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Abstract

Fake images, created by recently advanced gener-
ative models, have become increasingly indistin-
guishable from real ones, making their detection
crucial, urgent, and challenging. This paper intro-
duces PiD (Pixelwise Decomposition Residuals),
a novel detection method that focuses on resid-
ual signals within images. Generative models are
designed to optimize high-level semantic content
(principal components), often overlooking low-
level signals (residual components). PiD lever-
ages this observation by disentangling residual
components from images, encouraging the model
to uncover more underlying and general forgery
clues independent of semantic content. Compared
to prior approaches that rely on reconstruction
techniques or high-frequency information, PiD is
computationally efficient and does not rely on any
generative models for reconstruction. Specifically,
PiD operates at the pixel level, mapping the pixel
vector to another color space (e.g., YUV) and then
quantizing the vector. The pixel vector is mapped
back to the RGB space and the quantization loss
is taken as the residual for AIGC detection. Our
experiment results are striking and highly surpris-
ing: PiD achieves 98% accuracy on the widely
used GenImage benchmark, highlighting the ef-
fectiveness and generalization performance.

1. Introduction
The rapid advancement of generative models, such as Gener-
ative Adversarial Networks (GANs) and Diffusion Models,
has revolutionized the field of image synthesis, enabling
the creation of photorealistic images that are increasingly
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Figure 1. Cross-generators detection performance on the Gen-
Image benchmark (Zhu et al., 2024) using the Accuracy metric.
We compare our method (PiD) with existing SOTA detectors and
demonstrate surprisingly superior results in generalization (98%
Accuracy on average).

difficult to distinguish from real ones (Rombach et al., 2022;
Zhan et al., 2023; Yan et al., 2025). Although these ad-
vanced technologies have opened up new possibilities in
industries, they have also raised significant security con-
cerns about the spread of disinformation. AI-generated fake
images can be misused to misguide public opinion, fabri-
cate evidence in forensic science, undermine trust in digital
media, and more. Therefore, detecting such AI-generated
images (AIGIs) has become a critical and urgent topic in
both academia and industry.

One particularly effective detection strategy is using recon-
struction. Reconstruction-based methods like DIRE (Wang
et al., 2023), LARE2 (Luo et al., 2024), and DRCT (Chen
et al., 2024) have proven generalization performance for
detecting AI-generated images by leveraging discrepancies
between originals and their reconstructions. However, these
approaches typically rely on heavy self-reconstruction gen-
erators (e.g., DDIM in DIRE) to simulate how a genera-
tive model might rebuild an image, capitalizing on the idea
that real images often fail to preserve low-level details dur-
ing reconstruction. Their high computational cost is also
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prohibitive for real-world applications, and more critically,
detectors trained on these frameworks, with specific self-
reconstruction generators involved, potentially being over-
fitted to generator-specific artifacts, resulting in a poor
generalization in previously unseen generators (Ojha et al.,
2023; Yan et al., 2023). For instance, diffusion-based self-
construction generators are used in DIRE and DRCT, which
struggle to generalize to GAN-generated images, as they
learn patterns tied to diffusion priors rather than universal
and general detection cues.

With the rapid development of vision-language models, re-
cent works have explored them for detection by leverag-
ing the pre-trained semantic knowledge within the vision-
language models. CLIP (Radford et al., 2021), used in Uni-
vFD (Ojha et al., 2023) and C2P-CLIP (Tan et al., 2024b), is
used to identify inconsistencies in multimodal embeddings
or perform linear classification based on semantic features.
A more recent work, FatFormer (Liu et al., 2024), proposes
a lightweight adapter and injects frequency information into
the original CLIP model, enhancing its generalization perfor-
mance. While promising, such methods risk obsolescence
as generative models increasingly prioritize photorealism
and semantic coherence. This underscores the enduring
importance of low-level traces for robust detection.

Given the above concerns, the research question becomes:
how can we find a computationally simple, and at the
same time, universal forgery artifact, without relying on
generator-specific cues?

To address this, in this paper, we propose a novel detection
method, PiD (Pixelwise Decomposition residuals), which
focuses on pixel-level residual signals within images. Un-
like high-level semantic features, which are prioritized by
generative models, residual components are typically over-
looked during the image synthesis process. These residual
signals, which include subtle pixel-level inconsistencies and
quantization artifacts, provide a rich source of forgery clues
that are independent of the semantic content of the image.
By disentangling and analyzing these residual components,
PiD can uncover underlying and general generative patterns
that are difficult to discover from the original RGB image.

Specifically, our PiD operates at the pixel level, mapping
pixel vectors to alternative linear transforms (e.g., YUV)
and then quantizing them. The quantized vector is then
mapped back to the RGB color space with the inverse trans-
form. After that, the quantization loss, which represents the
residual signal, is used as a key feature for AIGC detection.
This approach is computationally efficient, as it avoids the
need for complex reconstruction techniques or reliance on
generative models. The superior generalization performance
of the proposed method is shown in Fig. 1.

The key contributions of this work are three-fold:

• We propose a computationally efficient, generator-free,
yet highly effective method based on pixelwise decom-
position residuals, achieving superior generalization
performance on widely used benchmarks.

• We propose a new perspective to decompose the resid-
ual signal: we first operate at the pixel level and map
the pixel vectors to a color space, and then quantize
the vector to produce the residual signals.

• We conduct extensive experiments on existing widely
used benchmarks and demonstrate the surprisingly
high generalization performance over other SOTAs.

2. Related Work
In this section, we briefly introduce the existing literature
in the field of AIGI detection. Following Tan et al. (2024b);
Yan et al. (2024c), we systematically categorize the field
into two principal domains: Face Forgery Detection and
AIGC Detection for discussion.

