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original mesh 
(only for reference)point cloud input

Summarize the 3D point cloud 
object briefly.

The object is a model of two black 
pens lying on a rectangular, smooth 
surface.

original mesh 
(only for reference)point cloud input

The 3D model represents a 
traditional windmill, characterized 
by its circular base and tall vertical 
blades. The mill is painted in 
shades of brown to mimic the color 
of wood or stone used in real-life 
mills. It's positioned on top of a 
green field, suggesting it could be 
part of an agricultural setting or 
historical site.

Elaborate on the details of this 
point cloud, please.

original mesh 
(only for reference)point cloud input

This is a 3D model of an ornate, 
antique-style globe. The globe 
features intricate designs and 
patterns that suggest it might be 
from the Renaissance period or 
earlier. It's mounted on a sturdy 
wooden base with four legs for 
stability. This type of globe could 
serve as both a decorative piece in 
homes or offices due to its aesthetic 
appeal, while also being 
educational tool for learning about 
geography.

I am interested in this, can 
you explain?

original mesh 
(only for reference)point cloud input

What is this? 

This is a 3D model of a gold ring 
with a blue gemstone in the center.

original mesh 
(only for reference)point cloud input

What kind of dinosaur is this?

This is a Tyrannosaurus Rex.

How long have dinosaurs been 
extinct?

Dinosaurs have been extinct for 
approximately 65 million years.

What might have caused the 
extinction?

The extinction of dinosaurs is still 
speculative and can be attributed 
to multiple factors including 
climate change, catastrophic 
events like asteroid impacts or 
volcanic eruptions.

original mesh 
(only for reference)point cloud input

How many people can sit there?

This 3D model of a truck can seat 
up to two people.

Who invented the first car?

The first car was invented by Karl 
Benz, a German engineer in the 
late 19th century.

What else did Karl Benz invent?

Besides cars, Karl Benz also 
invented the first internal 
combustion engine.

(e) 3D Recognition & Captioning (f) 3D Question Answering

(a) Quantitative Comparison

Prec.

52.96

60.25
54.00

57.06
48.94

83.14
78.75

3.50
3.10

49.54
48.52

51.39
49.98

Figure 1: Demonstrations ofMiniGPT-3D.We presentMiniGPT-3D, an efficient and powerful 3D-LLM that aligns 3D point clouds
with large language models using 2D priors from large 2D vision-language models. This figure demonstrates MiniGPT-3D’s
superior performance and efficient training compared to existing 3D-LLMs. We also show some prediction examples in 3D
recognition, captioning, and question-answering tasks, with the correct and fine-grained answers highlighted in green.
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ABSTRACT
Large 2D vision-language models (2D-LLMs) have gained signif-
icant attention by bridging Large Language Models (LLMs) with
images using a simple projector. Inspired by their success, large
3D point cloud-language models (3D-LLMs) also integrate point
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clouds into LLMs. However, directly aligning point clouds with
LLM requires expensive training costs, typically in hundreds of
GPU-hours on A100, which hinders the development of 3D-LLMs.
In this paper, we introduceMiniGPT-3D, an efficient and powerful
3D-LLM that achieves multiple SOTA results while training for
only 27 hours on one RTX 3090. Specifically, we propose to align
3D point clouds with LLMs using 2D priors from 2D-LLMs, which
can leverage the similarity between 2D and 3D visual information.
We introduce a novel four-stage training strategy for modality align-
ment in a cascaded way, and a mixture of query experts module to
adaptively aggregate features with high efficiency. Moreover, we
utilize parameter-efficient fine-tuning methods LoRA and Norm
fine-tuning, resulting in only 47.8M learnable parameters, which
is up to 260× fewer than existing methods. Extensive experiments
show that MiniGPT-3D achieves SOTA on 3D object classification
and captioning tasks, with significantly cheaper training costs. No-
tably, MiniGPT-3D gains an 8.12 increase on GPT-4 evaluation score
for the challenging object captioning task compared to ShapeLLM-
13B, while the latter costs 160 total GPU-hours on 8 A800. We are
the first to explore the efficient 3D-LLM, offering new insights to
the community. We will release the code and weights after review.

CCS CONCEPTS
• Computing methodologies → Computer vision; Natural
language processing.

KEYWORDS
Multimodal Large Language Models, Efficiently Multimedia Align-
ment, 3D Point Cloud Understanding

1 INTRODUCTION
Large Language Models (LLMs) have recently driven advance-
ments in multiple fields [15, 35, 45, 46], benefiting from their world
knowledge. Built on LLMs, large 2D vision-language models (2D-
LLMs) [4, 27, 62] can align image features with text through an
image feature projector, enabling 2D-LLMs to understand visual
content. Inspired by 2D-LLMs, large 3D point cloud-language mod-
els (3D-LLMs) [39, 40, 51] aim to incorporate 3D point cloud features
into LLMs, equipping LLMs with the ability to perceive and reason
in 3D space. These 3D-LLMs hold promise for widespread applica-
tions in fields like robotics [44, 48] and autonomous driving [10, 15].
However, 3D-LLMs are expensive to train. For example, training
PointLLM-13B [51] takes 213 total GPU-hours on 8 A100 GPU, mak-
ing research and applications extremely challenging. Here, we aim
to find a more efficient way to connect 3D point clouds with LLMs.

