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ABSTRACT

Despite substantial progress in video understanding, most existing datasets are
limited to Earth’s gravitational conditions. However, microgravity alters human
motion, interactions, and visual semantics, revealing a critical gap for real-world
vision systems. This presents a challenge for domain-robust video understanding
in safety-critical space applications. To address this, we introduce MicroG-4M, the
first benchmark for spatio-temporal and semantic understanding of human activi-
ties in microgravity. Constructed from real-world space missions and cinematic
simulations, the dataset includes 4,759 clips covering 50 actions, 1,238 context-
rich captions, and over 7,000 question–answer pairs on astronaut activities and
scene understanding. MicroG-4M aims to support three core tasks: fine-grained
multi-label action recognition, temporal video captioning, and visual question
answering, thereby enabling a comprehensive evaluation of both spatial local-
ization and semantic reasoning in microgravity contexts. We establish baselines
using state-of-the-art models. All data, annotations, and code are available at
https://anonymous.4open.science/r/MicroG-4M-26C8.

1 INTRODUCTION

Yuri Gagarin’s historic flight in 1961 marked the beginning of human space exploration. Since then,
significant milestones have been achieved, including crewed lunar landings, the continuous operation
of the International Space Station (ISS) for over 25 years, and the participation of more than 650
individuals in space missions Moskowitz & Wolf (2025). With numerous planned crewed missions in
the near future, the frequency and complexity of human activities in space are expected to increase
substantially. In this context, ensuring the safety, enhancing the operational efficiency of space
missions, and safeguarding the health and well-being of astronauts are of paramount importance.

With the rapid advancement of artificial intelligence, the integration of robotic systems aboard
spacecraft is anticipated in the near future. These systems will assist astronauts in routine and
mission-critical tasks. Consequently, there is a growing demand for the development of deep
learning-based scene understanding and action recognition methods tailored specifically for the
unique challenges posed by the microgravity environment.

Human action recognition Wang et al. (2023a); Feichtenhofer (2020); Feichtenhofer et al. (2019),
scenario captioning Chen et al. (2024), and Visual Question Answering (VQA) Hu et al. (2023) are
essential for intelligent human-robot collaboration, particularly in space, where precise perception and
understanding of astronauts’ actions and their surrounding context are crucial for ensuring operational
safety, efficiency, and autonomous assistance under constrained conditions. This capability is crucial
for ensuring mission efficiency, enhancing astronaut safety, and providing autonomous assistance in
the confined and complex conditions of space habitats. Numerous human action recognition datasets
and video caption datasets have been developed, playing an important role in various research areas
within computer vision and in industrial applications Camarena et al. (2023); Pareek & Thakkar
(2021); Al-Faris et al. (2020); Le et al. (2022).

However, most of the existing datasets for video scenario captioning and action recognition are
recorded on Earth without microgravity settings, e.g., Kinetics400 Kay et al. (2017), AVA Gu et al.
(2018), FineGym Shao et al. (2020), and ActivityNet Captions Chen et al. (2019).
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Figure 1: An illustration of the MicroG-4M, containing videos from real and simulated microgravity
environments (e.g., movies). The dataset supports benchmarks for three tasks: (1) video captioning,
(2) video question answering, and (3) fine-grained human action recognition under microgravity.

Human actions in space depart markedly from their terrestrial counterparts because microgravity
removes gravity-aligned orientation and reliable support surfaces. Basic behaviors—standing, loco-
motion, eating, and manual manipulation—follow different kinematics and contact patterns Hagio
et al. (2022). Standing becomes orientation-invariant, often maintained via foot restraints or hand-
holds rather than ground support; locomotion is achieved by drifting or pulling along structures rather
than gait; and manipulation frequently involves releasing or catching free-floating objects instead
of placing or picking from a surface. These shifts violate terrestrial orientation, support/contact,
and object-dynamics priors, which helps explain the degradation of Earth-trained Human Action
Recognition (HAR) models in orbit and motivates a microgravity-specific benchmark.

To address this gap, we introduce MicroG-4M, a new video benchmark specifically designed for
spatio-temporal and semantic understanding of human activities in microgravity. The name “4M”
reflects four characteristics: Multi-source (Real mission footage and physically plausible film),
Multimodal (RGB + text annotations), Multi-task (HAR, captioning, VQA), and Microgravity.

MicroG-4M comprises 4, 759 three-second video clips drawn from public YouTube footage of real
space missions and carefully selected, realistic space-themed films to augment scenario diversity
and coverage. The clips span scenes inside the ISS, the Tiangong Space Station, crewed spacecraft
cabins, and extravehicular activities. The corpus contains more than 390, 000 annotated frames with
bounding boxes for each visible individual and 13, 000+ action labels covering 50 distinct actions. In
addition, it includes 1, 238 descriptive clip captions created by human annotators and 7, 000+ open-
ended question–answer pairs aimed at assessing factual, causal, and counterfactual understanding of
scenes in microgravity. Both captions and QA annotations were carefully curated through multiple
refinement rounds and data selection stages, ensuring high semantic fidelity, contextual accuracy, and
relevance to the microgravity setting. Together, these resources enable multi-label spatio-temporal
detection, fine-grained action recognition, caption generation, and VQA within a single dataset.
To evaluate existing methods, we build the first comprehensive benchmark for these tasks, dubbed
MicroG-Bench. We evaluate representative video encoders (SlowFast Feichtenhofer et al. (2019),
X3D Feichtenhofer (2020), and MViT Li et al. (2022)) for human action recognition and leading
vision-language models (e.g., InternVideo Wang et al. (2022), Gemini 1.5 Pro Anil et al. (2023),
GPT-4o Hurst et al. (2024)) for captioning and VQA tasks. Across all evaluated subtasks, state-of-
the-art terrestrial models experience significant performance degradation, underscoring the unique
challenges posed by microgravity environments, such as arbitrary orientations, floating objects,
and confined spacecraft interiors. These results highlight the necessity of dedicated benchmarks to
facilitate the advancement of more robust and generalizable AI systems tailored for space applications.
MicroG-Bench, therefore, provides a unified, fair yardstick that will guide the development of more
robust and generalizable perception and language systems for astronaut assistance and autonomous
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mission operations. We summarize our contributions as follows. We present MicroG-4M, the first
video-based dataset for activity recognition and scene understanding specifically designed for the
microgravity environment. Additionally, we establish the first benchmark to evaluate state-of-the-art
human action recognition methods and vision-language models for fine-grained action recognition
and video captioning/QA in this unique setting.

2 RELATED WORK

Vision-Based Understanding in Microgravity and Space Environments. Microgravity challenges
terrestrial vision assumptions, requiring perception models for space habitats. Early work showed
traditional SLAM to be unreliable, leading to robust alternatives with visual-inertial fusion, semantic
mapping, CAD-informed constraints Soussan et al. (2022); Mao et al. (2024); Miller et al. (2022);
Tweddle et al. (2015), and validated on platforms like Astrobee Kang et al. (2024). Real-time vision
has also enabled dynamic tasks such as target tracking and scene change detection Oestreich et al.
(2021); Dinkel et al. (2024). Research has shifted toward interaction, including astronaut pose
recovery Gan et al. (2023); Ouyang et al. (2025), gesture recognition Lingyun et al. (2020); Gao et al.
(2020), and EMG-based input Assad et al. (2013). Yet, high-level semantic understanding of astronaut
actions and intent remains limited. Current assistants like CIMON Eisenberg et al. (2024) provide
basic perception but lack contextual reasoning. To address this, we propose a unified benchmark for
action recognition, video captioning, and visual question answering in space operations.