2.1. Face Forgery Detection

Face forgery (classical deepfake) detection has been a promi-
nent area of research due to the quick rise of face-swapping
and face-reenactment. The domain of face forgery detection
has seen substantial advancements, with numerous studies
concentrating on the exploitation of spatial or frequency
information derived from images. Face forgery detection
methods can be broadly categorized into high-level and low-
level approaches. High-level methods focus on biological
or behavioral inconsistencies, such as irregular eye-blinking
patterns (Li et al., 2018) or lip-sync artifacts (Haliassos et al.,
2021), to exploit unnatural facial dynamics in deepfakes. In
contrast, most works target low-level cues, including spatial
artifacts (e.g., using Xception (Chollet, 2017) to detect tex-
ture anomalies (Rossler et al., 2019b)) or frequency artifacts
(Luo et al., 2021; Qian et al., 2020; Masi et al., 2020; Woo
et al., 2022) caused by forgery generation processes. To
enhance generalization, recent strategies diversify training
data via adversarial perturbations (Chen et al., 2022), chal-
lenging fake data synthesis (Li et al., 2020; Shiohara et al.,
2022; Cheng et al., 2024), or disentanglement-based repre-
sentation learning (UCF (Yan et al., 2023) and UDD (Fu
et al., 2025)), or latent space simulations (LSDA (Yan et al.,
2024a)) to capture invariant forgery features across manipu-
lation techniques.

2.2. AIGC Detection

The rapid evolution of generative technologies has expanded
synthetic content beyond facial forgeries to diverse scenes,
driving research toward AIGC detection: a task more com-
plex than traditional face forgery detection due to its broader
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Figure 2. The pipeline of the proposed PiD method. A pixelwise transformation matrix Mt is applied to the input RGB image, and a
quantization operation is appended to the projected color space. The quantized image is then mapped back to the RGB space with M−1

t .
The residual information is decomposed by subtracting the quantized image from the original image. The residual signal is sent to the
detection network like ResNet (He et al., 2016) to distinguish real and synthetic images.

forgery types and heightened demands for generalization.
Current methodologies address this challenge through two
complementary lenses: low-level artifact analysis and
high-level semantic cues. Low-level approaches target
subtle statistical irregularities induced during content gen-
eration: CNN-Spot (Wang et al., 2020) employs data aug-
mentation to improve generalization, while BiHPF (Jeong
et al., 2022) amplifies artifacts via dual high-pass filters,
LGrad (Tan et al., 2023a) extracts gradient-based patterns,
NPR (Tan et al., 2024d) models neighboring pixel relation-
ships, and random-mapping features (Tan et al., 2024a)
expose forgery-specific distortions. High-level methods,
conversely, leverage semantic inconsistencies in synthetic
content: UnivFD (Ojha et al., 2023) adopts CLIP embed-
dings for zero-shot detection, FatFormer (Liu et al., 2024) in-
tegrates frequency analysis with vision-language alignment
from CLIP, and LASTED (Wu et al., 2023) exploits text-
guided contrastive learning to identify mismatches between
visual and textual semantics. By synergizing low-level ar-
tifact detection with high-level semantic reasoning, these
strategies collectively fortify defenses against the growing
sophistication of AIGC threats.

3. Method
3.1. Problem Setup

The detection of AI-generated images (AIGI) is formulated
as a binary classification task. Given an input image x ∈
RH×W×3 , a neural network fθ(·) predicts the probability
p = fθ(x) ∈ [0, 1] that x is synthesized by generative
models. The training objective minimizes the cross-entropy

loss as follows:

LCE = − 1

N

N∑
i=1

[yi log pi + (1− yi) log(1− pi)] , (1)

where yi ∈ {0, 1} is the ground-truth label, and N is the
batch size. However, directly taking the original image x
as input in AIGI detection is usually challenging due to the
high quality of synthesized images. It requires a powerful
pre-trained network as the detector to achieve high detection
accuracy. As an alternative, it is crucial to find an image
representation that is difficult for the current generative
models to fit.

Modern generative models (e.g., diffusion models (Ho et al.,
2020)) optimize the mean squared error (MSE) during train-
ing:

LMSE = E[(x−G(x, ϵ))2], (2)

where G(·) is the generator and ϵ denotes noise. The MSE
loss decomposes into:

LMSE =(E[G(x, ϵ)]− E[x])2︸ ︷︷ ︸
Bias2

+ V ar[G(x, ϵ)]︸ ︷︷ ︸
Variance

+E[(x− E[x])2]︸ ︷︷ ︸
Noise

. (3)

Critically, the noise term corresponds to data-specific arti-
facts that remain irreducible even for high-fidelity synthetic
images. To exploit this in AIGI detection, a general ap-
proach is to extract noise-aware residual representation
R(x) from an image x, which disentangles generative noise
patterns from semantic content, defined as:

R(x) = x− Φ(x), (4)

3



PiD: Generalized AI-Generated Images Detection with Pixelwise Decomposition Residuals

Midjo
urn

ey
SD

v1
.4

ADM
VQDM

BigG
AN

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Model
RGB JPEG residual w/o CVT error w/o DCT comp. error

Figure 3. Comparison of RGB input and different image residual
inputs. Models are trained on the SDv1.4 training set. The color
conversion (CVT) error in the residual contributes most to the
generalization performance.

where R(x) represents the noise part of x, Φ(x) represents
the intrinsic value of image x. Prior works (Wang et al.,
2023; Tan et al., 2024c;d; Ricker et al., 2024) use different
methods to estimate the function Φ(x) (e.g., low-frequency
filters or the output of generation models), and the residual
information is extracted as follows.

