ut
j

, (6)

where ξ is the clipping parameter, ĥt
(C) and h

(L)
i are calculated via AAFM instead of MHA. at−1,i

represents the adaptation bias between each remaining node and the current node.

3 EXPERIMENTS

In this section, we conduct a comprehensive comparison between ICAM and other classical and
learning-based solvers using Traveling Salesman Problem (TSP), Capacitated Vehicle Routing Prob-
lem (CVRP), and Asymmetric Traveling Salesman Problem (ATSP) instances of different scales.

Problem Setting For all problems, the instances of training and testing are generated randomly.
Specifically, we generate the instances with a setup as prescribed in Kool et al. (2019) for TSPs and
CVRPs, and we follow the data generation method in MatNet (Kwon et al., 2021) for ATSP. For
the test set, unless stated otherwise, we generate 10, 000 instances for the 100-node case and 128
instances for cases with the scale is 200, 500, etc., the scale is up to 5, 000 for TSP and CVRP and
1, 000 for ATSP1. Specifically, for capacity settings in CVRP, we follow the approach in Luo et al.
(2023) for scale ≤ 1, 000 and Hou et al. (2022) for scale >1, 000, respectively.

Model Setting Our proposed function f(N, dij) and AAFM are adaptable to different models
according to the specific problem. For TSPs and CVRPs, ICAM is developed from the well-known
POMO model (Kwon et al., 2020). Considering the specificity of ATSPs, we replace the backbone
network with MatNet (Kwon et al., 2021). More details about the model architecture can be found
in Appendix E. For all experiments, the embedding dimension is set to 128, and the dimension of
the feed-forward layer is set to 512. We set the number of attention layers in the encoder to 122.
The clipping parameter ξ = 50 in Equation (5) for better training convergence (Jin et al., 2023). We
train and test all experiments using a single NVIDIA GeForce RTX 3090 GPU with 24GB memory.

Training For all models, we use Adam (Kingma & Ba, 2014) as the optimizer and the initial
learning rate η is set to 10−4. Every epoch, we process 1, 000 batches for all problems. For each
instance, N different solutions are always generated in parallel, following in Kwon et al. (2020).

1For ATSP, due to memory constraints, we are unable to generate instances with scale > 1000 under the
data generation method of MatNet, so the maximum scale for testing is 1, 000.

2For ATSP model, the 12-layer encoder represents two independent 6-layer encoders, following MatNet
architecture (Kwon et al., 2021)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

To enable the model to be aware of the scale information better and simultaneously learn various
pair-wise biases of training instances at different scales, we develop a three-stage training scheme to
enable the proposed ICAM to incorporate instance-conditioned information more effectively. The
detailed settings of proposed three-stage training scheme are as follows:

1. Stage 1: Warming-up on Small-scale Instances. Initially, the model is trained for several
epochs on small-scale instances. We use instances for a scale of 100 to train corresponding
models for 100 epochs. Due to memory constraints, we set different batch sizes for dif-
ferent problems: 256 for (A)TSP and 128 for CVRP. Additionally, the capacity for CVRP
instances are fixed at 50. A warm-up training can make the model more stable in the sub-
sequent varying-scale training.

2. Stage 2: Learning on Varying-scale Instances. In the second stage, we train the model
on varying-scale instances for much longer epochs, and for each batch, the scale N is
randomly sampled from the discrete uniform distribution Unif([100,500]) for all problems.
Considering GPU memory constraints, we decrease the batch size with the scale increases.
For (A)TSP, the batch size bs =

[
160× ( 100N )2

]
. In the case of CVRP, the batch size

bs =
[
128× ( 100N )2

]
. We train the TSP model for 2, 200 epochs and CVRP model for 700

epochs in this stage. For ATSP model, the training duration is 100 epochs attributed to the
fast convergence. Furthermore, the capacity of each batch is consistently set by randomly
sampling from Unif([50,100]) for CVRP. Under the POMO structure, N trajectories are
constructed in parallel for each instance during training. The loss function (denoted as
LPOMO) used in the first and second stages is the same as in POMO (Kwon et al., 2020).

3. Stage 3: Top-k Elite Training. In the third stage, we want the model to focus more on the
best k trajectories among all N trajectories. To achieve this, we design a new loss LTop,
LTop only focus on the k best trajectories out of N trajectories (See Equation (13)). We
combine LTop with LPOMO as the joint loss in the training of the third stage, i.e.,

LJoint = LPOMO + β · LTop. (7)

where β ∈ [0, 1] is a coefficient balancing the original loss and the new loss, β and k are
set to 0.1 and 20, respectively. We adjust the learning rate η to 10−5 across all models to
enhance model convergence and training stability. The training period is standardized to
200 epochs for all models, and other settings are consistent with the second stage.

Note that for each problem, we use the same model on all scales and distributions. For more details
about the model and training settings, please refer to Appendix F.

Baseline We compare ICAM with the following methods: (1) Classical solver: Concorde (Ap-
plegate et al., 2006), LKH3 (Helsgaun, 2017), HGS (Vidal, 2022) and OR-Tools (Perron &
Furnon, 2023); (2) Constructive NCO: POMO (Kwon et al., 2020), MatNet (Kwon et al.,
2021), MDAM (Xin et al., 2021), ELG (Gao et al., 2024), Pointerformer (Jin et al., 2023),
Omni VRP (Zhou et al., 2023), BQ (Drakulic et al., 2023), LEHD (Luo et al., 2023) and IN-
ViT (Fang et al., 2024); (3) Two-stage NCO: Att-GCN+MCTS (Fu et al., 2021), DIMES (Qiu
et al., 2022), TAM (Hou et al., 2022), SO (Cheng et al., 2023), DIFUSCO (Sun & Yang, 2023),
H-TSP (Pan et al., 2023), T2T (Li et al., 2023b) and GLOP (Ye et al., 2024).

Metrics and Inference We use objective values of different solutions, optimality gaps, and total
inference times to evaluate each method. Specifically, the optimality gap measures the discrepancy
between the solutions generated by learning and non-learning methods and the optimal solutions,
which are obtained using LKH3 for all problems. Note that times for classical solvers, which run
on a single CPU, and for learning-based methods, which utilize GPUs, are inherently different.
Therefore, these times should not be directly compared.

For most NCO baseline methods, we directly execute the source code provided by authors using
default settings. Note that the results marked with an asterisk (*) are directly obtained from corre-
sponding papers. For INViT, we use the INViT-3V model, and the instance augmentation is unified
to aug×8, which is consistent with other methods. For TSPs and CVRPs, following Kwon et al.
(2020), we report three types of results: using a single trajectory, the best result from multiple
trajectories, and results derived from instance augmentation. For ATSPs, we remove instance aug-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

mentation and only report the best result from multiple trajectories using a greedy strategy rather
than sampled ones as adopted by MatNet.

Results on VRPs with Scale ≤ 1, 000 The experimental results on TSP, CVRP and ATSP with
uniform distribution and scale ≤ 1, 000 are reported in Table 3. Our method stands out for con-
sistently delivering superior inference performance, complemented by remarkably fast inference
times, across various problem instances. Although it cannot surpass Att-GCN+MCTS on TSP100,
POMO on CVRP100, and MatNet on ATSP100, the time it consumes is significantly less, such as
Att-GCN+MCTS takes 15 minutes compared to our 37 seconds and MatNet requires over an hour
compared to our 7s. On TSP1, 000, our model impressively reduces the optimality gap to less than
3% in just 2 seconds. When switching to a multi-greedy strategy, the optimality gap further narrows
to 1.9% in 30 seconds. With the instance augmentation, ICAM can achieve the optimality gap of
1.58% in less than 4 minutes. For a fair comparison, we have adjusted the number of RRC interac-
tion for LEHD and the width of beam search for BQ such that all methods have a similar inference
time. According to the results, ICAM can obtain a better generalization performance than LEHD
and RRC on most comparisons. To the best of our knowledge, for TSP, CVRP and ATSP up to 1, 000
nodes, ICAM shows state-of-the-art performance among all RL-based constructive NCO methods.

Results on Cross-distribution VRP Instances We use the TSP/CVRP1, 000 datasets with rota-
tion and explosion distributions to evaluate the cross-distribution performance of ICAM. As shown
in Table 4, ICAM can still achieve the best performance on specific distribution instances and the
fastest speed of all comparable models. These results confirm that the same adaptation function
f(N, dij) can perform well across problem instances with different distributions.

Results on VRPs with Scale >1, 000 We also conduct experiments on instances for TSP and
CVRP with larger scales, the instance augmentation is not employed for all methods due to com-
putational efficiency. As shown in Table 5, for CVRP on all instances except for CVRP3K, ICAM
outperforms all comparable methods, including INViT, GLOP with LKH3 solver and all TAM vari-
ants. ICAM is slightly worse than SL-based LEHD on CVRP3K, it consumes much more solving
time than ICAM. However, the superiority of ICAM is not so obvious on TSP instances with scale
>1K (see Appendix G). Our performance is slightly worse than the two SL-based BQ and LEHD.
INViT shows remarkable performance on TSP instances with scale >1, 000 thanks to the small
search space at each construction step. Nevertheless, except for TSP5K, we achieve the second best
results in RL-based constructive methods. We are slightly worse than ELG on TSP5K instances, but
ELG requires a longer (4×) runtime due to its heavy local policy at each construction step. Overall,
our method still has a good large-scale generalization.

Results on Benchmark Dataset We further evaluate the performance using well-known bench-
mark datasets from CVRPLIB Set-X (Uchoa et al., 2017) with scale ≤ 1000, Set-XXL (Arnold
et al., 2019) with scale ∈ [3000, 7000], and TSPLIB (Reinelt, 1991) with scale ≤ 5000. The results
are presented in Appendix H, showing that ICAM achieves the best performance of all scale ranges
in Set-X and Set-XXL. In TSPLIB datasets with scale ≤ 1000, our method is slightly worse than
SL-based models (i.e., BQ and LEHD) and ELG, which has a heavy local policy at each construc-
tion step. In TSPLIB datasets with scale >1000, ICAM can also obtain competitive performance.
Notably, ICAM has the shortest average time on TSPLIB datasets with scale ≤ 5000 among all
models. These results also show the outstanding generalization of ICAM. To the best of our knowl-
edge, ICAM achieves the best performance among all constructive methods in the Set-X with scale
≤ 1000 and CVRPLIB Set-XXL (Arnold et al., 2019) with scale ∈ [3000, 7000].

