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Abstract

Large language models (LLMs) have not yet effectively leveraged the vast amounts
of edge-device data, and federated learning (FL) offers a promising paradigm to
collaboratively fine-tune LL.Ms without transferring private edge data to the cloud.
To operate within the computation and communication constraints of edge devices,
recent literature on federated fine-tuning of LLMs proposes the use of low-rank
adaptation (LoRA) and similar parameter-efficient methods. However, LoRA-
based methods suffer from accuracy degradation in FL settings, primarily because
of data and computational heterogeneity across clients. We propose RAVAN, an
adaptive multi-head LoRA method that balances parameter efficiency and model
expressivity by reparameterizing the weight updates as the sum of multiple LoRA
heads s;B;H;A; in which only the core matrices H; and their lightweight scaling
factors s; are trained. These trainable scaling factors let the optimization focus on
the most useful heads, recovering a higher-rank approximation of the full update
without increasing the number of communicated parameters since clients upload
s;H; directly. Experiments on vision and language benchmarks show that RAVAN
improves test accuracy by 2—8% over prior parameter-efficient baselines, making it
a robust and scalable solution for federated fine-tuning of LLMs.

1 Introduction

In recent years, the amount of data available on edge devices has increased exponentially, opening
the doors for applications that perform machine learning (ML) at the edge. One such paradigm is
federated learning (FL), a model training regime where edge devices, or “clients”, collaboratively train
a model without sharing their local data with a central server [27]. FL training offers a way to perform
large-scale ML on a distributed network of clients by utilizing on-device data while reducing potential
privacy risks. The primary challenge in FL is to design methods that are robust in the presence of both
data heterogeneity [24, 20, 23| [1]—variations in clients’ local data distributions—and computational
heterogeneity [10 |8, |30]—differences in clients’ computing capacities.

Recent literature has begun exploring the integration of large language models (LLMs) into FL.
frameworks, driven by the surge in LLM-based edge applications and the resultant need to leverage
on-device data for training [40, 4 1]]. Unfortunately, naively training LLMs in FL settings is intractable
as a result of the memory constraints of edge devices and communication constraints of wireless
networks. As a consequence, these works have examined the impact of parameter-efficient fine-tuning
(PEFT) for LLMs in federated settings [17}41]]. These methods reduce the computational load of
fine-tuning pretrained LL.Ms by scaling down the number of trainable parameters. A particularly
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important PEFT method in FL is low-rank adaptation (LoRA) [16], where the update AW is re-
parameterized as BA, the product of two low-rank matrices B and A. The original pretrained model
parameters are frozen throughout fine-tuning, and only the LoRA B and A parameters ever receive
gradient updates, resulting in fine-tuning that is vastly more parameter-efficient than full-parameter
fine-tuning. LoRA-based methods are a promising alternative to full-parameter fine-tuning in FL.
since clients only have to train and communicate the LoRA parameters, simultaneously addressing

computation and communication bottlenecks.
Table 1: Accuracy comparison on CIFAR-100

However, LoRA-based methods are highly affected [22]}, non-LLD. clients (Dirichlet a = 0.3)

by client data heterogeneity (see Table|l)) because re-

stricting updates to a low-rank subspace deprives the Method LLD. Non-LLD.
model of the capacity needed to fit the diverse direc- Full-FT 89.78 85.17
tions introduced by heterogeneous data. Moreover, FedIT 81.75 68.15
directly extending LoRA to FL, as done in FedIT FedEx-LoRA 77.82 66.98
[41]], leads to an inexactness problem during aggrega- FFA-LoRA 78.17 59.89

tion. Since BA is a proxy for the true model update
AW, averaging the B and A parameters separately would be inconsistent with the true model update:
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where C(*) is the selected client set at round ¢. Previous works that seek to address this exact
aggregation issue suffer from accuracy loss and poor scalability in practical FL settings due to data
and computational heterogeneity. FFA-LoRA [34] manages exact updates by freezing the A parameter
at initialization but reduces the model expressivity relative to vanilla LoORA. FedEx-LoRA [32] adds
the inexact residual 5 3 .cco BWAM — (et Leec B! ) (gt Leecw AM) to the original
pretrained weights W to get an exact update every round. However, the method substantially increases
the communication cost of fine-tuning since the updated model weights also have to be communicated
every round. Critically, these LoRA-based methods can afford only small ranks within a limited
parameter budget. When the true update is high-rank, this approximation disregards most of the
update’s variance and limits accuracy. Fed-SB [33]], motivated by the update approximation from
LoRA-XS [3], introduces a third LoRA parameter between the standard B and A parameters and only
fine-tunes this additional parameter. However, it necessitates an initial round of full-parameter fine-
tuning to initialize B and A, which is prohibitively expensive in FL. Furthermore, the initialization
may become stale as training progresses due to data heterogeneity and partial participation.

Computational heterogeneity is an additional scalability challenge in practical FL systems. Clients
may vary significantly in their hardware resources and computational capabilities, making it difficult
for all clients to fine-tune models at the same scale and speed. The methods described above do
not allow for LoORA parameters of different sizes across clients. HetLoRA [9] and FlexL.oRA [4]]
allow clients to train varying-rank LoRA parameters, but the methods struggle in the presence of data
heterogeneity and do not ensure exact aggregation. In this vein, our goal is to design a method for
FL that 1) performs efficient computation and communication throughout the training procedure, 2)
remains robust in the presence of heterogeneity, and 3) retains the property of exact aggregation.

To this end, we propose RAVAI\ﬂ an adaptive multi-head LoRA method that sharply reduces the
number of trainable parameters while maintaining accuracy in the presence of data and computational
heterogeneity. We take inspiration from multi-head approaches such as HydralLoRA [35[]; however,
when naively ported to federated settings, those methods fail to guarantee exact aggregation and
cannot raise the effective rank of the updates under a fixed parameter budget. Our design meets both
requirements. RAVAN re-parameterizes each weight update AW as a weighted sum of low-rank heads
s;B;H;A;, where the bases B; and A; are frozen at initialization and only the H; parameters and
lightweight scaling parameters s; are trained. We choose B; and A; with mutually orthogonal column
and row spaces, respectively, and thus the heads combine to achieve a higher effective rank without
exceeding the original LoRA parameter budget. When clients differ in resources, the most constrained
devices can fine-tune only a subset of heads and leave the rest frozen. Uploading the products s;H;
preserves exact aggregation and the method incurs no extra communication cost. Extending prior
efforts, RAVAN introduces an integrated framework that maintains parameter-efficient computation

*RAVAN derives its name from the mythical 10-headed villain from the Hindu epic, Ramayana
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Figure 1: Singular value spectra of the weight updates AW for CIFAR-100 and SVHN [29] in three
different training regimes. We display only the 64 largest values (hence the truncated plots). Moving
from centralized learning — FL (I.I.D. clients) — FL (non-L.L.D. clients), the median shifts up and
the distribution becomes broader, meaning a larger fraction of singular values remains near the higher
end of the spectrum. The effective rank is, therefore, higher in the federated, non-L.I.D. setting.

and communication and demonstrates robustness across diverse data and computational heterogeneity
in federated settings. Across all benchmarks, RAVAN outperforms related federated PEFT methods in
both I.I.D. and non-L.I.D. settings, demonstrating its strength in the presence of heterogeneity and
client diversity.

