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Abstract
The complex railway network is a challenging real-world
multi-agent system usually involving thousands of agents.
Current planning methods heavily depend on expert knowl-
edge to formulate solutions for specific cases and are there-
fore hardly generalized to new scenarios, on which Multi-5

agent Reinforcement Learning (MARL) draws significant at-
tention. Despite some successful applications in multi-agent
decision-making tasks, MARL is hard to be scaled to a large
number of agents. This paper rethinks the curse of agents
in the centralized-training-decentralized-execution paradigm10

and proposes a local-critic approach to address the issue. By
combining the local critic with the PPO algorithm, we de-
sign a deep MARL algorithm denoted as Local Critic PPO
(LCPPO). In experiments, we evaluate the effectiveness of
LCPPO on a complex railway network benchmark, Flatland,15

with various numbers of agents. Noticeably, LCPPO shows
prominent generalizability and robustness under the changes
of environments.

Introduction
Multi-agent Reinforcement Learning (MARL) has drawn20

significant attention in multi-agent decision-making tasks,
e.g. continuous control on robots (Yan et al. 2023), play-
ing strategic video games (Wang et al. 2022b), distributed
voltage control on grid networks (Wang et al. 2022a) and
cooperation in autonomous driving (Keviczky et al. 2007).25

Although MARL has sparked significant interest in the com-
munity, its successful applications are primarily concen-
trated in cases where the number of agents is limited (less
than 10). Most existing MARL algorithms still suffer from
increasing complexity with more agents in the system. This30

can partially explain why MARL is still unable to master the
complex railway networks, where there exist at most thou-
sands of agents. Flatland (Mohanty et al. 2020) is an open-
source platform simulating traffic on complex railway net-
works. In this platform, MARL has not yet outperformed35

the traditional optimization approaches, which motivates us
to specifically design a more efficient paradigm assisting
MARL to address the real-world problem in this work.

In this paper, we begin by investigating the reason
why existing MARL algorithms would fail on complex40

railway networks. The training of the multi-agent sys-
tems is a non-stationary stochastic process from the sin-
gle agent’s perspective so that independent learning (Claus

and Boutilier 1998) will receive an unstable training pro-
cess. To address this issue, MARL algorithms heavily 45

rely on the Centralized-Training-Decentralized-Execution
(CTDE) (Oliehoek, Spaan, and Vlassis 2008) paradigm.
Based on CTDE, each agent can gather information from
other agents during training (i.e., coordinating and commu-
nicating with other agents). This information is encoded in 50

agents’ policies so that they can still perform harmoniously
with local observations during execution. Figure 1 provides
an intuitive example of independent learning and CTDE on
actor-critic-based methods. Figure 1b visualizes the inde-
pendent learning that each agent has an independent critic 55

with its own observation and action as inputs, denoted ”in-
dependent critic”. Figure 1c concludes most popular CTDE-
based methods (Lowe et al. 2020; Wang et al. 2020a; Sune-
hag et al. 2018) in the MARL society. There exists a global
mixer gathering all other agents’ actions and observations. 60

The global information is then fed into the critic network
(denoted ”global critic”) to produce a more consistent value
prediction and eliminate the non-stationarity. Nevertheless,
the complexity of the global critic grows along with the
number of existing agents, which results in the global infor- 65

mation being redundant so that the learning procedure would
be unstable in practice (Yu et al. 2022). On the other hand,
both paradigms of forming critics do not utilize the physical
information existing in the physical system (e.g. the group
structure 1a from the railway network). In this work, we pro- 70

pose the local critic 1d paradigm by taking advantage of the
provided group structure depicting the spatial relationship
among agents to mitigate the above issue incurred by the
global critic.

