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Abstract

As online education becomes popular, open001
course platforms represented by MOOCs have002
collected a large number of course videos.003
How to identify and extract course concepts004
in MOOC videos accurately has become a005
fundamental problem in course content anal-006
ysis and recommendation. However, since the007
course concepts in video subtitles are com-008
plex and diverse, using character features is009
not enough to understand concept semantics010
and identify their boundaries. Thus, we pro-011
pose a Multi-Granularity Semantic-Enhanced012
(MGSE) model, which unifies information at013
word and context granularity, to enhance char-014
acter representations encoded by a pre-trained015
language model. For word granularity, we de-016
sign a word assignment policy and a word qual-017
ity evaluation strategy. For context granularity,018
we devise a dual-channel attention module to019
fuse global and similar context information rel-020
evant to course concepts. Experimental results021
on computer courses and economic courses in022
MoocData show that MGSE outperforms the023
baselines significantly. The ablation experi-024
ment proves that the semantics with various025
kinds of granularity help the course concept026
extraction.027

1 Introduction028

With the development of MOOCs, online education029

has become an important supplement to classroom030

education, attracting hundreds of millions of learn-031

ers. Teaching video is an important component032

in MOOCs, where the lecture content often starts033

from a single course concept, and then steps for-034

ward to a large number of course concepts. Course035

concepts are the core elements of the course con-036

tent. Thus extracting the course concepts from037

MOOCs video subtitles helps to refine the key in-038

formation of the videos, which is the fundamental039

part of the course content analysis and recommen-040

dation.041

Table 1: POS of words in different entities and course
concepts.

Entity Part of speech

Person 张三 (ZhangSan) /np; 小明 (XiaoMing)
/np

Location 北京 (Beijing) /ns;江西 (Jiangxi) /ns

Organization 教育部 (Ministry of Education) /ni;中国
(China) /ns;港口协会 (Port Association)
/ni; 财政部 (Ministry of Finance) /ni; 美
国 (American) /ns;卫生组织 (Health Or-
ganization) /ni

Concept 绝对 (absolute) /a; 地址 (address) /n; 文
件(file) /n; 描述符 (descriptor) /n; 异常
(exception) /a; 自 (auto) /p; 编码器 (en-
coder) /n;堆 (heap) /q; buffer /e; main /e;
函数 (function) /n

Term extraction and entity extraction methods 042

based on deep learning are fruitful. These methods 043

encode characters or words at sentence granular- 044

ity and use CRF (Conditional Random Field) to 045

find the optimal path after label prediction (Huang 046

et al., 2015). However, course concept extraction 047

from video subtitles on Chinese MOOCs has its 048

particularities as follows. 049

Firstly, the words in Chinese Moocs are domain- 050

specialized, their part of speech (POS) are diverse 051

and there are underlying patterns between the POS 052

(as shown in Table 1). Besides, the Chinese course 053

concept often appears in the form of a phrase. Thus, 054

domain specialization, the pattern rule of the POS, 055

and the tendency to form a phrase are important for 056

candidate word selection in Chinese course concept 057

extraction. 058

Secondly, Chinese text has no space separator 059

between words as in English. This makes boundary 060

recognition more important for course concept ex- 061

traction on Chinese Moocs. For instance, when 062

extracting the course concept “自编码器(auto- 063

encoder)”, some course concepts such as “自编 064
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Table 2: The contexts related to course concepts “过程
调用(procedure call)”.

那么，再讲讲过程调用。我们说过c语言，可以看
成是过程、套过程的一种语言了，在里面反复的
做调用，那么可以利用栈并行的这个规律来支持
过程调用与返回。实际上这个很简单，大家想想
看，过程调用一级，套用一级。过程调用，一般
来说，先被调用的过程肯定是后返回，后被调用
的过程肯定是先返回，所以它的工作属性跟栈的
工作原理很像。所以这样子话呢，我们就可以利
用栈来支持过程调用。(Next, let’s talk about pro-
cedure call. We have mentioned that programming
language C can be seen as a language with procedures
and nested procedures. When executing call to pro-
cedure, the stack mechanism could be used to support
procedure call and return. Actually, this is very sim-
ple. Let’s think about it, when a procedure is defined,
the procedure is nested in its upper procedure. if a
procedure is called, a stack is used to save the state
of the upper calling procedure, pass parameters to
the called procedure, and store local variables for the
currently executing procedure.)