We observe that existing 3D-LLMs directly align point cloud en-
coders with LLMs. Although these encoders can produce somewhat
unified features through multimodal pre-training, there is still a
significant modality gap between 3D points with LLMs, requiring
substantial resources for alignment. Besides, in contrast to resource-
intensive alignment between vision and language, 3D point clouds
and 2D images are both visual modalities, which makes it easier
to align their representations. Thus, we pose a question: Can we
use 2D-LLMs as a strong prior to connect LLMs and 3D data,
making alignment more efficient? In other words, as shown
in Figure 2, leveraging pre-trained 2D-LLMs directly allows for

Pre-trained 2D Priors

A single RTX 3090 (24G) 
with 26.8 GPU-Hours
is all you need!

3D-LLM

LLM

2D-LLM

3D-LLM

LLM

8 × A100 (80G) GPU
213 Total GPU-Hours

Existing Methods Ours

Figure 2: Existing methods and ours to align 3D with LLMs.

cutting down the cost of vision-language alignment, leaving only
the 2D-3D vision alignment, which is significantly cheaper.

Following this intuition, we propose MiniGPT-3D, an efficient
3D-LLM that connects 3D point clouds and LLMs using 2D-LLMs as
priors. Our MiniGPT-3D achieves multiple state-of-the-art (SOTA)
results, requiring only 27 hours of training on a single RTX 3090
GPU. Specifically, we propose an efficient four-stage training strat-
egy in a cascaded way, gradually allowing the model to learn unified
visual-textual representations. This process achieves the smooth
transfer of priors from 2D-LLM to the 3D space, thus efficiently
constructing a bridge from 3D to LLM. Moreover, we introduce the
Mixture of Query Experts (MQE), which comprises multiple query
experts and an expert router, enabling the adaptive aggregation of
features from multiple experts with only 0.4M parameters. MQE
dynamically adjusts the cooperation relationship between experts,
thereby aggregating 3D features from multiple perspectives into
the semantic space of 2D-LLM. Meanwhile, we employ various
parameter-efficient fine-tuning (PEFT) technologies like LoRA [21]
and Norm fine-tuning, and utilize an efficient LLM, further reducing
the model’s training overhead.

As shown in Figure 1, MiniGPT-3D achieves new SOTA perfor-
mance on generative 3D object classification and object captioning
tasks. Specifically, compared to the powerful baseline ShapeLLM-
13B [39], MiniGPT-3D achieves a 6.77% increase in classification
average accuracy and an 8.12 increase in GPT-4 evaluation score.
Notably, MiniGPT-3D utilizes extremely cheaper training resources
(1× RTX 3090 vs. 8× A800), with up to 6× acceleration (26.8h on
RTX 3090 vs. 160h on A800). Furthermore, our model has signif-
icantly fewer trainable parameters, reduced by up to 260×, with
2.95B model parameters in total, which is decreased by up to 4.6×.

MiniGPT-3D takes the first step in efficient 3D-LLM, we hope
that MiniGPT-3D can bring new insights to this community. In
summary, our contributions are as follows:

• We present MiniGPT-3D, an efficient and powerful 3D-LLM
that aligns 3D points with LLMs using 2D priors, achieving
multiple SOTA with only 26.8h of training on one RTX 3090.

• We propose an efficient four-stage training strategy in a
cascadedway, gradually transferring the knowledge from 2D-
LLMs to 3Dwhile requiring only 47.8M learnable parameters.

• We design the mixture of query experts to aggregate multiple
features from different experts with only 0.4M parameters.

• Extensive experiments show the superior performance of
MiniGPT-3D on multiple tasks while reducing the training
time and parameters by up to 6x and 260x, respectively.
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(b) Stage II

PC 
Encoder

Q-Former
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LLM (Phi-2)
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MLP
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Trainable
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Figure 3: Training framework and strategy. Our MiniGPT-3D utilizes a four-stage training strategy. (a) We solely train the point
cloud projection layer (MLP). (b) We train the modality projector while fine-tuning the point cloud projection layer, Q-Former,
and LLM backbone. (c) We further enhance the modules trained in the second stage by leveraging a more challenging task. (d)
Finally, we only train the mixture of query experts, while freezing the remaining modules.

2 RELATEDWORK
2.1 Large 2D Vision-Language Models
The exceptional instruction-following and generalization capabili-
ties of LLMs [46, 49, 53, 55] have been integrated into vision, leading
to the emergence of large 2D vision-language models (2D-LLMs).
Early works such as Flamingo [1] and BLIP-2 [27] successfully
use projectors to align vision information to LLMs. More recently,
most works mainly focus on improving model capabilities through
expanding the instruction-tuning dataset [5, 30, 61], increasing res-
olution of image [2, 31], enhancing image encoders [7, 59]. Mean-
while, some methods [8, 9, 57, 60] have also begun to explore ef-
ficient 2D-LLM. Models like TinyLlama [60] and TinyGPT-V [57]
use Phi-2 [33], an efficient LLM, to achieve easily deployable 2D-
LLMs. Among them, TinyGPT-V leverages LoRA [21] technology
and pre-trained modules to achieve extremely efficient fine-tuning.
However, TinyGPT-V can only handle 2D images, efficient 3D-LLM
remains unexplored, and we aim to fill this gap.