• Frequency-based residuals: Methods like FreqNet (Tan
et al., 2024c) extract high-frequency components via:

Rfreq(x) = F−1 (F(x)⊙Mhigh) , (5)

where F (·) is the Fourier transform and Mhigh is a high-
pass filter. This is equal to subtract the low-frequency
components from the image and obtain the residual in-
formation. However, the noise pattern cannot be fully
captured by specific frequency bands.

• Reconstruction-based residuals: Methods like
DIRE (Wang et al., 2023) compute Rdire(x) = x − x̂,
where x̂ = D(G(x)) is the output of a pre-trained
generative model (e.g., diffusion models). However, the
output inherits biases from the generator G(·), limiting
generalization to unseen generators.

3.2. Image Compression Residuals

We aim to find a more generalizable method to extract the
residual representation R(x) from x for AIGI detection. To
achieve this purpose, we have to consider how to approx-
imate the intrinsic values of an image x. Notice that the
compression algorithm, like JPEG, filters the noise infor-
mation and maintains the visual quality of images. We first
explore the residual information between the original image
and the compressed image.

Compression algorithms (e.g., JPEG) also have an encoder-
decoder structure like many generative models. For the

Algorithm 1 PiD Training Pipeline
Input: dataset D, neural network fθ(·), transformation
matrix Mt, quantization function Q(·)
Initialize the parameters θ for fθ(·).
for epoch = 1 to nepochs do

for i = 1 to niters do
Fetch batch (xi, yi) from D
x′
i = xi ×Mt

x′
i = Q(x′

i) {Rounding or truncation}
x′
i = x′

i ×M−1
t

Rx = xi − x′
i {Compute residual representation}

pi = fθ(Rx) {Neural network output}
Compute LCE(pi, yi)
Update θ with ∇θLCE

end for
end for
Return fθ(·)

compression-based residual representation Rcomp(x), sup-
pose that D(·) and E(·) are the encoder and decoder in the
compression, the definition is as follows,

Rcomp(x) = x−D(E(x)). (6)

Taking the JPEG compression algorithm as an example,
we explore and verify the effectiveness of the compression
residual Rcomp(x) and the essential operations. The resid-
ual information Rcomp(x) mainly includes two stages of
quantization loss. One is the quantization loss during color
space conversion, and the other is the quantization compres-
sion loss of the blockwise DCT (discrete cosine transform)
frequency components.

Experiments have found that the compression-based resid-
ual representation can effectively achieve generalization on
different generative models, as shown in Figure 3. However,
if only the frequency-domain compression loss is included
in the residual, the generalization effect is limited. This
indicates that pixel-wise compression quantization of the
image is the key to capturing the noise information of the
image. The results reveal that a simple pixelwise operation
can effectively extract the noise patterns from the image.

3.3. Pixelwise Decomposition in AIGI Detection

We propose a pixelwise decomposition operation inspired
by the color conversion. Suppose that an invertible transfor-
mation matrix Mt ∈ R3×3 (e.g., YUV conversion matrix as
shown in Figure 2) and a quantization function (like round-
ing or truncation function) is applied to a pixel vector, the
pixel vector can be decomposed into a quantized vector
and residual vector. The formal definition of the pixelwise
decomposition residual is given as follows.
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Definition 3.1. With a invertible matrix Mt ∈ R3×3, its
inversion matrix M−1

t ∈ R3×3 and a quantization function
Q(·), given an image x ∈ [0, 255]3×H×W , the pixelwise
decomposition residual is defined as

Rpid(x) := x−Q(x×1 Mt)×1 M
−1
t . (7)

×1 is the operation of the mode-1 tensor-matrix product.

Our training pipeline takes Rpid(x) as the input and detects
synthetic images in the noise rather than the original RGB
space. The detection model becomes fθ(Rpid(x)), and the
cross-entropy loss LCE is still the supervision during train-
ing. The training pipeline is shown in Algorithm 1.

The PiD residual Rpid(x) separates the noise information
from the visual content of image x, since the transfor-
mation has almost no effect on the visual quality (where
∥Rpid(x)∥ << ∥x∥). Moreover, as the decomposition is
applied to pixels independently, the noise information is
well preserved. This residual representation is not limited to
specific global or local frequency bands (as in Rfreq(x)) or
affected by generative models’ bias (as in Rdire(x)). In the
experiment section, we will show that PiD is generalizable
over different generative models.

4. Experiment
4.1. Setup

Training datasets. We consider different training settings
following ForenSynths (Wang et al., 2020) and GenIm-
age (Zhu et al., 2024) with ProGAN (Karras et al., 2018)
or SDv1.4 (Rombach et al., 2022) as the generative model.
The real images in ForenSynths and GenImage are from
LSUN (Yu et al., 2015) and ImageNet (Russakovsky et al.,
2015) dataset. There are 20 semantic classes of images
in ForenSynths and we only use 4 of them (i.e., car, cat,
chair, horse) during training to keep in line with previous
works (Tan et al., 2024c;d; Liu et al., 2024).

Test datasets. To evaluate the generalization performance
of different approaches in real-world scenarios, we test the
models on 3 widely used datasets with 26 generative models.
Synthetic images in these datases are generated by diverse
GANs and DMs and real images are from different sources.