4 ABLATION STUDY

To demonstrate the efficiency of ICAM, we conduct a detailed ablation study, mainly including:

1. Effects of components of adaptation function (see Appendix I.1);
2. Effects of adaptation function (see Appendix I.2);
3. Effects of different stages (see Appendix I.3);
4. Effects of deeper encoder (see Appendix I.4);

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Experimental results on routing problems (TSP, CVRP, and ATSP) with uniform distribu-
tion and scale ≤ 1, 000.

TSP100 TSP200 TSP500 TSP1000
Method Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

LKH3 7.7632 0.000% 56m 10.7036 0.000% 4m 16.5215 0.000% 32m 23.1199 0.000% 8.2h
Concorde 7.7632 0.000% 34m 10.7036 0.000% 3m 16.5215 0.000% 32m 23.1199 0.000% 7.8h

Att-GCN+MCTS* 7.7638 0.037% 15m 10.8139 0.884% 2m 16.9655 2.537% 6m 23.8634 3.224% 13m
DIMES AS+MCTS* − − − − − − 16.84 1.76% 2.15h 23.69 2.46% 4.62h
SO-mixed* − − − 10.7873 0.636% 21.3m 16.9431 2.401% 32m 23.7656 2.800% 55.5m
DIFUSCO greedy+2-opt* 7.78 0.24% − − − − 16.80 1.49% 3.65m 23.56 1.90% 12.06m
T2T sampling* − − − − − − 17.02 2.84% 15.98m 24.72 6.92% 53.92m
H-TSP − − − − − − 17.549 6.220% 23s 24.7180 6.912% 47s
GLOP (more revisions) 7.7668 0.046% 1.9h 10.7735 0.653% 42s 16.8826 2.186% 1.6m 23.8403 3.116% 3.3m

BQ greedy 7.7903 0.349% 1.8m 10.7644 0.568% 9s 16.7165 1.180% 46s 23.6452 2.272% 1.9m
BQ bs4 7.7691 0.076% 4.3m 10.7321 0.266% 21s 16.6530 0.796% 1.9m 23.5090 1.683% 4.6m
LEHD greedy 7.8080 0.577% 27s 10.7956 0.859% 2s 16.7792 1.560% 16s 23.8523 3.168% 1.6m
LEHD RRC10 7.7746 0.146% 1.8m 10.7431 0.369% 8s 16.6702 0.900% 1.2m 23.5894 2.031% 5.5m

MDAM bs50 7.7933 0.388% 21m 10.9173 1.996% 3m 18.1843 10.065% 11m 27.8306 20.375% 44m
POMO aug×8 7.7736 0.134% 1m 10.8677 1.534% 5s 20.1871 22.187% 1.1m 32.4997 40.570% 8.5m
ELG aug×8 7.7807 0.225% 3m 10.8620 1.480% 13s 17.6544 6.857% 2.3m 25.5769 10.627% 15.4m
Pointerformer aug×8 7.7759 0.163% 49s 10.7796 0.710% 11s 17.0854 3.413% 53s 24.7990 7.263% 6.4m
ICAM single trajec. 7.8328 0.897% 2s 10.8255 1.139% <1s 16.7777 1.551% 1s 23.7976 2.931% 2s
ICAM 7.7991 0.462% 5s 10.7753 0.669% <1s 16.6978 1.067% 4s 23.5608 1.907% 28s
ICAM aug×8 7.7747 0.148% 37s 10.7385 0.326% 3s 16.6488 0.771% 38s 23.4854 1.581% 3.8m

CVRP100 CVRP200 CVRP500 CVRP1000
Method Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

LKH3 15.6465 0.000% 12h 20.1726 0.000% 2.1h 37.2291 0.000% 5.5h 37.0904 0.000% 7.1h
HGS 15.5632 -0.533% 4.5h 19.9455 -1.126% 1.4h 36.5611 -1.794% 4h 36.2884 -2.162% 5.3h

GLOP-G (LKH3) − − − − − − − − − 39.6507 6.903% 1.7m

BQ greedy 16.0730 2.726% 1.8m 20.7722 2.972% 10s 38.4383 3.248% 47s 39.2757 5.892% 1.9m
BQ bs4 15.9073 1.667% 4.3m 20.4879 1.563% 22s 37.8951 1.789% 1.9m 38.5503 3.936% 4.7m
LEHD greedy 16.2173 3.648% 30s 20.8407 3.312% 2s 38.4125 3.178% 17s 38.9122 4.912% 1.6m
LEHD RRC10 15.8892 1.551 % 2.2m 20.4638 1.443% 9s 37.8564 1.685% 1.5m 38.5287 3.878% 4.3m

MDAM bs50 15.9924 2.211% 25m 21.0409 4.304% 3m 41.1376 10.498% 12m 47.4068 27.814% 47m
POMO aug×8 15.7544 0.689% 1.2m 21.1542 4.866% 6s 44.6379 19.901% 1.2m 84.8978 128.894% 9.8m
ELG aug×8 15.8382 1.225% 4.4m 20.6787 2.509% 19s 39.2602 5.456% 3m 41.3046 11.362% 19.4m
ICAM single trajec. 16.1868 3.453% 2s 20.7509 2.867% <1s 37.9594 1.962% 1s 38.9709 5.070% 2s
ICAM 15.9386 1.867% 7s 20.5185 1.715% 1s 37.6040 1.007% 5s 38.4170 3.577% 35s
ICAM aug×8 15.8720 1.442% 47s 20.4334 1.293% 4s 37.4858 0.689% 42s 38.2370 3.091% 4.5m

ATSP100 ATSP200 ATSP500 ATSP1000
Method Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

LKH3 1.5777 0.000% 17.4m 1.6000 0.000% 28s 1.6108 0.000% 2.3m 1.6157 0.000% 9m
OR-Tools 1.8297 15.973% 1.0h 1.9209 20.056% 4m 2.0040 24.410% 35.9m 2.0419 26.379% 3.1h

GLOP 1.7705 12.220% 23m 1.9915 24.472% 19s 2.207 36.986% 24s 2.3263 43.980% 52s

MatNet ×128 1.5838 0.385% 1.1h 3.6894 130.588% 4.3 m − − − − − −
ICAM 1.6531 4.782% 7s 1.6886 5.537% 1s 1.7343 7.664% 5s 1.8580 14.994% 34s

Table 4: Experimental results on cross-distribution generalization.

TSP1000, Rotation TSP1000, Explosion CVRP1000, Rotation CVRP1000, Explosion
Method Obj. (Gap) Time Obj. (Gap) Time Obj. (Gap) Time Obj. (Gap) Time

Optimal 17.20 (0.00%) − 15.63 (0.00%) − 32.49 (0.00%) − 32.31 (0.00%) −
POMO aug×8 24.58 (42.84%) 8.5m 22.70(45.24%) 8.5m 64.22 (97.64%) 10.2m 59.52 (84.24%) 11.0m
Omni VRP+FS* 19.53(14.30%) 49.9m 17.75(13.38%) 49.9m 35.60 (10.26%) 56.8m 35.25 (10.45%) 56.8m
ELG aug×8 19.09(10.97%) 15.6m 17.37 (11.16%) 13.7m 37.04(14.00%) 20.1m 36.48(12.92%) 20.5m
ICAM 18.97 (10.28%) 28s 17.35 (10.99%) 28s 34.72 (6.86%) 36s 34.67 (7.31%) 36s
ICAM aug×8 18.81(9.34%) 3.8m 17.17 (9.86%) 3.8m 34.54 (6.28%) 4.6m 34.50 (6.79%) 4.5m

† All datasets are obtained from Omni VRP(Zhou et al., 2023) and contain 128 instances, and the runtime marked with an asterisk
(*) is proportionally adjusted (128/1000) to match the size of our test datasets.

5. Effects of larger training scale (See Appendix I.5);

6. Effects of different α settings (See Appendix I.6);

7. Parameter settings in the third stage (see Appendix I.7);

8. ICAM vs. POMO with three-stage training scheme (see Appendix I.8);

9. Comparison under the same training setting (see Appendix I.9);

10. The performance of POMO-Adaptation (see Appendix I.10);

11. Complexity analysis (see Appendix I.11).

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: Comparison on CVRP with scale >1, 000. ”Avg.time” represents the average time per
instance.

CVRP2000 CVRP3000 CVRP4000 CVRP5000
Method Obj. (Gap) Avg.time(s) Obj. (Gap) Avg.time(s) Obj. (Gap) Avg.time(s) Obj. (Gap) Avg.time(s)

LKH3* 64.93 (0.00%) 20.29 89.90 (0.00%) 41.10 118.03 (0.00%) 80.24 175.66 (0.00%) 151.64

TAM-AM* 74.31 (14.45%) 2.2 − − − − 172.22 (-1.96%) 11.78
TAM-LKH3* 64.78 (-0.23%) 5.63 − − − − 144.64 (-17.66%) 17.19
TAM-HGS* − − − − − − 142.83 (-18.69%) 30.23
GLOP-G (LKH3) 63.02 (-2.94%) 1.34 88.32 (-1.76%) 2.12 114.20 (-3.25%) 3.25 140.35 (-20.10%) 4.45

LEHD greedy 61.58 (-5.16%) 5.69 86.96 (-3.27%) 18.39 112.64 (-4.57%) 44.28 138.17 (-21.34%) 87.12
BQ greedy 62.59 (-3.61%) 1.83 88.40 (-1.67%) 4.65 114.15 (-3.29%) 11.50 139.84 (-20.39%) 27.63

INViT-3V greedy 67.35(3.73%) 25.15 94.63(5.26%) 42.77 120.49( 2.09%) 62.63 146.61(-16.54%) 86.47
ELG 67.54(4.02%) 11.43 94.42 (5.03%) 30.21 120.10 (1.75%) 66.59 145.31 (-17.28%) 121.57
ICAM single trajec. 62.38 (-3.93%) 0.04 89.06 (-0.93%) 0.10 115.09 (-2.49%) 0.19 140.25 (-20.16%) 0.28
ICAM 61.34 (-5.53%) 2.20 87.20 (-3.00%) 6.42 112.20 (-4.94%) 15.50 136.93 (-22.05%) 29.16

† The total number of CVRP instances for each scale is 100, following Hou et al. (2022). Except for CVRP3K/4K instances, the optimal values are from the
original paper(Hou et al., 2022).

