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Figure 1: We propose DEXPLORE, a unified control policy that tracks diverse hand-object MoCap
references on a dexterous robotic hand [1]. Left: By using human demonstrations as soft refer-
ences, we train a robot hand to discover motions that align with its physical form and a given task’s
intent through large-scale reinforcement learning. Right: We transfer the learned policy into a skill-
conditioned generative control policy that takes a partial depth image as input, and successfully
deploy the policy on a real robot system.

Abstract: Hand-object motion-capture (MoCap) repositories offer large-scale,
contact-rich demonstrations and hold promise for scaling dexterous robotic ma-
nipulation. Yet demonstration inaccuracies and embodiment gaps between human
and robot hands limit the straightforward use of these data. Existing methods
adopt a three-stage workflow, including retargeting, tracking, and residual correc-
tion, which often leaves demonstrations underused and compound errors across
stages. We introduce DEXPLORE, a unified single-loop optimization that jointly
performs retargeting and tracking to learn robot control policies directly from Mo-
Cap at scale. Rather than treating demonstrations as ground truth, we use them as
soft guidance. From raw trajectories, we derive adaptive spatial scopes, and train
with reinforcement learning to keep the policy in-scope while minimizing control
effort and accomplishing the task. This unified formulation preserves demonstra-
tion intent, enables robot-specific strategies to emerge, improves robustness to
noise, and scales to large demonstration corpora. We distill the scaled tracking
policy into a vision-based, skill-conditioned generative controller that encodes di-
verse manipulation skills in a rich latent representation, supporting generalization
across objects and real-world deployment. Taken together, these contributions po-
sition DEXPLORE as a principled bridge that transforms imperfect demonstrations
into effective training signals for dexterous manipulation.
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1 Introduction

Achieving human-level dexterity remains a fundamental and long-standing challenge in robotics and
autonomous systems, with broad implications for tasks ranging from object sorting and packaging
to food preparation and assisted living [2, 3, 4]. Despite decades of progress, robotic manipulators
still struggle with many tasks that humans perform effortlessly [5, 6], highlighting the persistent gap
between human and robotic manipulation capabilities.

A natural path toward closing this gap is to learn control policies from human demonstrations. How-
ever, translating human data into effective robot control is nontrivial: human hands combine high-
dimensional kinematics, compliance, and dense tactile sensing; by contrast, robotic hands often
differ markedly in morphology, provide fewer independently actuated degrees of freedom, and of-
fer limited sensing and force control. This embodiment mismatch renders direct transfer inherently
challenging. To address this, prevailing approaches retarget human demonstrations to the robot’s
kinematics, track them with a low-level controller, and add residual or corrective terms to compen-
sate for tracking errors and embodiment gaps [7, 8, 9]. However, retargeting errors can propagate
and bias downstream learning, for example, a grasp that is feasible for a human may be infeasible
or strongly suboptimal for a robotic hand when, if, e.g., strict fingertip correspondence is enforced.

In this work, we propose DEXPLORE, a paradigm that avoids strict retargeting and post-hoc resid-
ual correction. The core idea is to treat demonstrations as soft references that preserve intent while
allowing the robot to discover motions compatible with its own embodiment. Concretely, during
contact-rich segments, we replace rigid kinematic tracking with adaptive, reference-scoped termi-
nation envelopes: at each timestep, the reference induces spatial scopes within which a rollout is
considered successful. Training begins with wide envelopes and progressively tightens them based
on observed success rates, encouraging early exploration and promoting precise tracking whenever
feasible. To enable real-world deployment under partial observations, we then distill the learned
tracker into a vision-based, skill-conditioned generative control policy: latent skill embeddings cap-
ture high-level manipulation intent, and a decoder produces low-level actions conditioned on these
latent codes. Training combines imitation from a teacher tracker with distribution matching between
privileged and partial state encodings. This structure yields a scalable policy that captures diverse
manipulation skills (left of Figure 1) and robustly handles partial observability.