• UniversalFakeDetect dateset (Ojha et al., 2023). This
dataset is composed of the test set from Foren-
Synths (Wang et al., 2020) and some additional syn-
thetic images generated by DMs. 11 generative mod-
els (7 GANs and 4 DMs) are included during the test.
These models are ProGAN (Karras et al., 2018), Cy-
cleGAN (Zhu et al., 2017), BigGAN (Brock et al.,
2018), StyleGAN (Karras et al., 2019), GauGAN (Park
et al., 2019), StarGAN (Choi et al., 2018), Deep-
fakes (Rossler et al., 2019b), Guided (Dhariwal et al.,

2021), LDM (Rombach et al., 2022), GLIDE (Nichol
et al., 2021), and DALLE (Ramesh et al., 2022). Different
sampling strategies are applied for some of the DMs (i.e.,
LDM (Rombach et al., 2022) and GLIDE (Nichol et al.,
2021)). Multi-source real images (e.g., LSUN (Yu et al.,
2015), ImageNet (Russakovsky et al., 2015), FaceForen-
sics++ (Rossler et al., 2019a), and LAION (Schuhmann
et al., 2021)) are collected to comprehensively evaluate
the performance of detectors.

• GenImage dataset (Zhu et al., 2024). This dataset is
composed of synthetic images from advanced generative
models (7 DMs and a GAN method). These models are
Midjourney (Mid, 2022), SDv1.4 (Rombach et al., 2022),
SDv1.5 (Rombach et al., 2022), ADM (Dhariwal et al.,
2021), GLIDE (Nichol et al., 2021), Wukong (Wuk, 2022.
5), VQDM (Egiazarian et al., 2024), and BigGAN (Brock
et al., 2018). Compared with other datasets, the visual
quality of synthetic images in GenImage is better and
more challenging for many of the previous detection meth-
ods. The varying resolutions in the GenImage dataset also
pose higher demands for the generalization ability of de-
tection models.

• Self-Synthesis GAN dataset (Tan et al., 2024c). 9 ad-
vanced GAN techniques are included in this dataset to
enrich the existing test scene (e.g., ForenSynths (Wang
et al., 2020)). These models are AttGAN (He et al., 2019),
BEGAN (Berthelot et al., 2017), CramerGAN (Belle-
mare et al., 2017), InfoMaxGAN (Lee et al., 2021),
MMDGAN (Li et al., 2017), RelGAN (Nie et al., 2019),
S3GAN (Lučić et al., 2019), SNGAN (Miyato et al.,
2018), and S3GAN (Lučić et al., 2019).This dataset is
challenging and provides a robust test scene for AIGI
detection models trained on ForenSynths.

Implementation details. We implement the detector net-
work with a simple customized ResNet architecture (Tan
et al., 2024d; Li et al., 2024). The transformation matrix Mt

used in PiD is the matrix MY UV that maps the pixel value
from RGB space to YUV color space by default. Rounding
(round) or truncation (floor) functions are utilized as the
quantization function Q(·) in the implementation. An ad-
ditional rounding operation is appended after the inversion
transformation in the RGB space by default. We train the
detector network for 50 epochs with batch size 64. The net-
work is optimized with an SGD optimizer with a learning
rate of 0.001.

Metrics. We follow existing works (Ojha et al., 2023; Liu
et al., 2024; Tan et al., 2024d) for benchmarking and re-
port both average precision (AP) and classification accuracy
(Acc). For Acc, we set the classification threshold for each
dataset to 0.5 to ensure a fair comparison.
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Table 1. Cross-model accuracy (%) performance on the UniversalFakeDetect Dataset. All models are trained on ForenSynths
(ProGAN) under the 4-class setting. Bold and underline represent the best and second-best performance.

Methods Venue
GAN Deep

fakes Guided
LDM GLIDE

DALLE mAccPro-
GAN

Cycle-
GAN

Big-
GAN

Style-
GAN

Gau-
GAN

Star-
GAN

200
steps

200
w/cfg

100
steps

100
27

50
27

100
10

CNN-Spot CVPR2020 99.99 85.20 70.20 85.7 78.95 91.7 53.47 60.07 54.03 54.96 54.14 60.78 63.8 65.66 55.58 68.95
Patchfor ECCV2020 75.03 68.97 68.47 79.16 64.23 63.94 75.54 67.41 76.5 76.1 75.77 74.81 73.28 68.52 67.91 71.71
Co-occurence Elect. Imag. 97.70 63.15 53.75 92.50 51.1 54.7 57.1 60.50 70.7 70.55 71.00 70.25 69.60 69.90 67.55 68.00
Freq-spec WIFS2019 49.90 99.90 50.50 49.90 50.30 99.70 50.10 50.90 50.40 50.40 50.30 51.70 51.40 50.40 50.00 57.05
F3Net ECCV2020 99.38 76.38 65.33 92.56 58.10 100.0 63.48 69.20 68.15 75.35 68.80 81.65 83.25 83.05 66.30 76.73
UnivFD CVPR2023 100.0 98.50 94.50 82.00 99.50 97.00 66.60 70.03 94.19 73.76 94.36 79.07 79.85 78.14 86.78 86.29
LGrad CVPR2023 99.84 85.39 82.88 94.83 72.45 99.62 58.00 77.50 94.20 95.85 94.80 87.40 90.70 89.55 88.35 87.42
FreqNet AAAI2024 97.90 95.84 90.45 97.55 90.24 93.41 97.40 86.70 84.55 99.58 65.56 85.69 97.40 88.15 59.06 88.63
NPR CVPR2024 99.84 95.00 87.55 96.23 86.57 99.75 76.89 84.55 97.65 98.00 98.20 96.25 97.15 97.35 87.15 93.21
FatFormer CVPR2024 99.89 99.32 99.50 97.15 99.41 99.75 93.23 76.00 98.60 94.90 98.65 94.35 94.65 94.20 98.75 95.89
C2P-CLIP AAAI2025 99.98 97.31 99.12 96.44 99.17 99.60 93.77 69.10 99.25 97.25 99.30 95.25 95.25 96.10 98.55 95.70
PiD (MY UV , round) 99.81 99.76 93.79 99.85 100.0 91.34 95.45 82.60 99.95 99.95 99.45 99.20 99.30 99.30 83.55 96.22
PiD (MY UV , floor) 100.0 98.57 86.06 97.54 99.95 85.30 95.06 96.60 98.65 98.55 98.10 98.60 98.45 98.55 87.35 95.82

Table 2. Cross-model Average Precision (AP) Performance on the UniversalFakeDetect Dataset. Bold and underline represent the
best and second-best performance.