2.2 Large 3D Point Cloud-Language Models
Large 3D point cloud-language models (3D-LLMs) introduce LLM
into the point cloud modality [6, 20, 23, 29, 36, 39, 40, 51, 54]. Early
attempt [20] renders 3D objects into 2D multi-view images, then
utilizes 2D-LLM to understand 3D. However, the absence of direct
perception of raw point cloud data limits its comprehension of 3D
geometry. To address this issue, recent works [6, 23, 36, 40] pro-
pose to discard the “rendering” and encode point cloud directly,
followed by modal alignment to fixed LLMs via trainable projec-
tors. PointLLM [51] and ShapeLLM [39] show that models can be
enhanced after fully fine-tuning. However, the training of 3D-LLMs

is expensive. For instance, PointLLM-13B requires training on 8
A100 GPUs for up to 216 total GPU-hours. We observe that with
2D-LLM as visual prior, we can not only bypass the “point cloud
rendering”, but also make this hierarchical alignment extremely ef-
ficient. Therefore, we propose MiniGPT-3D, different from existing
3D-LLMs which aligns 3D points directly to LLMs, our MiniGPT-3D
leverages the powerful priors from 2D-LLM as a linkage between
LLM and 3D points, using only a RTX 3090 to train for 27 hours.

2.3 Mixture of Experts
Mixture of Experts (MoE) [22, 24] is an ensemble learning technique
that adaptively activates selected modules, referred to as experts,
based on input. MoE is widely used in various fields [14, 25, 26, 42,
43]. Shazeer et al. introduce MoE into NLP for the first time, where
each intervening layer between LSTM layers serves as an expert.
Gshard [26] further expands the MoE to Transformer [47], treating
each Feed-Forward Neural Network (FNN) as an expert. Recently,
with the emergence of LoRA, several works [13, 16, 58] design FFN’s
LoRA network as an expert to efficiently fine-tune LLM. Moreover,
OneLLM [19] introduces MoE to the learned projector of 2D-LLM,
with each projector serving as an expert. In our work, we integrate
the MoE concept into the queries of Q-Former [27], treating each
set of queries as an expert. These experts adaptively aggregate point
cloud features across diverse extraction perspectives.

3 METHOD
In this section, we first introduce the architecture of MiniGPT-3D
(Sec. 3.1), and then present our four-stage training strategy (Sec. 3.2),
and finally elucidate the training loss for MiniGPT-3D (Sec. 3.3).
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3.1 Model Architecture
Figure 3 depicts the architecture of MiniGPT-3D, which consists
of the six main components: a point cloud encoder, a point cloud
projection layer (MLP), a Q-Former, a mixture of query expert
(MQE), a modality projector, and a large language model.

The MiniGPT-3D framework introduces a two-step projection
process, transforming the point cloud from 3D to 2D and then to
1D. Specifically, the point cloud is passed to the point cloud encoder
to extract 3D features. Subsequently, features are then projected
into a 2D semantic space using the point cloud projection layer.
Finally, leveraging the 2D-LLM modules including the Q-Former,
modality projector, Norm of LLM, and LoRA of LLM, features in
2D-LLM space are transduced into the 1D-text space of LLM, en-
abling efficient alignment between 3D and LLM. Additionally, MQE
enhances MiniGPT-3D’s comprehensive and accurate perception
of 3D objects. Details are presented in the following sections.

3.1.1 3D Features to 2D. During this process, the point cloud is
encoded into 3D features and subsequently projected into the 2D
semantic space of the 2D-LLM.

Point Cloud Encoder. The input point cloud is encoded into 3D
features by the point cloud encoder 𝑓𝑝𝑐 . Specifically, the point cloud
𝑃 ∈ R𝑛×𝑑 is input to 𝑓𝑝𝑐 , where 𝑛 is the number of points and 𝑑 de-
notes the feature dimension of each point. Then, 𝑓𝑝𝑐 outputs a point
feature sequence 𝑋 ∈ R𝑚×𝑏 , comprising𝑚 features, each with a
dimension of 𝑏. In our experiments, we employ the Point-BERT [56]
model, pre-trained on ULIP-2 [52] using the Objaverse [12] dataset,
as the point cloud encoder. To maintain pre-training knowledge,
we freeze the encoder’s parameters on all training stages.

Point Cloud Projection Layer. The point cloud projection layer
𝑓𝑀𝐿𝑃 is anMLPwith two linear layers, which embeds point features
𝑋 into the semantic space of the pre-trained 2D Q-Former [27],
aligning their dimensions. Concisely, 𝑌 = 𝑓𝑀𝐿𝑃 (𝑋 ), where 𝑌 ∈
R𝑚×𝑏′ and 𝑏′ is the hidden space dimension of Q-Former.

3.1.2 Features in 2D-LLM space to LLM. This part transduces
the point cloud representation in the 2D semantic space of 2D-LLM
to the 1D text space of LLM.

Q-Former. The Q-Former 𝑓𝑄𝐹 , with a decoder-based Trans-
former structure, transforms point features 𝑌 into point queries
𝑄 . This process not only enhances the information extracted from
point cloud features but also reduces input size for subsequent LLM,
accelerating training and inference. Concisely, 𝑄 = 𝑓𝑄𝐹 (𝑌, 𝑄),
where 𝑄 ∈ R𝑜×𝑏′ , 𝑄 ∈ R𝑜×𝑏′ . 𝑄 is the queries of Q-former and 𝑜 is
the number of query. In experiments, we initialize Q-Former with
BLIP-2 [27] pre-trained weights. Given Q-Former’s extensive 105M
parameters, we employ PEFT technologies to fine-tune its Query,
Key, and Value layers, and normalization layers, thus enhancing
adaptability to point clouds while preserving 2D knowledge.

