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Abstract

Accurate delineation of liver parenchyma, intrahep-
atic vessels, and tumors (LVT) may aid earlier tumor
detection, consistent response assessment, and sur-
gical planning for patients with liver cancer. Deep
learning (DL) may enable such automated delin-
eation, but available CT datasets are fragmented
and partially labeled, making them unsuited for
end-to-end training. We investigate a single-head,
3D segmentation framework that learns from such
fragmented data by: (i) loss masking per class or
voxel to ignore missing annotations, (ii) using multi-
hot targets and the anatomical hierarchy inherent
to liver, vessels, and tumors, to handle overlapping
structures without class competition. In controlled
ablations that simulate partial-label training, this
multi-label masked strategy reliably outperforms
masked multi-class baselines, avoids precision col-
lapse, and improves tumor overlap and lesion detec-
tion sensitivity. Scaling training to multiple partially
labeled datasets, the model surpasses full-resolution
nnU-Net on an external clinical cohort, with higher
tumor and vessel segmentation performance. We
conduct a qualitative retrospective case study to il-
lustrate the clinical potential of the LVT application.
We find that LVT models can enable earlier detec-
tion of metastasis by six months, longitudinal size
tracking aligned with radiologist measurements, 3D
tumor—vessel visualization for surgical planning, and
stable inter-phase liver volumetry ( 2% deviation).
These results show that multi-label masked learning
enables robust, clinically relevant LVT segmentation
from partially labeled datasets.

1 Introduction

Effective management of liver cancer, includ-
ing patient follow-up and surgical treatment, re-
lies on patient-specific understanding of the liver
parenchyma, intrahepatic vasculature, and tumor
burden. Accurate delineation of these structures
may enable a range of impactful clinical tasks: ear-
lier and more reliable tumor detection during pa-
tient follow-up, objective and consistent longitudinal
response assessment, preoperative virtual planning
with 3D visualization, and automatic liver volumetry
to estimate functional reserve before major resec-
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Towards clinical application of liver, vessel, and tumor segmen-
tation using partially labeled data

tions [1-7].

Deep learning (DL) based segmentation models
have the potential to automatically produce high-
quality segmentations of the liver parenchyma, in-
trahepatic vessels, and hepatic tumors (LVT) [8,
9]. However, publicly available 3D annotation of
liver, vessels, and tumors, to train such models, re-
mains scarce and fragmented. This fragmentation
has constrained clinically geared liver applications
to single-task models, limiting generalizability and
complicating clinical deployment.

In this paper, we address the scarcity of fully
labeled CT liver, vessel, and tumor segmentation
data and the fragmentation of labeled datasets. To
achieve generalizability with little data, we lever-
age a recently proposed augmentation strategy for
contrast-enhanced CT liver images called Random
windowing [10, 11]. Furthermore, to exploit datasets
with partial labels, we explore multiple segmenta-
tion strategies capable of learning from partial labels
and potentially overlapping structures end-to-end.
Ultimately, we try to answer the question: How to
leverage partially labeled datasets with overlapping
structures in LVT segmentation? We identify that
multi-label binary segmentation with a masked loss
and multi-hot encoded labels, to allow class overlaps,
can balance the loss contribution of partial labels
and better learn from overlapping classes (Figure 1).

We demonstrate the effectiveness of our approach
with quantitative evaluation against the strong nnU-
Net baseline[12]. To complement the quantitative
evaluation and to demonstrate the clinical potential
of automatic DL based segmentation of LVT struc-
tures, we qualitatively evaluate a clinical case study
that highlights the potential of such models.

The case study illustrates how automatic LVT
predictions could enable earlier detection of liver
tumors, track tumor size over time comparable to
radiologist measurements, and deliver 3D visualiza-
tions of tumor—vessel relationships. We also show
that automated liver volumes remain stable across
contrast phases, supporting volumetric assessment
in clinical workflows.