2 Problem Setup and Motivation

LoRA is a PEFT method that reparameterizes the weight updates to reduce the number of trainable
parameters. It contends that the full-parameter weight update AWg,; can be approximated as follows:

AquH ~ BA (2)

Weight Update LoRA Parameters

For notational ease, we write each weight matrix W and its corresponding update AWy, as a
square matrix in R?*?, but all derivations extend directly to the general rectangular case in which
W € R™*", The method contends that AWy, exists in a low-rank subspace and can therefore be
represented as the product of two low-rank matrices. In this context, the low-rank matrices, referred to
as the LORA parameters, have dimensions B € R4*" and A € R"*¢, To perform LoRA fine-tuning,
the pretrained model weights W are frozen throughout training and only B and A receive gradient
updates. Since r < d, the number of trainable parameters decreases from d? to 2rd.

Importance of Higher-Rank Update Approximation. A key limitation of LoRA is that con-
straining the approximation of the update AWy, to the low-rank subspace spanned by BA can limit
its expressive capacity. When the rank 7 is set too low, the approximation of AWy, may fail to
capture the full complexity and variation present in the full-rank gradient updates. This limitation
is amplified when we perform fine-tuning in a federated setting, as we observe in Figure || which
shows the spectra of singular values of the full-parameter weight updates, AWy, in three different
training regimes (centralized learning, FL. with L.I.D. clients, and FL with non-L.I.D. clients). The
model is trained to a target accuracy, and the weight update is decomposed using singular value
decomposition (SVD). Figure|l|demonstrates that the “effective rank™ of the weight updates is larger
in the federated non-L.I.D. setting. Intuitively, the greater the diversity among client updates, the
more the spectral mass is spread across singular vectors, thereby increasing the effective rank. This
suggests that low-rank approximations of the weight updates discard more information and fail to
capture many of the significant intrinsic dimensions of the true updates.

Improving the Effective Rank and Expressivity of LoORA. A naive way to capture the richer
spectrum of weight updates is to raise the LoRA rank r, but that linearly increases the number of
trainable parameters. To better approximate the higher-rank update, as proposed in LORA-XS, we
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Figure 2: Left: Within the same parameter count, the effective rank of the LoRA parameters
increases when using an augmented third parameter and multiple heads. Right: Clients with various
computational constraints can freeze certain heads to reduce memory consumption.

can augment the traditional LoRA approximation with an additional parameter, H, as follows:

AWpy ~  BHA 3

Weight Update LoRA Parameters

where B and A remain frozen and only H is trained. Suppose we have a trainable parameter budget
of N parameters. In the case of vanilla LoRA, N = 2rd and r = ©(1). With the augmented version
of LoRA that has parameters BHA and frozen B and A, we can instead use the much larger rank of
VN = @(\/E) Additionally, if used in FL, this setup would avoid inexactness in the aggregation of
the disparate client models since only the H parameter is averaged across clients.

Multiple Heads for Further Rank Improvements. We can further improve the effective rank of
the update approximation by using multiple concurrent augmented LoRA heads. Again, suppose we
have a trainable parameter budget of N parameters. We use h heads, where each head i € [1, ..., h]
has the structure B,H;A; and each B; and A; is frozen at initialization. With this reparameterization

of the weight update, each head has rank 4/ % Using the sub-additivity of rank, we instead have:

h
rank (B;H;A;) = 1/%% €ll,...,h] = rank (Z BZ-HiAi) <h- ,/% =VNh (4
i=1

Within the same trainable parameter budget, by using h heads, we can improve the rank expressivity

of the augmented version of LoRA by a factor of v/h. Furthermore, using heads of the form B;H;A;,
where B; and A; are fixed, retains the property of exact aggregation because the following is true:

1
|C(t Z ZB H(t)A —;Bi W Z HSZ A; (5)

cec) i=1 cec®

Note that methods like HydralLoRA and LoORAMOoE [12]] that use multiple vanilla LoRA heads of the
form B;A; (instead of the augmented B;H;A; form) do not confer these same benefits of increased
rank expressivity and exact aggregation. Suppose we have N trainable parameters; each vanilla
LoRA head would have dimensions B; € R zar and A; € Rzar X4, We would then have the same
maximum effective rank as vanilla LoRA because of the following inequality:

h
rank (B;A,) % Viell,...,h] —> rank (Z&m) <h. zjjh _ % ©)

i=1
Since the number of trainable parameters N = ©(d) (recall that N = 2dr for standard LoRA), this

rank is N/2d = ©(1), which is much smaller than the rank v Nh = ©(v/dh) achieved by multiple
augmented LoRA heads.



Addressing Computational Heterogeneity. In a realistic resource-heterogeneous federation,
clients may have vastly different computational capacities. A PEFT scheme that forces every device
to train the same size LoRA parameters will exclude the weakest clients or throttle the strongest.
In the FL setting specifically, using multiple heads has the additional benefit of providing a way to
manage computational heterogeneity. Clients with more significant resource limitations can freeze
subsets of the heads and only fine-tune the remaining heads (Figure[2] Right). This further reduces
the memory requirements of local fine-tuning and prevents clients from having to drop out of the FL.
procedure due to stricter resource constraints. This partial freezing scheme still avoids inexactness in
the aggregate updates, unlike previous heterogeneous-rank works in FL.