Nevertheless, there exist several challenges to directly 75

applying the local critic to MARL. First, the group struc-
ture (e.g. members, connections, size) is non-static and each
agent may be involved in different groups throughout the
whole process, which prompts the introduction of a novel
mixing network to deal with variations of the group struc- 80

ture. The output of this mixing network usually has a prac-
tical implication as the group long-term value in previous
works (Sunehag et al. 2018; Rashid et al. 2018), which is
difficult to track in this scenario when the group is formal-
ized and unravelled temporarily. The second challenge is 85

how to appropriately clarify the contribution of each agent to
a certain group. When an agent had joined different groups
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Figure 1: Different Types of Critics in Multi-agent Systems.

along a trajectory, it would be non-trivial to study which past
groups or group members its long-term rewards might be in-
fluenced by, which directly impacts the policy optimization.90

Our main contribution is to sweep away the practical is-
sues of incorporating the local critic into multi-agent sys-
tems, namely dynamic group and agent coordination. Our
method is easy to implement on actor-critic frameworks like
PPO, leading to a practical MARL algorithm LCPPO. Fur-95

thermore, our approach demonstrates superior performance
over other MARL baselines on a complex railway network
simulator Flatland with various numbers of agents. Finally,
our method shows additional generalizability and robust-
ness regarding environmental changes in the network sys-100

tem, which reveals LCPPO to be a promising approach in
real-life applications.

Related Work
Vehicle Planning Problem as modelled in the Flatland En-
vironment has been an active research area within the op-105

erations research (OR) community dating back to decades
(Bodin and Golden 1981; Ryan and Foster 1981). To the
Flatland challenge, the winning solution in 2020 (Laurent
et al. 2021) was from the perspective of Multi-Agent Path
Finding (MAPF) (Stern et al. 2019) combining it with other110

optimisation techniques. For example, to handle malfunc-
tions, an improved version of Minimum Communication
Policies (MCP) (Ma, Kumar, and Koenig 2016) was used
to avoid the deadlocks by stopping some trains to maintain
the order that each train visits each location. Overall, most115

mentioned OR methods heavily depend on expert knowl-
edge to formulate solutions for specific cases and are there-
fore hardly generalized to new scenarios. Moreover, they all
need global information for planning, which is inefficient
and unstable for unforeseen situations.120

The ever-growing complexity of railway networks and a
need for real-time rescheduling makes OR methods infea-
sible and has paved the way for MARL solutions owing
to their success in optimisation problems. However, scala-
bility to a large number of agents and efficient coordina-125

tion of individual agents remain major challenges. Currently,
two parallel approaches are attempting to manage both chal-
lenges. The first approach is learning decentralized policies
and adding communication between agents (Foerster et al.
2016; Sukhbaatar, Szlam, and Fergus 2016; Das et al. 2019).130

These methods are sometimes bothered by the communica-

tion bandwidth and latency and are not appropriate for rail-
way systems where agents are far away. The other approach
is centralized-training-decentralized-execution (CTDE) in-
troduced in Background. To implicitly handle coordination 135

during training, MARL methods usually require a global
critic to gather all agents’ information (Lowe et al. 2020),
or decompose a global critic into individual value func-
tions (Sunehag et al. 2018; Rashid et al. 2018, 2020; Wang
et al. 2020b). All of them suffer from large joint state-action 140

space and cannot scale to the number of agents. This directly
motivates the local critic approach proposed in this paper.
Yang et al. (2018) have already investigated issues of large
scalability in MARL, unfortunately, which simplifies agents
based on static neighbouring information and is difficult to 145

apply on dynamic railway network setups.

Background
Multi-Agent Reinforcement Learning
Multi-agent reinforcement learning (MARL) is a domain
that combines multi-agent learning and reinforcement learn- 150

ing to solve a game model depicting a realistic problem. In
this work, we apply MARL as a basic learning framework to
solve the complex railway network. Following the common
setting in MARL, we model the multi-agent system (MAS)
as a partially observable stochastic game (POSG) which can 155

be expressed as the following 7-tuple (Kumar and Zilber-
stein 2009) such that ⟨N ,S,A,O, {ri}i∈N , T, b0⟩. More
specifically, N = {1, 2, ...} is a set of agents existing in
the MAS. S is a set of available states. O = ×i∈NOi is a
joint observation set, where Oi is agent i’s observation set; 160

while A = ×i∈NAi is a joint action set, where Ai is agent
i’s action set. Each agent i is equipped with a reward func-
tion to evaluate its performance such that ri : S × A → R.
Additionally, the transition function of the MAS can be de-
scribed as follows: T : S×A → ∆(S×O), where ∆(X ) is 165

the set of all probability distributions defined over a set X .
b0 ∈ ∆(S) is the initial state distribution. The objective of
POSG is to maximize each agent’s individual discounted cu-
mulative rewards by a stationary policy πi : Oi → Ai such
that maxπi