We validate this design in real-world deployment (right of Figure 1) by running the distilled, vision-
based policy on a physical dexterous robotic hand using only single-view depth and proprioception
at test time. The policy closes the loop at typical control rates on a standard workstation and issues
low-level commands to the hand controller; no mocap references, pose estimators, or force sensors
are required at runtime. Conditioned on a compact skill code specifying high-level intent, the policy
executes grasping with embodiment-aware adaptation.

Our contributions are threefold: (I) Our DEXPLORE is a unified single-loop optimization that learns
dexterous manipulation directly from human MoCap by treating demonstrations as soft references
within adaptive spatial scopes, without explicit retargeting and residual correction. (II) We distill the
learned state-based tracker into a vision-based, skill-conditioned generative control policy that maps
single-view depth and proprioception, together with a latent skill code, to low-level actions. (III)
We demonstrate successful real-world deployment on a dexterous hand using only single-view depth
sensing. Overall, DEXPLORE redefines the role of MoCap data in learning dexterous manipulation,
as adaptable guidance that bridges demonstrations and robot-executable skills.

2 Related Work

Learning dexterous manipulation from demonstrations. Human demonstrations are a powerful
substrate for learning dexterous skills, typically collected via motion capture (MoCap) or teleoper-
ation and leveraged through imitation learning (IL). At scale, community platforms and toolkits fa-
cilitate collecting and exploiting large demonstration corpora [10, 11]. Building on this foundation,
recent approaches for multi-fingered hands show that closely aligning robot control with demon-
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Figure 2: Overview of DEXPLORE. (I) We first train a state-based policy that acquires scalable
dexterous manipulation skills across diverse objects from raw MoCap data, without relying on ex-
ternal retargeting. Rather than rigidly imitating demonstration trajectories, the robot is encouraged
to explore within reference-scoped regions, allowing embodiment-specific strategies to emerge. (II)
We then distill these skills into a vision-based policy that embeds diverse manipulation behaviors
within a unified latent space. By sampling from this latent representation and integrating perception
with hand proprioception, the policy generates human-like behaviors that generalize across tasks.

strations can reproduce complex hand manipulation behaviors [12, 13, 14, 15, 16, 17, 18, 19, 20].
Generative IL has further improved robustness and long-horizon control, via diffusion policies and
action-chunking transformers [21, 22] and, more recently, vision–language–action models [23, 24].
However, learning directly from human data, rather than robot demonstrations, still remains chal-
lenging because of embodiment mismatches between human and robotic hands.

Human-to-robot data transfer. To bridge the human-robot embodiment gap, human-to-robot trans-
fer typically proceeds via three routes: (I) video-to-robot pipelines that infer hand motion from hu-
man videos and synthesize robot trajectories [25]; (II) vision-based and AR/VR teleoperation that
records robot-compatible demonstrations [26, 27, 28, 29, 30, 31, 32]; and (III) task-aware retar-
geting followed by low-level tracking [33, 7]. While effective, these routes can be labor-intensive
(teleoperation), sensitive to perception noise and occlusion (video/vision-based retargeting), and
vulnerable to kinematic and force-control mismatches that accumulate during tracking. In contrast,
DEXPLORE relaxes strict human-to-robot adherence, preserving demonstrator intent while encour-
aging embodiment-consistent motion discovery.

Dexterous manipulation via reinforcement learning. Reinforcement learning (RL) provides an
alternative to direct imitation, and dexterous skills can be learned even with limited or no demonstra-
tion supervision. In practice, demonstrations are often used to bootstrap RL and improve stability
and sample efficiency, via on-policy fine-tuning initialized by behavior cloning [34] or off-policy
integration using Q-filtering and prioritized replay [35, 36]. Sim-to-real systems such as the Rubik’s
Cube hand mitigate sensing and dynamics gaps through domain randomization and hindsight expe-
rience replay [37, 38, 39]. More recent advances in policy-guided RL from demonstrations and re-
lated variants continue to raise in-hand dexterity performance [40, 41, 42, 43, 44, 45, 46, 47, 48, 49].
Nevertheless, state-of-the-art pipelines such as DexTrack [9] and ManipTrans [8] follow multi-stage
cascades that involve explicit human-to-robot transfer, tracking, and residual correction, which can
underutilize the demonstration signal and propagate errors across stages. In contrast, our DEX-
PLORE integrates reference guidance and reinforcement learning within a single optimization loop,
unifying data retargeting, curation, and policy learning.