码(auto-encoding)”, “编码(encoding)” and “编码065

器(encoder)” may increase the difficulty of con-066

cept recognition. To handle this problem, most067

approaches introduce word information into the068

model based on character granularity (Zhang and069

Yang, 2018; Ma et al., 2019) but they all ignore the070

different effects of these words.071

Lastly, the related course concepts in Chinese072

MOOCs are dispersed in the whole video subtitle.073

For example in Table 2, the course concepts “过074

程调用 (procedure call)”, “过程 (procedure)”, and075

“调用 (call)” are repeatedly mentioned under rele-076

vant contexts. However, few existing works (Xu077

et al., 2018) consider the relevant context in term078

or entity extraction tasks.079

Moreover, illegal label sequence is a big chal-080

lenge because Chinese course concepts often con-081

sist of many characters and the nested concepts082

occur frequently in MOOC videos. Considering083

the particularities mentioned above, we propose084

a Multi-Granularity Semantic-Enhanced (MGSE)085

model for concept extraction on Chinese MOOCs.086

The contributions of this work are as follows.087

• We propose MGSE, which unifies semantics088

on word and context granularity to enhance089

character representations encoded by the pre-090

trained language model. Besides, we use091

masked CRF to alleviate the illegal label se-092

quence.093

• For word granularity enhancement, we pro-094

pose a new word quality evaluation strategy095

and a novel word assignment strategy. For 096

context granularity, we design a dual-channel 097

attention module to utilize the information rel- 098

evant to course concepts in both global context 099

and similar context. 100

• The experimental results on computer courses 101

and economic courses in MoocData show 102

that the MGSE model achieves F1 values of 103

91.05% and 89.34% respectively, outperform- 104

ing advanced SoftLexicon and FLAT models. 105

2 Related Work 106

The course concept extraction task is usually ac- 107

complished using the Named Entity Recognition 108

(NER) method. Early NER methods are mainly 109

based on rules and statistics (Stanković et al., 2016; 110

Khan et al., 2016; Pan et al., 2017). Afterward, 111

deep learning methods have a significant advantage 112

for NER task (Kucza et al., 2018; Huang et al., 113

2021). In this section, we describe the existing 114

work in general and specific domains respectively. 115

In the general domain, to recognize the entity 116

boundary, most researchers introduced word gran- 117

ularity enhancement methods based on sequence 118

labeling at character granularity. Zhang and Yang 119

(2018) proposed the Lattice LSTM model to en- 120

hance the entity boundary information by incor- 121

porating words from external lexicons. However, 122

this model only considers words ending with the 123

current character. SoftLexicon model proposed 124

by Ma et al. (2019) differs the word clusters with 125

character position in the word, which ignores word 126

differences in the same word clusters. Moreover, 127

the FLAT model proposed by Li et al. (2020) also 128

encodes word positions in sentences. Based on 129

the pre-training idea of the FLAT model, Lai et al. 130

(2021) proposed Lttice-BERT to improve its focus 131

on words. 132

Extracting course concepts from MOOC video 133

subtitles is the domain-specific entity extraction 134

task. For example, in the domain of bridge inspec- 135

tion, Li et al. (2021) proposed a named entity recog- 136

nition method based on the Transformer-BiLSTM- 137

CRF model to address domain issues such as char- 138

acter polysemy, contextual location correlation, and 139

orientation sensitivity in entities. In the domain of 140

craft, Jia et al. (2022) proposed a CNN-BiLSTM- 141

CRF neural network model incorporating domain 142

knowledge such as rules and dictionaries at en- 143

tity regularity. In the domain of product attribute 144
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Figure 1: The architecture of MGSE model