E[
∑∞

t=0 γ
tri(st, at)], where γ ∈ (0, 1) is a dis- 170

count factor, st ∈ S and at ∈ A. In MARL, the usual learn-
ing paradigm to solve POSG is called the multi-agent actor-
critic framework, for which each agent individually applies
the actor-critic framework to optimize its policy. Two of the
most popular algorithms based on this paradigm are IPPO 175



(de Witt et al. 2020) and MAPPO (Yu et al. 2022), which
extends the vanilla multi-agent actor-critic framework by in-
corporating the PPO algorithm (Schulman et al. 2017). In
this work, we propose Local Critic PPO based on MAPPO
via formalizing the critic with GNNs to capture sufficient180

information from the complex railway network.

Centralized Training Decentralized Execution
MARL algorithms are applied either as fully centralised
methods where a single policy with joint action is learned
for all agents or in an independent agent learning setting185

- also called decentralised learning where agents are opti-
mised separately. Nevertheless, the fully centralised method
could lead to the curse of dimensionality to impede learn-
ing the optimal joint policy, while the independent learn-
ing (e.g. IPPO) may result in the non-stationary learning190

procedure (Hernandez-Leal, Kartal, and Taylor 2019). To
trade off the benefits and drawbacks of these two paradigms,
Centralised Training and Decentralized Execution (CTDE)
(Oliehoek, Spaan, and Vlassis 2008) (e.g. MAPPO) was pro-
posed to form each agent’s critic by all other agents’ in-195

formation (e.g. observations and actions), still maintaining
the decentralised policies to approximate the joint policy as
used in independent learning paradigm to avoid the curse
of dimensionality. Standing by the view of application, a
limitation of CTDE is that it always collects the informa-200

tion of all agents to form a critic for an agent i, however, in
physical scenarios some agents could not influence agent i.
This would inevitably cause some unnecessary fluctuations
on the approximate critic, leading to potential learning in-
stability (Yu et al. 2022). To mitigate this issue, we propose205

the local critic to aggregate the sufficient agents’ informa-
tion, based on the existing physical information (e.g. a tree
structure describing the spatial relationship among agents)
provided by the complex railway network. This would di-
rectly filter out the information of irrelevant agents, to re-210

duce the instability induced especially from the scenarios
with a large number of agents. The outstanding performance
of the proposed local critic sheds light on the necessity of
incorporating known physical information into design when
dealing with real-world problems.215

Local Critic Multi-agent Reinforcement
Learning (LCMARL)

Introduced in Background, MAPPO depends on a global
critic during training, which fails to scale on complex rail-
way networks like Flatland with more than 10 agents. In this220

section, we take an alternative perspective, which formal-
izes a local group and constructs a local critic for training.
Incorporating the local critic method into the popular RL al-
gorithm PPO (Schulman et al. 2017), we achieve a practical
MARL algorithm applicable to the large-scale railway plan-225

ning problems, denoted as Local Critic PPO (LCPPO).

Overview
Figure 2 provides an overview of the overall approach of
incorporating the local critic into the MARL framework, in
particular actor-critic-styled algorithm.230

Suppose N agents in the system, and they receive their lo-
cal observations ot = (o1t , o

2
t , . . . , o

N
t ) at each step t. With-

out loss of generality, we assume global state st = ot. How-
ever, from the single agent’s view, the system is still par-
tially observable. The group structure gt is a graph represen- 235

tation with N nodes and E edges, which can be naturally
constructed in the railway system. In specific, two agents
share an edge if they are on rails connected by less than one
crossroad. For each agent i, the number of its neighbouring
agentsNt(i) is usually much less than N due to the sparsity 240

property in railway systems.
All observations are further passed into the local-critic

network V (ot, gt;ϕ) : O × G → R to predict agents’ in-
dividual values vt = (v1t , v

2
t , . . . , v

N
t ), where G is the space

of group structure. The local-critic network is represented as 245

a neural network parameterized with ϕ, as illustrated in Fig-
ure 2b. The network utilizes the group structure gt within the
GNN (Scarselli et al. 2009) layer. For each agent i, it ensures
its local information can only flow inside its neighbouring
agents Nt(i). If the neighbouring size is limited to G and 250

the number of agents N , the complexity of GNN is O(GN)
compared with O(N2) of the global critic in Figure 1c, and
thus easily speedup on hardware (Wang et al. 2023) when
G≪ N . In practice, the GNN structure is implemented with
the transformer (Vaswani et al. 2017) architecture with the 255

mask mechanism.