3 Methodology

As illustrated in Figure 2, Dexplore learns dexterous manipulation from human demonstrations in
two stages. First, a state-based imitation control policy (Sec. 3.1) is trained with Reference-Scoped
Exploration (RSE), enabling the robot to discover embodiment-specific manipulation strategies.
This policy is then distilled into a vision-based generative control policy (Sec. 3.2)
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3.1 Reference-based Imitation Control

Task Formulation. The goal is to learn a policy π that enables a dexterous robot hand to manipulate
objects by following reference motions derived from human demonstrations. Due to anatomical
and actuation mismatches between the robot and the human hand, the policy must compensate for
geometric discrepancies rather than replay the reference verbatim. For the robot hand, the wrist is
modeled as a floating root joint in world coordinates, with all remaining joints expressed relative to
their parents. All manipulated objects are assumed rigid in the simulation, and their configurations
are given by full 6-DoF poses (position and orientation), while we show that our robot system
is adaptable for non-rigid objects as shown in Figure A. We formulate reference imitation as a
reinforcement learning problem defined over a Markov Decision Process (MDP). The MDP consists
of state representations, robot actions, and transition dynamics, together with a reward function
designed to encourage faithful yet feasible tracking of the reference motion. We employ Proximal
Policy Optimization (PPO) [50] to optimize the policy.

State. At every timestep t, our policy π acts on a hand proprioception and privileged ob-
ject observation, xt, combined with a goal-oriented reference component x̂t. It aggregates
hand kinematics, privileged object positioning, and coarse geometry and tactile cues, namely:
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turing its angular and linear velocities. We integrate coarse object geometry cues and simpli-
fied contact information through two sensory modalities following [51]: (i) Dt, consisting of
vectors [52] pointing from each hand joint to the nearest surface points of the object, and (ii)
Ct, binary contact indicators that reflect whether each rigid body on hand is in contact, mim-
icking tactile sensing [53]. The goal reference component x̂t is derived from the reference
MANO demonstrations, structured as: {x̂t+k}k∈K , with each future state x̂t+k defined explic-
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ence. Here, K specifies the reference indices that define the goal horizon. Because the robot hand
and the demonstration state (̂·) are defined on different skeletal structures, we introduce a mapping
M that projects both representations onto a common subset of key joints before computing deltas.
This mapping plays a role analogous to the correspondence used in retargeting objectives, and we
adopt the one provided in [33]. For the Inspire hand [1], for example, the mapping simplifies to
the five fingertips. All continuous components are expressed in a coordinate frame anchored at the
hand’s floating root joint and canonicalized by its current rotation.

Action. The control is divided into two parts: a 6-DoF floating-wrist signal and a set of local finger
commands. Each element is a proportional-derivative (PD) target in which rotations are expressed
with an exponential-map parametrization. These targets are converted to joint torques to drive the
robot. For kinematically coupled (mimic) joints, e.g., in the Inspire hand, the controller scales
the driving joint’s PD target by its predefined coupling coefficient (originally specified for joint
positions) to reproduce the mechanical linkage in hardware. While this approximation may not
perfectly capture the true coupling dynamics, it provides a practical control strategy. The policy
operates in a residual action space for floating-wrist control, where a 6-DoF positional offset is
added to the current wrist state to form the PD target, preventing the network from having to learn
unbounded absolute trajectories and thereby improving stability and generalization.