Our contributions are twofold:

1. We analyze how to efficiently leverage partially
labeled data with overlapping regions to seg-
ment the liver, vessels, and tumors in CT im-
ages.

2. We demonstrate real-world clinical potential of
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Figure 1. A schematic overview displaying our approach for learning robust and simultaneous liver, vessel, and
tumor segmentation from multiple partially labeled datasets. Formulating the objective functions for binary
segmentation allows us to define overlapping classes and mask the loss based on the missing labels.

LVT models through a combination of quanti-
tative evaluation on challenging clinical data
and qualitative retrospective cases that high-
light earlier tumor detection, longitudinal mon-
itoring, 3D surgical planning, and consistent
volumetry.

2 Related work

CT-based segmentation of LVT has often been ad-
dressed with task-specific models, as many of the
impactful and available datasets provide only a sub-
set of these labels. Methodological developments
have been driven largely by medical segmentation
challenges, and public datasets from these, such as
LiTS/MSD Liver for liver and tumor, MSD Hep-
aticVessel for hepatic vessels [8, 9]. Additionally,
3Dircadb provides the complete label set, but on a
comparatively small cohort (20 cases) [13].

Architecturally, 3D encoder—decoder CNNs and
the self-configuring nnU-Net remain strong baselines
for medical 3D applications despite recent advances
in vision transformers [12, 14-16]. Vision transform-
ers have shown promise on large, diverse datasets,
but often underperform CNN in small-to-moderate
data regimes typical of clinical CT cohorts [16-18].

Reliable LVT segmentation in CT must be per-
formed on contrast-enhanced images to effectively
see the intrahepatic structures, such as vascula-
ture and tumor. Training DL models on contrast-
enhanced CT images on limited datasets is chal-
lenging due to the high image variability across
contrast phases and between patients for a given
phase. Recently, Random windowing was proposed
as a CT-specific augmentation scheme to expose the
model to realistic phase variability due to contrast-
enhancement [10, 11]. It samples clinically plausible
HU windows stochastically during training, and has
been shown to improve robustness in CT segmenta-
tion of liver tumors.

We aim to build on these aforementioned advances
to make a unified LVT segmentation model from
the available public datasets and demonstrate its
potential for the clinic.

2.1 Learning from partial labels

As public datasets rarely share a complete LVT label
space, combining them during training must be done
with care to avoid class conflicts. A typical challenge
is handling missing classes, because treating them as
background in a softmax multi-class setup can cause
conflicting regions. Prior work has addressed miss-
ing annotations via masked or partial-label losses
that ignore unlabeled classes during training, pre-
venting spurious gradients from missing annotations
[19-21]. To this end, binary formulations with sig-
moid outputs are particularly suitable, as they avoid
the competition inherent in softmax and allow per-
class supervision wherever labels are present [20, 22].
To mitigate noisy gradients from a multi-class seg-
mentation setting using softmax, the loss masking
must happen on a per-voxel basis, ignoring signals
from all non-foreground regions [19].

Alternative strategies include weakly or semi-
supervised learning using pseudo-labels [20, 23], and
multi-task/multi-head designs [24, 25] where each
dataset supervises a subset of heads while shar-
ing an encoder. While effective in some settings,
pseudo-labels can introduce confirmation bias from
erroneous predictions, and multi-task heads can be
difficult to calibrate across datasets.

Compared to approaches that stitch together sep-
arate binary models or rely on pseudo-labels to fill
missing classes, we investigate segmentation models
with a single segmentation head and an end-to-end
training pipeline. In this setting, we investigate
how to benefit from and train on partially labeled
datasets using various loss masking strategies.
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2.2 Overlapping classes

Within the context of partial label supervision, over-
lapping classes are often treated as separate classes,
masking the loss contribution of any missing class
during training [21, 26]. Although possible in certain
settings, it does not address the potential label con-
flicts across datasets, and could lead to suboptimal
performance (Section 4.2).