Dynamic Group
The biggest challenge in learning the local-critic network is
the evolving group structure gt. For agent i, it’s urgent to
discover its influence on its neighbouring agents Nt(i) in 260

several successive steps, butNt(i) can change at every step.
To mitigate this issue, we propose a concept of the imaginary
step t̃ (red dashed frame in Figure 2a). The imaginary step t̃
utilizes the observations ot+1 but maintains the group struc-
ture gt. By passing through the local-critic network, we ob- 265

tain virtual values ṽt+1 = V (ot+1, gt). Since values ṽt+1

and values vt (individual values at step t) are calculated with
the same group structure gt, there exists an iterative relation
with these values and rewards rt, which will be further in-
troduced in the next section. 270

With the introduction of the imaginary step, values at
different steps are connected with the same group struc-
ture. In detail, assume the predicted values at step t are
vt = V (ot, gt;ϕ) for all agents, while the imaginary values
at step t+1 are ṽt+1 = V (ot+1, gt;ϕ). These values repre- 275

sent the same meaning: the discounted expected cumulative
return agents can achieve under the static group structure
gt. We denote the i-th output of V (ot, gt;ϕ) as Vi(ot, gt;ϕ)
for simplicity. According to the dynamic programming tech-
niques (Sutton and Barto 2018), the extended Bellman equa- 280

tion for any i on value function Vi can be derived:

Vi(ot, gt;ϕ) = Eat,rt,ot+1

[
rit + γ(Vi(ot+1, gt;ϕ)

]
, (1)

where γ is the discount factor to account for future steps.
The expectation is concerning the next observations, actions
and rewards. The complicated expectation computation is
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Figure 2: An overall of Local-Critic Multi-agent Reinforcement Learning (LCMARL).

usually approximated by sample-based methods (Sutton and285

Barto 2018).

Agent Coordination
Equation 1 indicates that the value of agent i is only ac-
counted for by the received individual reward rit. It is im-
perfect since agents could reach a local sub-optimal solution290

as Prisoner’s dilemma in Game Theory. Instead, we would
like to encourage agents to find solutions better for global
interest.

Inspired by the VDN method by Sunehag et al. (2018),
they utilized the monotonicity of the addition calculation295

and summed all individual values Vi as the global value, to
encourage cooperative behaviours among agents. Similarly,
we sum all individual values inside each agent i’s neigh-
bourhood to encourage agent coordination inside this lo-
cal group, which requires much less computation compared300

with VDN on a global group. Moreover, with the evolution
of the local group, agents will possibly have a chance to co-
ordinate with different agents when necessary. The modified
Bellman equation takes place on the local-group level in-
stead of on the single-agent level:305

∑
j∈Nt(i)

Vj(ot, gt;ϕ) = Eat,rt,ot+1

[ ∑
j∈Nt(i)

rjt

+γ
∑

j∈Nt(i)

Vj(ot+1, gt;ϕ)
]
.

(2)

Intuitively, agent j learns to maximize its own value Vj ,
which also contributes to the local group value.

Practical Algorithm: LCPPO
Equation 2 describes the recursive definition (Bellman
Equation) of the value function with a local-critic perspec-310

tive, which can be further used to in policy evaluation. For
a complete RL algorithm, policy improvement is also re-
quired to learn a better policy. In this paper, we rely on
the successful single-agent RL algorithm PPO (Schulman