Reward. At each timestep, the reward consists of two complementary components: a state-reference
matching term and an energy regularization term. The matching term, Rmatch(xt, x̂t), encourages
the simulated state xt to align with the demonstration x̂t. Following [51], Rmatch combines (i) kine-
matic alignment of hand joint rotations and positions (Rh

R, Rh
J ), and object orientation and position

(Ro
R, Ro

p); and (ii) coarse geometric RD and contact RC correspondences. To discourage excessive
actuation, we add energy terms Renergy(at), including a penalty for large changes in consecutive
PD targets as well as high joint accelerations and velocities, thereby promoting smooth and energy-
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Figure 3: Left: Comparison with AnyTeleop [33] (top) and retargeted MoCap data (bottom), both
without task awareness. For hands with limited DoFs, retargeting often yields unnatural poses,
unlike our tracking results (middle). Right: Comparison with DexTrack [9] (top). For objects with
small grasp regions, the baseline fails to grasp reliably, while our method (bottom) succeeds.

efficient motion. The reward formulation below is designed to support retargeting by emphasizing
correspondence in behaviorally relevant features, enabling robust transfer across embodiments.

Kinematic State Matching. The primary objective is to align the robot hand with demonstra-
tion, emphasizing the matching of joints and links specified by the mapping M , as discussed
in state formulation. Formally, we define Rh

J = exp
(
−

∑
λh
J

∥∥M(p̂) − M(p)
∥∥2), Rh

R =

exp
(
−
∑

λh
R

∥∥M(R̂)⊖M(R)
∥∥2), where λh

J , λ
h
R are weighting hyperparameters.

Dynamic State Matching. The policy is also encouraged to maintain appropriate interaction dynam-
ics, such as keeping fingertips near functional affordances and preserving contact correspondences.
The associated rewards are RD = exp

(
− λD∥D̂ −D∥2

)
, RC = exp

(
− λC∥Ĉ −C∥2

)
. These

terms promote consistent manipulation with embodiment gaps preventing exact kinematics mimic.

Early Termination. We employ early termination criteria to halt episodes when simulation signif-
icantly deviates from feasible or desired trajectories. Formally, termination conditions are defined
as: (I)Rh

J < κh
J , (II)Ro

p < κo
p, (III)Ro

R < κo
R, (IV)RD < κD, (V)Ct ̸= Ĉt,∀t ∈ [t0, t0 + 10],

These criteria promptly terminate episodes when interactions deviate irrecoverably from reference
trajectories, thus facilitating effective policy learning via collecting meaningful experiences [54].

State Initialization. Because of the anatomical and kinematic differences between the robot and the
MANO hand model [55], directly assigning MANO poses as initial robot states is infeasible. At the
start of training, we initialize only the global rotation and translation of the robot palm according to
the reference pose, while setting all other degrees of freedom to zero. Following [51], we then cache
high-quality rollout states and subsequently reuse them as initialization. To further improve training
efficiency, we adopt prioritized sampling: rollouts are more likely to start from challenging phases
rather than motions for hand approaching.

Learning with Reference Scope. Our key idea is to enable flexible trajectory exploration within a
unified imitation learning framework that integrates retargeting, tracking, and correction. The cen-
tral mechanism is to reduce reliance on strict tracking rewards and instead shape the policy through
adaptive early termination criteria. (I) We introduce a reward weighting scheme in which the kine-
matic matching weights λh

R and λh
J are proportional to the hand–object surface distance, while

the energy penalty Renergy(at) is inversely proportional to this distance. This design encourages
smoother, lower-energy motions when tracking constraints are relaxed. For example, the kinematic
weight is given by w(D) = min

(
1, D

0.20 m

)
. Although these weights vary across timesteps, they

are deterministic functions of the reference trajectory and therefore the reward still remains station-
ary from the policy’s perspective, ensuring that the optimization target is consistent, and thus, the
varying weights do not bias the policy toward unintended behaviors. (II) We shape the reward via
adaptive early termination thresholds. For each termination criterion κ, we initialize with a large
value and progressively tighten it according to the ratio of failed rollouts: κ = κinit · Nfail

Ntotal
, where κinit

is the initial large threshold, Nfail is the number of unsuccessful rollouts (early termination events),
and Ntotal is the total number of rollouts visited at the current frame.
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Embodiment Tracking w/ Retargeting (optional) Rerr (rad, ↓) Terr (cm, ↓) Efinger (cm, ↓) Success Rate (%, ↑)

Inspire [1]