Another established approach is cascaded mod-
els, which segment organ regions of interest (ROI)
like the liver, before specialized models are trained
for vessels and tumors within the organ ROI [9].
However, this approach leads to extra compute over-
head during training and inference compared to an
end-to-end pipeline in a complete label space.

Semantic segmentation on overlapping and par-
tial labels has been addressed by probabilistic ap-
proaches that aggregate predictions [27] and multi-
label approaches [28], but the approach within med-
ical and LVT applications is largely underexplored.

2.3 Clinical potential for liver, vessel,
and tumor segmentation

The clinical implications of LVT models are substan-
tial. Below, we identify four routine scenarios where
the LVT application has clinical potential: surgical
planning, automatic liver volumetry, longitudinal
patient follow-up, and tumor detection. In our final
case study, we evaluate the current utility of LVT
segmentation for each use case.

Surgical planning using accurate 3D spatial
delineation of tumors to surrounding hepatic vascu-
lature allows for more precise surgical planning. In
an ongoing tangential study of the clinical impact of
3D liver models at Hospitall (Anonymized), initial
results suggest significant improvements in surgical
planning when a 3D LVT model was used along with
traditional radiological images (CT/MRI).

The integration of automatically generated 3D
models into surgical procedures may significantly im-
pact the management of complex hepatic resections
[5]. 3D visualization of tumor-vessel relationships
can aid surgeons when navigating in challenging
anatomical landscapes [4, 7], and may reduce unin-
tended vessel injury and improve resection margins.

Automatic liver volumetry further aids sur-
gical decision-making by providing essential data
needed for assessing hepatic functional reserve,
which is particularly beneficial for major liver resec-
tions [2, 3].

During patient follow-up, the LVT model has
potential to benefit the clinical follow-up of oncology
patients undergoing chemotherapy. By automati-
cally measuring tumor sizes and the liver volume,
the model can provide a consistent and objective
assessment of tumor response over time [6]. This
may facilitate timely therapeutic decisions, allowing
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clinicians to optimize the treatment based on tumor
volume changes.

Tumor detection using a segmentation model
enables precise identification of potential tumor re-
gions in the CT scan. For patients at risk of liver
metastasis, DL based tumor segmentation tools may
help radiologists detect tumors early, improving di-
agnosis and treatment for patients.

In general, a performant liver, vessel, and tumor
segmentation model has the potential to be a clinical
tool and may improve diagnostic accuracy, enhance
therapeutic planning, optimize patient follow-up,
and increase surgical safety in hepatic tumor man-
agement.

3 Methodology

In this section, we describe how we adjust the de-
fault segmentation setup and training regime to
accommodate partial labels, and how to learn from
overlapping structures in the liver. Finally, we il-
lustrate the clinical impact of our application by
performing a qualitative retrospective analysis of
the follow-up of typical liver metastasis patients.

3.1 Training on partially labeled data

In the partial label setting, computing the loss over
regions with missing labels or unlabeled background
regions requires special care. To simplify training on
such datasets, we avoid evaluating the loss over un-
labeled or potentially ambiguous regions in a binary
and multi-class segmentation setting.

We achieve this by formulating the objective func-
tions with a weight mask w or W to ignore the
contribution of a given class or voxel, respectively,
depending on the loss formulation.

Binary losses can be computed per-class on the
sigmoid probabilities of the segmentation network.
For each class k of a given sample with IV voxels, we
compute the mean voxel loss ¢, and mask it with the
per-class weight wy, essentially removing the loss
contribution for the classes with missing labels. The
masked binary loss Lp for partially labeled samples

is thus computed for each voxel ¢ and class as
K N
1 1
Lp=—— > wp— > lin. (1)
2 k=1 Wk 21 N

In multi-class segmentation, the loss ¢; is computed
for each voxel over all classes, using one-hot encoded
labels and softmax output probabilities. Masking
out the loss contribution for ambiguous regions must
therefore be performed on a per-voxel basis with
W, € {0, 1}, yielding the categorical loss for partially
labeled sample Lo

N

1

Lo=— E LW, (2)
Zi]il Wi i=1
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This formulation removes the loss contribution of
all non-foreground voxels, essentially giving us the
mean foreground loss. This eliminates the problem
of ambiguous regions, also when the background is
modeled explicitly.