Datasets for Action Detection, Video Captioning, and VQA. Progress in video understanding
has been largely enabled by the introduction of benchmark datasets across action detection, cap-
tioning, and VQA. For action detection, early datasets such as UCF101 Soomro et al. (2012) and
HMDB51 Kuehne et al. (2011) provided trimmed classification tasks, later extended by Kinetics Kay
et al. (2017) and ActivityNet Caba Heilbron et al. (2015) to large-scale, untrimmed settings with
diverse action categories. AVA Gu et al. (2018) further introduced spatio-temporal annotations for
atomic actions, enabling fine-grained multi-label detection in realistic scenes. Video captioning
evolved from MSVD Chen & Dolan (2011) and MSR-VTT Xu et al. (2016), which paired short clips
with multiple sentences, to dense captioning in untrimmed videos via ActivityNet Captions Krishna
et al. (2017) and procedural datasets like YouCook2 Zhou et al. (2018). Multilingual benchmarks such
as VATEX Wang et al. (2019) expanded the task to cross-lingual settings with high-quality parallel
annotations. In VQA, static image datasets like VQA v2.0 Goyal et al. (2017) and CLEVR Johnson
et al. (2017) laid the foundation for compositional reasoning, while TGIF-QA Jang et al. (2017),
MovieQA Tapaswi et al. (2016), and TVQA Lei et al. (2018) introduced temporal and multimodal
reasoning in video. Recent efforts such as NExT-QA Xiao et al. (2021) and CLEVRER Yi et al. (2020)
focus on causal inference and counterfactual reasoning. However, existing datasets are constrained
to terrestrial environments and lack domain-specific complexity inherent to space-based activities.
To bridge this gap, we introduce the first benchmark for video captioning and VQA in microgravity,
enabling the evaluation of vision-language models in long-horizon, space-relevant scenarios.

Fine-Grained Human Action Recognition. Fine-grained video-based action recognition Gritsenko
et al. (2023); Chung et al. (2021) aims to detect fine-grained, indivisible human actions in both
single- and multi-person videos. Unlike standard clip-level recognition, atomic action localization
requires frame-level, multi-label classification with spatio-temporal bounding box predictions. To
tackle this, CNN-based Wang et al. (2023a); Feichtenhofer (2020); Feichtenhofer et al. (2019) and
transformer-based Ryali et al. (2023); Wang et al. (2023a); Li et al. (2022); Wang et al. (2023b;
2022); Peng et al. (2022); Gritsenko et al. (2023) models have been adapted by adding multi-label
heads, bounding box regressors, and region-of-interest modules. Notably, Ryali et al.Ryali et al.
(2023) introduced a hierarchical vision transformer balancing accuracy and efficiency, while Wanget
al. Wang et al. (2023a) proposed a dual-masked autoencoder for improved video pretraining. In this
work, we evaluate such HAR methods for the first time in microgravity scenarios.

3 COLLECTION METHODOLOGY

We aim to construct a dataset comprising authentic footage recorded aboard the International Space
Station and other spacecraft, as well as films that realistically depict microgravity conditions. In
the following, we introduce our comprehensive pipeline for collecting, assembling, filtering, and
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annotating the MicroG-4M dataset, which supports multi-label spatio-temporal action detection,
video captioning, and video question answering tasks from Internet-sourced videos.

Raw Video Information Collection. Video sources primarily include genuine microgravity footage
from actual spacecraft missions and selected cinematic clips known for their realistic depictions of
weightlessness. Authentic spacecraft videos were mainly retrieved from online video platforms, while
cinematic clips were manually chosen based on their fidelity to real microgravity conditions. All
videos were standardized to a resolution of 480p to maintain consistency. The final dataset comprises
approximately 5, 000 three-second clips, predominantly composed of authentic spacecraft footage.

Dataset Assembly Pipeline. We established an automated pipeline to preprocess and structure raw
videos, enabling consistent and accurate downstream annotation. The pipeline consists of three main
stages: video segmentation, filtering, and automated bounding-box annotation.

Raw Video Trimming. Raw videos are trimmed into uniform three-second clips at 30 fps, discarding
shorter segments to maintain temporal consistency.

Filtering. Video clips undergo automatic filtering based on person detection and scene-transition
analysis. Specifically, we employed YOLOv11 Khanam & Hussain (2024) for human detection
and PySceneDetect Castellano to identify abrupt scene changes, discarding clips with insufficient
human-action content or disrupted temporal continuity.

Bounding-box Annotation. Person bounding boxes are automatically annotated using
YOLOv11 Khanam & Hussain (2024) detection combined with BoT-SORT tracking Aharon et al.
(2022). To enhance annotation accuracy, adaptive strategies were employed by assessing video
motion intensity using sparse optical flow methods Jeannin & Divakaran (2001); Ali (2013); Szeliski
(2010). Annotation parameters were dynamically adjusted accordingly to optimize computational
efficiency and annotation precision. The resulting structured annotations include bounding-box
coordinates, unique identities, and detection confidence scores.

Manual Video Screening. Following automated preprocessing, an additional manual verification step
was performed to ensure dataset purity and environmental consistency. Specifically, each generated
video clip was individually reviewed to exclude terrestrial scenes, such as ground-based footage or
pre-launch preparations, thereby retaining only those segments clearly depicting human activities
under authentic microgravity conditions. This rigorous screening process ensured semantic precision
and enhanced the overall reliability of the dataset.

Action Label Annotation. In this phase, we derive a microgravity-tailored action taxonomy from
AVA’s 80 atomic actions Gu et al. (2018). To ensure environmental applicability and semantic conti-
nuity, we (i) exclude actions that are physically inapplicable in space (e.g., water- or ground-specific),
(ii) merge near-duplicates into unified categories, and (iii) introduce context-aware semantic adjust-
ments. To disambiguate visually or semantically similar actions, we define explicit differentiation
criteria that standardize annotation decisions. Each three-second clip is treated as a self-contained
unit: for every detected individual, annotators assign up to five visible or inferable action labels
per clip. The verified annotations are exported as structured CSV files for downstream training and
evaluation. Retaining AVA class names while re-grounding their semantics in microgravity enables
fair Earth→space comparisons without altering the label space.

Caption and VQA Annotation. For caption annotation, we developed a rigorous protocol that
combines detailed visual analysis of video content with supplementary contextual information sourced
from official aerospace agency documentation to ensure both accuracy and authority. Specifically,
we compiled and referenced mission objectives, crew rosters, and official reports from various
space agencies across different countries and missions, enabling precise identification of individual
astronauts. Furthermore, we utilized historical spacecraft layout diagrams and functional distribution
maps of the spacecraft cabins to accurately determine the astronaut’s location within the spacecraft
as well as the equipment inside it. In parallel, annotators conducted thorough reviews of the
complete video sequences, identifying subtle differences between adjacent frames to precisely
describe astronauts’ actions, physical appearances, and interactions with the environment. These
high-quality captions provide strong semantic grounding to support downstream tasks such as action
recognition and context-aware retrieval.