DexTrack [9] w/ AnyTeleop [33] 0.475 / 0.216 4.93 / 2.29 6.71 / 5.67 7.4
DexTrack [9] w/ Ours 0.515 / 0.467 3.75 / 3.26 6.43 / 6.28 69.8

DEXPLORE (w/o RSE) 0.514 / 0.333 3.88 / 2.59 6.12 / 5.71 29.9
DEXPLORE 0.474 / 0.452 3.77 / 3.65 6.06 / 6.04 87.7

Allegro [59]

DexTrack [9] w/ AnyTeleop [33] 0.595 / 0.471 4.21 / 3.39 9.38 / 9.36 45.9
DexTrack [9] w/ Ours 0.560 / 0.512 4.79 / 4.32 8.00 / 7.91 77.4

DEXPLORE (w/o RSE) 0.549 / 0.481 4.19 / 3.68 7.98 / 7.92 29.9
DEXPLORE 0.494 / 0.454 4.48 / 4.06 8.10 / 8.01 78.7

Table 1: Quantitative evaluations comparing our method with the baseline on the GRAB [60]
dataset. Tracking errors are reported as averages computed either over successful rollouts / over all
frames. Note that averaging errors across all frames generally yields lower values when the success
rate is low, since failed sequences mainly involve easy approaching without manipulating the object.

3.2 Vision-based Generative Control

Task Formulation. The objective of generative control is to learn a policy π̃ that enables a robotic
hand to manipulate objects using partial observations and optionally sparse goals.

Observation. As illustrated in Figure 2 II), the partial observations consist of (i) hand propriocep-
tion (x̃), including the global wrist position and orientation as well as local joint rotations, and (ii) an
object point cloud (P ) reconstructed from a single-view depth image. Depth images are captured by
a camera randomly positioned on a hemisphere above the table, with intrinsic parameters matched
to our Femto Bolt sensor [56]. Each depth map is converted into a 3D point cloud using the known
camera model. To encode the visual input, we employ a PointNet++ [57] backbone that jointly pro-
cesses the object point cloud together with observed human joint positions from the camera, yielding
a compact representation of both object geometry and hand-object interaction context. Other pro-
prioceptive signals, such as joint velocities and tactile information, are excluded due to their large
sim-to-real gap. In addition, the observation includes short-horizon historical states and a binary
indicator specifying whether the current timestep occurs before or after the onset of manipulation.

Goal. Following [58], we define sparse goals by selectively unmasking portions of the reference
motion, while the remaining components are either masked during training or replaced by mask
tokens at inference. For example, unmasking a desired wrist trajectory, obtained from reference data
during training or generated by an RRT-based motion planner in real-world evaluation, serves as the
goal condition. The policy then leverages its latent representation to infer the masked components
and generate diverse, human-like manipulation behaviors.

Learning the Generative Control. Introducing a latent embedding is essential in order to (i) cap-
ture and modulate diverse behaviors, (ii) eliminate reliance on complete reference trajectories, and
(iii) model the uncertainty that arises from missing privileged information at inference time. Our
framework consists of an encoder qϕ(z | x, x̂), a prior network pψ(z | x̃,P ), and a decoder pol-
icy π̃θ(ã | z, x̃). The encoder takes both the privileged robot-object state x and reference x̂, and
outputs a Gaussian latent distribution N (µq,Σq). In parallel, the prior network produces a state-
dependent Gaussian distribution N (µp,Σp). At each timestep, the latent skill embedding is sam-
pled as z = µp + µq +Σ1/2

q ϵ, ϵ ∼ N (0, I), with the noise ϵ held fixed within an episode to ensure
temporal consistency of the executed skill, following [58, 61]. The framework is trained via online
imitation learning using DAgger, with the imitation control policy introduced in Sec. 3.1 serving as
the expert teacher. It minimizes the reconstruction loss Lrec = ∥a − ã∥2, where ã are predicted
actions and a are expert-provided reference actions. A KL regularization term further encourages
the encoder distribution to remain close to the prior: LKL = DKL

(
N (µp+µq,Σq) ∥ N (µp,Σp)