Mixture of Query Experts. Inspired by multi-view image ren-
dering for 3D-to-2D projection, we propose the Mixture of Query
Experts (MQE) to achieve a similar effect. In the process of MQE,
multiple sets of queries (query expert) are used to transform point
features into the semantic space of 2D Q-Former. MQE is the first

PC 
Encoder

Q-Former

Point Cloud

MLP

Query Experts Expert
Router

SoftMax

Routing Weights

Trainable Frozen Non-activated Forward Activated Forward

Figure 4: The framework of the mixture of query experts.
First, a point cloud is encoded to features𝑋 and𝑌 . Feature𝑋 is
then passed through to the expert router, assigning softmax-
based weights to experts. The top 𝑔 experts are selected based
on these weights. These experts, together with𝑌 , are then fed
into the Q-Former, and their outputs are weighted to produce
the final point queries 𝑄 .

to introduce dynamic routing of MoE into queries, enabling adap-
tive activation of more suitable query experts to capture richer
semantic information across diverse point cloud inputs, as shown
in Figure 4. MQE contains 𝑘 trainable query experts {𝐸𝑘 }, each is a
set of queries initialized from BLIP-2. To integrate multiple query
experts into one set of queries, we use a dynamic routing, expert
router 𝑓𝑅 , which regulates each expert’s contribution. The expert
router is an MLP that accepts feature𝑋 and assigns routing weights
to each expert. We employ the sparse routing strategy [43], select-
ing 𝑔 experts with the highest weights. Subsequently, the selected
query experts {𝐸𝑔} utilize Q-Former to extract high-dimensional
semantics {𝑄ℎ} from the feature 𝑌 . {𝑄ℎ} are then weighted by the
corresponding routing weights to generate the final point queries
𝑄 . The process can be formulated as:

𝑄 =
∑︁

𝐸𝑞 ∈{𝐸𝑔 }
𝑤𝑞 · 𝑓𝑄𝐹 (𝑌, 𝐸𝑞), (1)

𝑤𝑞 = Softmax (𝑓𝑅 (𝑋 )) [𝑞] . (2)

To enable query experts to learn knowledge within a stable 3D-LLM
semantic context, MQE is only utilized in the final training stage,
by which time other modules have completed training.

Modality Projector. We use an MLP as the modality projector
to bridge the modality gap between point cloud and text, while
transforming point queries𝑄 ∈ R𝑜×𝑏′ into point tokens𝑇𝑝𝑐 ∈ R𝑜×𝑐 ,
where 𝑐 denotes the shared dimension of both point and text tokens.

3.1.3 Large Lanuguage Model Backbone. To minimize GPU
memory usage during training, we utilize Phi-2 [33] with 2.7 billion
parameters as the large language model backbone of MiniGPT-3D.

In MiniGPT-3D, the LLM backbone 𝑓𝑙𝑙𝑚 processes a sequence
of tokens 𝑇 =

(
𝑡1, 𝑡2, . . . , 𝑡 𝑗

)
∈ R𝑗×𝑐 , where 𝑗 is the number of
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Table 1: Each training stage setups and overhead.

Training Stages Dataset Types Dataset Scale Epochs Init_lr & Min_lr Trainable
Parameters

Training Time using
One RTX 3090 GPU

Stage I Brief Caption 660 k 1 3e-5, 1e-5 1.4 M 9.4 h
Stage II Brief Caption 660 k 1 3e-5, 1e-5 47.4 M 10.9 h
Stage III Detailed Caption & Conversation 70 k 3 1e-5, 1e-6 47.4 M 4.9 h
Stage IV Detailed Caption & Conversation 70 k 1 5e-6, 1e-6 0.4 M 1.6 h

tokens, including point tokens and text tokens. Leveraging the
self-attention mechanism, the LLM backbone can comprehend the
semantic relationships from different modality tokens and generate
responses for given instructions. This process can be expressed as:

𝑇 = 𝑓𝑙𝑙𝑚 (𝑇 ), (3)

where 𝑇 =
(
𝑡1, 𝑡2, . . . , 𝑡 𝑗

)
∈ R𝑗×𝑐 , and 𝑡𝑖 denotes the predicted

𝑖-th token, based on the semantics of all previous tokens {𝑡<𝑖 }.
Subsequently, 𝑡𝑖 is passed through a linear layer 𝑓𝑙𝑙𝑚→𝑣𝑜𝑐𝑎𝑏 to be
mapped into the vocabulary space. A softmax operation is then
applied to compute a probability distribution across the vocabulary,
with the word of highest probability designated as the prediction
𝑧𝑖 for 𝑡𝑖 . The process can be formulated as:

𝑡𝑖 = 𝑓𝑙𝑙𝑚→𝑣𝑜𝑐𝑎𝑏 (𝑡𝑖 ), (4)

𝑧𝑖 = 𝑎𝑟𝑔 max
𝑤∈𝑣𝑜𝑐𝑎𝑏

Softmax(𝑡𝑖 ) [𝑤] . (5)

As LLMs are primarily trained on text, a perception gap arises
when processing non-textual information. Therefore, we adapt
PEFT technology LoRA [21] to the LLM backbone, and also further
fine-tune the normalization layers, preserving learned knowledge
and reducing computational overhead.

3.2 Training Stages
To gradually transfer the priors of 2D-LLM to point cloud modality
and enhance the nascent 3D-LLM’s comprehension, our training
process includes four stages, each focusing on a distinct task, as
shown in Figure 3. The following subsections will describe them.