extraction, Zhang and Yang (2018) explored the145

sensitivity of multiple pre-trained language models146

in terms of text length, attribute value distribution,147

and noise in domain data.148

In the above works, machine learning and deep-149

learning-based methods mostly focus on the char-150

acters in the sentence while labeling the character151

sequence. Moreover, these models apply either to152

a general domain or to a specific domain, with less153

consideration of characteristics of course concepts154

in video subtitles on MOOCs. Although some mod-155

els could effectively identify entities or terms by156

using external resources and knowledge of word157

granularity, they ignore the effect of different words158

on course concepts.159

3 The MGSE Model160

The overall structure of MGSE is shown in Figure161

1. Apart from Input, MGSE contains four parts.162

They are Encoding, Word Enhancement, Context163

Enhancement, and Decoding.164

MGSE uses Lattice-BERT pre-trained language165

model to encode characters in the input sentence.166

Moreover, a lexicon is employed when we select167

candidate words from the input sentence before168

word enhancement.169

In the word enhancement, we design a word170

assignment strategy to make candidate words sep-171

arated by character’s position. Besides, a word172

quality evaluation strategy is devised to judge how 173

likely a candidate word is to be treated as a concept. 174

In the context enhancement, we propose a dual- 175

channel attention mechanism to incorporate global 176

and similar context information of the input sen- 177

tence. Finally, Masked CRF is employed for de- 178

coding. 179

3.1 Character Encoding 180

We use Lattice-BERT to enhance the seman- 181

tics at character granularity. For the input sen- 182

tence s in the MOOCs video subtitle V , s = 183

< c1, c2, · · · , cn > and ci is the i-th character 184

in s. ci is embedded as a vector representation 185

xi
LB = eLBd1 (ci), where eLBd1 is the mapping table 186

of the character vectors in the Lattice-BERT, and 187

d1 is the dimension of xiLB . 188

3.2 Word Enhancement 189

Word enhancement is designed to model the po- 190

sition of the character in a candidate word and to 191

evaluate the likelihood of the word being a course 192

concept or a part of it. It consists of a word as- 193

signment unit and a word quality evaluation unit. 194

195

3.2.1 Word Assignment 196

As mentioned before, existing works ignored the 197

different effects of words where the character oc- 198

curs at different positions. Thus, we assign words 199
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Figure 2: An example of word clusters

to different clusters based on the characters’ po-200

sition in words. The steps are as follows. For201

character ci in sentence s, we first find candidate202

words in sentence s by searching the lexicon. Then203

we assign candidate words to four word clusters204

B(ci),M(ci),E(ci) and S(ci) respectively accord-205

ing to the position of ci in candidate words. An206

example is given in Figure 2. The word clusters are207

defined as follows:208

B(ci) ={w = [ci, ci+1, ..., cl], w ∈ D, i < l ≤ n},
M(ci) ={w = [cj , ..., ci, ..., cl], w ∈ D

1 ≤ j < i < l ≤ n},
E(ci) ={w = [cj , ..., ci−1, ci], w ∈ D, 1 ≤ j < i},
S(ci) ={w = [ci], wi ∈ D},

(1)209

where D is a large-scale lexicon. This strategy210

further enhances the character information and fa-211

cilitates boundary recognition.212

The Category Semantics of Word Clusters.213

Referring to Ma et al. (2022), we enhance the se-214

mantics of word clusters with the prior information215

as shown in Table 3 to help boundary recognition.216

There are four categories of word clusters, B,M,E,217

and S, and each category has unique semantics.218

For example, B(ci) is the word cluster in which219

all words started with the current character ci. The220

category semantics of word clusters, denoted by221

xCS
l , are encoded by BERT.222

3.2.2 Word Quality Evaluation223

The word quality is used to evaluate the likelihood224

of words in a word cluster being a course concept or225

a part of a course concept. The evaluation is carried226

out from three perspectives based on statistics and227

rules.228

Phrase Measurement. Phrase measurement229

evaluates the likelihood that a candidate word com-230

posed of multiple characters is a complete word,231

according to the statistics on the MOOCs dataset.232

In this paper, we evaluate each word w in the word233

Table 3: Category semantics of word clusters

Word
Category Description

Cluster

B Current character occurs at the beginning of
these words.

M Current character occurs at the middle of these
words.

E Current character occurs at the end of these
words.

S Current character is a word.

clusters by PMI (Pointwise Mutual Information), 234

which is the co-occurrence frequency of the pre- 235

fixes and the suffixes making up the word. Specif- 236

ically, each word w = {c1, c2, · · · , ck}(k > 1) 237

is split into fi = c1, · · · , ci (prefix) and bi = 238

ci+1, · · · , ck (suffix), where i = 1, · · · , k 1. The 239

phrase score pm(w) of w is defined as follows: 240

pm(w) = max{pmi(fi, bi)|i = 1, ..., k 1}. (2) 241

Domain Specificity. Domain specificity evalu- 242

ates the likelihood that a word belongs to a specific 243

domain. Domain-related concepts usually occur 244

with higher frequency in the domain corpus than 245

that in the general corpus. The domain specificity 246

ds(w) of word w = {c1, c2, ..., ck} is calculated as 247

follows: 248

ds(w) =
1

|w|
∑
ci∈w

log
PM (ci)