)
.,

ensuring that the encoder does not capture information unavailable at inference. The overall training
objective is L = Lrec + β LKL, with β gradually increased during training to promote a more struc-
tured latent space, following [62]. At inference time, the encoder is omitted, and latents are sampled
directly from the learned prior: z ∼ N (µp,Σp), yielding a generative policy π̃ that produces goal-
conditioned dexterous manipulation behaviors using only partial observations.
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Figure 4: Our imitation control framework is also suitable for Allegro hands [59]. Compared to
Inspire hands [1], Allegro hands feature a different morphology with four fingers instead of five, and
offer more degrees of freedom (DoFs), but are significantly larger in size.

Figure 5: The vision-based policy deployed on an XArm-7 robotic arm [65] equipped with an Inspire
dexterous hand [1] and a Fremto Bolt depth camera [56].

4 Experiments

We evaluate the state-based policy’s ability to imitate human demonstrations and generalize to un-
seen scenarios. We then assess the vision-based policy framework’s effectiveness in achieving ma-
nipulation within simulation and its successful transfer to real-world deployment.

Data and Robot Models. We evaluate our state-based policy using two robotic hands in simulation:
(I) the Inspire hand [1], which is less dexterous than a human hand, featuring 12 degrees of free-
dom (DoFs) with only 6 actuated. We simulate mimic joint effects in IsaacGym [63], as described
in Sec. 3.1; and (II) the Allegro hand [59], a fully actuated robotic hand with 16 DoFs, notable
for its larger size compared to a human hand. These two hands comprehensively test our algo-
rithm’s robustness across embodiment gaps in both actuation complexity and physical dimensions.
We primarily utilize the GRAB [60] dataset as our source for human demonstrations, selecting 658
sequences involving 51 objects from an original set of 1,269 sequences, ensuring that selected se-
quences focus on single-hand (primarily right-hand) manipulations without bimanual interactions.
Our framework does not require explicit retargeting; however, we evaluate retargeting algorithms
separately for comparison purposes. We further investigate the generalizability of our trained policy
using novel data from the TACO dataset [64], evaluating whether our model benefits from scalability
and effectively adapts to diverse object geometries.

Metrics. For evaluating the state-based policy, we introduce four metrics to assess tracking accuracy
and task success. The Object Rotation Error (Rerr) measures how closely the tracked object’s orien-
tation aligns with the reference orientation per frame. The Object Translation Error (Terr) captures
the positional discrepancy between the tracked and reference object positions on a per-frame basis.
Additionally, the Fingertip Error (Efinger) quantifies the average positional difference of fingertips
between tracked and reference poses at each frame. Finally, the Success Rate is defined as the pro-
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portion of tracking attempts completed without dropping the object or exhibiting large deviations
as indicated by the aforementioned metrics. To evaluate the vision-based policy, since explicit ref-
erence trajectories are unavailable, we rely on the Success Rate and Contact Ratio metrics. Here,
success indicates maintaining stable hand-object contact over a duration and returning the object to
the table, while the contact ratio measures the proportion of time the hand remains contact.

Baselines. We consider two types of baselines: (I) AnyTeleop [33]: a retargeting algorithm for
robot hands from human demonstrations. We compare our policy’s simultaneous retargeting and
tracking capabilities to the kinematic replay from AnyTeleop’s retargeting. (II) DexTrack [9]: We
adapt it for comparison with our imitation control policy. Since DexTrack’s primary contributions,
including homotopy optimization and the combination of imitation learning (IL) and reinforcement
learning (RL), have not been publicly released, we adapt the available components and train them
in alignment with our experimental setting. Given DexTrack requires pre-processed retargeting, we
also provide the high-quality imitation results from our DEXPLORE as the source of their training.

Quantitative Evaluation. Table 1 shows that our method consistently outperforms baseline meth-
ods on each robot hand. Our DEXPLORE achieves notably higher success rates. The ablation
study on RSE demonstrates the effectiveness of scope exploration in compensating for robot-specific
strategies. Additionally, since our policy is designed with retargeting in mind, we observe substan-
tial performance improvements in the baseline DexTrack when utilizing rollouts from our policy as
a reference. Table B evaluates our vision-based policy. Even with randomly sampled camera views,
which might lead to severe hand-object occlusion, without privileged information, the policy still
demonstrates strong performance in object manipulation and maintaining contact.