Algorithm 1: LCPPO
1: Input: initial parameters θ0 for policy function π, initial

parameters ϕ0 for value function V
2: for k = 1, 2, · · · ,K do
3: Set data buffer Dk = ∅
4: for j = 1, 2, · · · , J do
5: Collect trajectory τj = {o0,a0, r0, g0,o1, · · · , }

by executing actions at ∼ π(at|ot; θ) =∏N
i=1 π(a

i
t|oit; θ) in the environment at each step

t
6: for each step t and each agent j’s neighbouring

group Nt(j) derived from gt do
7: Compute values v

Nt(j)
t =∑

i∈Nt(j)
Vi(ot, gt;ϕ)

8: Compute virtual values ṽ
Nt(j)
t+1 =∑

i∈Nt(j)
Vi(ot+1, gt;ϕ)

9: Compute local group reward r
Nt(j)
t =∑

i∈Nt(j)
rit + γ(ṽ

Nt(j)
t+1 − v

Nt+1(j)
t+1 )

10: Compute advantage estimates Â
Nt(j)
t via

GAE (Schulman et al. 2017) with local group reward
r
Nt(j)
t and value v

Nt(j)
t

11: Compute rewards-to-go R̂
Nt(j)
t = Â

Nt(j)
t +

v
Nt(j)
t

12: τj ← τj ∪ {vNt(j)
t , Â

Nt(j)
t , R̂

Nt(j)
t }

13: end for
14: Dk ← Dk ∪ {τj}
15: end for
16: Update value function’s parameters ϕ with Adam op-

timizer (Kingma and Ba 2015) by fitting rewards-to-go:

ϕk+1 = argmin
ϕ

∑
τ∈Dk

∑
t=0

∑
Nt(j)

( ∑
i∈Nt(j)

Vi(ot, gt;ϕ)−R̂Nt(j)
t

)2
17: Update policy function’s parameters θ with Adam op-

timizer (Kingma and Ba 2015) by maximizing multi-
agent PPO objective:

θk+1 = argmax
θ

∑
τ∈Dk

∑
t=0

∑
Nt(j)

∑
i∈Nt(j)

(
cit(θ)Â

Nt(j)
t , clip(rit(θ), 1−ϵ, 1+ϵ)Â

Nt(j)
t

)
where cit(θ) =

π(ai
t|o

i
t;θ)

π(ai
t|oit;θk)



et al. 2017) as the backbone, and develop a novel MARL al-315

gorithm, denoted as Local-Critic PPO (LCPPO). The spe-
cific procedure is explained in Algorithm 1. We assume ho-
mogeneous agents and the policy function is πi(o

i
t; θ) =

π(oit; θ) for any agent i with parameters θ and value func-
tion is V (ot, gt;ϕ) with parameters ϕ. Agent i’s individual320

value function is denoted as Vi(ot, gt;ϕ), which is the i-
th output of V (ot, g;ϕ). LCPPO can be extended to het-
erogeneous agents in future work with individual policy
and value functions. For each agent j’s neighbouring group
Nt(j) derived from group structure gt, the group value325

is defined as the sum of group members’ individual val-
ues: v

Nt(j)
t =

∑
i∈Nt(j)

Vi(ot, gt;ϕ). The key modifica-
tion to PPO method is on Line 9 that the local group re-
ward r

Nt(j)
t is modified with an additional correction term

γ(ṽ
Nt(j)
t+1 − v

Nt+1(j)
t+1 ). This term is designed to compensate330

the calculations on advantages ÂNt(j)
t so that it accounts for

virtual values instead of real values to follow Equation 2.

Experiments
Experimental Setup
Task Description We evaluate the LCPPO on Flat-335

land (Mohanty et al. 2020), a simplified grid environment to
simulate the railway networks with an easy-to-use machine
learning interface. The goal is to control each vehicle with
different routes to arrive safely and punctually. Figure 4 vi-
sualizes the running process in Flatland. We mainly follow340

the official environmental configurations 1 with 10/20/30
agents respectively. In particular, the map size is 30 × 30
with 3 cities (2 cities for 10 agents). The max rails between
cities are 2 and there are 2 rail pairs in each city. The mal-
function rate is 0 and the speed for the vehicle is 1.0 grid per345

step, and verified in later analysis.
Regarding the MARL setup, we follow the previous

setup (Jiang et al. 2022) that each agent i receives a local ob-
servation oit at step t consisting of two parts: agent attributes
Xattr and tree-structured representation X tree. Xattr describes350