Capturing Instance-specific Features Given the diverse variations in patterns and geometric
structures across different scales, we argue that instance-conditioned adaptation is crucial for im-
proving the generalization of NCOs. ICAM can capture deeper instance-specific features than exist-
ing models. This is one of the notable contributions of ICAM. For more detailed discussions, please
refer to Appendix J.

Efficient Inference Strategies for Different Models To further improve performance, many
search-based inference strategies are developed for NCO models. For example, BQ employs beam
search, while LEHD uses the Random Re-Construct (RRC). These strategies also improve the per-
formance of ICAM, but the improvement is not as significant as BQ and LEHD. We report the key
results with different search-based decoding methods in Appendix K for better discussion.

5 CONCLUSION, LIMITATION, AND FUTURE WORK

Conclusion In this work, we have proposed a novel ICAM to improve large-scale generalization
for RL-based NCO. we design a simple yet efficient instance-conditioned adaptation function to
significantly improve the generalization performance of existing NCO models with a small time
and memory overhead. Further, the instance-conditioned information is more effectively incorpo-
rated into the whole neural solution construction process via a powerful yet low-complexity AAFM
and the new compatibility calculation. The experimental results on various TSP, CVRP and ATSP
instances show that ICAM achieves promising generalization abilities compared with other repre-
sentative methods.

Limitation and Future Work Although ICAM demonstrates superior performance with greedy
decoding, we have observed its poor applicability to other complex inference strategies (e.g., RRC
and beam search). In the future, we will develop a suitable inference strategy for ICAM.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

David Applegate, Ribert Bixby, Vasek Chvatal, and William Cook. Concorde tsp solver, 2006.

Florian Arnold and Kenneth Sörensen. Knowledge-guided local search for the vehicle routing prob-
lem. Computers & Operations Research, 105:32–46, 2019.

Florian Arnold, Michel Gendreau, and Kenneth Sörensen. Efficiently solving very large-scale rout-
ing problems. Computers & operations research, 107:32–42, 2019.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405–421, 2021.

Yuhong Cao, Zhanhong Sun, and Guillaume Sartoretti. Dan: Decentralized attention-based neural
network for the minmax multiple traveling salesman problem. arXiv preprint arXiv:2109.04205,
2021.

Hanni Cheng, Haosi Zheng, Ya Cong, Weihao Jiang, and Shiliang Pu. Select and optimize: Learn-
ing to aolve large-scale tsp instances. In International Conference on Artificial Intelligence and
Statistics, pp. 1219–1231. PMLR, 2023.

Jinho Choo, Yeong-Dae Kwon, Jihoon Kim, Jeongwoo Jae, André Hottung, Kevin Tierney, and
Youngjune Gwon. Simulation-guided beam search for neural combinatorial optimization. Ad-
vances in Neural Information Processing Systems, 35:8760–8772, 2022.

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. Bq-nco: Bisim-
ulation quotienting for efficient neural combinatorial optimization. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023.

Han Fang, Zhihao Song, Paul Weng, and Yutong Ban. Invit: A generalizable routing problem solver
with invariant nested view transformer. In International Conference on Machine Learning, 2024.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 7474–7482, 2021.

Chengrui Gao, Haopu Shang, Ke Xue, Dong Li, and Chao Qian. Towards generalizable neural
solvers for vehicle routing problems via ensemble with transferrable local policy. In International
Joint Conference on Artificial Intelligence, 2024.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 12, 2017.

André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient active search for combinatorial
optimization problems. In International Conference on Learning Representations, 2022.

Qingchun Hou, Jingwei Yang, Yiqiang Su, Xiaoqing Wang, and Yuming Deng. Generalize learned
heuristics to solve large-scale vehicle routing problems in real-time. In The Eleventh International
Conference on Learning Representations, 2022.

Yan Jin, Yuandong Ding, Xuanhao Pan, Kun He, Li Zhao, Tao Qin, Lei Song, and Jiang Bian.
Pointerformer: Deep reinforced multi-pointer transformer for the traveling salesman problem. In
The Thirty-Seventh AAAI Conference on Artificial Intelligence, 2023.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learn-
ing the travelling salesperson problem requires rethinking generalization. arXiv preprint
arXiv:2006.07054, 2020.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial opti-
mization algorithms over graphs. Advances in Neural Information Processing Systems, 30, 2017.

Minsu Kim, Jinkyoo Park, et al. Learning collaborative policies to solve np-hard routing problems.
Advances in Neural Information Processing Systems, 34:10418–10430, 2021.

Minsu Kim, Jiwoo Son, Hyeonah Kim, and Jinkyoo Park. Scale-conditioned adaptation for large
scale combinatorial optimization. In NeurIPS 2022 Workshop on Distribution Shifts: Connecting
Methods and Applications, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in Neural
Information Processing Systems, 33:21188–21198, 2020.

Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon. Ma-
trix encoding networks for neural combinatorial optimization. Advances in Neural Information
Processing Systems, 34:5138–5149, 2021.

Bingjie Li, Guohua Wu, Yongming He, Mingfeng Fan, and Witold Pedrycz. An overview and
experimental study of learning-based optimization algorithms for the vehicle routing problem.
IEEE/CAA Journal of Automatica Sinica, 9(7):1115–1138, 2022.

Jingwen Li, Yining Ma, Zhiguang Cao, Yaoxin Wu, Wen Song, Jie Zhang, and Yeow Meng Chee.
Learning feature embedding refiner for solving vehicle routing problems. IEEE Transactions on
Neural Networks and Learning Systems, 2023a.

Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. Ad-
vances in Neural Information Processing Systems, 34:26198–26211, 2021.

Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. T2t: From distribution learning in training to
gradient search in testing for combinatorial optimization. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023b.

Michal Lisicki, Arash Afkanpour, and Graham W Taylor. Evaluating curriculum learning strate-
gies in neural combinatorial optimization. In Learning Meets Combinatorial Algorithms at
NeurIPS2020, 2020.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization
with heavy decoder: Toward large scale generalization. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

Sahil Manchanda, Sofia Michel, Darko Drakulic, and Jean-Marc Andreoli. On the generalization of
neural combinatorial optimization heuristics. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pp. 426–442. Springer, 2022.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement
learning for solving the vehicle routing problem. Advances in Neural Information Processing
Systems, 31, 2018.

Xuanhao Pan, Yan Jin, Yuandong Ding, Mingxiao Feng, Li Zhao, Lei Song, and Jiang Bian. H-tsp:
Hierarchically solving the large-scale travelling salesman problem. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2023.

Laurent Perron and Vincent Furnon. Or-tools, 2023. URL https://developers.google.
com/optimization/.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta solver for combina-
torial optimization problems. Advances in Neural Information Processing Systems, 35:25531–
25546, 2022.

12

https://developers.google.com/optimization/
https://developers.google.com/optimization/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Gerhard Reinelt. Tsplib—a traveling salesman problem library. ORSA Journal on Computing, 3(4):
376–384, 1991.

Kubra Sar and Pezhman Ghadimi. A systematic literature review of the vehicle routing problem in
reverse logistics operations. Computers & Industrial Engineering, 177:109011, 2023.

Jiwoo Son, Minsu Kim, Hyeonah Kim, and Jinkyoo Park. Meta-sage: Scale meta-learning scheduled
adaptation with guided exploration for mitigating scale shift on combinatorial optimization. In
International Conference on Machine Learning. PMLR, 2023.

Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimiza-
tion. Advances in Neural Information Processing Systems, 36:3706–3731, 2023.

Krishna Veer Tiwari and Satyendra Kumar Sharma. An optimization model for vehicle routing
problem in last-mile delivery. Expert Systems with Applications, 222:119789, 2023.

Eduardo Uchoa, Diego Pecin, Artur Pessoa, Marcus Poggi, Thibaut Vidal, and Anand Subramanian.
New benchmark instances for the capacitated vehicle routing problem. European Journal of
Operational Research, 257(3):845–858, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 30, 2017.

Thibaut Vidal. Hybrid genetic search for the cvrp: Open-source implementation and swap* neigh-
borhood. Computers & Operations Research, 140:105643, 2022.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in Neural Infor-
mation Processing Systems, 28, 2015.

Yang Wang, Ya-Hui Jia, Wei-Neng Chen, and Yi Mei. Distance-aware attention reshaping: En-
hance generalization of neural solver for large-scale vehicle routing problems. arXiv preprint
arXiv:2401.06979, 2024.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229–256, 1992.

Yubin Xiao, Di Wang, Boyang Li, Mingzhao Wang, Xuan Wu, Changliang Zhou, and You Zhou.
Distilling autoregressive models to obtain high-performance non-autoregressive solvers for ve-
hicle routing problems with faster inference speed. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pp. 20274–20283, 2024.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Step-wise deep learning models for solving
routing problems. IEEE Transactions on Industrial Informatics, 17(7):4861–4871, 2020.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Multi-decoder attention model with embedding
glimpse for solving vehicle routing problems. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 12042–12049, 2021.

Zhihao Xing and Shikui Tu. A graph neural network assisted monte carlo tree search approach to
traveling salesman problem. IEEE Access, 8:108418–108428, 2020.

Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. Glop: Learning
global partition and local construction for solving large-scale routing problems in real-time. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 20284–20292,
2024.

Bin Yu, Zhong-Zhen Yang, and Baozhen Yao. An improved ant colony optimization for vehicle
routing problem. European Journal of Operational Research, 196(1):171–176, 2009.