Qualitative Evaluation. We compare our DEXPLORE against the DexTrack baseline [9] in Figure 3,
with the example where the affordance region is particularly constrained, requiring delicate and pre-
cise movements to grasp a knife. Our approach successfully accomplishes this challenging task. In
Figure 3, we also highlight that task-unaware retargeting [33], which optimize fingertip distances as
key features, is highly sensitive when the robot hand has fewer DoFs compared to a human hand,
since certain finger flexions easily achievable by humans are infeasible for robot hands, resulting in
unrecoverable retargeting failures. In contrast, our DEXPLORE effectively discovers solutions that
achieve natural manipulation motions, albeit slightly deviating from the original trajectories. Fur-
thermore, our algorithm remains effective even with increased DoFs, as demonstrated by the Allegro
hand example in Figure 4. Our imitation control policy, enhanced by inherently encoded geometric
information and guided exploration allowing deviation from the reference, demonstrates strong gen-
eralization capabilities to settings unseen during training – such as manipulating larger and heavier
objects, as illustrated in Figure B. For the distilled vision-based generative control, we evaluate it
under conditions where object geometries are entirely unseen during training. As demonstrated in
Figure C, our policy successfully generalizes to manipulate these novel geometries. Additionally,
skills from human demonstrations are distilled into a rich latent space learned from the MoCap data.
By sampling from this latent space, the policy generates diverse and plausible manipulation styles,
as illustrated in Figure D. We further validate this policy for real-world deployment, with successful
examples shown in Figures 5 and A.

5 Conclusion

We introduce DEXPLORE, a novel paradigm for scalable dexterous robotic manipulation that unifies
retargeting and tracking through learning from human demonstrations. Rather than rigidly repli-
cating trajectories, our approach leverages flexible guidance, enabling robots to discover natural
and efficient manipulation strategies adapted to their morphology. The learned state-based imita-
tion policy is distilled into a vision-based generative control policy, removing reliance on privileged
object observations and dense human references, thereby facilitating sim-to-real transfer. Experi-
ments show that our policy outperforms baselines and that the distilled visual policies generalize
effectively and are deployable in real-world scenarios.
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6 Limitation

Our approach currently faces several limitations. First, it sometimes struggles with reliably manipu-
lating very small or thin objects, where slight inaccuracies in fingertip positioning significantly affect
success. Second, we focus exclusively on single-hand interactions; while extension to multi-hand
manipulation is straightforward, coordinated behaviors require further exploration. Additionally, al-
though our method directly learns from MoCap data for scalability, our training dataset is relatively
modest, limiting generalization. Future work includes training on larger, more diverse datasets, and
extending our approach to coordinated multi-hand manipulation scenarios.
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DEXPLORE: Scalable Neural Control for Dexterous
Manipulation from Reference-Scoped Exploration

Appendix

In this appendix, we provide additional experimental setups:

1. Demo Video. A demonstration video including the real world experiment is provided, as
described in Sec. A.

2. Simulation Setup. The environment configuration for simulation is introduced in Sec. B.

3. Real-world Setup. Sec. C presents further details on our real-world deployment.

A Demo Video

In addition to the qualitative results presented in the main paper, we provide a demo video
(https://sirui-xu.github.io/dexplore/demo.mp4) for more detailed visualizations of the
tasks, further illustrating the efficacy of our approach. The demo video conveys the following key
points:

1. We demonstrate that our vision-based policy successfully transfers to real-world dexterous
grasping tasks.

2. Our state-based policy consistently outperforms baseline methods, such as DexTrack [9]
and AnyTeleop [33], demonstrating superior task execution and generalization capabilities,
such as to novel objects.

3. Our holistic method integrates retargeting and skill learning into a unified, cohesive frame-
work, enhancing overall adaptability and performance.