3.2.1 Stage I. As shown in Figure 3(a), the first stage aims to
bridge the knowledge gap between the 3D point cloud encoder
and 2D-LLM modules, facilitating a seamless transition from 3D to
2D. We solely train the point cloud projection layer (MLP), with
other modules frozen. Initialization is sourced from ULIP-2 [52]
for the encoder, BLIP-2 [27] for Q-Former, and TinyGPT-V [57]
for normalization layers of LLM, LoRA of LLM, and the modality
projector. Since the frozen Q-Former from BLIP-2 is also used in
TinyGPT-V, MiniGPT-3D only owns two knowledge domains from
3D of ULIP-2 and 2D-LLM of TinyGPT-V before training. To build
a robust bridge between domains, we train the projection layer
using 660k caption-point cloud pairs, involving 1.4M parameters,
as detailed in Table 1.

3.2.2 Stage II. In the second stage, our objective is to transfer the
vision-language knowledge domain to 3D space, establishing the 3D-
language knowledge domain. As shown in Figure 3(b), we fine-tune
four parts: the point cloud projection layer (MLP), the Q-Former, the
modality projector, and the LLM. Utilizing the 3D-2D bridge of the
first stage, 2D-LLM modules, via fine-tuning, gain comprehension
of 3D point clouds and gradually transfer the powerful priors to be

the 3D-language knowledge. During this process, to minimize the
impact of the 3D-2D bridge, we employ the identical dataset from
the first stage to train 47.4M parameters, as outlined in Table 1.

3.2.3 Stage III. To gain better 3D-language knowledge, we further
fine-tune the modules trained in the second stage and utilize a more
challenging dataset, including detailed caption-point cloud pairs
and conversations, to empower MiniGPT-3D with the capabilities
to comprehend and respond to complex instructions.

3.2.4 Stage IV. During the prior stages, using a single set of
queries restricts 3D perception perspective, leading to incomplete
cognition. To refine MiniGPT-3D’s perception, we introduce MQE
to adaptively activate suitable multiple query experts for Q-Former,
as shown in Figure 3(d). Distinct from the preceding three stages
focusing on rapidly establishing 3D-language knowledge, this stage
presents a stable semantic context for query experts to learn knowl-
edge efficiently. Specifically, we only fine-tune 0.4M MQE-related
parameters, reusing the dataset from the third stage to minimize
the impact of data distribution changes, as outlined in Table 1.

3.3 Training Objective
The training objective of MiniGPT-3D aims to minimize the dis-
crepancy between predicted and true probability distributions at
each token position. Given a point cloud and corresponding text
instruction, MiniGPT-3D outputs a sequence𝑇 . Next,𝑇 is processed
by 𝑓𝑙𝑙𝑚→𝑣𝑜𝑐𝑎𝑏 and then a softmax operation is applied to obtain
the probability distribution over the vocabulary for each output
token, denoted as 𝑇 . The training loss is formulated as follows:

L = CrossEntropy
(
ℎ(𝐺), 𝑇

)
, (6)

where theℎ(·) represents the LLM’s tokenizer.𝐺 is the ground truth
text. The𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (·) refers to the cross-entropy loss function.
Notably, we only compute the loss for the generated text.

4 EXPERIMENTS
4.1 Experimental Settings
Utilizing one RTX 3090 GPU with 24GB of RAM, we train MiniGPT-
3Dwith only 47.8M trainable parameters in 26.8 hours.We adopt the
AdamW optimizer with a weight decay of 0.05 and a cosine decay
with linear warm up learning rate schedule. The initial learning
rate decreases gradually as the training stage advances, as shown
in Table 1. We use the point-text instruction dataset [51], including
660K brief-description instructions and 70K complex instructions.
200 objects are splited as test data, following PointLLM [51] and
ShapeLLM [39]. For each input point cloud 𝑃 ∈ R𝑛×𝑑 , the number
of point 𝑛 is 8192, and the dimension 𝑑 is 6. We default point clouds
without color to black. For a fair comparison, we adopt the identical
versions models of GPT-4 [35] (“gpt-4-0613”) and ChatGPT [34]
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Table 2: Generative 3D object classification results on the ModelNet40 test split and Objaverse. The accuracy (%) under the
Instruction-typed (I) prompt “What is this?” and the Completion-type (C) prompt “This is an object of” are reported. The bold
and underline indicate the best and second best results, respectively.

ModelNet40 ObjaverseModel Reference LLM
Size

Trainable
Params Input (I) (C) Average (I) (C) Average Average

InstructBLIP-7B [11] NeurIPS,23 7B 0.20B Single-V. Img. 19.53 31.48 25.51 45.00 42.00 43.50 34.50
InstructBLIP-13B [11] NeurIPS,23 13B 0.20B Single-V. Img. 25.97 31.40 28.69 37.00 31.50 34.25 31.47
LLaVA-7B [32] NeurIPS,23 7B 7.03B Single-V. Img. 39.75 39.67 39.71 49.50 50.50 50.00 44.86
LLaVA-13B [32] NeurIPS,23 13B 13.03B Single-V. Img. 37.12 36.06 36.59 53.00 50.50 51.75 44.17

3D-LLM [20] NeurIPS,23 13B - 3D Obj. + Mul.-V. Img. - - - 49.00 41.50 45.25 45.25
Point-Bind LLM [18] arXiv,23.9 7B - 3D Point Cloud 51.90 39.71 45.81 6.00 4.50 5.25 25.53
PointLLM-7B [51] arXiv,23.8 7B 7.01B 3D Point Cloud 53.44 51.82 52.63 55.00 51.00 53.00 52.82
PointLLM-13B [51] arXiv,23.8 13B 13.01B 3D Point Cloud 53.00 52.55 52.78 56.50 51.50 54.00 53.39
ShapeLLM-7B [39] arXiv,24.2 7B 7.04B 3D Point Cloud - - 53.08 - - 54.50 53.79
ShapeLLM-13B [39] arXiv,24.2 13B 13.04B 3D Point Cloud - - 52.96 - - 54.00 53.48

0.05B 61.75 59.97 60.86 60.00 60.50 60.25 60.56MiniGPT-3D - 2.7B (47.8M) 3D Point Cloud (+8.31) (+7.42) (+7.78) (+3.5) (+9.00) (+5.75) (+6.77)

Table 3: 3D object captioning results on Objaverse. The results are from human evaluation, GPT-4 evaluation, and traditional
metrics. The bold and underline indicate the best and second best results, respectively.