3 Proposed Method

In this section, we present RAVAN, a method ~Algorithm 1 RAVAN
that uses multiple augmented LoRA heads to Require: Clients C, Model M, Rounds T, Local

perform efficient LLM fine-tuning in the pres-
ence of data and computational heterogeneity.
For pretrained weights W in the model M,
the forward pass is replaced by the following:

h
(W + ZsiBiHiAi> x )

i=1

RAVAN Forward Pass

The pretrained W along with each B; and

Steps S, LR /, Rank 7, Heads h

1: Initialization:
2: INIT(Bi,HEO),Ai), i=1[1,...,h] for M
3: Freeze original model parameters, B;, A;
4: Model Training:
5: fort =1to 1T do

: Resetsit «~1,i€l,...,h]
Select active client subset C(*)
Broadcast {H\"}_ 10 C(*

R

A; are frozen at the start of training. As for all ¢ € C™ in parallel do
a consequence, only the H; parameters and .

’Hgt) < SELECTHEADS(c, t
the lightweight scaling factors s; are updated - (e?)

gnd communicated throughout the FL train- i; for {J:daltet(;(% dI(-)I(t) fori € H®
ing procedure. The pseudocode of the pro- ) 3: d fp A ¢
posed method RAVAN is given in Algorithm 14: en ((j)r O]

and the following sections highlight key : csends {s.; c,i}ieﬂﬂ” to server

components of our framework. Specifically, 15:  end for

we examine the importance of initialization 16 for i = 1to hdo

in improving the update approximation (Sec- . Update gty o -
tion[3.1)). We additionally analyze strategies ’ |Cz‘(t)|
for per-client head subset selection and aggre-

gation for computational heterogeneity (Sec- 18: end for

tion @]) Together, these design choices let  19: end for

RAVAN match the communication cost of
vanilla LoRA, while delivering higher-rank, resource-aware updates that preserve exact aggregation.

() (1)
Z s tH:

CGC;”

3.1 Parameter Initialization

Fine-tuning efficiency hinges on the initialization of the LoRA parameters. The standard LoRA
initialization sets B = 0 and draws A ~ N(0,02). In RAVAN, this initialization cannot be used
since each B;H;A; would remain 0 throughout training as B; and A; are frozen at initialization.
Therefore, we must draw non-zero B; and A; and set H; = O so that fine-tuning starts from the
original pretrained weights but updates the LoRA parameters throughout the training procedure. In
this section, we provide methods for effective initializations for the B; and A; parameters. These
initializations do not require performing full-parameter fine-tuning of the original LLM weights such
as the initialization presented in Fed-SB. Since each B, and A; parameter are fixed, the expressive

power of the sum Z?:l s;B;H;A; is limited by the subspaces spanned by the column spaces of the

B; and row spaces of the A;. We test the following two methods to obtain orthogonal subspaces:

« Random Normal: Set B; ~ N(0,0%) and A; ~ N(0,0?%). In high-dimensional space, their
column and row spaces are orthogonal with high probability.

* Gram-Schmidt: For the B, parameters, we concatenate the rh columns of random normal
initialized [B1,...,B;] € R¥*"" and apply the Gram-Schmidt procedure in the column space.



This yields an orthonormal set {Bk}Zh:y The orthonormal set can be sliced back into h blocks of
width r to form the B;. For the A; parameters, we can apply the Gram-Schmidt procedure in the
row space of the concatenated A;’s. With this initialization, orthogonality holds deterministically.

We benchmark our initializations against a constant initialization where B; = B;, A; = A; Vi, j. We
test an additional more flexible initialization benchmark where B; = MR;, A; = R;N for normally
distributed M € R4*", N € R"*¢ and invertible R; € R"*" which are different for each head. We
refer to this baseline as “shared subspace” since the initialization ensures that the column and row
spaces of the B; and A; parameters are identical. On both vision and language tasks, the random
normal and Gram-Schmidt initializations deliver the highest test accuracy, confirming that mutually
orthogonal B; and A; increase the effective rank of the update approximation which translates directly
into better downstream performance. Full numbers are reported in Section[d.3]

3.2 Head Selection Strategies

RAVAN allows clients to choose subsets of the LoRA heads to fine-tune. This is particularly advanta-
geous in FL where client devices often possess widely varying computational capacities. Suppose

we have a participating client set in communication round ¢, C). For client ¢ € C(*), we define

~(t
H( - s((fz ng Vi € [1,..., h]. At the beginning of each local training step, each client evaluates a

i o
scoring function p?? = score(Ht(:’Z)-, D.) Vi € [1,...,h] onits local data D.. In the following, || - || »

is the Frobenius norm of the input matrix. The Frobenius norm of a matrix is calculated as the square

root of the sum of the squares of all its entries. We employ the following three scoring functions:

* Random Scoring: pitz ~ Unif(0,1). Heads receive random scores, so clients form their
fine-tuning subset by uniformly sampling heads at random.

~(t
* Weight-Based Scoring: pgtl) = ||H£2 || . Heads whose weights have the largest magnitude are

assigned a higher score and deemed more influential.

* Gradient-Based Scoring: pgtz = [V Lel|F for a single mini-batch with all other heads frozen.

Heads whose gradients have the largest magnitude are deemed more influential.

Client c selects the top K. heads ranked by pffz and forms the selection set 7—[&“ = {i €

[1,...,h] | i is among the top K. heads} where the value of K. depends on client ¢’s computa-

tional constraints. During local fine-tuning, client ¢ only updates heads in ’Hg). Let Ci(t) denote the
set of clients that fine-tuned head ¢ in communication round ¢. The server performs the update:

1 ~(t) (t)
(t+1) 1c®| 2 (HC’Z) - e 0
H =016 oo ®)
t t
HE )v |Cz( )| =0.
Equation ensures exact aggregation of the s; and H; parameters by directly averaging their
product and reinitializing each s; = 1 Vi € [1,. .., h] at the start of every communication round. An
alternative measure to ensure exact aggregation is to fix each s; = 1 at the start of training. We would

then directly average the individual H;’s so that Hgtﬂ) = |C?1t>\ Zce c® (Hg

two aggregation schemes in Section4.3|and find consistent improvements with scaling factors.

) . We compare these

4 Experiments

4.1 Experimental Setup

Dataset and Model Usage. For image classification, we adopt ViT-B/16 [11] (85 M parameters)
and fine-tune on two benchmarks: (i) CIFAR-100 (50,000 train / 10,000 test images, 100 classes) and
(i) SVHN (73,250 train / 26,032 test digits, 10 classes). For natural-language tasks, we fine-tune
T5-Base [31] (224 M parameters) on (i) 20 Newsgroups [28]] (11,300 train / 7,532 test articles, 20
topics) and (i) MRQA [14]] (516,800 train / 58,221 test examples). The MRQA corpus is the union
of six sources (HotpotQA, NaturalQuestions, NewsQA, SearchQA, SQuAD, TriviaQA).