Methods Venue
GAN Deep

fakes Guided
LDM GLIDE

DALLE mAPPro-
GAN

Cycle-
GAN

Big-
GAN

Style-
GAN

Gau-
GAN

Star-
GAN

200
steps

200
w/cfg

100
steps

100
27

50
27

100
10

CNN-Spot CVPR2020 100.0 93.47 84.5 99.54 89.49 98.15 89.02 73.72 70.62 71.0 70.54 80.65 84.91 82.07 70.59 83.88
Patchfor ECCV2020 80.88 72.84 71.66 85.75 65.99 69.25 76.55 75.03 87.1 86.72 86.4 85.37 83.73 78.38 75.67 78.75
Co-occurence Elect. Imag. 99.74 80.95 50.61 98.63 53.11 67.99 59.14 70.20 91.21 89.02 92.39 89.32 88.35 82.79 80.96 79.63
Freq-spec WIFS2019 55.39 100.0 75.08 55.11 66.08 100.0 45.18 57.72 77.72 77.25 76.47 68.58 64.58 61.92 67.77 69.92
F3Net ECCV2020 99.96 84.32 69.90 99.72 56.71 100.0 78.82 70.53 73.76 81.66 74.62 89.81 91.04 90.86 71.84 82.24
UnivFD CVPR2023 100.0 99.46 99.59 97.24 99.98 99.60 82.45 87.77 99.14 92.15 99.17 94.74 95.34 94.57 97.15 95.89
LGrad CVPR2023 100.0 93.98 90.69 99.86 79.36 99.98 67.91 87.06 99.03 99.16 99.18 93.23 95.10 94.93 97.23 93.11
FreqNet AAAI2024 99.92 99.63 96.05 99.89 99.71 98.63 99.92 96.27 96.06 100.0 62.34 99.80 99.78 96.39 77.78 94.81
NPR CVPR2024 100.0 99.53 94.53 99.94 88.82 100.0 84.41 98.26 99.92 99.91 99.92 99.87 99.89 99.92 99.26 97.61
FatFormer CVPR2024 100.0 100.0 99.98 99.75 100.0 100.0 97.99 91.99 99.81 99.09 99.87 99.13 99.41 99.20 99.82 99.07
C2P-CLIP AAAI2025 100.0 100.0 99.96 99.50 100.0 100.0 98.59 94.13 99.99 99.83 99.98 99.72 99.79 99.83 99.91 98.66
PiD (MY UV , round) 99.99 100.0 94.98 99.95 100.0 96.93 97.58 93.28 100.0 100.0 99.75 99.77 99.85 99.96 91.73 98.24
PiD (MY UV , floor) 99.97 99.98 92.01 99.04 100.0 90.75 97.58 99.18 99.89 99.82 99.52 99.87 99.91 99.88 94.26 98.11

4.2. Cross-Model Evaluation

Evaluation on UniversalFakeDetect. The test results on
UniversalFakeDetect are illustrated in Table 1 and Table 2,
and the accuracy and the AP on each subset is reported.
All the detection models are trained on the training set of
ForenSynths with a single generative model ProGAN (Kar-
ras et al., 2018). Cross-model test is challenging for early
detection methods like CNN-Spot (Wang et al., 2020), Patch-
for (Chai et al., 2020), Co-occurence (Nataraj et al., 2019)
and Freq-spec (Zhang et al., 2019). The average accuracy
over 15 test sets is below 71.71%. Methods that focus
on low-level representation like specific frequency compo-
nents or image-level network gradients, i.e., F3Net (Qian
et al., 2020), LGrad (Tan et al., 2023b), FreqNet (Tan et al.,
2024c), and NPR (Tan et al., 2024d), achieve better gner-
alization performance. NPR achieves an average accuracy
of 93.21%, which leverages the local high-frequency in-
formation as input of the detector. Currently, some meth-
ods, i.e., UnivFD (Ojha et al., 2023), FatFormer (Liu et al.,
2024), and C2P-CLIP (Tan et al., 2024b), find that utiliz-
ing pre-trained large visual backbone network (e.g., CLIP
ViT-L (Radford et al., 2021)) can achieve remarkable per-
formance in AIGI detection. Our method PiD shows com-

putational efficiency with simple pixelwise transformation
and lightweight network structure and surpass previous
representation-based and pretraining-based methods. The
proposed method achieve a new state-of-the-art result with
an average accuracy of 96.22%, compared with NPR with
93.21% and FatFormer with 95.89%. The mAP of 98.24% is
also competitive compared with pretraining-based methods
like FatFormer and C2P-CLIP.

Evaluation on GenImage. To verify the generalization
capability of the proposed method, we also test the models
on another benchmark GenImage with advanced diffusion
models as the training and test set. All the detection models
are trained on the training set with SDv1.4 as the generative
model. Some reconstruction-based methods use diffusion
reconstruction to extract residual information in the RGB
space, e.g., DIRE (Wang et al., 2023), or in the latent space,
e.g., LARE2 (Luo et al., 2024) and achieves great detection
performance on diffusion models. However, the model bias
of generative models may limit the generalization capability
of the reconstruction-based method. As shown in Table 3,
our method also achieves a new state-of-the-art result with
an average accuracy of 98.0% over 8 generative models. PiD
surpass the reconstruction-based method LARE2 by 11.8%,
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Table 3. Cross-model accuracy (Acc) performance on the Genimage Dataset. The SDv1.4 is employed as the training set following
(Zhu et al., 2024). The results of ResNet-50, DeiT-S, Swin-T, CNNSpot, Spec, F3Net, and GramNet are from GenImage (Zhu et al.,
2024). Bold and underline represent the best and second-best performance.