PC(ci)
, (3) 249

where |w| denotes the number of characters in w, 250

PM (ci) and PC(ci) denote the probability that the 251

character ci occurs in the domain corpus M and in 252

the reference corpus C respectively. In this paper, 253

the domain corpus M is the MOOCs dataset, and 254

the reference corpus C is the BCC corpus1. 255

Pattern Rule of the POS. Words with different 256

POS have different possibilities to be the whole 257

or part of a course concept. Based on rule-based 258

methods(Pan et al., 2017), we construct a pattern 259

rule to select words for course concepts. Given 260

a sentence s which is split into words with POS, 261

word w in sentence s has a higher possibility of 262

being a course concept or being a part of it if the 263

POS of w satisfies the Parten Rule PR, and the 264

corresponding weight pr(w) is defined as follows: 265

pr(w) =

{
1 + α, w satisfies the PR
1− α, others

(4) 266

1http://bcc.blcu.edu.cn/
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267
PR =((((A|N) + |(A|N))|ENG ∗ (NP )?

(A|N)∗)N)|ENG∗
(5)268

where A, N, P and ENG denote adjectives, nouns,269

prepositions, and English characters respectively,270

and α ∈ [0, 1] is a predefined parameter.271

Comprehensive Quality Assessment. After272

phrase measurement, domain specificity eval-273

uation, and pattern rule matching for word w,274

these scores are weighted and summed to cal-275

culate the vector representation xWw of w as follows:276

xWw = [W1 · pm(w) +W2 · ds(w) +W3 · pr(w)] · eWd2 (w)277

where eWd2 (w) denotes the mapping table from278

Word2vec, d2 is the dimension of xWw , and W1,W2279

and W3 are learnable parameters. The vector280

representation of a word clusters l, xLl , is defined281

as the mean of the embeddings of all words in l as282

follows:283

xLl =
4

Z

∑
w∈l

xWw , (6)284

where Z =
∑

w∈L[W1 · pm(w) + W2 · ds(w) +285

W3 · pr(w)] is the normalization factor, l ⊂286

{B(ci),M(ci),E(ci), S(ci)}, and L = B(ci) ∪287

M(ci) ∪ E(ci) ∪ S(ci).288

We concatenated xLl with the category seman-289

tics xCS
l (the dimension is reduced to the same as290

xLl by a fully connected layer) to obtain the final291

vector representation xLCS
l of the word cluster l as292

follows:293

xLCS
l = [xLl ;x

CS
l ]. (7)294

The lexical representation of characters ci is the295

concatenation of all representations on various296

word clusters as follows:297

xSEG
i = [xLCS

B ;xLCS
M ;xLCS

E ;xLCS
S ]. (8)298

Finally, the Lattice-BERT vector representation299

xLBi and the lexical representation xSEG
i of charac-300

ter ci are concatenated together to obtain the final301

representation xCi of ci :302

xCi = [xLBi ;xSEG
i ], (9)303

xCi incorporates the information about the candi-304

date words where ci occurs, which can enhance the305

semantic expression and the boundary discrimina-306

tion for the proposed model.307

The first layer BiLSTM is used to model the308

inter-character dependencies in the sentence. The309

hidden representation hCi of character ci is as fol-310

lows:311

hCi =
[−−−−→
LSTM(xCi );

←−−−−
LSTM(xCi )

]
, (10)312

where hCi considers only the sentence context in 313

which the character occurs. 314

3.3 Context Enhancement 315

The entire MOOC document V in which a course 316

concept occurs is helpful for course concept ex- 317

traction. However, MOOC documents are usually 318

long and the process of the instructor’s lecture is 319

relatively free, i.e. adding or switching topics de- 320

pending on student reception and classroom scenar- 321

ios, which results in the context related to a certain 322

course concept scattered at different time points 323

in the videos. We design a dual-channel attention 324

mechanism module to model context semantics in 325

Chinese MOOCs. 326

We rank all sentences in the MOOCs document 327

where the input sentence s occurs based on the 328

FBERT score from BERTScore Zhang et al. (2019), 329

and the top-k sentences that are most semantically 330

relevant to s are selected as the Similar Context S. 331

Specifically, each sentence in the similar con- 332

text S is embedded by BERT, and its dimension 333

is reduced to the same as hCi , denoted by hBj 334

(j = 1, ..., k). The attention mechanism is em- 335

ployed to get the semantic of S, denoted by hSi , 336

concerning the character ci. 337

αi,j =
exp(score(hCi , h

B
j ))∑k

t=1 exp(score(h
C
i , h

B
t ))