Model Reference LLM
Size

Trainable
Params GPT-4 Sentence-BERT SimCSE Human Evaluation

Correctness Hallucination ↓ Precision

InstructBLIP-7B [11] NeurIPS,23 7B 0.20B 45.34 47.41 48.48 2.56 0.77 76.99
InstructBLIP-13B [11] NeurIPS,23 13B 0.20B 44.97 45.90 48.86 2.58 1.13 69.56
LLaVA-7B [32] NeurIPS,23 7B 7.03B 46.71 45.61 47.10 2.76 0.86 76.30
LLaVA-13B [32] NeurIPS,23 13B 13.03B 38.28 46.37 45.90 2.43 0.86 73.97

3D-LLM [20] NeurIPS,23 13B - 33.42 44.48 43.68 1.77 1.16 60.39
PointLLM-7B [51] arXiv,23.8 7B 7.01B 44.85 47.47 48.55 3.04 0.66 82.14
PointLLM-13B [51] arXiv,23.8 13B 13.01B 48.15 47.91 49.12 3.10 0.84 78.75
ShapeLLM-7B [39] arXiv,24.2 7B 7.04B 46.92 48.20 49.23 - - -
ShapeLLM-13B [39] arXiv,24.2 13B 13.04B 48.94 48.52 49.98 - - -

0.05B 57.06 49.54 51.39 3.50 0.71 83.14MiniGPT-3D - 2.7B (47.8M) (+8.12) (+1.02) (+1.41) (+0.40) (+0.05) (+1.00)

(“gpt-3.5-turbo-0613”) as our evaluation tools, like prior works [39,
51]. We choose multiple SOTA 3D-LLMs [18, 20, 39, 51] and two
popular open-source 2D-LLMs [11, 32] as our baselines.

4.2 Generative 3D Object Classification
We conduct the generative 3D object classification tasks [51] on
ModelNet40 [50] and Objaverse [12] datasets to assess MiniGPT-
3D’s categorical cognitive ability.

Settings. For a fair comparison, we utilize the classification eval-
uation settings similar to prior works [39, 51]. We employ identical
prompts: the Instruction-typed (I) prompt “What is this?” and the
Completion-type (C) prompt “This is an object of”. Point clouds
and these prompts are fed into our MiniGPT-3D, outputting textual
responses. For close-set zero-shot classification on ModelNet40,
ChatGPT processes the text responses of MiniGPT-3D to select pre-
dicted categories from 40 ModelNet40 classes. For open-vocabulary
classification on Objaverse, GPT-4 is employed as an evaluator to
determine whether MiniGPT-3D’s text response refers to the same
category as the ground-truth caption.

Results. Experimental results are shown in Table 2. We achieve
SOTA performance on all classification benchmarks using only one
RTX 3090. Specifically, compared to the best baseline, ShapeLLM [39],
we achieve significant improvements of 7.78% and 5.75% in average

accuracy on ModelNet40 and Objaverse datasets, respectively. Un-
like other methods using LLM (7B or 13B) that require fine-tuning
on 8 A100 or 8 A800 for hundreds of total GPU-hours, our MiniGPT-
3D only utilizes a 2.7B LLM and trains 47.8M parameters on a single
RTX 3090 GPU in 27 hours. These demonstrate the superiority
and efficiency of our MiniGPT-3D, which leverages the powerful
priors from 2D-LLMs to build 3D-LLM. Additionally, we observe
that MiniGPT-3D exhibits the best performance in recognizing 3D
objects of the ModelNet40 dataset unused during training, indicat-
ing its stronger generalization ability compared to other methods.
Furthermore, even if using different prompts ( I and C) on the
Objaverse dataset, MiniGPT-3D demonstrates highly consistent
classification performance compared to other 3D-LLMs that have a
4% accuracy gap, showcasing its robustness for diverse prompts.

4.3 3D Object Captioning
To assess the model’s understanding of 3D object details, we per-
form the 3D object captioning task.

Settings. For a fair comparison, we follow the evaluation settings
of prior works [39, 51]. We use the prompt “Caption this 3D model
in detail”. We adopt three distinct evaluation methods: human eval-
uation, GPT-4 [35] evaluation, and traditional metric evaluation. In
human evaluation, volunteers evaluate the model using standard-
ized processes from PointLLM [51]. Specifically, focusing on object



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

MiniGPT-3D: Efficiently Aligning 3D Point Clouds with Large Language Models using 2D Priors ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 4: Qualitative comparisons. The classification and caption results of models on ModelNet40 and Objaverse are presented.
Our MiniGPT-3D generates more detailed and insightful responses compared to other baselines.