For Video Question Answering (VQA), we adopted a structured approach based on Heilman & Smith
(2009), formulating diverse questions using standard interrogative forms. Based on the complexity of
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Figure 2: An illustration of the statistics of the dataset and the annotation samples. Word clouds
of the (a) Caption, (b) Question, and (c) Answer from our MicroG-4M dataset are provided. The
label statistics of the fine-grained human action recognition are provided in (d), which showcases the
annotation number per action group (i.e., Object Manipulation (OM), Person Interaction (PI), Person
Movement (PM)). The distribution of person counts per video clip is visualized in (e). On the bottom
right, one annotation sample from MicroG-4M is provided.

the video captions, Large Language Models (LLMs) generate a proportional number of candidate
question-answer pairs, explicitly filtering out cases with missing or uncertain information. These
candidates are then ranked by the LLMs according to logical consistency, linguistic fluency, semantic
relevance, and informational value. Subsequently, multiple rounds of human-assisted review and
prompt adjustment are employed to eliminate any hallucinated or fabricated content produced by
the LLMs. Finally, a concise set of six diverse and content-rich QA pairs is selected for each video,
ensuring comprehensive coverage from broad contextual understanding to detailed actions.

Annotation Quality Control. During the annotation phase, a team of 9 annotators collaboratively
worked on labeling the fine-grained human actions, generating video captions, and crafting VQA pairs.
To ensure high annotation quality, a comprehensive cross-verification protocol was implemented
throughout the process, supported by group discussions to resolve disagreements and reach consensus.
For the captioning and VQA tasks, all entries were further subjected to a semantic consistency check
utilizing LLMs, followed by iterative human review to enhance both linguistic clarity and factual
accuracy. This layered validation pipeline, combining automated and manual strategies, ensured
the reliability and coherence of the annotations across all modalities. As a result, we introduce the
MicroG-4M dataset, an extensively curated benchmark explicitly designed for fine-grained, multi-
label, spatiotemporal action recognition, captioning, and VQA under microgravity conditions. This
dataset sets a new foundation for advancing robust scene understanding and human activity analysis
in space-based environments.

4 DATASET COMPOSITION

We release the MicroG-4M dataset, comprising the following subsets:

Fine-Grained Human Action Recognition Subset: Contains fine-grained, multi-label annotations
for spatiotemporal human action detection, comprising 4, 759 manually annotated three-second video
clips from authentic microgravity environments. Each clip includes annotations for up to five distinct
actions per detected individual. The 50 action labels are organized into three categories: Object
Manipulation (4, 976 annotations, 37.60%), Person Interaction (4, 288 annotations, 32.34%), and
Person Movement (3, 987 annotations, 30.07%). Figure 2(d) illustrates the distribution of these
categories in both real and simulated video clips, while Figure 2(e) shows the distribution of person
counts per clip, highlighting the diversity of social configurations. Overall, the subset contains 13, 261
action annotations, including 9, 610 from real footage, 3, 651 from simulated sources, and 390, 000
bounding box annotations.
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Video Caption Subset: Comprises 1, 238 detailed, semantically rich descriptions validated against
official aerospace agency documentation for astronaut identities, spacecraft locations, actions, ap-
pearances, and interactions. Each caption corresponds uniquely to one video clip. The word cloud
visualization in Figure 2(a) provides insights into frequently mentioned terms and concepts, illustrat-
ing the thematic and semantic distribution of the captions.

Visual Question Answering (VQA) Subset: Includes 7, 428 structured QA pairs, systematically
generated and refined via LLMs to ensure linguistic fluency, semantic relevance, and comprehensive
coverage of detailed actions and broader context, with each of the 1, 238 video clips associated
with up to six diverse QA pairs. Figure 2(b) and (c) show word clouds for questions and answers
separately, revealing prevalent inquiry types and common semantic patterns within the dataset.

Figure 2 presents representative video clips from the dataset, demonstrating typical annotation
examples and highlighting the visual and semantic diversity of the dataset. More details regarding the
dataset can be found in Appendix.

5 EXPERIMENTS VALIDATING

5.1 BENCHMARK PROTOCOL

Data Split. We partition the dataset into training, validation, and test subsets in a 7:1:2 ratio. Row-
level distribution is as follows: Training set: 9,266 records (69.93% of 13,251); Validation set: 1,329
records (10.03% of 13,251); Test set: 2,656 records (20.04% of 13,251). Video-level distribution
is as follows: Training set: 3,331 videos (69.99% of 4,759); Validation set: 475 videos (9.98% of
4,759); Test set: 953 videos (20.03% of 4,759).

Baselines for Fine-Grained HAR in Microgravity Scenarios. For fine-grained action recogni-
tion, we evaluate well-established baselines from video-based human action recognition, including
transformer-based models (MViTv1 Fan et al. (2021), MViTv2 Li et al. (2022)) and CNN-based
models (I3D Carreira & Zisserman (2017), SlowFast Feichtenhofer et al. (2019), X3D Feichtenhofer
(2020), C2D Feichtenhofer et al. (2019)). These widely used architectures cover both paradigms and
allow us to assess generalization to the unique spatiotemporal dynamics of microgravity. All models
are initialized with Kinetics400 Kay et al. (2017) pretrained weights for better convergence.

Baseline methods for Video Captioning and QA in Microgravity Scenarios. For video captioning
and question answering in microgravity, we evaluate strong baselines, including open-source models
(VideoChatGPT Li et al. (2023), mPLUG-Owl-3 Ye et al. (2025), LLaVA-Next Li et al. (2024),
VideoLLaVa Lin et al. (2024), Qwen-2.5-VL Bai et al. (2025), InternVideo Wang et al. (2022)) and
closed-source models (GPT-4o Hurst et al. (2024), Gemini 1.5 Pro Reid et al. (2024)). Open-source
models offer reproducibility via public weights and code, while closed-source models serve as
upper-bound references. This mix enables both transparent analysis and comprehensive evaluation of
video-language understanding in microgravity.

Cross-domain transfer protocol. To quantify the microgravity-induced domain gap, we use a
fixed transfer setup: models pretrained on Kinetics are fine-tuned on AVA Gu et al. (2018) with
matched settings, then evaluated zero-shot on MicroG-4M. For terrestrial contrast, we test on JHMDB
(Split 1) Jhuang et al. (2013) with the overlapping action set and standard protocol. This isolates
domain effects (microgravity vs. Earth) from implementation choices; evaluation details in Sec. 5.

Evaluation Metrics for Fine-Grained HAR. Our evaluation metrics include mAP@0.5, F1 score,
recall, and AUROC, all calculated using the macro method. Among these, mAP@0.5 is the primary
metric for measuring average detection accuracy per category and thus comprehensively evaluating
the model’s action recognition performance in a microgravity environment. Per-class threshold
sweeps provided in Appendix.