Method Venue Midjourney SDv1.4 SDv1.5 ADM GLIDE Wukong VQDM BigGAN mAcc
ResNet-50 (He et al., 2016) CVPR2016 54.9 99.9 99.7 53.5 61.9 98.2 56.6 52.0 72.1
DeiT-S (Touvron et al., 2021) ICML2021 55.6 99.9 99.8 49.8 58.1 98.9 56.9 53.5 71.6
Swin-T (Liu et al., 2021) ICCV2021 62.1 99.9 99.8 49.8 67.6 99.1 62.3 57.6 74.8
CNNSpot (Wang et al., 2020) CVPR2020 52.8 96.3 95.9 50.1 39.8 78.6 53.4 46.8 64.2
Spec (Zhang et al., 2019) WIFS2019 52.0 99.4 99.2 49.7 49.8 94.8 55.6 49.8 68.8
F3Net (Qian et al., 2020) ECCV2020 50.1 99.9 99.9 49.9 50.0 99.9 49.9 49.9 68.7
GramNet (Liu et al., 2020) CVPR2020 54.2 99.2 99.1 50.3 54.6 98.9 50.8 51.7 69.9
UnivFD (Ojha et al., 2023) CVPR2023 93.9 96.4 96.2 71.9 85.4 94.3 81.6 90.5 88.8
DIRE (Wang et al., 2023) ICCV2023 50.4 100.0 99.9 52.3 67.2 100.0 50.1 50.0 71.2
FreqNet (Tan et al., 2024c) AAAI2024 89.6 98.8 98.6 66.8 86.5 97.3 75.8 81.4 86.8
NPR (Tan et al., 2024d) CVPR2024 81.0 98.2 97.9 76.9 89.8 96.9 84.1 84.2 88.6
FatFormer (Liu et al., 2024) CVPR2024 92.7 100.0 99.9 75.9 88.0 99.9 98.8 55.8 88.9
LARE2 (Luo et al., 2024) CVPR2024 74.0 100.0 99.9 61.7 88.5 100.0 97.2 68.7 86.2
DRCT (Chen et al., 2024) ICML2024 91.5 95.0 94.4 79.4 89.2 94.7 90.0 81.7 89.5
Effort (Yan et al., 2024b) ICML2025 82.4 99.8 99.8 78.7 93.3 97.4 91.7 77.6 91.1
C2P-CLIP (Tan et al., 2024b) AAAI2025 88.2 90.9 97.9 96.4 99.0 98.8 96.5 98.7 95.8
PiD (MY UV , round) 97.2 99.5 99.4 96.3 99.0 98.8 95.8 98.3 98.0
PiD (MY UV , floor) 95.5 99.6 99.5 96.0 98.5 99.3 97.8 96.2 97.8

Table 4. Cross-GAN-sources evaluation on the Self-Synthesis 9 GANs dataset. Acc and AP are reported for comparison. Bold and
underline represent the best and second-best performance.

Method AttGAN BEGAN CramerGAN InfoMaxGAN MMDGAN RelGAN S3GAN SNGAN STGAN Mean
Acc AP Acc AP Acc AP Acc AP Acc AP Acc AP Acc AP Acc AP Acc AP Acc AP

CNNDetection (Wang et al., 2020) 51.1 83.7 50.2 44.9 81.5 97.5 71.1 94.7 72.9 94.4 53.3 82.1 55.2 66.1 62.7 90.4 63.0 92.7 62.3 82.9
Frank (Frank et al., 2020) 65.0 74.4 39.4 39.9 31.0 36.0 41.1 41.0 38.4 40.5 69.2 96.2 69.7 81.9 48.4 47.9 25.4 34.0 47.5 54.7
Durall (Durall et al., 2020) 39.9 38.2 48.2 30.9 60.9 67.2 50.1 51.7 59.5 65.5 80.0 88.2 87.3 97.0 54.8 58.9 62.1 72.5 60.3 63.3
Patchfor (Chai et al., 2020) 68.0 92.9 97.1 100.0 97.8 99.9 93.6 98.2 97.9 100.0 99.6 100.0 66.8 68.1 97.6 99.8 92.7 99.8 90.1 95.4
F3Net (Qian et al., 2020) 85.2 94.8 87.1 97.5 89.5 99.8 67.1 83.1 73.7 99.6 98.8 100.0 65.4 70.0 51.6 93.6 60.3 99.9 75.4 93.1
SelfBlend (Shiohara et al., 2022) 63.1 66.1 56.4 59.0 75.1 82.4 79.0 82.5 68.6 74.0 73.6 77.8 53.2 53.9 61.6 65.0 61.2 66.7 65.8 69.7
GANDetection (Mandelli et al., 2022) 57.4 75.1 67.9 100.0 67.8 99.7 67.6 92.4 67.7 99.3 60.9 86.2 69.6 83.5 66.7 90.6 69.6 97.2 66.1 91.6
LGrad (Tan et al., 2023b) 68.6 93.8 69.9 89.2 50.3 54.0 71.1 82.0 57.5 67.3 89.1 99.1 78.5 86.0 78.0 87.4 54.8 68.0 68.6 80.8
UnivFD (Ojha et al., 2023) 78.5 98.3 72.0 98.9 77.6 99.8 77.6 98.9 77.6 99.7 78.2 98.7 85.2 98.1 77.6 98.7 74.2 97.8 77.6 98.8
NPR (Tan et al., 2024d) 83.0 96.2 99.0 99.8 98.7 99.0 94.5 98.3 98.6 99.0 99.6 100.0 79.0 80.0 88.8 97.4 98.0 100.0 93.2 96.6
PiD (MY UV , round) 100.0 100.0 99.9 100.0 95.4 99.7 95.4 99.8 95.4 99.8 100.0 100.0 85.7 96.4 95.4 99.8 85.0 99.5 94.7 99.4
PiD (MY UV , floor) 100.0 100.0 100.0 100.0 97.5 99.4 97.6 99.8 97.6 99.5 100.0 100.0 84.2 91.2 97.6 99.6 97.4 99.9 96.9 98.8

the low-level representation-based method NPR by 9.4%,
and the pretraining-based method C2P-CLIP by 2.2%.