Federated Partitioning. We create federated splits with |C| = 20 or |C| = 50 clients. For L.LD.
partitions, clients receive an equal-sized random subsample of the global training set. For non-L.1.D.
partitions, we draw client-specific class proportions from a Dirichlet distribution with av=0.3. For
MRQA, which lacks class labels, the Dirichlet split is performed over the six constituent sub-datasets.

Table 2: Performance comparison on CIFAR-100 and SVHN.

CIFAR-100 (Acc. %) SVHN (Acc. %)
20 Clients 50 Clients 20 Clients 50 Clients
Method Rank LILD. Non-LILD. ILLD. Non-LLD. LLD. Non-LLD. ILLD. Non-LLD.
Full-FT N/A  89.89 86.86 89.78 85.17 95.06 90.29 94.90 89.49
S FedlT 32 8349 68.66 81.75 68.15  88.66  84.00 91.67 7753
' FedEx-LoRA 32 80.56 67.45 77.82 66.58 91.94 84.30 91.51 81.63
I FFA-LoRA 64 78.82 56.34 78.17 59.98 91.53 86.03 91.82 83.30
z Fed-SB 221 79.27 71.48 79.06 69.51 90.94 82.25 92.74 85.30
= RAVAN 110 84.42 76.22 84.02 73.80 94.13 90.02 93.75 89.17
S FedlT 64 8382 71.01 84.04 7323 9139 8468 92.06 7931
J  FedEx-LoRA 64 79.38 50.47 79.42 57.86 91.16 74.04 92.01 74.84
I FFA-LoRA 128  81.39 70.31 82.13 66.81 91.95 88.06 92.07 84.24
z Fed-SB 313 83.03 73.12 83.90 71.13 92.29 86.89 92.78 82.46
= RAVAN 156 85.04 77.20 85.55 77.81 93.92 89.41 94.28 84.34

Table 3: Performance comparison on 20 Newsgroups and MRQA.

20 Newsgroups (Acc. %) MRQA (F1 %)
20 Clients 50 Clients 20 Clients 50 Clients
Method Rank LLD. Non-LLD. LLD. Non-LLD. LLD. Non-LLD. LLD. Non-LLD.
Full-FT N/A  71.34 69.29 71.71 70.13 62.19 62.25 62.41 62.51

T FedEx-LoRA 32  69.04 62.52 68.19 63.33 60.99 60.68  61.40 60.56
FFA-LoRA 64 68.11 62.36 68.00 64.86 60.31 60.40 61.21 60.14

z Fed-SB 221 67.15 63.10 66.69 63.98 59.93 59.73 59.96 60.01

= RAvVAN 110 68.96 65.73 68.18 65.67 61.18 60.45 61.33 61.53
S FedIT 64 6936 6441 6812 62.67 6125 60.75 61.39 60.26

S FedEx-LoRA 64 68.59 65.11 67.75 64.31 61.23 60.36 61.43 60.06

I FFA-LoRA 128 69.33 66.22 68.42 64.86 61.50 60.50 61.66 60.12

z Fed-SB 313 68.07 64.18 67.58 65.59 60.22 60.11 60.28 60.60

Z  RAVAN 156 69.29 66.45 68.89 66.85 61.82 61.33 61.73 61.26

4.2 Main Results: Vision and Language

We consider an FL setting with partial client participation where, in each communication round, the
server samples three clients uniformly at random. Every selected client performs 50 local training
iterations before uploading its update. Note, we intentionally train for 50 mini-batches and not 50
entire traversals of the client’s training dataset so that each client performs exactly the same number
of forward-backward passes. We evaluate two separate trainable parameter budgets. The upper half
of Tables [2]and [3| correspond to the lower budget and the lower half to the higher budget. The RAVAN
configuration uses 4 heads where each head H; € R"*" and r is the specified rank. All results
displayed in the following sections are the averages across 3 random seeds.

RAVAN achieves the best performance among all PEFT methods in all vision configurations and in
11/16 of the language configurations. A key finding is that its advantage widens systematically in
the statistically heterogeneous regime. For CIFAR-100 with 50 non-L.L.D. clients, RAVAN exceeds
the performance of FedEx-LoRA by 7.2% and FedIT by 5.6% at the lower budget, whereas the
corresponding I.I.D. gains are 6.2% and 2.3% respectively. The language results also display larger
improvements in the non-L.I.D. paradigm. On 20 Newsgroups, the gap over Fed-SB reaches 2.6% with
20 non-L.LD. clients in the lower parameter budget. On MRQA, the pretrained T5-Base already attains
a strong F1 score, so all PEFT methods yield only modest absolute gains. Consequently, the scores of
different approaches are tightly clustered in the lower-budget rows. Even in this regime, in the higher
parameter budget setting, RAVAN outperforms every baseline in every MRQA configuration.
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Figure 3: Clients draw trainable parameter budget from bell-shaped, uniform, or skewed right
distributions. All RAVAN variants outperform the baselines in every distribution.

4.3 Ablation Studies and Analysis

Initialization Comparison. Tabled]compares the Table 4: Initialization comparison with 20
initializations for the fixed bases B;, A; as described non-LLD. clients and lower parameter budget.
in Section [3.1] The fully orthogonal Gram-Schmidt

initialization is consistently best on the vision tasks, Method CIFAR-100 SVHN
adding 1.2% over random normal on SVHN and out- Random Normal 76.22 90.02
performing the constant baseline by 20% on CIFAR-  Gram-Schmidt 78.75 91.25
100. On 1 tasks. th d 1 initial Constant 58.12 88.01
. : n language tasks, the random .norma mual-  gpareq Subspace 57.39 84.54
ization outperforms the constant baseline by 8.9% on

20 Newsgroups and the shared subspace baseline by Method 20 Newsgroups MRQA
Q.2§% on MRQA. ~Thus, the prqposed orthogonal ini- - """ 65.73 60.45
tializations maximize the effective rank of the update  Gram-Schmidt 64.83 59.71
and yield the strongest accuracy across all domains. ~Constant 56.74 60.43

i i Shared Sub 55.64 60.19
While Gram-Schmidt outperforms other schemes on 222" %P4

the vision tasks, the procedure is more computationally expensive in high-dimensional space. How-
ever, since this initialization is a one-time server-run operation at the start of training, amortized
across the entire FL procedure, it adds virtually no overhead to the fine-tuning workload.