score(hCi , h
B
j ) =

(hBj )
T · hCi√
d3

hSi =
k∑

j=1

αi,j h
B
j

(11) 338

where d3 is the dimension of the sentence vector. 339

Similarly, we can obtain the global context em- 340

bedding hGi based on all sentences in V . Both of 341

hGi and hSi are concatenated together to obtain the 342

context vector hSGi of character ci : 343

hSGi = [hSi ;h
G
i ]. (12) 344

Finally, the representation hCi from the first layer 345

of BiLSTM and its context vector hSGi are concate- 346
nated, which is fed into the second layer of BiL- 347

STM to obtain the final representation hCSG
i of the 348

character ci as follows: 349

hCSG
i = [

−−−−→
LSTM([hC

i ;h
SG
i ]);

←−−−−
LSTM([hC

i ;h
SG
i ])]. (13) 350

3.4 Masked CRF Decoding 351

For decoding, the label sequence should satisfy 352

some constraints when extracting course concepts 353
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by the sequence labeling method. For example,354

“B” (the first character in the course concept) is355

before “M” (the middle character in the course con-356

cept), thus the label sequence “O M O” (“O” is357

a non-course concept character) is an illegal path.358

Although the CRF model has its constraint for la-359

bels, the constraint is relatively weak. To eliminate360

the illegal transfers in MGSE, instead of using ran-361

dom initialization, we modify the transfer matrix362

of CRF by a masked matrix, where all illegal trans-363

fers are masked by a very small transfer probability.364

As shown in Figure 1, the transfer probability of365

all illegal transfers (gray part) in the mask transfer366

matrix is set to a very small value ϵ.367

Let Ω be the set of all illegal transfers, we use368

equations 14 to obtain the masked transfer matrix369

A for a given transfer matrix A, where ϵ << 0, and370

δi,j is the trainable transfer probability.371

δi,j =

{
ϵ, if(i, j) ∈ Ω
δi,j , otherwise

(14)372

For the input sentence s =< c1, c2, ..., cn > and373

the predicted label sequence ŷ =< y1, y2, ..., yn >,374

the scores of ŷ is calculated as follows.375

Score(s, ŷ) =

n∑
i=0

δ̄yi,yi+1 +

n∑
i=1

pi,yi (15)376

where the δyi,yi+1 is the probability that label yi377

transfers to yi+1 in the masked transfer matrix A,378

and pi,yi is the probability that ci has label yi ,379

which is the output of softmax layer with hCSG
i380

as input. Suppose all possible paths are denoted381

by Y and all illegal paths are denoted by I , the382

Masked CRF restricts the "path space" to all legal383

paths Y /I . The model is trained by maximizing the384

probability of the ideal path y in Equation 16. The385

path y∗ with the highest probability is calculated386

by Equation 17 when testing.387

p(y|s) = exp(Score(s, y))∑
ȳ∈Y/I exp(Score(s, ȳ))

(16)388

389
y∗ = argmaxȳ∈Y/I Score(x, ȳ) (17)390

4 Experiments391

4.1 Datasets and Evaluation Methods392

We use the MoocData, an open course video subti-393

tle datasets2 provided in Pan et al. (2017). Mooc-394

Data consists of four sub-datasets, that is the com-395

puter science course subset CSZH (in Chinese)396

2http://moocdata.cn/data/concept-extraction

Table 4: Datasets (CSZH, course No. 14)