Shuangfei Zhai, Walter Talbott, Nitish Srivastava, Chen Huang, Hanlin Goh, Ruixiang Zhang, and
Josh Susskind. An attention free transformer. arXiv preprint arXiv:2105.14103, 2021.

Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable
neural methods for vehicle routing problems. In International Conference on Machine Learning,
2023.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A RELATED WORK

A.1 NON-CONDITIONED NCO

Most NCO methods are trained on a fixed scale (e.g., 100 nodes), they usually perform well on
the instances with the scale trained on, but their performance could drop dramatically on instances
with different scales (Kwon et al., 2020; Xin et al., 2020; 2021). To mitigate the poor general-
ization performance, an extra search procedure is usually required to find a better solution. Some
widely used search methods include beam search (Joshi et al., 2019; Choo et al., 2022), Monte Carlo
tree search (MCTS) (Xing & Tu, 2020; Fu et al., 2021; Qiu et al., 2022; Sun & Yang, 2023), and
active search (Bello et al., 2016; Hottung et al., 2022). However, these procedures are very time-
consuming, could still perform poorly on instances with quite different scales, and might require
expert-designed strategies on a specific problem (e.g., MCTS for TSP). Recently, some two-stage
approaches (Kim et al., 2021; Hou et al., 2022; Li et al., 2021; Pan et al., 2023; Cheng et al., 2023;
Ye et al., 2024) have been proposed. Although these methods have better generalization abilities,
they usually require expert-designed solvers and ignore the dependency between two stages, which
makes model design difficult, especially for non-expert users.

A.2 VARYING-SCALE TRAINING IN NCO

Directly training the NCO model on instances with different scales is another popular way to im-
prove its generalization performance. Expanding the training scale can bring a broader range of
cross-scale data. Training using these data enables the model to learn more scale-independent fea-
tures, thereby achieving better large-scale generalization performance. This straightforward ap-
proach can be traced back to Vinyals et al. (2015) and Khalil et al. (2017), which try to train
the model on instances with varying scales to improve solving performance. Furthermore, Joshi
et al. (2020) systematically tests the generalization performance of NCO models by training on dif-
ferent TSP instances with 20-50 nodes. Subsequently, a series of works have been developed to
utilize the varying-scale training scheme to improve their own NCO models’ generalization perfor-
mance (Lisicki et al., 2020; Cao et al., 2021; Manchanda et al., 2022; Zhou et al., 2023). Similar
to the varying-scale training scheme, a few SL-based NCO methods learn to construct partial solu-
tions with various scales during training and achieve a robust generalization performance (Luo et al.,
2023; Drakulic et al., 2023). Wang et al. (2024) train the NCO model on varying-scale instances
to obtain a better generalization performance. Nevertheless, in real-world applications, it could be
very difficult to obtain high-quality labeled solutions for SL-based model training. RL-based models
also face the challenge of efficiently capturing cross-scale features from varying-scale training data,
which severely hinders their generalization ability on large-scale problems.

A.3 INFORMATION-CONDITIONED NCO

Recently, several works have indicated that incorporating auxiliary information (e.g., the distance
between each pair of nodes for VRPs) can facilitate model training and improve solving perfor-
mance. In Kim et al. (2022), the scale-related feature is added to the context embedding of the
decoder to make the model scale-aware during the decoding phase. Jin et al. (2023), Son et al.
(2023) and Wang et al. (2024) use the distance to bias the output score in the decoding phase,
thereby guiding the model toward more efficient exploration. Especially, Gao et al. (2024) employ
a local policy network to catch distance knowledge and integrate it into the compatibility calcula-
tion, and in Li et al. (2023a), the distance-related feature is utilized to refine node embeddings to
improve the model exploration. None of them incorporate the information into the whole neural so-
lution construction process and fail to achieve satisfactory generalization performance on large-scale
instances.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B COMPARISON BETWEEN DIFFERENT INCORPORATION APPROACHES

To demonstrate the superiority of our function f(N, dij), TSP as an example, we train various
models in the same training settings, the only difference between these models is the incorporation
approaches with auxiliary information. Without loss of generality, in this experiment, all comparable
models are developed from a well-known NCO model, that is POMO (Kwon et al., 2020). We train
all models for 100 epochs, every epoch, we process 1, 000 batches, and the batch size bs = 64 for
all models. The incorporation approaches mainly include:

• Simple node-to-node distances (Jin et al., 2023; Wang et al., 2024);
• Node-to-node distances with a bias coefficient α introduced (Son et al., 2023);
• An extra local policy as adopted in Gao et al. (2024);
• Our proposed adaptation function f(N, dij).

We incorporate the above four approaches into all attention calculations in both the encoder and
decoder, respectively. Moreover, we also combine them with the compatibility calculation in the
decoder (Gao et al., 2024; Wang et al., 2024). Considering the special design of MHA, the way that
we integrate the four approaches with Self-Attention in MHA can be expressed as

Attention(Q,K, V ) = softmax

(
QKT

√
dk

+G

)
V, (8)

where G = {gij}, ∀i, j ∈ 1, . . . , N denotes the value via different incorporation approaches. Note
that the clipping parameter is changed to 50 for better training convergence (Jin et al., 2023), and
the rest of model parameters are consistent with the original POMO model.

Table 6: Comparison between different incorporation approaches. ”Avg.memory” represents the
average memory usage per instance.

Model TSP100 TSP200 TSP500 TSP1000
Method Params Avg.memory Gap Time Avg.memory Gap Time Avg.memory Gap Time Avg.memory Gap Time

POMO 1.27M 1.47MB 1.318% 7.68 s 5.11MB 4.216% 1.08 s 28.09MB 14.946% 8.34 s 107.50MB 25.916% 63.80 s
POMO + dist. 1.27M 1.77MB 0.924% 9.00s 6.02MB 3.461% 1.21s 32.62MB 13.194% 10.42s 124.22MB 22.696% 83.85s
POMO + α *dist. 1.27M 1.77MB 0.843% 9.14s 6.02MB 2.913% 1.25 s 32.62MB 9.550% 10.75 s 124.22MB 14.517% 86.23s
POMO + Local policy 1.30M 3.29MB 0.659% 23.82 s 9.61MB 2.730% 2.23s 45.55MB 9.587% 18.80 s 163.44MB 14.821% 130.26s
POMO + f(N, dij) 1.27M 1.77MB 0.774% 9.16s 6.02MB 2.442% 1.25 s 32.62MB 7.208% 11.18s 124.22MB 10.812% 86.92s

As shown in Table 6, on TSP100 instances, POMO with our proposed function f(N, dij) performs
slightly worse than POMO with an extra local policy as adopted in Gao et al. (2024), but it takes more
than twice as long as ours. In addition, the generalization is significantly improved even with the
simple addition of only a α parameter, and replacing the incorporation approach with our function
f(N, dij) further improves its generalization performance. These impressive results highlight the
effectiveness of our proposed function f(N, dij), compared with other approaches, our proposed
function significantly improves the generalization of the original model with a very small time and
memory overhead.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C ATTENTION FREE TRANSFORMER

As a linear attention approximation mechanism, AFT (Zhai et al., 2021) offers more excellent speed
and memory efficiency than MHA operation. AFT has multiple versions, and the basic version is
called AFT-full. Given the input X , AFT first transforms it to obtain Q,K, V by the corresponding
linear projection operation, respectively. The calculation of AFT-full can be expressed as

Q = XWQ, K = XWK , V = XWV , (9)

Yi = σ (Qi)⊙
∑N

j=1 exp (Kj + wi,j)⊙ Vj∑N
j=1 exp (Kj + wi,j)

, (10)

where WQ,WK ,WV are three learnable matrices, ⊙ is the element-wise product, σ denotes the
nonlinear function applied to the query Q, default function is Sigmoid, w ∈ RN×N is the pair-wise
position biases, and each wi,j is a scalar. In AFT, the model automatically updates pair-wise position
biases w, which is used to quantify the importance of the relative position information. A detailed
complexity analysis comparing AFT-full with other variants is provided in Table 7.

Table 7: Complexity comparison of AFT-Full and other AFT variants. Here N, d, s denote the
sequence length, feature dimension, and local window size.

Model Time Space

Transformer O(N2d) O(N2 +Nd)

AFT-full O(N2d) O(Nd)
AFT-simple O(Nd) O(Nd)
AFT-local O(Nsd), s < N O(Nd)
AFT-conv O(Nsd), s < N O(Nd)

As shown in Table 7, the basic version of AFT outlined in Equation (10) is called AFT-full and is
the version that we adopt. AFT includes three additional variants: AFT-local, AFT-simple and AFT-
conv. Owing to the removal of the multi-head mechanism, compared to the traditional Transformer,
AFT exhibits reduced memory usage and increased speed during both the training and testing. Fur-
ther details are available in the related work section mentioned above.

D AFT VS. MHA

In language modeling, the relation (e.g., semantic difference) between two tokens is difficult to
represent directly by position bias wi,j . According to Zhai et al. (2021), AFT obtains competitive
performance but is still worse than the basic MHA operation.

However, taking the routing problem as an example, the relation between two nodes can be directly
represented by only the distance information computed from the node coordinates, just as a tradi-
tional heuristic solver (e.g., LKH3 (Helsgaun, 2017)) can solve a specific instance by only inputting
the distance-based adjacency matrix. In classic neural vehicle routing solvers using MHA, e.g.,
POMO(Kwon et al., 2020), the relation between two nodes is computed by mapping the node coor-
dinates into a high-dimensional hidden space. In short, MHA cannot directly take advantage of the
pair-wise distances between nodes.

Unlike traditional MHA operation, AFT can explicitly capture the relative position bias between
different nodes via a pair-wise position bias matrix w. This ability to maintain direct interaction
between any two nodes in the context is a major advantage of AFT. The explicit relative position
information is valuable to achieve better solving performance. In fact, AFT can also be viewed as a
specialized form of MHA, where each feature dimension is treated as an individual head.