Evaluation Metrics for Video Caption and QA. We adopt standard automatic evaluation metrics,
including CIDEr Vedantam et al. (2015), BLEU-4 Papineni et al. (2002), ROUGE-L Lin (2004),
METEOR Banerjee & Lavie (2005), and BERTScore (F1) Zhang et al. (2020), all rescaled to a 0∼100
range for consistency. For semantic similarity, we report S-BERT Reimers & Gurevych (2019a)
and S-VQA Pathak et al. (2023) scores, both computed as cosine similarity between Sentence-
BERT Reimers & Gurevych (2019b) embeddings of predicted and reference texts. S-VQA is used
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Table 1: Performance of models fine-tuned on MicroG-4M, evaluated on the validation and test sets.
Model Validation Test

Arch TC Backbone #Params (M) mAP (%) F1-score (%) Recall (%) AUROC (%) mAP (%) F1-score (%) Recall (%) AUROC (%)

C2D Feichtenhofer et al. (2019) 8x8 R50 He et al. (2016) 23.61 27.22 12.52 10.34 82.86 29.51 8.09 6.58 83.49
C2D NLN Feichtenhofer et al. (2019) 8x8 R50 He et al. (2016) 30.97 40.42 23.10 20.41 87.11 44.64 28.30 24.86 89.40
I3D Carreira & Zisserman (2017) 8x8 R50 He et al. (2016) 27.33 40.93 19.78 16.93 86.44 46.41 26.37 22.25 88.79
I3D NLN Carreira & Zisserman (2017) 8x8 R50 He et al. (2016) 34.68 41.42 24.11 23.00 86.37 47.12 28.07 24.65 88.52
Slow Feichtenhofer et al. (2019) 8x8 R50 He et al. (2016) 31.74 40.32 21.83 19.08 84.55 45.19 26.13 22.77 88.49
Slow Feichtenhofer et al. (2019) 4x16 R50 He et al. (2016) 31.74 42.97 22.73 19.71 85.46 46.37 28.72 25.38 88.30
SlowFast Feichtenhofer et al. (2019) 8x8 R50 He et al. (2016) 33.76 38.76 20.29 17.66 85.91 43.02 22.63 18.98 88.51
SlowFast Feichtenhofer et al. (2019) 4x16 R50 He et al. (2016) 33.76 37.10 17.74 14.90 84.94 42.10 23.69 20.18 87.54
MViTv1 Fan et al. (2021) 16x4 B-CONV 36.34 17.79 7.89 6.86 72.40 12.86 5.54 4.66 74.63
MViTv2 Li et al. (2022) 16x4 S 34.27 17.57 8.31 6.92 72.67 15.14 8.16 7.17 78.61
X3D Feichtenhofer (2020) 13x6 S 2.02 17.59 6.63 5.63 78.27 14.07 5.77 4.52 78.23
X3D Feichtenhofer (2020) 16x5 L 4.37 23.56 8.82 7.38 80.56 18.70 9.15 7.47 78.27

Note: All models have been pretrained on Kinetics400 Kay et al. (2017) dataset and continually trained on
MicroG-4M. TC denotes the temporal configuration (frame length × sampling rate). #Params indicates the
number of parameters (in millions, M).

Table 2: Zero-shot performance on MicroG-4M test set for models pretrained on Kinetics and fine-
tuned on AVA Gu et al. (2018).

Model Test Result
Arch TC Backbone Pretrain Fine-tune mAP (%) F1-score (%) Recall (%) AUROC (%)

Slow Feichtenhofer et al. (2019) 8x8 R50 He et al. (2016) Kinetics 400 Kay et al. (2017) AVA v2.2 Gu et al. (2018) 16.24 2.67 1.99 73.83
SlowFast Feichtenhofer et al. (2019) 32x2 R101 He et al. (2016) Kinetics 600 Carreira et al. (2018) AVA v2.2 Gu et al. (2018) 23.81 6.32 6.62 77.83

Note: All metrics are macro-averaged over action classes. mAP is measured at IoU = 0.5. F1 and AUROC are
computed per class and then averaged. TC denotes the temporal configuration (frame length × sampling rate).

Figure 3: Qualitative results for fine-grained human action recognition in microgravity, where GT
denotes ground truth, MicroG-4M indicates predictions from Slow fine-tuned on MicroG-4M, and
AVA denotes predictions from the same model fine-tuned on AVA. The MicroG-4M model provides
more accurate predictions than its Earth-trained counterpart.

specifically for answer evaluation in generative visual question answering settings, capturing semantic
equivalence beyond lexical overlap. More details of the implementations are delivered in Appendix.

5.2 RESULT ANALYSIS FOR FINE-GRAINED HUMAN ACTION RECOGNITION

We assess model performance under the setup in Sec. 5 and Sec. 3. The analysis covers three facets:
(i) in-domain fine-tuning on MicroG-4M across CNN and transformer baselines; (ii) cross-domain
transfer under a fixed protocol contrasting AVA→MicroG with AVA→JHMDB; and (iii) qualitative
examinations of gravity-dependent behaviors.

Quantitative Analysis.

We evaluate several representative models on MicroG-4M, all pretrained on Kinetics400 Kay et al.
(2017) and fine-tuned on our dataset. As shown in Table 1, results plateau around 47% test mAP,
indicating a substantial gap to Earth-trained regimes. The ranking also inverts common trends on
Kinetics/AVA, with CNNs plus non-local modules Feichtenhofer et al. (2019); Carreira & Zisserman
(2017) leading mAP/AUROC and Slow (4×16) Feichtenhofer et al. (2019) yielding the best F1,
suggesting that local spatial encoding and structured receptive fields remain advantageous when
motion lacks gravitational consistency. Longer temporal windows further help, highlighting the
need for domain-adapted temporal reasoning. Under the matched transfer protocol, AVA→MicroG-
4M underperforms AVA→JHMDB (Table 3), isolating a physics-driven gap beyond conventional
terrestrial shifts. Comparing to AVA-finetuned models (Table 2), we observe a sharp drop when
transferring directly from AVA Gu et al. (2018) to MicroG-4M despite identical pretraining/backbones;
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Table 3: Cross-domain transfer under matched AVA fine-tuning (zero-shot evaluation).
Model TC Backbone Test Set mAP (%) AUROC (%)
SlowFast Feichtenhofer et al. (2019) 32×2 R101 He et al. (2016) JHMDB Jhuang et al. (2013) 47.50 83.98
SlowFast Feichtenhofer et al. (2019) 32×2 R101 He et al. (2016) MicroG-4M 23.81 77.83
Slow Feichtenhofer et al. (2019) 8×8 R50 He et al. (2016) JHMDB Jhuang et al. (2013) 34.24 76.96
Slow Feichtenhofer et al. (2019) 8×8 R50 He et al. (2016) MicroG-4M 16.24 73.83

Table 4: Comparison of video captioning performance across open-source and closed-source models
on the MicroG-4M benchmark. “#f” denotes the number of input frames used during model inference.