Evaluation on Self-Synthesis. To comprehensively evalu-
ate the performance of detection models over different GAN
sources, we test models on Self-Synthesis with 9 advanced
GAN models. All the models are trained on the training set
of ForenSynths. Most previous methods cannot generalize
well on this dataset. As in Table 4, our method surpasses
the second-best NPR method (Tan et al., 2024d) by 1.2% on
the average accuracy and by 2.8% on mAP.

4.3. Ablation Study

Ablation on the transfomation matrix Mt. We explore
whether the performance of PiD is sensitive to the choice
of transformation matrix Mt on GenImage. Four matrix are
used in this ablation as shown in Table 6. MY UV , MXY Z ,
and Mcustom map the pixel value from RGB color space
to another color space. All these matrices has the same
l1-norm ∥Mt∥1 = 1 and do not change the length of the

value range. Mdiag (∥Mdiag∥1 < 1) is a simple diagonal
matrix and only scales the RGB value before the quanti-
zation. On the one hand, the results in Table 6 illustrate
that even using the simple Mdiag can effectively improve
the generalization performance of detection models. This
indicates that the pixelwise decomposition can extract the
essential noise information for AIGI detection. On the other
hand, the choice of Mt is still important to the detection
performance, and MY UV achieves the best overall accuracy.
See the Appendix for the detailed information on the matrix
used in the ablation.

Ablation on the scaling of matrix Mt. The transforma-
tion matrix Mt can affect the length of the value range
of the mapped pixel vector, thus controlling the intensity
|Rpid(x)| of the residual representation. By scaling the Mt

(MY UV here) we can study the influence of |Rpid(x)| on
the performance. As shown in Figure 5, we measure the
intensity of residual with MSE between the original pixel
value and transformed pixel value. When Mt is scaled with
a factor larger than 1.0 (1.5 or 2.0), the average intensity of
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Real Images
Synthetic Images

Figure 4. Visualization of GradCAM (Selvaraju et al., 2017) on GenImage. We visualize the GradCAM of the baseline RGB model (the
3rd column) and our residual model (the 4th column). The normalized residual information is also visualized in the 2nd column.
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Figure 5. The pixel-level decomposition residuals vary in intensity
based on different scaling factors. We compute the residual in-
tensity over 10,000 randomly sampled pixel values. Log scale is
applied for better visualization.

residual drops (|Rpid(x)| < 1) and causes a sparse residual
representation. Evaluation results on GenImage in Table 5
illustrate that a large scaling factor (sparse residual repre-
sentation) causes a large generalization performance drop.
However, the generalization remains stable when using a
scaling factor smaller than 1.0 from the results. Therefore,
it is recommended to keep the l1-norm of Mt smaller than
1.0 (∥Mt∥1 < 1) in the application of PiD.

Visualization of the GradCAM. We visualize the atten-
tion of detection models with GradGAM (Selvaraju et al.,
2017) in Figure 4. The residual of PiD is also visualized in
the 2rd column. The synthetic images are generated from
Midjourney (Mid, 2022), SDv1.4 (Rombach et al., 2022),
ADM (Dhariwal et al., 2021) and BigGAN (Brock et al.,
2018). The residual patterns between real and synthetic

Table 5. Ablation of the mapped value range on GenImage by
scaling Mt. The matrix Mt here is MY UV , and the residual
intensity is influenced by the scaling.

Scaling factor Midjourney SDv1.4 ADM BigGAN

0.2 93.6 99.2 87.4 91.2
0.5 96.7 98.7 92.8 97.9
0.8 92.6 98.8 92.0 91.3
1.0 95.5 99.6 96.0 96.2
1.5 84.6 93.1 69.0 79.6
2.0 79.6 93.3 63.1 76.4

Table 6. Ablation of the transformation matrix Mt in PiD on Gen-
Image. Four types of Mt are used in the ablation, MY UV : YUV
color transformation, MXY Z : XYZ color transfomration, Mdiag:
diagonal matrix, Mcustom, customized full-rank matrix.

Model Midjourney SDv1.4 ADM BigGAN

Base (RGB) 67.5 98.7 55.9 61.6
MY UV 95.5 99.6 96.0 96.2
MXY Z 96.5 97.8 96.5 81.6
Mdiag 88.2 94.2 88.3 88.4

Mcustom 87.2 96.5 89.4 91.7

images exhibit some differences from the visualization. The
residual of synthetic images are likely share the same pat-
tern within a local region. From the attention map, the RGB
model (the 3rd column) focus more on semantic object in
the image. Compared with the baseline model, our residual
model can distinguish the synthetic images from real im-
ages in the attention map. The results further illustrate the
significance of the residual information in AIGI detection.
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5. Conclusion
This paper has introduced PiD, an effective AIGI detection
method that focuses on residual signals within images. By
disentangling residual components from images, PiD un-
covers underlying generation clues independent of semantic
content, offering a computationally efficient and generaliz-
able approach. Extensive cross-model experimental results
have demonstrated the remarkable generalization perfor-
mance of the proposed method. Future work could explore
further optimization of the method and its application to a
wider range of fake image detection scenarios. We hope that
the findings in this work can also inspire the improvement
of generative models.
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A. Transformation Matrix
Details for the transformation matrix used in Table 6, MY UV , MXY Z , Mdiag and Mcustom are presented in this section.
MY UV , MXY Z and Mcustom are normal full-rank matrix. The l1-norm of these matrices are the same (∥Mt∥ = 1). Mdiag

is a full-rank diagonal matrix.