Samples 1, 2

Prompt What is this? Briefly caption this 3D model.
Ground Truth Laptop A cartoon black monster like a dragon

InstructBLIP-13B [11] symbol letter l a black lizard with a sharp tooth in a dark room
LLaVA-13B[32] A small, grainy, black and white letter j. A 3D model of a dark, menacing dragon.
3D-LLM [20] - A black and white tiger with long legs, standing on its hind leg.
Point-Bind LLM [18] This is a laptop computer. The 3D model features a large, ornate gargoyle with a horned helmet, sitting

on top of a building.
PointLLM-13B [51] The 3D model represents a notebook computer, typically a laptop. The 3D model depicts a menacing black dragon, with its mouth opened wide

revealing a row of sharp teeth.
MiniGPT-3D This is a 3D model of a sleek, black laptop. The laptop is rectangular

in shape and has a glossy finish, suggesting a high-quality build. It
has a flat screen, which is a common feature in modern laptops, and
it’s equipped with a keyboard and a touchpad for user interaction.
The laptop appears to be in good condition, suggesting it could be
used for various tasks such as work, entertainment, or education.

This is a 3D model of a fearsome, black-colored dinosaur. The di-
nosaur possesses an aggressive stance, with sharp claws extending
from its arms and legs. It has long black fangs that seem ready to
attack.

Table 5: Ablation on training process.

Row No. Stage I Stage II Stage III Stage IV Acc.

1 ✓ 39.10
2 ✓ ✓ 55.92
3 ✓ ✓ ✓ 59.10
4 ✓ ✓ ✓ ✓ 60.56
5 ✓ ✓ ✓ 52.81
6 ✓ ✓ ✓ 58.46
7 ✓ ✓ ✓ 47.93

Table 6: Ablation on 2D priors from 2D-LLM.

Modality
Projector

Norm and
LoRA for LLM Acc.

49.04
✓ 57.44

✓ 57.86
✓ ✓ 58.46

Table 7: Ablation on stages usingMQE.

Stage I Stage II Stage III Stage IV Acc.

✓ ✓ ✓ ✓ 58.83
✓ ✓ ✓ 60.25

✓ ✓ 59.50
✓ 60.56

attributes (such as type, color, material, etc.), volunteers visually as-
sess objects and assign correctness scores and hallucination scores
to captions. Correctness measures model accuracy in describing
attributes, while hallucination evaluates fabricated details’ severity.
Each attribute, correct or hallucinated, receives a point. Precision
is calculated as the ratio of correct information in model-generated
content. The Inter-Annotator Agreement score is 0.89 on ICC1k,
indicating volunteers’ high consistency in cognitive understanding
and scoring criteria. GPT-4 evaluates semantic similarity between
our model’s output and manually annotated captions. In traditional
metric evaluation, like prior works [39, 51], we use data-driven
metrics like Sentence-BERT [41] and SimCSE [17], instead of BLEU-
1 [37], ROUGEL [28], and METEOR [3], because the latter lack
sufficient capabilities in semantic evaluation.

Results. As shown in Table 3, our MiniGPT-3D achieves SOTA
performance on multiple metrics. Specifically, MiniGPT-3D outper-
forms ShapeLLM-13B [39], by a large margin of 8.12 on the GPT-4
evaluation score, setting new SOTA with only 2.7B LLM, indicating
robust 3D detail comprehension. Also, compared to ShapeLLM-13B,
MiniGPT-3D surpasses 1.02 and 1.41 on Sentence-BERT and Sim-
CSE metrics, respectively, achieving new SOTA with its remarkable
ability to generate accurate captions matching ground truth. Hu-
man evaluation further reveals MiniGPT-3D’s superior correctness
and precision scores compared to baselines. Notably, even with a
2.7B LLM, MiniGPT-3D exhibits a hallucination score comparable to
SOTA, surpassing larger 13B LLM-based methods. These outstand-
ing results showcase MiniGPT-3D’s fine-grained understanding of
3D objects, inheriting the cognitive capabilities of 2D-LLM.

4.4 Qualitative Results
Figure 1(e) qualitatively shows the MiniGPT-3D’s powerful abil-
ity to perceive 3D object details. Our MiniGPT-3D precisely ex-
tracts information from 3D objects, encompassing categories, colors,
shapes, materials, and internal component relationships. Addition-
ally, MiniGPT-3D can perform reasonable reasoning based on object
cues, such as potential occurrence periods and locations. Figure 1(f)
further demonstrates MiniGPT-3D’s comprehension of 3D object
information in open-ended dialogues. MiniGPT-3D accurately out-
puts 3D object-related world knowledge, showcasing its extensive
textual knowledge inherited from LLMs.

In sample 1 of Figure 4, our MiniGPT-3D successfully recognizes
the shape, screen, and keyboard of a laptop, compared to other
methods. Furthermore, it can deduce the potential usage of this 3D
object. In the more complex sample 2 of Figure 4, our MiniGPT-3D
demonstrates superior understanding capabilities of 3D objects by
recognizing additional features like the dinosaur’s sharp claws and
inferring its potential action intentions, compared to other methods.

4.5 Ablation Studies
In this section, we conduct ablation studies to investigate various
model design options. Herein, we report the total average accuracy
of MiniGPT-3D on the generative classification benchmark.

4.5.1 Training process . We conduct ablation study to validate
the efficacy of our four-stage training strategy. The results in Ta-
ble 5 highlight the optimal performance achieved by our approach.
Specifically, comparing Row #4 vs. #6, we observe that the first
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Table 8: Ablation on fine-
tuned modules in Q-Former.

LoRA LoRA Norm Acc.Q, K, V Dense
58.18

✓ 59.85
✓ ✓ 59.97
✓ ✓ ✓ 60.14
✓ ✓ 60.56

Table 9: Ablation on the
number of query experts.

Number Acc.