Model #f CIDEr BLEU-4 Rouge-L Meteor S-BERT BERTScore
Open-Source

Video-ChatGPT Maaz et al. (2024) 3 0.06 0.12 10.10 4.33 39.61 85.40
mPLUG-Owl3 Ye et al. (2025) 3 0.16 0.40 11.87 5.88 47.45 85.91
LLaVA-NeXT Zhang et al. (2024) 8 0.30 1.88 16.32 14.45 54.16 84.98
Video-LLaVA Lin et al. (2024) 8 0.03 0.07 9.29 4.12 42.97 84.89
Qwen2.5-VL Qwen et al. (2025) 9 0.03 1.34 13.75 15.67 56.46 84.01
Tarsier2-Recap-7B Yuan et al. (2025) 16 0.04 0.03 0.17 0.12 51.35 84.53
InternVideo Xing et al. (2024) 90 0.77 2.60 16.57 15.18 55.28 85.41

Closed-Source
GPT-4o Hurst et al. (2024) 6 1.74 2.65 16.46 11.27 62.18 86.75
Gemini 1.5 Pro Reid et al. (2024) 16 3.52 3.28 17.34 15.19 63.38 86.25

e.g., SlowFast reaches only 23.81% mAP on MicroG-4M, far below its MicroG-tuned counterpart.
This indicates that Earth-trained assumptions about orientation, support/contact, and object dynamics
are fragile in microgravity and are not resolved by naïve fine-tuning alone. Together, these findings
position MicroG-4M as a diagnostic benchmark that surfaces gravity-dependent failure modes and
motivates methods for robust, space-adapted video understanding. Our dataset thus provides a
rigorous testbed for evaluating and advancing space-adapted video understanding models, especially
in the context of astronaut assistance and autonomous system development.

Qualitative Analysis. Figure 3 presents qualitative comparisons between models trained on AVA Gu
et al. (2018) and those fine-tuned on MicroG-4M, across 5 representative video clips captured inside
and outside spacecraft cabins. The MicroG-4M–trained model demonstrates high alignment with
ground truth labels for core actions such as “Stand”, “Walk”, and “Talk-to”, while the AVA Gu et al.
(2018)-based counterpart consistently misinterprets floating or inverted postures as “Bend/Bow” or
“Sit”, revealing its reliance on Earth-centric gravitational priors. A representative example in the fifth
column shows the AVA Gu et al. (2018)-finetuned model misclassifying a floating astronaut as “Sit”
while the MicroG-4M–trained model correctly predicts “Stand” reflecting a common correction of
gravity-induced biases. Models trained on MicroG-4M also demonstrate improved robustness in
distinguishing passive object drift from intentional manipulation, though semantic ambiguity remains,
e.g., predicting “Carry/Hold” when a tool drifts near the astronaut’s hand without actual interaction.
These results indicate that MicroG-4M mitigates terrestrial biases, enhances sensitivity to body-object
dynamics, and better captures domain-specific actions, supporting future work on temporal coherence
and intentionality modeling.

5.3 EVALUATION OF VIDEO CAPTIONING MODELS

The results in Table 4 reveal how video-language models perform on the MicroG-4M benchmark,
highlighting key challenges introduced by microgravity-specific content. Lexical metrics such as
CIDEr and BLEU-4 show low overall values, especially among open-source models, suggesting
a significant distributional shift between MicroG-4M and typical pretraining data. The dataset’s
domain-specific vocabulary, visually compositional scenes, and semantically dense annotations likely
reduce surface-level overlap, which these metrics are sensitive to. In contrast, semantic similarity
metrics such as S-BERT and BERTScore remain relatively higher and more consistent, indicating
that several models capture the underlying intent even without lexical alignment. This underscores
the semantic richness of MicroG-4M, where alternative phrasings and scientific terminology often
convey similar meanings. Performance differences further reveal that input frame density and
pretraining modality play key roles. InternVideo Wang et al. (2022), which processes 90 frames
sampled within a 3s window, consistently outperforms other open-source models. This suggests that
dense sampling, coupled with video-specific pretraining, enhances the model’s ability to capture
subtle spatial patterns and object-scene relationships—features that are particularly important in
microgravity scenarios, where visual cues are often atypical or physically ambiguous. Closed-source
models, i.e., GPT-4o Hurst et al. (2024) and Gemini 1.5 Pro Reid et al. (2024) achieve better scores
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Table 5: Experiments of Visual Question Answering (VQA) models on the MicroG-4M benchmark.
“#f” denotes the number of input frames used during model inference.

Model #f CIDEr BLEU-4 Rouge-L Meteor S-VQA BERTScore
Open-Source

LLaVA-NeXT Zhang et al. (2024) 8 24.00 22.14 15.56 12.40 38.08 87.15
Video-LLaVA Lin et al. (2024) 8 25.70 28.47 15.90 10.71 35.39 87.13
Qwen2.5-VL Qwen et al. (2025) 9 2.99 0.65 8.35 8.47 40.65 84.80
Tarsier2-Recap-7B Yuan et al. (2025) 16 5.08 0.01 0.08 0.09 29.60 85.30

Closed-Source
Gemini 1.5 Pro Reid et al. (2024) 16 8.78 1.33 13.03 12.54 43.15 86.41
GPT-4o Hurst et al. (2024) 6 33.98 3.76 18.11 15.89 44.56 87.81

on both lexical and semantic metrics, likely due to broader data exposure, larger capacity, or more
advanced cross-modal fusion strategies. However, their relatively small performance gains further
validate the challenge posed by MicroG-4M. In general, these findings position MicroG-4M as a
demanding benchmark for evaluating multimodal models under domain change, highlighting the
need for robust spatial reasoning, domain adaptation, and semantically aware generation strategies in
unconventional environments.

5.4 EVALUATION OF VISUAL QUESTION ANSWERING MODELS

The results in Table 5 demonstrate that MicroG-4M presents distinct challenges for visual question
answering. Notably, there is a significant divergence between lexical and semantic evaluation metrics,
particularly among open-source models. For example, Qwen2.5-VL Bai et al. (2025) yields a BLEU-
4 of only 0.65 and a CIDEr score of 2.99, yet achieves the highest S-VQA score in its category
(40.65). This contrast suggests that MicroG-4M questions often admit multiple semantically valid
answers that differ lexically, such as paraphrased actions, scientific terms, or object references
adapted to microgravity settings. This characteristic does not reflect inconsistency in evaluation, but
rather underscores the conceptual and linguistic diversity embedded in the dataset. In addition, the
moderate absolute scores of even the top-performing closed-source models, such as GPT-4o Hurst
et al. (2024) (CIDEr 33.98, S-VQA 44.56), reveal the difficulty of reasoning over visual content in
microgravity. Unlike conventional VQA datasets, MicroG-4M includes visually ambiguous cues,
e.g., floating objects, unusual body orientations, and tool manipulations under microgravity that
challenge models trained primarily on terrestrial data. This suggests that current pretraining corpora
lack sufficient coverage of such scenarios, and that purely scaling model capacity is insufficient
for reliable generalization. Interestingly, increasing the number of input frames within the fixed 3s
window does not consistently yield better performance. For example, Gemini 1.5 Pro Reid et al.
(2024) processes 16 frames but performs worse than GPT-4o Hurst et al. (2024), which uses only
6 frames. This indicates that dense frame sampling alone is insufficient. Instead, performance
depends more critically on the model’s ability to extract semantically salient cues, e.g., astronaut
posture, object manipulation, and spatial configurations, from visually subtle or low-motion segments.
In microgravity environments, where conventional motion dynamics and object affordances are
altered, effective spatial reasoning and cross-modal alignment appear to be more decisive than
temporal redundancy. In summary, MicroG-4M reveals key limitations of current VQA systems in
addressing domain-specific challenges, particularly those involving spatial complexity, ambiguous
motion, and semantically flexible queries inherent to microgravity. Its comprehensive and specialized
design establishes it as a valuable testbed for probing the robustness, adaptability, and generalization
capabilities of multimodal models well beyond the scope of conventional Earth-based benchmarks.