MY UV =

 0.299 0.587 0.114
−0.168736 −0.331264 0.5

0.5 −0.418688 −0.081312

 ,M−1
Y UV =

1.0 0.0 1.402
1.0 −0.344136 −0.714136
0.5 −0.418688 −0.081312

 ,

MXY Z =

0.412453 0.357580 0.180423
0.212671 0.715160 0.072169
0.019334 0.119193 0.950227

 ,M−1
XY Z =

 3.240479 −1.537150 −0.498535
−0.969256 1.875991 0.041556
0.055648 −0.204043 1.057311

 ,

Mcustom =

0.06 0.63 0.27
0.3 0.04 −0.35
0.34 −0.6 0.17

 ,M−1
custom =

1.1844 1.5685 1.3482
0.9909 0.4756 −0.5945
1.1284 −1.4583 1.0876

 ,

Mdiag =

0.412453 0.0 0.0
0.0 0.715160 0.0
0.0 0.0 0.950227

 ,M−1
diag =

2.424519 0.0 0.0
0.0 1.398288 0.0
0.0 0.0 1.05238

 .

B. Cross-Model Evaluation
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Figure 6. Cross-model accuracy (Acc) performance on GenImage (left) and ForenSynths (right) datasets.

B.1. Comparison with Frequency and Pretrained Models

We visualize the evaluation results in Figure 6. Compared with other low-level residual-based methods like FreqNet (Tan
et al., 2024c) and NPR (Tan et al., 2024d), our method achieves better generalization performance on some generative models
like ADM (Dhariwal et al., 2021), VQDM (Egiazarian et al., 2024), BigGAN (Brock et al., 2018), and Deepfakes (Rossler
et al., 2019b). The residual information used in PiD is not limited to high-frequency information only and can generalize to
more synthesis methods. Compared to the pretraining-based UnivFD with a large ViT backbone, our model also achieves a
better overall detection performance. The results illustrate the effectiveness and efficiency of our method.

B.2. Comparison with LARE2 on Multi-Source Training Set

To validate whether the performance is sensitive to the generative models used during training, we test models trained
on different training sets on GenImage. As shown in Figure 7, we compare our model with LARE2 (Luo et al., 2024),
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Figure 7. Cross-model evaluation with different training sets on GenImage. We compare the performance with LARE2 with different
training sets.

which is a reconstruction residual-based method in the latent space. The performance of LARE2 is great when training on
the SD model, but it cannot generalize well when training on other DM or GAN models like GLIDE or BigGAN. Since
the reconstruction method usually relies on specific models like SD to extract residuals, the model bias may hinder the
generalization of these methods. Our method does not require a generative model to extract residuals and achieves great
generalization performance with different training sets as shown in Figure 7.

C. Visualization

Baseline (ResNet) UnivFD (CLIP ViT-L) PiD (ResNet)

Figure 8. The t-SNE visualization of RGB (baseline and UnivFD) and residual (PiD) detection models on GenImage. With RGB images
as input, real and synthetic images cannot be easily separated in the feature space. The residual information is less influenced by the
visual content information. The real images (blue points) are distinguished from synthetic images in the feature space of residual models.

Visualization of the feature space. To explore the effectiveness of residual representation, we visualize the feature space of
RGB and residual detectors with t-SNE (Van der Maaten & Hinton, 2008) on GenImage. As shown in Figure 8, with RGB
input, real and synthetic images cannot be simply separated in the feature space of the baseline model. For UnivFD, which
utilizes a frozen ViT-L (CLIP) backbone and generalizes well on some generative models, some images are clustered in the
feature space. However, real images are still not clustered and cannot be distinguished. The residual representation in PiD is
less influenced by the visual semantic information. Real images are clustered in the feature space of the residual detector
and separated from synthetic images. The results further demonstrate the effectiveness of our method in AIGI detection.

D. Computational Cost
Our method shows an advantage in the computational cost compared with previous methods, as shown in Table 7. First,
our method does not increase the learnable parameter numbers of the detector and requires a light weight CNN network
only. The overall number of parameters (#Params.) and operations (GFLOPs) is much lower than some methods that
rely on pretrained networks like UnviFD (Ojha et al., 2023). Second, the computational cost of the proposed pixelwise

14



PiD: Generalized AI-Generated Images Detection with Pixelwise Decomposition Residuals

Model #Params. GFLOPs Inference Time (ms)

Baseline (RGB) 1.4M 1.73 29.13
FreqNet 1.8M 2.28 142.00
DIRE 23.5M 4.09 2425.44

UnivFD 85.8M 17.58 63.79
Ours 1.4M 1.73 32.92

Table 7. Comparison of different methods on the computational cost. We compare different models and report the parameters numbers
and inference time of each model on the same device.

decomposition operation is also more efficient than the frequency transform or reconstruction process (like DDIM in DIRE).
From Table 7, the inference time (a single forward pass) of our method is similar to that of the baseline model without extra
operations (around 30 ms), while frequency-based method FreqNet (142.00 ms) and reconstruction-based DIRE (2425.44
ms) are much slower than ours and the baseline model.
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