To investigate the effectiveness of AFT compared to MHA in information integration, we train a
new ICAM that replaces AAFM with the standard MHA, denoted as ICAM-MHA. ICAM-MHA is
trained in exactly the same settings, including three-stage training, the adaptation function, model
structure, and hyperparameters. The only difference between the two models is the attention mech-
anism (AAFM vs. MHA). The way that we integrate the adaptation function f(N, dij) with Self-
Attention in MHA can be found in Equation (8).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 8: Comparison of the AFT and MHA on TSP instances with different scales.

TSP100 TSP200 TSP500 TSP1000
Method Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

Concorde 7.7632 0.000% 34m 10.7036 0.000% 3m 16.5215 0.000% 32m 23.1199 0.000% 7.8h

ICAM-MHA 7.8061 0.552% 10s 10.7922 0.828% 1s 16.7613 1.452% 11s 23.7193 2.593% 1.5m
ICAM 7.7991 0.462% 5s 10.7753 0.669% <1s 16.6978 1.067% 4s 23.5608 1.907% 28s

As can be seen from the results in Table 8, ICAM-MHA also has good large-scale generalization
performance, this again demonstrates the effectiveness of proposed adaptation function and three-
stage training scheme. Further, we can observe replacing MHA with AAFM can further improve
performance while significantly reducing running time. The advantages of ICAM over ICAM-MHA
become more significant as the problem scale increases. The good scalability performance of ICAM
may stem from the ability of AFT to integrate instance-conditioned information more efficiently.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

E MODEL ARCHITECTURE

ICAM for TSPs and CVRPs For the TSP and CVRP models, ICAM is an improvement based on
POMO model (Kwon et al., 2020). We remove all the MHA calculations in POMO (including both
the encoder and decoder) and replace them with our proposed AAFM. Additionally, as shown in
Equation (5), in the decoding phase, we modify the compatibility calculation by adding our adapta-
tion function f(N, dij) to the original calculation, following the approach in Gao et al. (2024) and
Son et al. (2023), so as to improve the model performance further. Finally, we expand the number of
encoder layers to 12 to generate better node embeddings. Note that since the heavy encoder is only
called once for solution construction, there is no obvious time difference between the models with
12-layer and 6-layer Encoder.

ICAM for ATSPs For ATSP instances, the node coordinates are not available. Considering the
special nature of ATSP, we use MatNet as the backbone network for ATSP model. Compared with
the original MatNet proposed by Kwon et al. (2021), our improvements are mainly as follows:

1. In original MatNet, for initial embeddings, zero-vectors and one-hot vectors are used to
embed nodes in A and nodes in B (or vice versa), respectively. However, since the embed-
ding dimension is set to 256, this approach fails to enable MatNet to generalize to ATSP
instances with more than 256 nodes efficiently. We change the dimension of the input
feature to 50, i.e., the distance of the 50 nearest nodes to each node in row and column
elements, respectively. Further, these features are transformed into different initial embed-
dings H(0) = (h

(0)
1 , . . . ,h

(0)
N ) via different 128-dimension linear projections in 6-layer

row encoder and 6-layer column encoder, respectively.
2. we also utilize AAFM to replace attention operations, including Mixed-score attention,

which is proposed by MatNet in the encoding phase, and MHA operation in the decoding
phase.

3. Moreover, we also combine our proposed adaptation function f(N, dij) with the compati-
bility calculation in the decoding phase.

For the ATSP model, the rest of the model architecture is consistent with MatNet, the details about
MatNet can be found in Kwon et al. (2021).

F HYPERPARAMETER AND TRAINING SETTINGS

Model Hyperparameter Settings The detailed information about the hyperparameter settings can
be found in Table 9. Note that for the ATSP and CVRP models, we have implemented the gradient
clipping technique to prevent the risk of exploding gradients.

Training The loss function (denoted as LPOMO) used in the first and second stages is the same as
in POMO (Kwon et al., 2020). According to Kwon et al. (2020), POMO is trained by the REIN-
FORCE (Williams, 1992), and it uses gradient ascent with an approximation in Equation (11). The
gradient ascent with an approximation of the loss function can be written as

∇θLPOMO(θ) ≈
1

BN

B∑
m=1

N∑
i=1

R
(
πi | Sm

)
− bi(Sm)∇θ log pθ

(
πi | Sm

)
, (11)

bi(Sm) =
1

N

N∑
j=1

R
(
πj | Sm

)
for all i. (12)

where R
(
πi | Sm

)
represents the total reward (e.g., the negative value of tour length) of instance

Sm given a specific solution πi. Equation (12) is a shared baseline as adopted in Kwon et al. (2020).

In the third stage, we want the model to focus more on the best k trajectories among all N trajecto-
ries. To achieve this, we design a new loss LTop, and its gradient ascent can be expressed as

∇θLTop(θ) ≈
1

Bk

B∑
m=1

k∑
i=1

R
(
πi | Sm

)
− bi(Sm)∇θ log pθ

(
πi | Sm

)
. (13)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 9: Model hyperparameter settings in experiments.

TSP CVRP ATSP
Optimizer Adam
Clipping parameter 50
Initial learning rate 10−4

Learning rate of stage 3 10−5

Initial α value 1
Loss function of stage 1 & 2 LPOMO

Loss function of stage 3 LJoint

Parameter β of stage 3 0.1
Parameter k of stage 3 20
The number of encoder layer 12
Embedding dimension 128
Feed forward dimension 512
Batches of each epoch 1, 000
Scale of stage 1 100
Scale of stage 2 & 3 [100, 500]
Epochs of stage 1 100
Epochs of stage 3 200
Epochs of stage 2 2, 200 700 100
Capacity of stage 1 − 50 −
Capacity of stage 2 & 3 − [50, 100] −
Batch size of stage 1 256 128 256
Batch size of stage 2 & 3

[
160× ( 100N )2

] [
128× ( 100N )2

] [
160× ( 100N )2

]
Gradient clipping − max norm=5 max norm=5
Weight decay − − 10−6

Total epochs 2, 500 1, 000 400

We combine LTop with LPOMO as the joint loss in the training of the third stage via Equation (7).

G RESULTS ON TSP INSTANCES WITH SCALE >1, 000

As shown in Table 10, although ICAM equipped with adaptation biases demonstrates excellent per-
formance and efficient inference speeds when solving TSP instances with no more than 1000 nodes,
the influence of adaptation biases begins to gradually diminish as the problem scale expands beyond
1000 nodes. This phenomenon reveals an important research direction: to maintain and enhance
the performance in solving larger-scale TSP instances, it is necessary to explore new strategies or
improve existing adaptation strategy. This ensures that the model can effectively extend to larger
problem spaces while maintaining its efficient solution-generation capabilities.

Table 10: Comparison on TSP instances with scale >1, 000.

TSP2K TSP3K TSP4K TSP5K
Method Obj. Gap Avg.time (s) Obj. Gap Avg.time (s) Obj. Gap Avg.time (s) Obj. Gap Avg.time (s)

LKH3 32.45 0.000% 144.67 39.60 0.000% 176.13 45.66 0.000% 455.46 50.94 0.000% 710.39

LEHD greedy 34.71 6.979% 5.60 43.79 10.558% 18.66 51.79 13.428% 43.88 59.21 16.237% 85.78
BQ greedy 34.03 4.859% 1.39 42.69 7.794% 3.95 50.69 11.008% 10.50 58.12 14.106% 25.19

INViT-3V greedy 34.64 6.757% 21.17 42.31 6.838% 36.23 48.84 6.965% 53.82 54.52 7.035% 74.77
POMO 50.89 56.847% 4.70 65.05 64.252% 14.68 77.33 69.370% 35.12 88.28 73.308% 64.46
ELG 37.12 14.408% 8.17 45.88 15.855% 23.78 53.35 16.834% 54.27 59.90 17.594% 101.94
ICAM 34.37 5.934% 1.80 44.39 12.082% 5.62 53.00 16.075% 12.93 60.28 18.338% 24.51

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

H RESULTS ON BENCHMARK DATASET

We further evaluate the performance using well-known benchmark datasets from CVRPLIB
Set-X (Uchoa et al., 2017) (see Table 12), Set-XXL(Arnold et al., 2019)(see Table 14) and
TSPLIB (Reinelt, 1991) (see Table 11 and Table 13). The results marked with an asterisk (*) are
directly obtained from the original papers. Note that for scale >1000, instance augmentation is not
employed for all methods due to computational efficiency.

Table 11: Experimental results on TSPLIB(Reinelt, 1991) with scale ≤ 1000.

N ≤ 200 200<N ≤ 500 500<N ≤ 1000 Total Avg.time
Method (29 instances) (13 instances) (6 instances) (48 instances)

LEHD greedy 1.92% 3.10% 4.05% 2.51% 0.83s
BQ greedy 2.15% 4.35% 4.54% 3.04% 2.24s

POMO aug×8 2.02% 15.25% 31.68% 9.31% 0.33s
INViT-3V aug×8 3.42% 6.44% 8.65% 4.89% 2.74s
ELG aug×8 1.18% 4.34% 8.73% 2.98% 0.72s
ICAM 4.65% 5.77% 12.61% 5.95% 0.17s
ICAM aug×8 2.38% 4.57% 10.64% 4.00% 0.22s

Table 12: Experimental results on CVRPLIB Set-X(Uchoa et al., 2017) with scale ≤ 1000.

N ≤ 200 200<N ≤ 500 500<N ≤ 1000 Total Avg.time
Method (22 instances) (46 instances) (32 instances) (100 instances)

LEHD greedy 11.35% 9.45% 17.74% 12.52% 1.58s
BQ greedy* − − − 9.94% −
POMO aug×8 6.90% 15.04% 40.81% 21.49% 1.00s
INViT-3V aug×8 9.30% 11.99% 12.18% 11.46% 6.07s
ELG aug×8 4.51% 5.52% 7.80% 6.03% 2.56s
ICAM 5.14% 4.44% 5.17% 4.83% 0.37s
ICAM aug×8 4.41% 3.92% 4.70% 4.28% 0.56s

Table 13: Experimental results on TSPLIB (Reinelt, 1991) with scale ≤ 5, 000.