the individual attributes of each agent with 83 dimensions,
e.g. scheduled departure and arrival time. X tree represents
the spatial information on the grid environment, which is
encoded as the tree structure X tree = (nodeVv=1, edgeEe=1)
includes V = 31 nodes with 12-dimensional node attributes355

nodev and E = 30 edges with 3-dimensional attributes
edgee indicating connected nodes. All the information is
derived from the spanning tree, which is constructed by
traversing from the agent’s location and branch at each pos-
sible crossroad. Please refer to Jiang et al. (2022) for the360

detailed description of the spanning tree and attributes. The
action space includes five discrete actions: do nothing, go
forward, stop, turn left, and turn right. Regarding the group
structure needed by LCPPO during training, it’s defined as
follows: for each agent, any other agents who appear in the365

first level of its spanning tree belong to the same group. The
common group size is less than 5, which is much less than
the total number and guarantees the efficiency of LCPPO.

1https://flatland.aicrowd.com/challenges/neurips2020/envconfig.html

Evaluation Metric We adopt multiple objectives to eval-
uate the performance of different methods. Each agent re- 370

ceives an individual reward signal at each step, consisting of
the following items:
• Arrival Reward: rat = 1 if the agent reaches the target

and rat = 0 otherwise;
• Deadlock Penalty: rlt = −1 if the agent immerses in 375

a deadlock and rlt = 0 otherwise. A deadlock happens
when two trains step into a single trail from opposite di-
rections. The deadlock quickly blocks the rails and catas-
trophically paralyzes the whole system, and thus should
be penalized. 380

• Environment Reward: To encourage the train to arrive
on time, Flatland environment (Mohanty et al. 2020) pro-
vides an environmental reward defined as

ret =


1.0, if t ≤ B AND new arrival
(B − t)/Tmax + 1, if B < t < Tmax AND new arrival
(B − d)/Tmax, if t = Tmax AND not arrival
0, otherwise

(3)

where B is the latest arrival time, Tmax is the system’s
maximum running steps and d is the shortest path Man- 385

hattan distance between the train’s position and its target
at Tmax. The intuition of the reward is to punish the delays
after the scheduled latest time.

The final reward for agent i is the weighted sum of all terms
above: rit = cer

e
t + car

a
t + clr

t
l , where ce = 1.0, ca = 5.0 390

and cl = 2.5 follows previous work (Jiang et al. 2022).

Baselines and Implementation
• IPPO implements the structure as in Figure 1b. Each

critic only relies on local observation during training.
• MAPPO represents the structure as in Figure 1cand pre- 395

vious work (Yu et al. 2022). The critic network gathers
all agents’ observations as input and predicts the value.

• LCPPO follows Algorithm 1 introduced in this paper.
Theoretically, the critic network only utilizes observa-
tions from its neighbours. Practically, we use all agents’ 400

observations and adopt a Transformer (Vaswani et al.
2017) layer with the mask mechanism to imitate the ef-
fects.

Table 1: Hyperparameters of all baselines.

HYPERPARAMETERS VALUE

BATCH SIZE 1000
GAE LAMBDA 1.0
KL DIVERGENCE COEFFICIENT 0.2
KL TARGET VALUE 0.1
VALUE FUNCTION COEFFICIENT 1.0
VALUE FUNCTION CLIP 10.0
NUMBER OF GRADIENT ITERATION 10
GRADIENT NORM CLIP 0.1
LEARNING RATE 5E-4
TRAINING STEPS 6E6

For a fair comparison, all baselines share the same actor
network structure of a 2-layer feedforward neural network 405
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(a) 10 Agents.
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(b) 20 Agents.
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(c) 30 Agents.

Figure 3: The training performances of all baselines on the Flatland simulator with variant numbers of agents. All experiments
are carried out with 5 random seeds and the average performances across all agents are plotted with standard deviation as shaded
area.

with 64 hidden units each. Notably, the parameter sharing
technique (de Witt et al. 2020) is enabled among agents
for efficient learning. The critic network has a hidden-layer
structure as the actor network, and there is an additional
transformer layer to group local information in LCPPO.410

Other hyperparameters are demonstrated in Table 1.