Datasets #Video #Sentence #Entity #Char

Train set 104 4,650 6,804 188,615
Test set 13 580 856 22,975

Validation set 13 580 827 23,093

and CSEN (in English), and the economics course 397

subset EcoZH (in Chinese) and EcoEN (in En- 398

glish). Each subset contains course video subti- 399

tle documents and a collection of manually con- 400

structed course concepts. Since our work focuses 401

on Chinese MOOC video subtitles, for comparabil- 402

ity, we follow Huang et al. (2021) and select the 403

course numbered “14” in CSZH for model train- 404

ing and evaluation. Moreover, we examine the 405

domain adaptability of the MGSE model on the 406

course subset EcoZH. The dataset was annotated 407

by a remotely supervised method and checked by a 408

group of postgraduates majoring in computer sci- 409

ence. The annotated data are divided into train, test, 410

and validation sets according to the ratio of 8: 1: 1. 411

The statistics of the datasets are shown in Table 4. 412

The precision rate P , recall rate R and F1 value 413

are chosen as the evaluation methods. 414

4.2 Hyper-parameter Settings and Baselines 415

The hyper-parameters in MGSE are reported in 416

Table 5. The initial learning rate is set to 0.0015 417

and fine-tuned with model training. α and top- 418

k are set to 0.05 and 10 which depend on model 419

performance on the validation set. ϵ is set to -100 420

referring to (Wei et al., 2021).

Table 5: Hyper-parameters in the MGSE model

Parameter Value Parameter Value

Initial learning rate 0.0015 Optimizer Adam
LSTM hidden dim(hCi , hCSG

i ) 200 Dropout 0.5
LSTM layer 2 d1 768

d2 50 d3 200
Dimension of xLCS

l 100 α 0.05
Top-k 10 ϵ -100

421

To comprehensively evaluate the model in this 422

paper, the relevant methods on named entity recog- 423

nition and course concept extraction were selected 424

as the baselines, including BERT-BiLSTM-CRF, 425

Lattice LSTM, LR-CNN, WC-LSTM, CGN, Soft- 426

Lexicon (LSTM) + BERT, and FLAT. A detailed 427

description of the baselines is presented in the Ap- 428

pendix A. 429
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Table 6: Experimental results

Models CSZH EcoZH

P R F1 P R F1

Lattice LSTM 85.21 88.03 86.60 - - -
LR-CNN 85.55 89.81 87.63 - - -

CGN 85.10 90.45 87.69 - - -
WC-LSTM 86.20 89.57 87.86 - - -

BERT-BiLSTM-CRF 85.54 90.40 87.90 91.60 81.63 86.33
SoftLexicon+BERT 85.63 91.11 88.29 91.67 83.54 87.42

FLAT 86.54 90.63 88.53 90.09 84.24 87.07
MGSE 89.65 92.49 91.05 91.95 86.87 89.34

4.3 Experimental Results430

The experimental results for each model are shown431

in Table 6 where MGSE achieves the best results432

on P , R, and F1 values. Each result is an average433

of 5 independent runs. The result analysis is as434

follows:435

(1) Pre-training model and CRF decoding436

method are more helpful for course concept extrac-437

tion. Models like Lattice LSTM, LR-CNN, CGN,438

and WC-LSTM introduce word information at the439

character granularity, with F1 values of 1.30%,440

0.27%, 0.21% and 0.04% lower than that of BERT-441

BiLSTM-CRF respectively, which indicates that442

pre-training model BERT and decoding model CRF443

are important for course concept extraction.444

(2) The way of introducing word information445

has a great influence on concept extraction. Al-446

though Lattice LSTM, LR-CNN, WC-LSTM, and447

CGN are word enhancement models, LR-CNN,448

WC-LSTM, and CGN are proposed to address the449

problems of word conflict, the inability of paral-450

lel batch training, and the inefficient utilization of451

word information in Lattice LSTM respectively,452

with F1 values improved by 1.03%, 1.26% and453

1.09%, compared with the Lattice LSTM model.454

(3) Overall, the FLAT model is outperformed455

in introducing word information. SoftLexicon456

(LSTM) + BERT model and FLAT model introduce457

word information in different ways, however, the458

former encodes character position in the word, and459

the latter encodes word position in the sentence. In460

terms of performance, FLAT has 0.91% higher F1461

values compared to SoftLexicon (LSTM) + BERT.462

(4) Multi-granularity semantic enhancement pro-463

vides useful information for the semantics and464

boundaries recognition of course concepts. MGSE465

model improves the F1 value by 2.76% and 2.52%466

compared to SoftLexicon (LSTM) + BERT and467

FLAT respectively, indicating that the combination468

of semantics with multiple granularities at word469

and context can effectively enhance the semantic470

Table 7: Ablation experimental results

Model P R F1

MGSE 89.65 92.49 91.05
- Lattice BERT 87.90 88.75 88.32 (-2.73%)