1000 <N ≤ 2000 2000 <N ≤ 3000 3000 <N ≤ 4000 4000 <N ≤ 5000 1000 <N ≤ 5000 Avg.time
Method (15 instances) (4 instances) (2 instances) (1 instances) (22 instances)

LEHD 10.54% 10.93% 13.49% 19.05% 11.27% 12.3s
BQ 9.72% 11.58% 24.15% 20.35% 11.85% 8.9s

POMO 62.76% 64.12% 106.61% 66.64% 67.17% 6.5s
INViT 12.38% 9.11% 12.80% 7.32% 11.60% 38.9s
ELG 12.99% 10.23% 15.02% 16.11% 12.82% 11.2s
ICAM 13.28% 9.88% 14.03% 16.79% 12.89% 2.8s

Table 14: Experimental results on CVRPLIB Set-XXL (Arnold et al., 2019) with scale ∈
[3000, 7000].

Antwerp1 Antwerp2 Leuven1 Leuven2 Total Avg.time
Method (N = 6000) (N = 7000) (N = 3000) (N = 4000) N ∈ [3000, 7000]

LEHD 14.66% 22.77% 16.60% 34.86% 22.22% 155.3s
BQ 16.48% 27.67% 18.53% 30.70% 23.34% 30.0s

POMO 673.00% 482.98% 496.50% 1036.64% 672.28% 101.9s
INViT 15.40% 27.75% 13.71% 26.08% 20.74% 90.9s
ELG 13.31% 25.53% 16.45% 23.25% 19.63% 163.3s
ICAM 8.00% 21.66% 9.22% 15.09% 13.49% 39.9s

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

I ABLATION STUDY

Please note that, unless stated otherwise, the results presented in the ablation study reflect the best
result from multiple trajectories. We do not employ instance augmentation in the ablation study, and
the performance on TSP instances is used as the primary criterion for evaluation.

I.1 EFFECTS OF COMPONENTS OF ADAPTATION FUNCTION

In our adaptation function, except for the fundamental scale and pair-wise distance information, we
additionally impose a learnable parameter as well as instance scales. To better illustrate the effec-
tiveness of this function, we conduct ablation experiments for the components, and the experimental
results are shown in Table 15. The results show that both a learnable parameter α and scale N can
significantly improve the model performance.

Table 15: Comparison between component settings on TSP instances with different scales.

TSP100 TSP200 TSP500 TSP1000

w/o learnable α 0.546% 1.124% 2.785% 5.232%
w/o scale 0.512% 0.866% 2.036% 4.236%
w/ learnable α + scale 0.462% 0.669% 1.067% 1.907%

I.2 EFFECTS OF ADAPTATION FUNCTION

Table 16: The detailed ablation study on instance-conditioned adaptation function. Here AFM
denotes that AAFM removes the adaptation bias, and CAB is the compatibility with the adaptation
bias.

TSP100 TSP200 TSP500 TSP1000

AFM 1.395% 2.280% 4.890% 8.872%
AFM+CAB 0.956% 1.733% 4.081% 7.090%
AAFM 0.514% 0.720% 1.135% 2.241%
AAFM+CAB 0.462% 0.669% 1.067% 1.907%

Given that we apply the adaptation function outlined in Equation (1) to both the AAFM and the sub-
sequent compatibility calculation, we conducted three different experiments to validate the efficacy
of this function. The data presented in Table 16 indicates a notable enhancement in the solving per-
formance across various scales when instance-conditioned information is integrated into the model.
This improvement emphasizes the importance of including detailed, fine-grained information in the
model. It also highlights the critical role of explicit instance-conditioned information in improving
the adaptability and generalization capabilities of RL-based models. In particular, the incorporation
of richer instance-conditioned information allows the model to more effectively comprehend and
address the challenges, especially in the context of large-scale problems.

I.3 EFFECTS OF DIFFERENT STAGES

Our training is divided into three different stages, each contributing significantly to the overall effec-
tiveness, the performance improvements achieved at each stage are detailed in Table 17. After the
first stage, which uses only short training epochs, the model performs outstanding performance with
small-scale instances but underperforms when dealing with large-scale instances. After the second
stage, there is a marked improvement in the ability to solve large-scale instances. By the end of the
final stage, the overall performance is further improved. Notably, in our ICAM, the capability to
tackle small-scale instances is not affected despite the instance scales varying during the training.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 17: Comparsion between different stages on TSP instances with different scales.

TSP100 TSP200 TSP500 TSP1000

After stage 1 0.514% 1.856% 7.732% 12.637%
After stage 2 0.662% 0.993% 1.515% 2.716%
After stage 3 0.462% 0.669% 1.067% 1.907%

I.4 EFFECTS OF DEEPER ENCODER

Table 18: The ablation study of encoder layers on TSP instances with different scales. Note that ”L”
represents encoder layers, e.g., ”ICAM-6L” denotes the ICAM model using a 6-layer encoder.

TSP100 TSP200 TSP500 TSP1000
Method Model Params Gap Time Gap Time Gap Time Gap Time

POMO-6L 1.27M 0.365% 8s 2.274% 1s 24.053% 9s 42.114% 1.1m

ICAM-6L 1.15M 0.442% 5s 0.722% <1s 1.328% 4s 2.422% 28s
ICAM-12L 2.24M 0.462% 5s 0.669% <1s 1.067% 4s 1.907% 28s

The Performance with Deeper Encoder: We have conducted an ablation study of ICAM with
6 and 12 layers, respectively. From these results, we can see that a deeper encoder structure helps
the model perform better in larger-scale instances. The ICAM-6L can already significantly outper-
form the POMO in larger-scale TSP instances with fewer parameters. Furthermore, ICAM-12L can
outperform ICAM-6L in large-scale instances.

The Time with Deeper Encoder: Due to our 12-layer encoder, we have more parameters than
ICAM-6L. However, since the heavy encoder is only called once for the solution construction pro-
cess, there is no obvious time difference between the models with 12-layer and 6-layer Encoder. Our
ICAM method achieves a lower inference time for all TSPs than the POMO model.

I.5 EFFECTS OF LARGER TRAINING SCALE

Table 19: Comparison between different training scales on TSP instances with different scales.

Training Scale N TSP100 TSP200 TSP500 TSP1000

N ∈ Unif([100, 200]) 0.241% 0.461% 1.538% 7.053%
N ∈ Unif([100, 500]) 0.462% 0.669% 1.067% 1.907%

Training Scale N CVRP100 CVRP200 CVRP500 CVRP1000

N ∈ Unif([100, 200]) 1.542% 1.405% 1.558% 6.300%
N ∈ Unif([100, 500]) 1.867% 1.715% 1.007% 3.577%

To investigate the effectiveness of training scales, we train a new model in a smaller training scale, in
which the training scale N is randomly sampled from Unif([100,200]). The comparison results are
provided in Table 19, we can find that when we train a model on larger-scale instances, the model
can obtain better performance in solving larger-scale instances. By training on larger instances,
the model can see richer geometric structures and thus learn decision-making patterns for different
instances, the scale diversity allows the model to perform well when facing larger-scale instances.

Similar to the experiment on TSP, we compare our proposed model with two different training scales
(Unif([100,200]) or Unif([100,500])). According to the results shown in Table 19, we can find that
when we train a CVRP model on larger-scale instances, the CVRP model can also perform better in
solving larger-scale instances. This observation is consistent with that for the TSP model.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

I.6 EFFECTS OF DIFFERENT α SETTINGS

Table 20: Comparison under different α settings on TSP instances with different scales. Note that
all models are trained 500 epochs (i.e., 400 epochs of stage 2).

TSP100 TSP200 TSP500 TSP1000

w/ α = 0.1 1.558% 2.841% 6.246% 10.304%
w/ α = 0.5 1.077% 2.216% 4.797% 8.023%
w/ α = 1 0.843% 1.729% 3.898% 6.513%
w/ α = 2 0.820% 1.553% 3.229% 5.979%
w/ α = 5 1.024% 1.572% 2.840% 5.046%

w/ learnable α 0.845% 1.397% 2.381% 4.371%

To demonstrate the impact of the learnable parameter, we have conducted an ablation study on the
value of the parameter α. Since fixed α >5 will cause the exploding gradients, we keep the α
value at a maximum of 5. Due to the time limit, all models are trained with 500 epochs and the
results are shown in Table 20, the model with a learned parameter α can significantly outperform its
counterparts with different fixed parameters.

I.7 PARAMETER SETTINGS IN STAGE 3

In the third stage, we manually adjust the β and k values as specified in Equation (13). The exper-
imental results for two settings involving different values are presented in Table 21. When trained
using LJoint as outlined in Equation (7), our model shows further improved performance. We ob-
serve no significant performance variation among different models at various k values when using
the multi-greedy search strategy. However, increasing the β coefficients while yielding a marginal
improvement in performance with the multi-greedy strategy notably diminishes the solving effi-
ciency in the single-trajectory mode. Given the challenges in generating N trajectories for a single
instance as the instance scale increases, we are focusing on optimizing the model effectiveness,
specifically in the single trajectory mode, to obtain the best possible performance. To avoid harming
the performance under the single trajectory, we set k and β to 20 and 0.1, respectively.

Table 21: Comparsion between different parameters in the third stage on TSP1000 instances.

single trajectory multiple trajectory
β = 0 β = 0.1 β = 0.5 β = 0.9 β = 0 β = 0.1 β = 0.5 β = 0.9

k = 20 2.996% 2.931% 3.423% 3.480% 2.039% 1.907% 1.859% 1.875%
k = 50 − 3.060% 3.123% 3.328% − 1.935% 1.892% 1.857%
k = 100 − 2.979% 3.201% 3.343% − 1.948% 1.899% 1.899%

I.8 ICAM VS. POMO WITH THREE-STAGE TRAINING SCHEME

To improve the ability to be aware of scale, we implement a varying-scale training scheme. Given
that most of our problem models are an advancement over the POMO framework, we ensure a fair
comparison by training a new POMO model using our three-stage training settings (i.e., trained on
100 to 500 nodes).