4. Our framework exhibits significant versatility, successfully adapting to different robotic
embodiments, including the Allegro [59] hand larger than hand hands, and Inspire [1] hand
with unactuated joints.

5. Our vision-based policy, which operates without privileged information, reliably accom-
plishes tasks with high robustness, emphasizing the practicality and resilience of our ap-
proach in real-world scenarios.

B Simulation Setup

We use MANO models [55] to represent human hand reference data, and objects are represented
using convex decomposition into 20 convex hulls for efficient simulation. Key simulation parameters
are summarized concisely in Table A.

Figure A: our framework can successfully grasp deformable objects (i.e., cloth).
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Figure B: Our imitation control policy generalizes effectively to manipulating larger and heavier
objects unseen during training. Specifically, we scale the object’s size by a factor of 1.5, resulting in
a corresponding weight increase of 1.53 shown on the right.

Figure C: Our vision-based generative control, though trained exclusively on the GRAB dataset [60],
generalizes to manipulating novel objects, specifically, object 081 and object 194 from the TACO
dataset [64].

C Real-World Deployment

Hardware Setup. As illustrated in Figure 1 of the main paper, our experimental setup includes
an Xarm-7 robotic arm [65] coupled with an Inspire RH56DFTP dexterous right hand [1]. The
Xarm-7 has 7 independently motor-driven joints, while the Inspire RH56DFTP hand comprises 12
joints actuated by 6 motors, meaning 6 joints serve as mimic joints. In simulation, the proportional-
derivative (PD) targets for these mimic joints are proportionally scaled based on the targets of their
actuated counterparts, as detailed in Sec. 3.1 of the main paper. In our real-world experiments, we
directly utilize the PD targets from the actuated joints for robot control. The real robot employs
internally defined position control parameters for proportional gain and derivative gain, whereas in
simulation, we explicitly set these values to 100 and 10, respectively. Additionally, we utilize a
Femto Bolt depth camera [56] to perform depth estimation and extract point cloud data.

Deployment. To achieve smooth and efficient robot motion during deployment, we do not directly
apply every step of the 30 fps rollout during the approach and lifting stages. Instead, the full rollout is

Parameter Value

Sim timestep 1/60 s
Control timestep 1/30 s
Environment count 4096
Physics substeps 8
Position solver iterations 8
Velocity solver iterations 1
Contact offset 0.02
Rest offset 0.0
Max depenetration vel. 10
Object restitution 0.7
Object friction 0.9
Object density 50

Table A: Summary of simulation parameters in Isaac Gym [63].

2



Figure D: Our vision-based generative control formulates a latent space for sampling, resulting in
diverse manipulation styles. We visualize poses at the moment when the hand makes initial contact
with the object.

activated only when the hand and object are sufficiently close. Notably, we initiate the thumb motion
first, followed by the motion of the other four fingers. This sequence is adopted because the thumb,
equipped with two actuators and having greater weight, moves more slowly compared to the other
fingers. The wrist trajectory is generated via motion planning using the Rapidly-exploring Random
Tree (RRT) algorithm, ensuring feasible and collision-free paths for robotic motion. Specifically,
RRT planner moves the hand near the object and to return it afterward. Once the hand is fully within
the camera’s view, manipulation is entirely driven by our policy. No additional hand-crafted control
is used during the core grasp.

Method Success Rate (%, ↑) Contact Ratio (%, ↑)
DEXPLORE (vision) 52.7 48.2

DEXPLORE (state) 87.7 69.3

Table B: Comparison of our vision-based policy
with the state-based policy shows that it performs
well in manipulating objects with only sparse ref-
erence and partial observations.

Compute cost. At inference time, the policy
runs on an RTX 4090 paired with an Intel i9-
14900K, with a total latency of approximately
80 ms per step. Of this, around 60–80 ms
is spent on descriptor computation, which in-
cludes acquiring a depth image, masking out
the background and robot arm via forward kine-
matics.

3


	Introduction
	Related Work
	Methodology
	Reference-based Imitation Control
	Vision-based Generative Control

	Experiments
	Conclusion
	Limitation
	Demo Video
	Simulation Setup
	Real-World Deployment