6 CONCLUSION

In this work, we present MicroG-4M, the first large-scale dataset specifically curated for human
action recognition and vision-language understanding in microgravity environments. The dataset
features 4, 759 annotated video clips with over 390, 000 bounding boxes and 13, 000+ action labels
across 50 unique action classes. It also includes human-written captions and over 7, 000 VQA pairs,
enabling rich semantic understanding and reasoning. We introduce MicroG-Bench, a benchmark for
evaluating state-of-the-art models in fine-grained action recognition, video captioning, and question
answering. Results show significant performance degradation in space-like settings, highlighting the
need for domain-specific benchmarks and adaptation. MicroG-4M advances robust, generalizable AI
for astronaut support and autonomous space operations.
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ETHICS STATEMENT

This work constructs a benchmark from publicly available videos released by official space agencies
and publicly distributed films. No private recordings, surveillance footage, or restricted-access
materials are included. For public release, we distribute annotations and metadata only, and require
users to obtain source videos independently through legal channels. This avoids redistribution of
copyrighted audiovisual content and supports compliance with institutional and regional regulations.

The dataset depicts professional activities of publicly visible astronauts and actors in occupational
settings. While publicly disseminated material typically does not require additional individual consent
for research use, downstream users are instructed to follow their institutions’ IRB/ethics guidelines
and applicable privacy regulations. No personally identifying information beyond what is inherently
visible in the source videos is collected or released, and metadata exclude personal identifiers.

The dataset does not include satellite imagery or sensitive geolocation data. Film clips are screened for
physical plausibility and safety consistency, and implausible scenes are removed. For vision–language
components, large language models are used to generate and rank candidate questions under in-
terrogative diversity, with human verification of final questions and answers. Unanswerable “Not
mentioned” cases are retained to discourage hallucination and overconfident speculation.

To mitigate misuse, the resource is released for research purposes under terms that prohibit re-
identification attempts, surveillance applications, or violations of platform policies and content
owners’ rights. We will honor takedown requests from rightsholders and provide a mechanism
to remove or amend entries if concerns arise. Overall, the release policy combines metadata-only
distribution and clear usage terms, which aims to balance openness and reproducibility with privacy,
safety, and copyright considerations.

REPRODUCIBILITY STATEMENT

All data, annotations, and code will be released upon acceptance. The anonymized access link https:
//anonymous.4open.science/r/MicroG-4M-26C8 is provided for review purposes only.
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use LLMs in two limited ways. During dataset construction, an LLM proposes candidate VQA
questions per 3 s clip; humans filter, verify, and finalize both questions and answers, and captions are
human written. For benchmarking, several LLM-based systems are evaluated as baselines under a
unified inference setup. LLMs do not assign action labels or alter evaluation protocols. We also used
an LLM for language polishing of the manuscript, and all technical content and conclusions were
written and verified by the authors.

B TECHNICAL LIMITATIONS

MicroG-4M introduces the first unified benchmark for high-level video understanding in micrograv-
ity environments, but several technical limitations remain that could guide future refinement and
expansion.

One challenge lies in the ambiguity and subjectivity of annotations. Interpreting actions and generat-
ing captions can vary between annotators, especially in visually ambiguous frames or when inference
is required. Even with cross-validation protocols in place, some degree of subjectivity may persist,
introducing annotation noise.

Another limitation is the restricted temporal context. Each video clip spans only three seconds, which
may hinder the ability to model long-term dependencies. This limitation is particularly relevant when
modeling multi-step operations that are common in space missions.

The dataset is currently limited to RGB visual input, which constrains the potential for multimodal
understanding. Future versions could benefit from the inclusion of additional modalities such as
audio signals or communication transcripts to support more comprehensive reasoning.

There is also an inherent domain bias introduced by the inclusion of cinematic footage. While these
clips are visually high-fidelity and physically plausible, they may differ in visual style and narrative
framing from real operational recordings. This discrepancy can affect the generalizability of models
trained on the dataset.

Finally, the scale and annotation coverage of the dataset present further constraints. The current
release offers a carefully annotated subset of the full video collection, suitable for benchmarking, but
smaller than many large-scale web datasets. Continued annotation efforts are underway to expand the
dataset, covering a wider range of clips, actions, and scene types to support more diverse downstream
applications, including temporal reasoning and sequence-level inference.

C POTENTIAL SOCIAL IMPACTS

MicroG-4M introduces the first benchmark specifically designed for video understanding and vision-
language reasoning in microgravity environments. It comprises 4,759 curated clips supporting
fine-grained action recognition, video captioning, and visual question answering. These tasks
collectively provide a testbed for evaluating models under the unique motion dynamics and spatial
ambiguities posed by microgravity.

While MicroG-4M is not intended for deployment, it may inform downstream research in areas
such as astronaut behavior modeling, procedural understanding, or human–robot collaboration. Its
vision-language annotations also facilitate studies on video summarization and temporal grounding,
with potential implications for future human-AI interfaces in space-based or analog settings.

MicroG-4M enables the analysis of model limitations under microgravity-specific challenges, such
as sensitivity to gravitational priors and orientation ambiguity, offering a foundation for research on
robustness and generalization. Although developed for space-based contexts, the dataset’s motion
and interaction patterns may inspire comparative studies in gravity-reduced analog environments,
such as underwater settings.
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Furthermore, the semantic complexity of the captioning and QA tasks highlights challenges including
hallucination and semantic inconsistency, positioning MicroG-4M as a testbed for evaluating the
reliability and grounding of multimodal models in physically unfamiliar conditions.

D SAFETY AND ETHICAL DISCUSSION

MicroG-4M is developed as a research-oriented benchmark for video understanding in microgravity
environments. While ethical standards were followed throughout its construction, several considera-
tions are noted to promote responsible and informed use.

All real-world videos are sourced from publicly available materials released by official space agencies
and educational institutions, containing no private or sensitive content. Astronauts are shown
exclusively in professional contexts. Simulated cinematic content, while enriching visual diversity,
may introduce stylistic bias that differs from real operational footage.

All captions and QA annotations were created manually by annotators with domain guidance. LLMs
were employed exclusively for grammatical correction and fluency enhancement, without contributing
to semantic generation. Nonetheless, users should remain aware of any residual stylistic biases
introduced during this refinement process.

MicroG-4M is intended solely for non-commercial academic research. It is not validated for real-
world deployment, particularly in sensitive domains such as surveillance or defense. Users are advised
to evaluate generalization carefully and avoid overextension of model outputs.

We encourage community feedback on potential biases, content issues, or safety risks. Future versions
will include expanded validation and filtering to enhance transparency and data quality.