Computational Heterogeneity. We emulate devices with unequal trainable parameter budgets
by drawing each client’s trainable parameter budget from three fixed distributions (bell-shaped,
uniform, and skewed right). Details on the individual distributions can be found in the Appendix. As
displayed in Figure[3] in these settings, all RAVAN variants outperform the rank-adaptive baselines
HetLoRA and FlexLoRA on both CIFAR-100 and SVHN. On CIFAR-100, the strongest baseline
loses 11% of overall accuracy when moving from the bell-shaped distribution to the skewed right
distribution. In comparison, RAVAN only loses 2% on average across its 3 variants. A key reason
is that FlexLoRA performs a per-client SVD and HetLoRA performs hard-rank truncation when
redistributing the global model to individual clients. RAVAN avoids these approximation operations,
so its updates remain accurate even in the extreme skewed right case. We note, however, that weight-
based scoring consistently lags behind the other two scoring mechanisms because it always selects
the same high-magnitude heads across all clients. Random scoring and gradient-based scoring more
evenly distribute updates across all heads and are better suited for heterogeneous fine-tuning in FL.

Table 5: Effect of using trainable scaling factors with non-L.L.D. clients and lower parameter budget.

CIFAR-100 SVHN 20 Newsgroups MRQA
Method 20 Clients 50 Clients 20 Clients 50 Clients 20 Clients 50 Clients 20 Clients 50 Clients
Constant 74.93 71.53 90.35 89.58 65.24 65.39 60.45 61.44
Trainable 76.22 73.80 90.02 89.17 65.73 65.67 60.60 61.53

Influence of Scaling Factors. Table [5] compares the setting where scaling factors are set to a
constant s; = 1Vi € [1,..., h] throughout the fine-tuning procedure in comparison to the standard
RAVAN algorithm where the scaling factors are trainable. Keeping the scaling factors trainable boosts
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Figure 4: Comparison of performance when using different numbers of RAVAN heads at two different
parameter budgets (SVHN: Ny = 1.2 M/2.4 M, 20 Newsgroups: Ny = 2.4 M/4.7 M).

accuracy on three of the four datasets while never hurting performance by more than 0.4%. The
improvement is largest when client updates are most diverse, specifically in CIFAR-100, as evidenced
by Table[2] These lightweight scaling factors upweight useful heads and diminish the importance of
heads whose fine-tuning subspaces provide less utility. Notably, we can achieve these performance
gains without increasing the per-round communication cost or breaking exact aggregation.

Effect of Number of Heads. From Section 2] we know that with a per-layer trainable parameter
budget of IV, the effective rank of the RAVAN update is v/ N h. However, the maximum effective rank
is still bounded by d, where the pretrained weights W € R%*?, Hence, adding heads improves the
effective rank only while the value of v/ N h increases and remains below the dimension d. Figure lé__l]
confirms this behavior as accuracy generally only improves while vV Nh < d. In the lower parameter
budget setting, this happens with a larger number of heads as & can assume a larger value while still
meeting this condition. In the higher parameter budget setting, we reach this saturation point much
sooner. After v/ IV h exceeds the value of d, the effective rank of each individual head becomes smaller
while the actual overall update does not become more expressive. This reduces representational
power, especially at much larger values of h, and weakens performance. Thus, optimally choosing
the number of heads is a critical criterion for effective federated fine-tuning using RAVAN.

Table 6: Accuracy comparison on GLUE benchmark with LLaMA3.2-1B.
Method MNLI-MM MNLI-M QNLI QQP SST-2 RTE Average

FedIT 84.24 84.62 82.74 8596 94.61 65.70 82.97
FedEx-LoRA 84.15 84.70 82.74 86.07 94.61 65.34 82.94
FFA-LoRA 85.05 85.78 82.07 84.40 94.38 62.46 82.36
Fed-SB 84.88 85.23 82.84 84.23 9495 67.15 83.21
RAVAN 85.24 85.65 84.00 86.11 95.18 67.15 83.90

Scaling to Larger Model Architectures. We demonstrate the scalability of RAVAN for larger
model architectures by benchmarking the method against prior baselines on the GLUE benchmark
[37]] using LLaMA3.2-1B [13] (see Table[6). For each subtask, we use C = 20 clients and follow the
training procedure described in Section We use a trainable parameter budget of N = 15 M,
which corresponds to the rank configurations in the upper half of Tables[2]and[3] On average, RAVAN
outperforms the next best baseline by 0.7% with the maximum gain on a single subtask being the
1.2% improvement over Fed-SB on the QNLI dataset. This demonstrates that RAVAN scales smoothly
from 85 M to billion-parameter LLMs and complements state-of-the-art on-device models.

5 Conclusion and Future Work

RAVAN offers a new avenue for performing FL fine-tuning in the presence of data and computational
heterogeneity. By using multiple augmented LoRA heads and per-head scaling factors, RAVAN



improves the rank of the update approximation within a parameter budget, allowing the method
to better approximate the full-parameter update without exceeding a device’s memory constraints.
Partially freezing subsets of the heads allows clients to adaptively manage their own computational
restrictions without sacrificing the accuracy of the aggregated model update. We believe that RAVAN
and similar methods will open the doors for LLMs to capitalize on the vast amounts of edge data, a
virtually untapped resource for model training and a critical future direction for the frontier of ML.

While RAVAN outperforms existing PEFT benchmarks in FL, we identify three limitations and
potential directions for improvement in the current method. First, while clients can fine-tune subsets of
the heads to address device-level constraints and computational heterogeneity, the current framework
necessitates that the same number of heads be selected in each layer of the original model. This
reduces flexibility and can be remedied by a cross-layer scoring scheme that considers all RAVAN
heads simultaneously. Second, RAVAN has yet to be tested in the context of differentially-private (DP)
learning, and further study is required to validate its performance with stricter privacy guarantees.
Finally, data-aware initializations of the B; and A; parameters may improve the performance of the
method while retaining the current improvements in the rank of the update approximation.
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A Technical Appendices and Supplementary Material

A.1 Related Works

Federated Learning. Federated learning (FL) enables a distributed set of clients to collaboratively
train a single global model using their local data [27]. The primary challenges in FL are data
heterogeneity and computational heterogeneity induced by the statistical and hardware differences
across clients, respectively. Several works aim to address these challenges by altering either the client
training procedure or the server aggregation algorithm. FedProx [24]], SCAFFOLD [20], and FedDyn
[1] add a corrective regularization term to each client’s local objective—whether a proximal penalty
(FedProx), control-variate correction (SCAFFOLD), or dynamic regularizer (FedDyn)—to keep local
updates from drifting too far from the global model, a phenomena more often referred to as “client
drift”. An alternative approach is to adjust the server aggregation scheme to reduce client drift. For
example, FedVARP [49] incorporates historical client updates into the current round’s aggregation
step to reduce the variance caused by partial client participation and heterogeneity. FedExP [50]]
varies the server learning rate by using an extrapolation rule that increases the server step size when
consecutive aggregated updates point in similar directions and shrinks it when they diverge.