1 59.19
3 59.66
6 59.14
8 60.56
10 59.85

Table 10: Ablation on the point
cloud projection layers.

Number of layers Acc.
1 57.02
2 60.56
3 59.20

Table 11: Ablation on
router type of MQE.

Type Acc.

Constant Router 60.10
Sparse Router 60.56
Soft Router 60.31

Table 12: Ablation on trained modules in stage IV.

MQE Norm. & LoRA
for Q-Former

Modality
Projector

Norm. & LoRA
for LLM MLP Acc.

✓ ✓ ✓ ✓ ✓ 58.93
✓ ✓ ✓ ✓ 59.93
✓ ✓ ✓ 59.02
✓ ✓ 59.64
✓ 60.56

stage bridges knowledge between 2D-LLM and 3D encoder, en-
abling smoother semantic transitions across different dimensional
spaces. Comparing Row #4 vs. #5, we note that the second training
stage which involves using easy tasks to adapt the knowledge of
the 2D-LLM to the 3D space, allows the model to focus on enhanc-
ing cognitive capabilities in subsequent stages. Comparing Row #4
vs. #7, the third training stage utilizes more challenging tasks to
reinforce the newborn 3D cognitive abilities, providing a reliable
semantic context for the final stage to train MQE. Comparing Row
#4 vs. #3, the inclusion of the fourth stage, dedicated to training
the MQE, enables each query expert to acquire unique knowledge,
further enhancing MiniGPT-3D’s understanding of 3D objects.

4.5.2 2D priors from 2D-LLM. We conduct ablation study to
varify the effectiveness of the 2D priors from 2D-LLM, as detailed in
Table 6. Since dropping any pre-trained weights of 2D-LLM would
make the first training stage infeasible, all cases of this ablation
study are just trained through stages II to IV. We find that removing
any of 2D-LLM weight degrades performance, and discarding more
pre-trained weights of 2D-LLM causes an up to 9.4% accuracy drop.
These results highlight the crucial role of 2D-LLM knowledge in
boosting 3D-LLM performance. Using 2D-LLM modules facilitates
cost-efficient training of 3D-LLM even on consumer GPUs like RTX
3090 GPU, enhancing accessibility for the community.

4.5.3 Training stages using MQE. We further investigate the
impact of training MQE in different stages, with detailed results
presented in Table 7. Our results indicate that introducing MQE in
only stage IV achieves optimal performance. The I-III stages enable
the model to learn enough semantic features, paving the way for
MQE to adaptively select useful information in stage IV.

4.5.4 Fine-tunedmodules inQ-Former. Employing PEFTmeth-
ods to fine-tune Q-Former can better align point features with LLM,
avoiding expensive computation. As outlined in Table 8, fine-tuning
the Query, Key, and Value layers with LoRA [21], along with nor-
malization layers, maximizes the potential of Q-Former. Notely, we
efficiently fine-tune the 105M-parameter Q-Former using only 0.7M
parameters, achieving a 2.38% accuracy improvement compared to
the frozen Q-Former.

4.5.5 Number of query experts. Within MQE, each query ex-
pert holds unique knowledge, facilitating extraction of point cloud
features. Our experiments, in Table 9, reveal that 8 query experts
yield optimal performance. Insufficient experts may compromise in-
formation extraction, while excessive ones may affect cooperation
among experts. Notably, single-expert, i.e. without MQE, results in
a 1.37% accuracy drop, highlighting the superiority of MQE.

4.5.6 Point cloud projection layer. The point cloud projection
layer bridges point cloud features with the 2D semantics of frozen
Q-Former, while ensuring dimensional alignment. As shown in
Table 10, our experiments demonstrate that two MLP layers offer
the optimal setup, as excessive or insufficient layers can result in
information loss, compromising overall performance.

4.5.7 Router type of MQE. The routing mechanism in MQE reg-
ulates the cooperation among query experts. The constant router [25]
assigns static average weights, while the soft router [38] dynami-
cally assigns weights during training. The sparse router [43] selects
the top two experts based on the dynamic weights provided by the
soft router. We explore these router types in Table 11, finding that
the sparse router, which dynamically assigns weights and selects
the most promising experts, maximizes the capabilities of MQE.

4.5.8 Trainedmodules in stage IV. In the training stage IV, only
MQE is trained to enable each query expert to learn knowledge
within a stable semantic context. Our experiments in Table 12
investigate the integration of various training modules. The results
indicate that stage IV is to adaptively aggregate features of different
experts, with knowledge gained from I-III stages frozen. Losing any
frozen knowledge causes information loss, demonstrating the MQE
is specifically designed for information aggregation.

5 CONCLUSION
In this paper, we present MiniGPT-3D, a efficient and powerful
3D-LLM, requiring the training of only 47.8M learnable parameters
within 26.8 hours on one single NVIDIA RTX 3090 GPU. Specifically,
we propose a novel four-stage training strategy that gradually aligns
3D point cloud features with LLM using 2D priors from 2D-LLM.
Additionally, we design the mixture of query experts, introducing
MoE to queries, to adaptively aggregate multiple features. Extensive
experiments show the superiority of MiniGPT-3D in 3D point cloud
understanding and question answering.

Discussion. MiniGPT-3D’s limitations lie in its training on
object-level datasets, preventing it from understanding large-scale
point clouds. Moreover, like existing 3D-LLMs, our MiniGPT-3D
solely focuses on comprehending static 3D objects, lacking the ca-
pacity to recognize the actions of dynamic objects. We will extend
our 3D-LLM building approach to autonomous driving scenarios.
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