E ADDITIONAL QUALITATIVE ANALYSIS

E.1 FINE-GRAINED HUMAN ACTION RECOGNITION

We provide qualitative comparisons using representative video samples to illustrate the fine-grained
action recognition performance of different models in microgravity scenarios (Figure 4).

The AVA fine-tuned model frequently misinterprets microgravity-specific postures and contexts,
exhibiting errors such as misclassifying hatch-crossing as bend/bow or generating unrealistic predic-
tions like detecting a “smoke” action. In contrast, the MicroG-4M fine-tuned models demonstrate
improved accuracy by correctly identifying nuanced and compound actions specific to microgravity
environments, as illustrated by the more precise recognition of actions like carry/hold, lift/pickup,
and put on/off clothing. The highest-performing MicroG-4M model (I3D Non-local) further reduces
both false positives and missed detections, highlighting its superior capability in recognizing complex
and subtle astronaut activities.

These examples underscore the necessity for specialized training data, such as MicroG-4M, to
effectively capture and recognize fine-grained human actions unique to microgravity conditions.

E.2 VIDEO CAPTIONING

We provide qualitative examples to emphasize the unique challenges posed by space-related scenarios
and the limitations of existing state-of-the-art multimodal models (mPLUG-Owl3, LLaVA-NeXT,
GPT-4o, Gemini 1.5 Pro) in accurately capturing specialized details inherent to space station environ-
ments.

In the first scenario (Figure 5, left), all models demonstrate significant shortcomings in capturing
critical, astronaut-specific information and precise operational context, underscoring the difficulty in
accurately describing space-station activities without access to specialized annotations.

The second scenario (Figure 5, right) represents a relatively simpler context, yet models still lack
precise details and fail to fully leverage the specialized information present in our ground-truth anno-
tations. These examples illustrate the inherent difficulty in accurately modeling highly specialized and
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Figure 4: Qualitative results for fine-grained human action recognition in microgravity. Below the
frame samples, the first row presents the ground truth labels of the actions. The second row presents
the predictions of the Slow architecture fine-tuned on the AVA dataset. The third row shows the
predictions of the Slow architecture fine-tuned on the MicroG-4M dataset. The last row shows the
predictions of the I3D Non-Local Network (NLN) architecture fine-tuned on MicroG-4M. For both
the Slow and I3D NLN architectures, the AVA and MicroG-4M models were trained under the same
configuration: a ResNet-50 backbone with an 8×8 input (frame length × sampling rate), pre-trained
on Kinetics-400. The I3D NLN model fine-tuned on MicroG-4M achieved the highest mAP among
our baselines. Gray text denotes missed detections, while red text denotes false detections.

contextually rich scenarios typical of space environments, highlighting the necessity and distinctive
value of our carefully annotated space-oriented dataset.

Overall, these qualitative results demonstrate the critical importance of domain-specific annotation
for effectively capturing the nuanced details and specialized context essential in space exploration
scenarios.

E.3 VIDEO QUESTION ANSWERING

We present qualitative examples illustrating the performance of state-of-the-art multimodal models
(Gemini 1.5 Pro, GPT-4o, Video-LLaVA) on challenging Video Question-Answering (VQA) tasks
specifically related to space environments.

The provided examples (Figure 6) showcase diverse and challenging scenarios uniquely associated
with space-based contexts. The top-left example demonstrates the complexity of accurately inter-
preting multiple astronauts’ actions within confined spaces, especially when occlusions occur. The
bottom-left example emphasizes challenges in accurately identifying specific locations unique to
space environments. The top-right scenario tests models’ abilities to describe various specialized
objects within densely detailed backgrounds, typical of spacecraft interiors. Lastly, the bottom-right
example addresses the models’ propensity for hallucination by evaluating their capacity to accurately
infer details not explicitly mentioned in the visual content.

Overall, these qualitative analyses highlight significant limitations of current multimodal models
in handling space-specific scenarios, underscoring the critical need for detailed and specialized
annotations provided by our dataset to enhance performance and robustness in space-related VQA
tasks.

F DATA FORMAT CONVERSION

To simplify frame-level annotation processing, we adapted our dataset to match the AVA format, with
one modification: using frame stamps rather than timestamps. This allows direct frame indexing,
aligning better with our annotation scheme and reducing unnecessary conversion overhead.
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Figure 5: Qualitative examples illustrating ground-truth captions and outputs from four state-of-the-
art multimodal models. The left example represents a challenging scenario, in which all models fail
to accurately capture detailed and precise information. The right example demonstrates a relatively
simpler scenario, where model-generated captions exhibit closer alignment to the ground truth. Each
caption includes the corresponding caption length (in words), with key details highlighted in the
ground-truth captions.

F.1 DATASET METADATA

Our dataset metadata is structured hierarchically into two categories—video-level and frame-level—to
facilitate efficient retrieval and flexible querying.

Video-Level Metadata: summarizes high-level annotations and semantic context:

• Video ID: Unique identifier for each video clip.
• Person ID: Unique identifier for annotated individuals within videos.
• Action Labels: Fine-grained human action labels.
• Caption: Detailed textual description of the video content.
• Question-Answer Pairs: Structured questions and answers related to video content.

Frame-Level Metadata: provides detailed annotations at individual frame granularity:

• Video ID: Corresponding identifier linking video-level metadata.
• Frame stamp: Temporal location of annotated frames within videos.
• Person ID: Unique identifier for each individual per frame.
• Bounding Box: Pixel coordinates (xmin, ymin, xmax, ymax) for each annotated person.
• Clip Type: Indicates real-world or cinematic origin of video clips.

Video naming follows the "[source identifier]_[sequence number]" format, where the identifier is the
YouTube ID or film name, and the sequence number indicates its temporal position. This structured
metadata approach ensures efficient integration between frame-level and video-level annotations,
effectively supporting downstream vision-language research in microgravity environments. For
comprehensive documentation of the dataset metadata, please refer to the resources provided on our
GitHub and Hugging Face repositories.
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Figure 6: Qualitative examples illustrating Ground-Truth (GT) answers and corresponding responses
generated by three state-of-the-art multimodal models.

G SUPPLEMENTARY FOR HUMAN ACTION RECOGNITION (HAR) TASK

G.1 DATASET PARTITIONING

The dataset was partitioned at the video level following two primary criteria: (1) ensuring coverage
of all action classes through greedy selection, and (2) proportional random splitting of remaining
videos into training, validation, and test subsets (70:10:20 ratio). This approach avoids label leakage
by maintaining video-level annotation consistency within subsets. Table 6 provides a summary of the
sample-level and video-level distributions across splits.

Table 6: Train/val/test split statistics for the HAR task in MicroG-4M. Each cell reports both the
absolute count and its corresponding percentage (%).

Split Samples (# / %) Video Clips (# / %)

Train 9,266 (69.93%) 3,331 (69.99%)
Val 1,329 (10.03%) 475 (9.98%)
Test 2,656 (20.04%) 953 (20.03%)

Total 13,251 (100.00%) 4,759 (100.00%)
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G.2 DATASET STATISTICS

Table 7 summarizes the distribution of three broad action types, namely Object Manipulation,
Person Interaction, and Person Movement, across the entire dataset, cinematic subset, and real video
subset. Object Manipulation constitutes the largest category, particularly within real videos (39.42%),
followed by Person Interaction and Person Movement categories.