Parameter-Efficient Fine-Tuning. Recently, many works have adopted the pretrain-then-fine-
tune framework, in which a general-purpose large language model (LLM) is adapted to a smaller
downstream task [[11} 1311146} 48]]. The excessive computational cost of fine-tuning LLMs has led to
parameter-efficient fine-tuning (PEFT) methods that fine-tune a fraction of the overall parameters of
the model. Adapter tuning [47], BitFit [43]], and low-rank adaptation (LoRA) [16] have emerged as
effective PEFT methods that can significantly reduce the number of parameters while maintaining task
performance. Since its conception, many works have improved upon the initial LoRA formulation in
various ways. Works such as QLoRA [45]] and LoftQ [51] quantize the pretrained model weights to
further improve the memory efficiency of LoRA-based fine-tuning. LoRA-XS [5], LoRA-SB [52],
and MoRA [19] introduce an additional LoRA parameter while freezing both the model backbone
and the original LoRA parameters during fine-tuning. HydraLoRA [35]], LoORAMOoE [12], and MoLE
[S3] employ a mixture-of-experts architecture to traditional LoRA-based fine-tuning frameworks.

PEFT Methods for FL. As newer applications look to use on-device data to fine-tune LLMs, PEFT
methods for FL have become increasingly relevant. FedPETuning [54], FedPrompt [55]], and FedIT
[41] incorporate adapter tuning, prompt tuning, and LoRA into federated frameworks, respectively.
More recently, methods like FFA-LoRA [34], FedEx-LoRA [32]], Fed-SB [33]], and RoLoRA [44]]
optimize LoRA in homogeneous-compute FL by addressing the inexactness in LoRA aggregation
caused by separately averaging the B and A parameters. An orthogonal direction is explored by works
such as HetLoRA [9], FlexLoRA [4], and FLoRA [38] that address computational heterogeneity
in LoRA-based FL fine-tuning by allowing clients to train LoRA parameters with different ranks.
However, an examination of cross-device fine-tuning remains limited in this context as methods like
FLoRA have communication costs that scale linearly with the number of clients and communication
rounds, making fine-tuning particularly difficult in large-scale FL systems. The goal of RAVAN is to
design a PEFT method for FL that addresses data and computational heterogeneity, while scaling
effectively to cross-device settings with a large number of clients and communication rounds. In this
way, we overcome shortcomings in prior works and enable resource-aware fine-tuning.

A.2 Broader Impacts

RAVAN enables accurate, efficient fine-tuning in a federated setting. While RAVAN has not yet been
integrated into a real-world FL system, we identify two potential impacts of utilizing RAVAN:

* Edge Data for LLM Fine-Tuning: RAVAN provides an opportunity for LLMs to utilize the data
collected by edge devices. As edge applications become increasingly critical, capitalizing on these
specialized datasets can make these applications more effective without forfeiting data locality.

* Efficiency and Improved Performance: LLM fine-tuning is an expensive, energy-consuming
procedure. RAVAN improves the efficiency of the process while retaining performance. Applied to
realistic FL training regimes, RAVAN addresses some of these prior concerns.

RAVAN should be implemented with safeguards to prevent misuse, privacy leaks, and harmful content.
While RAVAN does not exacerbate these issues, they remain concerns in LLM usage more broadly.
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A.3 Experimental Settings

Hyperparameters and Optimization Details. In this section, we highlight hyperparameter choices
used in our experiments that were not discussed in Section[d] These descriptions, in addition to the
provided code, should aid in the reproducibility of the stated results.

Table 7: FL hyperparameter settings used for each model-dataset pair.

Model/Dataset
ViT-B-16/CIFAR-100  ViT-B-16/SVHN  T5-Base/20 Newsgroups T5-Base/MRQA LLaMA3.2-1B/GLUE
Batch Size 32 32 32 32 16
Max Sequence Length - - 256 256 128
Local Iterations 50 50 50 50 50
Communication Rounds 50 50 100 20 20
Total Epochs (per round) 1 1 1 1 1

For RAVAN and each baseline, we run a learning rate hyperparameter sweep across the values
{be—5, le—5, be—4, le—4, 5e—3, le—3, 5e—2, le—2, 5e—2} and choose the most performant
learning to represent in our results. Table ] represents the optimal choices for each baseline in all
settings. The following results each use the ADAM optimizer with momentum set to 0.9.

Table 8: Optimal learning rate configurations for all baselines.

(a) Lower parameter budget / L.1.D. clients.

Model/Dataset
Method  ViT-B-16/CIFAR-100 ViT-B-16/SVHN T5-Base/20 Newsgroups T5-Base/MRQA LLaMA3.2-1B/GLUE
FedIT 5x1073 1x1073 1x1073 1x1073 1x10~%
FedEx-LoRA 1x1073 1x1073 1x1072 1x1073 1x107%
FFA-LoRA 1x1072 1x1072 1x1072 5x1073 1x1073
Fed-SB 1x1073 5x1073 5x1073 1x1073 1x10™%
RAVAN 5x107% 5x1074 5x1074 1x107% 5x107°

(b) Higher parameter budget / L.L.D. clients.

Model/Dataset
Method ViT-B-16/CIFAR-100 ViT-B-16/SVHN T5-Base/20 Newsgroups T5-Base/MRQA LLaMA3.2-1B/GLUE
FedIT 5x1073 1x1073 1x1073 5x1074 1x107*
FedEx-LoRA 1x1073 1x1073 1x1073 5x1074 1x107%
FFA-LoRA 1x1072 1x1072 1x1072 1x1072 1x1073
Fed-SB 1x1073 1x1073 5x1073 5x1074 1x107*
RAVAN 5x1074 5x1074 1x1074 1x107% 5x107°

(c) Lower parameter budget / non-1.I.D. clients.