- Words Quality Evaluation 89.34 90.96 90.14 (-0.91%)
- Context Information 89.05 90.45 89.74 (-1.31%)
- Category Semantics 89.59 92.32 90.93 (-0.12%)

- Masked 89.47 91.66 90.55(-0.50%)

representation of course concepts, and locate the 471

boundaries of course concepts more accurately. At 472

word granularity, the importance of words in word 473

clusters is considered comprehensively by word 474

quality evaluation. At context granularity, the simi- 475

larity context and global context of candidate con- 476

cepts are introduced into the dual-channel attention 477

mechanism, which helps the model obtain richer 478

semantics and cope with more complex contexts. 479

For decoding, Masked CRF restricts illegal paths 480

better than traditional CRF. 481

(5) The MGSE model is good at domain adapt- 482

ability. To verify its adaptability on different course 483

domains, we directly apply the POS pattern rule 484

and hyper-parameters constructed or trained on 485

CSZH to EcoZH. Compared to the BERT-BiLSTM- 486

CRF, SoftLexicon (LSTM) + BERT, and FLAT that 487

performed well, the MGSE model still has 3.01%, 488

1.92%, and 2.27% higher F1 values respectively. 489

4.4 Ablation Experiments 490

To verify the role and effect of each module in the 491

MGSE model, ablation experiments are conducted 492

in this section. The model using Bert instead of the 493

pre-trained Lattice-BERT for sentence encoding is 494

denoted as: - Lattice BERT; the model removes 495

word quality evaluation module, dual-channel at- 496

tention module or semantics of word clusters is 497

denoted as: - Words Quality Evaluation, - Context 498

information or - Category Semantics, respectively; 499

the model replaces Masked CRF with CRF is de- 500

noted as: - Masked. The results of the ablation 501

experiment are shown in Table 7. 502

The results in Table 7 show that the F1 of MGSE 503

decreases by 2.73% after removing the Lattice- 504

BERT model, which indicates that the introduction 505

of word-lattice structure enriches the character rep- 506

resentation. The F1 values decreased by 0.91%, 507

0.12%, 1.31%, and 0.50% after removing the word 508

quality evaluation module, the category semantic 509

module of word clusters, the dual-channel attention 510

module, and the Masked CRF model, which indi- 511

cates that the semantic enhancement methods with 512
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these modules at different granularities are suit-513

able for course concept extraction from Chinese514

MOOCs video subtitle.515

4.5 Case Analysis516

Some extraction cases of the MGSE model are517

shown in Table 8. In Case 1, the SoftLexicon518

model annotates “内存访问地址 (Memory Ac-519

cess Address)” as a sequence of “B E M M M E”,520

where the label of character “存(Store)” is identi-521

fied as “E”, resulting in the whole path containing522

an illegal transfer “E M”. Although the nested con-523

cept “内存(Memory)” was extracted, it is an incom-524

plete concept in this sentence. Similarly, the FLAT525

model labels “循环体 (Loop Body)” in Case 2 as526

“B M O”, where “M O” is also an illegal transfer, re-527

sulting in incomplete extraction of concept. In both528

cases, SoftLexicon and FLAT models not only get529

some illegal transfers but also make some mistakes530

on the boundary identification. The MGSE model531

gets the right answers by improving the identifica-532

tion of course concept boundaries through multiple533

granularity semantics and eliminating the illegal534

paths by Masked CRF.535

Table 8: Cases extracted by the MGSE model

No. Results annotated by MGSE model (the labels
in brackets are the ideal labels)

1 因/O(O) 为/O(O) 内/B(B) 存/M(M) 访/M(M)
问/M(M) 地/M(M) 址/E(E) ，/O(O) 它/O(O)
并/O(O)不/O(O)存/O(O)在/O(O)。/O(O)

2 我/O(O) 在/O(O) 循/B(B) 环/M(M) 体/E(E)
内/O(O) 部/O(O) 做/O(O) 完/O(O) 这/O(O)
个/O(O)计/O(O)算/O(O)。/O(O)

3 压/B(B) 栈/E(E) 实/O(O) 际/O(O) 上/O(O)
就/O(O) 是/O(O) 一/O(O) 个/O(O) 反/B(O)
操/M(O)作/E(O)。/O(O)

4 触/O(O) 发/O(O) 一/O(O) 个/O(O) 读/B(O)
地/M(O) 址/E(O) 不/O(O) 对/O(O) 齐/O(O)
的/O(O) 异/B(B)常/E(E)。/O(O)