Main Results
The main results of 10/20/30 agents are shown in Figure 3.
All experiments are carried out with 5 random seeds and the
average performances are plotted with standard deviation415

as shaded area. All evaluation metrics are averaged across
participating agents. In terms of the arrival ratio and envi-
ronmental reward, all experiments share a similar trend of
LCPPO > IPPO > MAPPO, which is strong evidence that

the local critic successfully guides the coordination of agents 420

thus leading to more on-time arrivals. Notably, MAPPO
can’t learn anything with the increasing number of agents.
This result complies with the curse of agent issues occurring
in the MARL area as explained in the Introduction.

Generalization 425

Generalization (Kirk et al. 2023) is essential for learning-
based methods since there might be mismatches between
training and testing environments in practice, which also ap-
plies to the railway system. There are various malfunctions
in real-world railway trails. Besides, it’s common to add or 430

reduce train routes, which all require rescheduling plans. In
theory, LCPPO only utilizes local information to guide plan-
ning behaviours. When mismatches happen in the system,
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(a) Passing Different trails in different directions.
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(c) Waiting for same-direction group agents passing.

Figure 4: Visualization of agents’ policies learned by LCPPO algorithm.

local groups close to the mismatches need re-planning and
other groups are not influenced. Compared with the global435

critic method, a malfunction could influence all agents since
it hasn’t been during training.

To demonstrate the generalization of LCPPO, we design
the following experimental setups: we first utilize different
algorithms to train planning policies on environments de-440

fined in the setups. Later on, certain components of the envi-
ronment are modified to simulate the mismatch in the system
and all policies are tested on newly changed environments
without further tuning. Regarding the changing components,
we consider the following scenarios:445

• Malfunctions: Trains are randomly stopped for random
duration. The stopped train would block the trail and
block other trains passing. This stochastic process fol-
lows the Poisson process. The mean rate of the Poisson
process is 0.0001. The stopping duration ranges from 15450

steps to 50 steps.
• Speeds: All trains have speed with one grid per step dur-

ing training. During testing, 1/4 of trains maintain this
speed, while 1/4 with one grid per 2 steps, 1/4 with one
grid per 3 steps and 1/4 with one grid per 4 steps. 455

• Agents: There are 20 trains in the network during train-
ing. 10 more agents are added during testing to challenge
the generalization ability.

Table 2: The average arrival ratio of all baselines under dif-
ferent test scenarios.

Algorithms Test Scenarios
Malfunctions Speeds Agents

IPPO 0.160 ± 0.188 0.124 ± 0.153 0.110 ± 0.135
MAPPO 0.016 ± 0.006 0.033 ± 0.008 0.016 ± 0.005
LCPPO 0.235 ± 0.113 0.194 ± 0.100 0.181 ± 0.092

All experiments are carried out with 5 random seeds and
we report the average arrival ratio and its standard devi- 460

ation in Table 2. Apparently, LCPPO is the most robust



algorithm among all baselines. The global critic method
(MAPPO) is the least favourite method under environmental
mismatches. This proves our concerns about current state-
of-the-art MARL methods. The number of agents is the most465

influential factor to all baselines, which calls theories from
open team research (Rahman et al. 2021).

Conclusion
This paper focuses on the applications of MARL on com-
plex network railway networks. The failure of state-of-the-470

art MARL methods in such a large-scale environment di-
rectly motivates this work. We proposed the local critic idea
and achieved an efficient MARL algorithm LCPPO. LCPPO
scales efficiently with the number of agents on the Flatland
challenge and performs better and more robustly than other475

baselines.
Despite the advantages provided by the local critic,

LCPPO still renders some deadlocks and unsuccessful plan-
nings, which is non-negligible in real-world applications.
It implies that the CTDE paradigm might not be enough480

to handle the coordination on agents (Zhou et al. 2023).
Therefore, it would be beneficial to include communications
among local groups or global information (graph structure,
other agents’ observations...) during execution for global op-
timal solutions. Besides, current updates on the value func-485

tion rely on the sum of rewards in the local group, which
treats all agents with identical importance. This assumption
might be wrong for heterogeneous multi-agent systems. A
more advanced credit assignment technique should be con-
sidered (Rashid et al. 2018; Wang et al. 2022b) and extended490

to dynamic group scenarios.
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