Model/Dataset
Method ViT-B-16/CIFAR-100 ViT-B-16/SVHN T5-Base/20 Newsgroups T5-Base/MRQA
FedIT 5%x1073 1x1073 1x1073 1x1073
FedEx-LoRA 1x1073 1x1073 1x1073 1x1073
FFA-LoRA 1x1072 1x 10—[2 1x 10—[2 5x1073
Fed-SB 5x107% 5x1073 1x1073 5x107*
RAVAN 5x107% 5x107* 5x107* 1x10™4

(d) Higher parameter budget / non-1.1.D. clients.

Model/Dataset
Method ViT-B-16/CIFAR-100 ViT-B-16/SVHN T5-Base/20 Newsgroups T5-Base/MRQA
FedIT 5x1073 1x1072 1x1073 5x107*
FedEx-LoRA 1x1073 5x107* 1x1073 5x107*
FFA-LoRA 1x1072 1x1072 1x1072 5x1073
Fed-SB 5x10~4 1x1073 1x1073 5x10~4
RAVAN 5x10~4 5x104 1x10~* 1x10~*
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Baseline Descriptions. We provide details for each of the baselines used in our experiments. We
highlight how each baseline initializes, trains, and communicates the individual LoRA parameters.

« FedIT: FedIT initializes the LoRA parameters with B() = 0 and A”) ~ A/(0, 62). In communi-
cation round t, each client ¢ € C) locally trains the LoRA parameters resulting in local parameters

Bgt), Agt). After communicating these parameters back to the central server, the server performs
the following aggregation to generate the new global model:

1 1
(t+1) _ E (®) (t+1) _— E ’ (®)
B = cO)] B/, A = cO] A ©)
cec® ceC®

* FedEx-LoRA: FedEx-LoRA initializes the LoRA parameters with B =0and A ~ N (0,02).
In communication round ¢, each client ¢ € C®) locally trains the LoORA parameters resulting in

local parameters Bff), Ag). To address the exact aggregation issue, the server updates both the
global LoRA parameters as well as the model backbone:

1
(t+1) _ (1) (t+1) _
B = o > BY, A =
cec® ceC(®)
) (10)
(t+1) _ (t) (t) ) _ B® . (t)
W =W+ |Ct)| Z Ac |C(t| Z c |Ct)| Z
cec(®) ceC(®) cec(®)

While this ensures exact updates in every round, the updated model backbone WD also has to
be communicated from the central server, increasing the communication overhead of the procedure.

* FFA-LoRA: FFA-LoRA initializes the LoORA parameters with B”) = 0 and A ~ N(0,02).
However, the A parameter remains frozen at initialization and is never locally trained by the clients
and communicated throughout the procedure. Thus, the only update throughout training is the
update to the LoORA B parameter:

i+ — ! > BY (11)

t
|C( ) ‘ ceC®)

* Fed-SB: Fed-SB uses three LoRA parameters which, for the sake of consistency with prior notation,
we call B € R¥™™" H € R"™", A € R"*?. The weight update is reparameterized as BHA. To
initialize the LoRA parameters, Fed-SB performs an initial round of full-parameter fine-tuning to
obtain a full-parameter weight update AWy,;;. The weight update is decomposed using SVD to
get AWy = USV'. B, H, and A are then initialized as B = U[:,1: 7], HO = 21 :r,1: 7],
A =VT[l:7:]. Band A are frozen at initialization, so the only update is the following:

D = L > HY (12)

(t)
|C ‘ ceCc(®)

* FlexLoRA: FlexLoRA allows each client ¢ € C(*) to train LoRA parameters with client-specific
ranks r.. To aggregate the LoRA parameters, the server performs SVD on ﬁ Y oecc® Bg) Aff) =

UXV . To redistribute the LoORA parameters back to the clients, the central server sends each
client ¢ € C**+1) the following LoRA parameters:

BEHU =U[,l:7r]3[1:7e1:7], A£t+1) =V [1:7,:] (13)

* HetLoRA: Let 7, be the highest rank supported by any client. Each client pads its local
parameters to this common shape (with zeros in the unused columns and rows) before upload, so
aggregation is still dimensionally consistent. The server weights the individual LoRA parameters
based on their relative Frobenius norms:

S(t)
SO = BOAYIr, 0 =
2 cecw Se (14)
t+1) Z p(t)B(t A(t+1) _ Z pgt)A((f),
cec® cec®

The server then truncates the new global LoRA parameters B and A+ for each client
ceCltt) so that BUHY = BV [ 1: ] and AT = ACHD [1: 4, 1],
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Trainable Parameter Distributions

[ Bell-Shaped
[ Uniform
[ Skewed-Right

0.2
0.1 ’_‘
0.0 X N . . N r r r r . .

1 3 i 1 1

'
I

Proportion of Clients

2 4 4
Fraction of Maximum Trainable Parameters
Figure 5: Fraction of clients assigned to each trainable parameter budget in each distribution.
Skewed-left is omitted because it is never used in our experiments.

Computational Heterogeneity Setup. To emulate computational heterogeneity in our FL setup,
we vary the number of trainable parameters at each client. Let V,,,,, denote the largest number of
trainable parameters that any client can afford. Each client c is constrained to a trainable parameter
budget N € {1, 3,2, 1} Niax. This value is held constant throughout the FL procedure to mirror
fixed hardware limits. N, simply determines the trainable parameter budget per-client; all other
hyperparameters are identical to the compute-homogeneous experiments. The bar plot in Figure[3]
provides a visual summary of the client mix. Uniform serves as a neutral baseline where there is
an equal proportion of clients at every trainable parameter budget; bell-shaped concentrates clients
around medium ranks, reflecting the case where most devices have moderate capability; skewed-right
stresses the system by placing a large share of the population at the lowest rank, leaving only a small
fraction of high-capacity contributors. HetLoRA, FlexLoRA, and RAVAN each accommodate clients
with different trainable-parameter budgets in distinct ways:

* HetLoRA and FlexLoRA: The LoRA rank for each client cis 7, = L(NC / Niax) rmaXJ where
Tmax 1S the maximum rank trained by any client. Since the number of trainable parameters scales
linearly with the rank, this scaling ensures that every client keeps its update within the allotted
budget N, while allowing higher-capacity devices to contribute proportionally higher-rank updates.

* RAVAN: RAVAN uses H LoRA heads per weight matrix. A client with budget N, fine-tunes only
L(NC / Niax) - H J heads and leaves the remaining heads frozen (e.g. for N, = iNmaX the client
trains one quarter of the heads).

Table 9: Layers equipped with LoRA adapters in each model backbone.