In Case 3, the course concept “压栈 (Push536

into Stack)” is accurately identified by the MGSE537

model, but “反操作 (Reverse Operation)” is addi-538

tionally identified as a course concept. Similarly,539

the MGSE model also extracts “读地址 (Read Ad-540

dress)” in Case 4 as a course concept. As the541

model encounters course concepts like “并发操542

作 (Concurrent Operation)” and “内存地址 (Mem-543

ory Address)” during the training process, “反操544

作 (Reverse Operation)” and “读地址 (Read Ad-545

dress)” are close to these course concepts in terms546

of semantics and composition, so that they are mis-547

takenly considered as course concepts. In addition, 548

there is also ambiguity regarding whether “反操作 549

(Reverse Operation)” and “读地址 (Read Address)” 550

are course concepts or not, which poses a new chal- 551

lenge for course concept extraction models such as 552

MGSE. 553

5 Conclusion 554

We propose the MGSE model to meet the char- 555

acteristics of course concepts in Chinese MOOC 556

video subtitles. The MGSE model improves the 557

semantics expression and boundary recognition for 558

course concepts by introducing semantic informa- 559

tion at multi-granularity such as character, word, 560

and context. To discriminate the candidate words 561

where a character occurs at different positions, we 562

propose a word assignment strategy to put them 563

in different word clusters. We design a new word 564

quality evaluation strategy to enhance semantics at 565

word granularity on three aspects such as phrase 566

measurement, domain specificity, and pattern rule 567

of the POS. In addition, we propose a dual-channel 568

attention module, which incorporates global con- 569

text and similar context, to enhance semantics at 570

context granularity. For decoding, we use masked 571

CRF to eliminate illegal label sequences. The ex- 572

perimental result shows that by combining the se- 573

mantic information at character, word, and context 574

granularity, the MGSE model outperforms the base- 575

lines in extracting course concepts from Chinese 576

MOOC video subtitles. 577

6 Limitations 578

The case study on MGSE reveals that some words 579

or phrases are similar to course concepts in terms of 580

semantics and composition, which are difficult to 581

extract for MGSE. In addition, MGSE cannot iden- 582

tify the importance of a concept for the MOOCs 583

document, thus, the extracted concepts cannot rep- 584

resent the core content of the MOOCs video sub- 585

title. Furthermore, the performance of MGSE de- 586

creases when it transfers to courses in the domain 587

different from the training courses. 588
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A Appendix679

The details of the baselines used in this paper are680

introduced as follows.681

(1) BERT-BiLSTM-CRF. The pre-trained BERT682

language model extracts contextual features of char-683

acters, which improves extraction performance ef-684

fectively. The model is widely used for named685

entity extraction in various domains. For example,686

Wu et al. (2020) used this model to extract Chinese687

professional terms; Huang et al. (2021) applied this688

model on MOOCs to extract course concepts from689

video subtitles.690

(2) Lattice LSTM. Errors coming from Chinese691

word separation impair the performance of NER692

models. To address this issue, Zhang and Yang693

(2018) proposed a lexical enhancement model,694

which effectively alleviates this problem by inte-695

grating candidate words into the character-based696

approach with the LSTM network.697

(3) LR-CNN. To reduce word conflicts in Lat-698

tice LSTM, Gui et al. (2019) used CNN to stack699

and encode characters, and incorporated lexical700

information with an attention mechanism.701

(4) WC-LSTM. To address parallel batch train-702

ing in Lattice LSTM, Liu et al. (2019) adopted four703

strategies to fix the word representation.704

(5) CGN. Considering the inefficient use of705

words in Lattice LSTM, Sui et al. (2019) exploit706

word knowledge to fuse word information into char-707

acter representations with a graph attention network708

GAN, which is based on a collaborative graph net-709

work consisting of an encoding layer, a graph net-710

work layer, a fusion layer, and a decoding layer.711

(6) SoftLexicon (LSTM) + BERT. To reduce712

information loss in words, Ma et al. (2019) intro-713

duced character position in words. In addition,714

considering the advantages of pre-trained models715

in character representation, they combined the Soft-716

Lexicon (LSTM) model with BERT, naming as717

“SoftLexicon (LSTM) + BERT”.718

(7) FLAT. Li et al. (2020) used the word-lattice719

structure to integrate word-level information into720

the character-level and encoded the relative posi-721

tion of words in sentences.722
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