Table 8 presents statistics regarding the number of persons annotated per video. Single-person
videos dominate the dataset, particularly in real footage (92.41%), while multi-person annotations are
comparatively more frequent in cinematic sources.

Additionally, Table 9 provides a detailed breakdown of 50 fine-grained action classes. The most
frequent actions across both subsets include ‘stand’, ‘carry/hold object’, and ‘talk to self/person’,
whereas actions such as ‘climb’, ‘take photo’, and ‘kiss person’ are comparatively rare. Notably,
the distribution of action labels exhibits a pronounced long-tail pattern, consistent with Zipf’s law
commonly observed in naturally occurring datasets, indicating the realistic and representative nature
of the collected action annotations.

Table 7: Label type distribution across the full dataset, cinematic subset, and real video subset. Each
cell shows the number of labels followed by its proportion (%).

Label Type All Videos Movies Real Videos

Object Manipulation 4,986 (37.60%) 1,416 (38.78%) 3,788 (39.42%)
Person Interaction 4,288 (32.34%) 1,198 (32.81%) 2,950 (30.70%)
Person Movement 3,987 (30.07%) 1,037 (28.40%) 2,872 (29.89%)

Table 8: Distribution of the number of persons per video in MicroG-4M. Each cell shows the number
of videos followed by its proportion (%).

Persons per Video All Videos Movies Real Videos

Single Person (1) 3,983 (83.69%) 816 (61.26%) 3,167 (92.41%)
Two Persons (2) 623 (13.09%) 395 (29.65%) 228 (6.65%)
Three or More (≥3) 153 (3.22%) 121 (9.09%) 28 (0.94%)

G.3 PER-CLASS AP RESULTS

Figures 7 and 8 display the per-class average precision (AP) performance of models fine-tuned
on MicroG-4M and AVA datasets, respectively, and evaluated on the MicroG-4M test set. Fine-
tuning on MicroG-4M generally achieves higher per-class AP scores, highlighting improved model
adaptation to microgravity-specific action patterns. In contrast, AVA fine-tuned models exhibit
significant performance degradation, particularly on fine-grained or microgravity-specific actions
such as ‘operate spaceship’, ‘float’, or posture-related actions (‘bend/bow’). These differences
underscore the critical need for specialized fine-tuning datasets such as MicroG-4M to address the
unique challenges posed by microgravity environments in action recognition tasks.

G.4 CROSS-DATASET VQA DENSITY AND DESIGN RATIONALE

To contextualize our choice of six QA pairs per 3-second clip (2 QA/s), we compare MicroG-4M with
representative video-VQA corpora in terms of clip granularity, QA density, and question types. This
unified view allows controlled discussion of annotation budget and reasoning load across datasets
with heterogeneous clip lengths.

MicroG-4M targets short clips at high QA density (2.00 QA/s), comparable to MSVD-QA and
exceeding other widely used corpora. A fixed per-clip budget supports semantic diversity while
avoiding redundancy typical of long-form settings. Our QA taxonomy balances foreground actions,
spatial context, entity/attribute grounding, and temporal/causal reasoning, and explicitly includes an
unanswerable option to reduce hallucination.
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Table 9: Complete summary of action class distribution across all videos, movies, and real videos
(sorted by action ID).

ID Action Name Count

All Videos Movies Real Videos

1 bend/bow (at waist) 26 14 12
3 crouch/kneel 20 2 18
5 fall down 10 1 9
6 get up 25 4 21
7 jump/leap 20 0 20
8 lie/sleep 17 4 13
9 martial art 18 0 18

10 run/jog 12 0 12
11 sit 252 239 13
12 stand 3218 698 2520
14 walk 369 75 294
17 carry/hold object 3126 549 2577
20 climb (e.g., mountain) 1 1 0
22 close (door/box) 13 4 9
24 cut 9 0 9
26 dress/undress clothing 31 9 22
27 drink 43 5 38
28 operate spaceship 20 16 4
29 eat 45 2 43
30 enter 68 5 63
34 hit object 33 3 30
36 lift/pick up 188 10 178
38 open (window/door) 32 13 19
41 play musical instrument 3 0 3
43 point to object 323 2 321
45 pull object 32 19 13
46 push object 24 8 16
47 put down 138 7 131
48 read 15 14 1
56 take photo 2 0 2
57 text/look at cellphone 7 0 7
58 throw 4 0 4
59 touch object 353 136 217
60 turn screwdriver 17 9 8
61 watch TV/unspecified 346 316 30
62 work on computer 110 67 43
63 write 3 3 0
64 fight/hit person 27 26 1
65 give/serve object 46 20 26
66 grab person 41 31 10
67 hand clap 3 3 0
68 hand shake 4 2 2
69 hand wave 140 44 96
70 hug person 16 13 3
72 kiss person 1 1 0
74 listen to person 148 135 13
76 push person 3 2 1
78 take object from person 15 10 5
79 talk to self/person 3131 504 2627
80 watch person 713 625 88
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Figure 7: Per-Class AP after Fine-Tuning on MicroG-4M, evaluated on the MicroG-4M test set. All
models shown in this figure correspond to those listed in Table 1 of the main text.

Because question generation protocols and scoring schemes vary across datasets, cross-corpus density
should be interpreted as a comparability aid rather than a difficulty metric. The choice of six QA
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Figure 8: Per-Class AP after Fine-Tuning on AVA, evaluated on the MicroG-4M test set. All models
shown in this figure correspond to those listed in Table 2 of the main text.

Table 10: Cross-dataset VQA density and scope. Statistics are compiled from the original dataset
reports. “QA/sec” denotes (Avg. QA/Clip)/(Clip length in seconds). This comparison contextualizes
our choice of six QA per 3-second clip in MicroG-4M.

Dataset Clips QA pairs Avg. QA/Clip Clip Len. (s) QA/sec QA Types

MSVD-QA Xu et al. (2017) 1,970 50,505 25.64 10 2.56 Wh-type
MSRVTT-QA Xu et al. (2017) 10,000 243,680 24.37 15 1.62 Wh-type
TGIF-QA Jang et al. (2017) 56,720 103,919 1.83 3 0.61 Task-based
TVQA Lei et al. (2018) 21,793 152,545 7.00 76 0.09 Wh-type + Temporal
ActivityNet-QA Yu et al. (2019) 5,800 58,000 10.00 180 0.06 Motion, Spatial, Temporal
MovieQA Tapaswi et al. (2016) 6,771 6,462 0.95 200 0.004 Story comprehension
VideoQA Yang et al. (2003) 18,100 174,775 9.66 45 0.21 Wh-type + Yes/No
MicroG-4M (Ours) 1,238 7,428 6.00 3 2.00 Wh-type, Foreground/Background, Fine-/Coarse-

motion, Identity, Temporal, Causal

pairs per 3-second segment is thus motivated by controllability: it preserves clip-level coverage
and evaluation stability while enabling apples-to-apples studies of domain shift in microgravity,
independent of confounds from variable clip durations or QA volumes.
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