The comparison of POMO and our ICAM is provided in Table 22 to investigate the effectiveness
of the proposed adaptation function. In our three-stage training scheme, POMO also obtains better
generalization compared to the original model, but it is still outperformed by ICAM. According to
the results, after 2500 epochs, the POMO model can obtain an optimality gap of 6.6% in TSP1000
instances. However, ICAM only requires 110 epochs to obtain a similar performance (i.e., only
10 epochs of varying-scale training) and achieve a gap of less than 2% after a complete training
process. It is well known that during the training process, the later the training period, the slower
the model performance improves. Therefore, this performance gain is significant but not merely a

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

marginal improvement. In contrast to POMO, ICAM excels in capturing cross-scale features and
perceiving instance-conditioned information, this ability notably enhances model performance in
solving problems across various scales.

Table 22: Comparison of ICAM and POMO with the same training settings on TSP and CVRP
instances with different scales.

TSP100 TSP200 TSP500 TSP1000
Method Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

Concorde 7.7632 0.000% 34m 10.7036 0.000% 3m 16.5215 0.000% 32m 23.1199 0.000% 7.8h

POMO 7.7915 0.365% 8s 10.9470 2.274% 1s 20.4955 24.053% 9s 32.8566 42.114% 1.1m
POMO-ThreeStage 7.8957 1.707% 8s 10.9085 1.914% 1s 17.0488 3.192% 9s 24.6453 6.598% 1.1m
ICAM 7.7991 0.462% 5s 10.7753 0.669% <1s 16.6978 1.067% 4s 23.5608 1.907% 28s

CVRP100 CVRP200 CVRP500 CVRP1000
Method Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

LKH3 15.6465 0.000% 12h 20.1726 0.000% 2.1h 37.2291 0.000% 5.5h 37.0904 0.000% 7.1h

POMO 15.8368 1.217% 10s 21.3529 5.851% 1s 48.2247 29.535% 10s 143.1178 285.862% 1.2m
POMO-ThreeStage 16.0199 2.386% 10s 20.6401 2.318% 1s 37.8624 1.701% 10s 38.9679 5.062% 1.2m
ICAM 15.9386 1.867% 7s 20.5185 1.715% 1s 37.6040 1.007% 5s 38.4170 3.577% 35s

I.9 COMPARISON UNDER THE SAME TRAINING SETTING

We have now conducted the same varying-scale training with 200 epochs (VST200) for both our
proposed ICAM as well as the representative RL-based POMO and ELG baselines. The SL-based
LEHD and BQ are not included in this experiment since it is difficult to obtain high-quality solutions
for a large amount of instances up to 500 nodes.

Table 23: Experimental results on TSPs and CVRPs with uniform distribution and scale ≤ 1, 000.
Here, VSTn denotes this model is trained for n epochs on varying-scale instances.

TSP100 TSP200 TSP500 TSP1000
Method Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

LKH3 7.7632 0.000% 56m 10.7036 0.000% 4m 16.5215 0.000% 32m 23.1199 0.000% 8.2h

POMO-Original 7.7915 0.365% 8s 10.9470 2.274% 1s 20.4955 24.053% 9s 32.8566 42.114% 1.1m
POMO-VST200 7.9820 2.818% 8s 11.0624 3.352% 1s 17.5485 6.216% 9s 25.8064 11.620% 1.1m
ELG-Original 7.8128 0.638% 22s 10.9512 2.313% 2s 17.8223 7.874% 17s 25.7991 11.588% 2m
ELG-VST200 7.8429 1.027% 22s 10.8920 1.760% 2s 17.1632 3.884% 17s 24.7273 6.953% 2m

ICAM-VST20 7.8394 0.982% 5s 10.8859 1.703% <1s 17.1075 3.547% 4s 24.6161 6.472% 28s
ICAM-VST200 7.8284 0.840% 5s 10.8492 1.360% <1s 16.9311 2.479% 4s 24.1331 4.382% 28s

CVRP100 CVRP200 CVRP500 CVRP1000
Method Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

LKH3 15.6465 0.000% 12h 20.1726 0.000% 2.1h 37.2291 0.000% 5.5h 37.0904 0.000% 7.1h

POMO-Original 15.8368 1.217% 10s 21.3529 5.851% 1s 48.2247 29.535% 10s 143.1178 285.862% 1.2m
POMO-VST200 16.1019 2.911% 10s 20.8046 3.133% 1s 38.3320 2.962% 10s 40.1454 8.237% 1.2m
ELG-Original 15.9855 2.166% 34s 20.8618 3.417% 3s 39.6746 6.569% 23s 42.0760 13.442% 2.4m
ELG-VST200 16.1121 2.975% 34s 20.8045 3.132% 3s 38.3940 3.129% 23s 39.7601 7.198% 2.4m

ICAM-VST20 16.0496 2.576% 7s 20.7434 2.830% 1s 38.1647 2.513% 5s 39.3221 6.017% 35s
ICAM-VST200 16.0240 2.413% 7s 20.6464 2.349% 1s 37.9161 1.845% 5s 39.0220 5.208% 35s

As shown in Table 23, our proposed varying-scale training (VST) method can also significantly im-
prove the generalization performance of POMO and ELG. For example, ELG-VST200 can obtain a
6.9% optimality gap on TSP1000 while the gap is 11.588% for the original ELG. However, it should
be emphasized that our proposed ICAM can achieve a better generalization after only 20 epochs of
varying-scale training. Given the substantial variations in patterns and geometric structures across
different-scale routing instances, we argue this stems from a better instance-conditioned adaptation
of ICAM. These experimental results and analyses have been added in Appendix J.

I.10 THE PERFORMANCE OF POMO-ADAPTATION

We conduct an ablation study on the three-stage training for POMO equipped with our proposed
adaption function. According to Table 24, the adaption function and three-stage training scheme can
significantly improve the generalization performance of POMO on large-scale problem instances.
However, ICAM still performs better than POMO-Adaptation, both in terms of inference time and
solution lengths.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 24: Experimental results of POMO using the three-stage training scheme and the adaptation
function on TSP instances.

TSP100 TSP200 TSP500 TSP1000
Method Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

Concorde 7.7632 0.000% 34m 10.7036 0.000% 3m 16.5215 0.000% 32m 23.1199 0.000% 7.8h

POMO-Original 7.7915 0.365% 8s 10.9470 2.274% 1s 20.4955 24.053% 9s 32.8566 42.114% 1.1m
POMO-Adaptation (Stage1) 7.9803 2.796% 9s 11.1303 3.986% 1s 18.3123 10.839% 11s 26.9251 16.459% 1.4m
POMO-Adaptation (Stage1,2) 8.0135 3.224% 9s 11.0151 2.910% 1s 17.1872 4.030% 11s 24.6219 6.496% 1.4m
POMO-Adaptation (Stage1,2,3) 7.9906 2.929% 9s 10.9634 2.428% 1s 17.0508 3.204% 11s 24.2849 5.039% 1.4m

ICAM (Stage1,2,3) 7.7991 0.462% 5s 10.7753 0.669% <1s 16.6978 1.067% 4s 23.5608 1.907% 28s

I.11 COMPLEXITY ANALYSIS

As shown in Table 25, we report the model size, memory usage per instance, and total inference time
for different RL-based constructive models. We report the complexity of the model under adopting
the multi-greedy strategy. For GPU memory, we report the average GPU memory usage per instance
of each method for each problem. Due to our 12-layer encoder, we have more parameters than
POMO and ELG. However, since the heavy encoder is only called once for solution construction,
our ICAM method achieves the lowest memory usage and the fastest inference time for all TSPs.

Table 25: Comparison between ICAM and existing works in model details. ”Avg.memory” repre-
sents the average memory usage per instance. N and k denote the scale and the number of local
neighbors, respectively.

Time Space TSP100 TSP200 TSP500 TSP1000
Method Model Params complexity complexity Avg.memory Time Avg.memory Time Avg.memory Time Avg.memory Time

POMO 1.27M O(N3) O(N2) 1.62MB 8s 5.40MB 1s 28.82MB 9s 108.97MB 1.1m
ELG 1.27M O(N3 +N2k) O(N2 +Nk) 2.63MB 22s 6.29MB 2s 32.84MB 17s 126.57MB 2m
ICAM 2.24M O(N3) O(N2) 0.89MB 5s 2.61MB <1s 13.52MB 4s 51.69MB 28s

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
0

20

40

60

80

100

(a) Pair-wise distance
(TSP100)

0 20 40 60 80 100
0

20

40

60

80

100

(b) Pair-wise similarity
(ICAM, TSP100)

0 20 40 60 80 100
0

20

40

60

80

100

(c) Pair-wise similarity
(ELG, TSP100)

0 20 40 60 80 100
0

20

40

60

80

100

(d) Pair-wise similarity
(POMO,TSP100)

0 40 80 120 160 200
0

40

80

120

160

200

(e) Pair-wise distance
(TSP200)

0 40 80 120 160 200
0

40

80

120

160

200

(f) Pair-wise similarity
(ICAM, TSP200)

0 40 80 120 160 200
0

40

80

120

160

200

(g) Pair-wise similarity
(ELG, TSP200)

0 40 80 120 160 200
0

40

80

120

160

200

(h) Pair-wise similarity
(POMO,TSP200)

0 100 200 300 400 500
0

100

200

300

400

500

(i) Pair-wise distance
(TSP500)

0 100 200 300 400 500
0

100

200

300

400

500

(j) Pair-wise similarity
(ICAM, TSP500)

0 100 200 300 400 500
0

100

200

300

400

500

(k) Pair-wise similarity
(ELG, TSP500)

0 100 200 300 400 500
0

100

200

300

400

500

(l) Pair-wise similarity
(POMO,TSP500)

0 200 400 600 800 1000
0

200

400

600

800

1000

(m) Pair-wise distance
(TSP1000)

0 200 400 600 800 1000
0

200

400

600

800

1000

(n) Pair-wise similarity
(ICAM, TSP1000)

0 200 400 600 800 1000
0

200

400

600

800

1000

(o) Pair-wise similarity
(ELG, TSP1000)

0 200 400 600 800 1000
0

200

400

600

800

1000

(p) Pair-wise similarity
(POMO,TSP1000)

Figure 4: Comparison of cosine similarity between node embeddings generated by the encoders
of different models and actual pair-wise distance with different scales. It is noteworthy that darker
shades indicate lower similarity. If the node embeddings can successfully capture the instance-
specific features, its similarity matrix should share some similar patterns with the normalized inverse
distance matrix.