Model LoRA Target Modules
ViT-B-16 query, value

T5-Base SelfAttention.q, SelfAttention.v
LLaMA3.2-1B q_proj, v_proj

LoRA Implementation Details. For every model backbone, we insert LoORA adapters only in the
self-attention projection matrices. The exact parameters for which we apply LoRA are described in
Table[9] All other parameters are frozen and do not have associated LoRA parameters.

Compute Details and Cluster Description. All experiments were executed on a GPU cluster
managed by SLURM. Each training job used a single NVIDIA V100 32GB GPU with 256 GB RAM.
Our environment used Pytorch 2.5.1 and Huggingface 4.47.1 for all experiments. With this setup,
each experimental run took ~1 GPU hour with ViT-B-16 for both CIFAR-100 and SVHN, ~2 GPU
hours with T5-Base for 20 Newsgroups, ~3 GPU hours with T5-Base for MRQA, and ~2 GPU hours
with LLaMA3.2-1B for each GLUE subtask. All baselines were trained with identical hardware,
batch sizes, optimizers, and communication rounds to ensure fair comparison.
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A.4 Additional Experiments
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Figure 6: Impact of computational heterogeneity on baselines and RAVAN across four datasets. Each
row shows a single dataset (left: lower parameter budget, right: higher parameter budget). All settings
match the descriptions from Sectionﬁ

Computational Heterogeneity Experiments. We evaluate all methods with 20 non-L.L.D. clients
whose usable parameter budgets are drawn from three distributions. Across vision and language tasks,
RAVAN’s variants consistently outperform the competing LoRA baselines. These results underscore
RAVAN’s robustness to computational heterogeneity across different tasks and parameter budgets.
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Table 10: LoRA ranks under lower vs. higher parameter budgets.

Method Lower Budget Higher Budget
FedIT 32 64
FedEx-LoRA 32 64
FFA-LoRA 64 128
Fed-SB 221 313
RAVAN 110 156

Table 11: Accuracy comparison on GLUE benchmark with LLaMA3.2-1B.

(a) 20 clients / lower parameter budget

Method MNLI-MM MNLI-M QNLI QQP SST-2 RTE Average
FedIT 84.24 84.62 82.74 8596 94.61 65.70 82.97
FedEx-LoRA 84.15 84.70 82.74 86.07 94.61 65.34 82.94
FFA-LoRA 85.05 85.78 82.07 84.40 94.38 62.46 82.36
Fed-SB 84.88 85.23 82.84 84.23 9495 67.15 83.21
RAVAN 85.24 85.65 84.00 86.11 95.18 67.15 83.90

(b) 20 clients / higher parameter budget

Method MNLI-MM MNLI-M QNLI QQP SST-2 RTE Average
FedIT 83.74 83.24 87.72 85.60 9530 68.95 84.09
FedEx-LoRA 83.95 83.41 87.79 85.65 95.41 70.04 84.38
FFA-LoRA 85.27 84.69 89.561 87.10 95.18 68.23 85.00
Fed-SB 85.85 84.76 89.53 86.09 94.95 66.79 84.66
RAVAN 86.20 85.34 90.35 87.22 95.18 70.04 85.72

(c) 50 clients / lower parameter budget

Method MNLI-MM MNLI-M QNLI QQP SST-2 RTE Average
FedIT 84.22 84.24 87.53 85.87 94.61 61.73 83.03
FedEx-LoRA 84.25 84.15 87.77 85.81 94.61 62.09 83.11
FFA-LoRA 85.92 85.05 89.33 8740 9530 60.29 83.88
Fed-SB 85.71 84.65 88.05 86.08 94.15 64.98 83.94
RAVAN 86.03 85.53 88.91 86.95 9541 62.09 84.15

(d) 50 clients / higher parameter budget

Method MNLI-MM MNLI-M QNLI QQP SST-2 RTE Average
FedIT 84.66 84.26 88.38 85.87 95.18  63.58 83.66
FedEx-LoRA 84.74 84.02 88.50 85.82 9541 58.12 82.77
FFA-LoRA 85.35 84.64 87.21 87.20 94.50 61.37 83.38
Fed-SB 85.91 85.24 87.68 86.30 93.58 67.15 84.31
RAVAN 86.17 85.35 88.87 87.39 9587 64.62 84.71

LLaMA Experiments. In these experiments, we use the same hyperparameter settings described
in Section 4] but vary the number of total clients and the the ranks of each baseline. Across all four
GLUE configurations, RAVAN consistently matches or exceeds the performance of the strongest
PEFT baselines using LLaMA3.2-1B (see Table[IT)). Additionally, while other PEFT baselines vary
in performance across settings, RAVAN’s performance remains consistent in all configurations. This
suggests that RAVAN maintains robust performance, demonstrating its ability to scale effectively to
larger models and diverse FL scenarios.
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FL Training Curves
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Figure 7: FL training curves for CIFAR-100 and SVHN for all benchmarks.

Training Curves. Figure [7| displays the training curves for the various PEFT benchmarks on
CIFAR100 and SVHN using a varying number of L.I.D. clients and trainable parameter budgets. In
comparison to the other PEFT methods, RAVAN converges faster and to a better overall performance,
suggesting that it requires fewer communication rounds to reach optimal performance.
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tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code base is provided in the supplementary material zip file with a
README that includes instructions on run commands for our method and all baselines.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section]and the Appendix provide all necessary hyperparameters and config-
urations necessary to reproduce the experiments listed in the results. We highlight the most
important values used in our setting in Section ]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All results are reported as the average across runs with 3 random seeds. For
the sake of horizontal space we don’t include the values directly in the tables, but provide
standard deviation numbers in the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The Appendix contains details on the resources required to run each experiment.
All experiments were run using a single V100 GPU.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We reviewed the code of ethics and ensured that our research followed these
guidelines. We avoid privacy violations, have documented the research thoroughly, and all
involved parties have been fairly compensated.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: Our paper highlights the potential impacts in this ongoing field of research in
Sections[T]and[5] These sections highlight the bigger picture of our work and place it in the
context of the larger field of research.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible

release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work uses general-purpose models and datasets that have been adequately
cited and referenced. We have avoid privacy violations and other security risks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All original material is created with the consent of the authors. Any other
material has been cited and referenced.

Guidelines:

* The answer NA means that the paper does not use existing assets.
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13.

14.

15.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We release no new models/datasets in this project.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not include human subjects in any experiments.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not use human subjects in any experiments.
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: LLM usage was declared in the initial submission. We used LLMs for grammar
edits and to generate the icon in the intro line.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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