J CAPTURING INSTANCE-SPECIFIC FEATURES

While various approaches have been explored for integrating auxiliary information, current RL-
based NCO methods still struggle to achieve a satisfying generalization performance, especially
for large-scale instances. The RL-based models generally adopt a heavy encoder and light decoder
structure, where the quality of node embeddings generated by the encoder plays a pivotal role in
overall performance. Given the diverse geometric structures and patterns of instances across dif-

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

ferent scales, we argue that the ability of node embeddings to adaptively capture instance-specific
features across varying-scale instances is critical to improving the generalization performance.

To check whether the node embeddings can successfully capture the instance-specific features, we
calculate the correlation between pair-wise node features by using the cosine similarity between
node embeddings generated by the encoder. The cosine similarity calculation is defined as:

Similarity(ei, ej) =
ei · ej

max(∥ei∥2 · ∥ej∥2, ϵ)
=

∑dim
k=1 ei,k × ej,k

max(
√∑dim

k=1 e
2
i,k ×

√∑dim
k=1 e

2
j,k, ϵ)

(14)

where ei and ej represent the embeddings generated by the encoder of node i and node j, respec-
tively, dim is the embedding dimension, ϵ is a small value to avoid division by zero (ϵ = 1e − 8 in
this work). It is easy to check the range of Similarity(ei, ej) is [−1, 1]. A similarity value 1 means
the two compared embeddings are exactly the same, a value −1 means they are in the opposite di-
rection. Once we have this similarity matrix for embeddings, we can compare it with the distance
matrix of nodes to check whether they share similar patterns. For an easy visualization compari-
son, we can calculate the inverse distance matrix with the component d̂ij = maxi,j dij − dij and

further normalize the whole matrix to the range [−1, 1] via d̂ij = 2 · d̂ij

maxi,j d̂ij
− 1, where a value

d̂ij = 1 means node i and node i are at exactly the same location, and d̂ij = −1 means they are far
away from each other. In this way, if the node embeddings can successfully capture the instance-
specific features, its similarity matrix should share some similar patterns with the normalized inverse
distance matrix.

We have conducted a case study on TSP to demonstrate the instance-conditioned adaptation ability
for different models, where the results are shown in Figure 4. According to the results, the repre-
sentative RL-based models (i.e., ELG and POMO) all fail to effectively capture instance-specific
features in their node embeddings. On the other hand, our proposed ICAM can generate instance-
conditioned node embeddings, of which the embedding correlation matrix shares similar patterns
with the original distance matrix. These results clearly show that ICAM can successfully capture
instance-specific features in its embeddings, which leads to its promising generalization perfor-
mance.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

K COMPARSION OF DIFFERENT INFERENCE STRATEGIES

Table 26: Experimental results with different inference strategies on TSP instances.

TSP100 TSP200 TSP500 TSP1000
Method Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

Concorde 7.7632 0.000% 34m 10.7036 0.000% 3m 16.5215 0.000% 32m 23.1199 0.000% 7.8h

BQ greedy 7.7903 0.349% 1.8m 10.7644 0.568% 9s 16.7165 1.180% 46s 23.6452 2.272% 1.9m
BQ bs16 7.7644 0.016% 27.5m 10.7175 0.130% 2m 16.6171 0.579% 11.9m 23.4323 1.351% 29.4m
LEHD greedy 7.8080 0.577% 27s 10.7956 0.859% 2s 16.7792 1.560% 16s 23.8523 3.168% 1.6m
LEHD RRC100 7.7640 0.010% 16m 10.7096 0.056% 1.2m 16.5784 0.344% 8.7m 23.3971 1.199% 48.6m

ICAM 7.7991 0.462% 5s 10.7753 0.669% <1s 16.6978 1.067% 4s 23.5608 1.907% 28s
ICAM RRC100 7.7950 0.409% 2.4m 10.7696 0.616% 14s 16.6886 1.012% 2.4m 23.5488 1.855% 16.8m
ICAM bs16 7.7915 0.365% 1.3m 10.7672 0.594% 14s 16.6889 1.013% 1.5m 23.5436 1.833% 10.5m

As detailed in Table 26, we can see that upon attempting to replace the instance augmentation strat-
egy with beam search or RRC strategies, it is observed that there is no significant improvement in
the performance of our model. However, incorporating RRC technology into the LEHD model and
implementing beam search technology into the BQ model both result in substantial enhancements
to the performance of respective models.

We think that different model structures could require different structure-specific search-based de-
coding methods for efficient inference. For example, LEHD is a heavy decoder model that learns
to construct partial solutions in a supervised learning manner. Therefore, the search method based
on random partial solution reconstruction (RRC) could work pretty well with LEHD. On the other
hand, BQ uses the bisimulation quotienting approach to reduce the state space of the MDP formula-
tion for the combinatorial optimization problem, which exploits the symmetries of each problem for
efficient problem-solving. The beam search approach can further leverage the reduced state space
learned by BQ, and hence lead to promising search performance. Our proposed ICAM model lever-
ages instance-conditioned information for efficient solution construction. However, RRC and beam
search do not consider this information, which leads to a relatively smaller improvement. The design
of an efficient search-based decoding method for ICAM is an important future work.

L LICENSES FOR USED RESOURCES

Table 27: List of licenses for the codes and datasets we used in this work

Resource Type Link License

Concorde (Applegate et al., 2006) Code https://github.com/jvkersch/pyconcorde BSD 3-Clause License
LKH3 (Helsgaun, 2017) Code http://webhotel4.ruc.dk/˜keld/research/LKH-3/ Available for academic research use
HGS (Vidal, 2022) Code https://github.com/chkwon/PyHygese MIT License
OR-Tools (Perron & Furnon, 2023) Code https://github.com/google/or-tools Apache-2.0 License
H-TSP (Pan et al., 2023) Code https://github.com/Learning4Optimization-HUST/H-TSP Available for academic research use
GLOP (Ye et al., 2024) Code https://github.com/henry-yeh/GLOP MIT License
POMO (Kwon et al., 2020) Code https://github.com/yd-kwon/POMO/tree/master/NEW_py_ver MIT License
ELG (Gao et al., 2024) Code https://github.com/gaocrr/ELG MIT License
Pointerformer (Jin et al., 2023) Code https://github.com/pointerformer/pointerformer Available for academic research use
MDAM (Xin et al., 2021) Code https://github.com/liangxinedu/MDAM MIT License
Omni VRP (Zhou et al., 2023) Code https://github.com/RoyalSkye/Omni-VRP MIT License
INViT (Fang et al., 2024) Code https://github.com/Kasumigaoka-Utaha/INViT Available for academic research use
LEHD (Luo et al., 2023) Code https://github.com/CIAM-Group/NCO_code/tree/main/single_objective/LEHD Available for any non-commercial use
BQ (Drakulic et al., 2023) Code https://github.com/naver/bq-nco CC BY-NC-SA 4.0 license

Cross-distribution TSPs(Zhou et al., 2023) Dataset https://github.com/RoyalSkye/Omni-VRP/tree/main/data/TSP/Size_Distribution MIT License
Cross-distribution CVRPs(Zhou et al., 2023) Dataset https://github.com/RoyalSkye/Omni-VRP/tree/main/data/CVRP/Size_Distribution MIT License
TSPLIB (Reinelt, 1991) Dataset http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/ Available for any non-commercial use
CVRPLIB (Uchoa et al., 2017) Dataset http://vrp.galgos.inf.puc-rio.br/index.php/en/ Available for academic research use

We list the used existing codes and datasets in Table 27, and all of them are open-sourced resources
for academic usage.

28

https://github.com/jvkersch/pyconcorde
http://webhotel4.ruc.dk/~keld/research/LKH-3/
https://github.com/chkwon/PyHygese
https://github.com/google/or-tools
https://github.com/Learning4Optimization-HUST/H-TSP
https://github.com/henry-yeh/GLOP
https://github.com/yd-kwon/POMO/tree/master/NEW_py_ver
https://github.com/gaocrr/ELG
https://github.com/pointerformer/pointerformer
https://github.com/liangxinedu/MDAM
https://github.com/RoyalSkye/Omni-VRP
https://github.com/Kasumigaoka-Utaha/INViT
https://github.com/CIAM-Group/NCO_code/tree/main/single_objective/LEHD
https://github.com/naver/bq-nco
https://github.com/RoyalSkye/Omni-VRP/tree/main/data/TSP/Size_Distribution
https://github.com/RoyalSkye/Omni-VRP/tree/main/data/CVRP/Size_Distribution
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://vrp.galgos.inf.puc-rio.br/index.php/en/

	Introduction
	Instance-Conditioned Adaptation
	Motivation and Key Idea
	Instance-Conditioned Adaptation Function
	Instance-Conditioned Adaptation Model

	Experiments
	Ablation Study
	Conclusion, Limitation, and Future Work
	Related Work
	Non-conditioned NCO
	Varying-scale Training in NCO
	Information-conditioned NCO

	Comparison between Different Incorporation Approaches
	Attention Free Transformer
	AFT vs. MHA
	Model Architecture
	Hyperparameter and Training Settings
	Results on TSP Instances with Scale >1,000
	Results on Benchmark Dataset
	Ablation Study
	Effects of Components of Adaptation Function
	Effects of Adaptation Function
	Effects of Different Stages
	Effects of Deeper Encoder
	Effects of Larger Training Scale
	Effects of Different  Settings
	Parameter Settings in Stage 3
	ICAM vs. POMO with Three-stage Training Scheme
	Comparison under the Same Training Setting
	The Performance of POMO-Adaptation
	Complexity Analysis

	Capturing Instance-specific Features
	Comparsion of Different Inference Strategies
	Licenses for Used Resources