Multi-class and multi-label segmentation

Multi-class segmentation (MC) predicts exclusive
classes using softmax activation function and the
categorical loss L& with weight mask W from Equa-
tion 2. MC predicts K + 1 classes and models the
background explicitly in the initial channel. The
explicit background channel will potentially interfere
with all missing ROI. Therefore, W must mask out
the loss contribution of all non-foreground regions
for classes not present in the PS training set.
Multi-label segmentation (ML) uses the sigmoid
activation independently for each K output chan-
nels. Training a ML model with one-hot labels for
all datasets with full or partial supervision is compa-
rable to the MC setup wrt. the training signal from
exclusive classes. Loss masking is done per channel
using w in Equation 1. We refer to this setup as
Multi-label exclusive segmentation (MLx).

3.2 Segmenting overlapping struc-
tures

Given complete annotations, class exclusive segmen-
tation setup has the benefit of yielding unambigu-
ous regions and explicit information about bound-
aries between classes. However, for partially labeled
datasets, class exclusivity is not guaranteed, and
overlapping classes risk regions of conflicting super-
vision due to overlap.

To avoid this issue across partially labeled
datasets, ML can be trained with overlapping classes
if labels are represented as multi-hot vectors, with
per-voxel labels y;; € {0,1} for each class k. This
avoids competition between classes during training
and allows supervision of whichever labels are avail-
able for that sample. In the context of partial labels,
w can seamlessly be applied in Equation 1 to mask
the loss contribution of unlabeled classes.

Anatomical liver hierarchy

In the context of LVT segmentation, vessels and
tumors are anatomically contained within the liver.
In our following experimental settings, we enforce
this anatomical hierarchy by mapping vessel and
tumor label positives into the liver channel: y; 1,
YL Vyi,v Vyi,r. This mapping is applied on-the-fly
for datasets that provide one-hot labels, yielding
a consistent multi-hot label space across datasets.
When a class is not annotated for a sample, its loss
weight wr = 0, so it does not contribute to the
objective.

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

4 Experiments

In this section, we investigate multiple strategies for
training segmentation models on partially labeled
datasets and how potentially overlapping classes im-
pact the performance. We present the experiments
and their results sequentially, and use the novel
insight to inform our clinical case study.

Experimental setup. All experiments are per-
formed under an identical medical image segmenta-
tion setup, where the objective is a segmentation
map with mutually exclusive classes. We focus on
end-to-end training pipelines using a U-Net-like ar-
chitecture [29], with several modifications for robust
training and results. The detailed experimental
setup and evaluation settings can be found in the
Appendix A.2.

4.1 Learning from partial labels

We construct a controlled experiment simulating
a training setting with multiple datasets with par-
tial/missing labels. Specifically, we create partially
labeled training sets from different partitions of one
fully annotated source dataset. This lets us test
and evaluate various approaches without consider-
ing noise from distribution shifts from other data
and label sources.

Simulating partial labeled training. Based
on the 303 images from the HepaticVessel dataset
[8], with vessel and tumor segmentation labels, and
the auxiliary liver segmentation labels from Tian
et al. [30], we randomly sample 5 datasets of similar
size. Specifically, 20 % fully annotated (LVT masks)
are reserved as hold-out test set (HV test), 20 % are
used as fully supervision (FS) training with complete
LVT annotations, 20 % have partial supervision (PS)
with tumor mask only, 20 % with PS vessel mask,
and 20 % with PS from liver mask only. Note that
the liver mask comprises the complete liver organ,
without ”cutouts” for the vessel and tumor classes.
In this regard, the liver overlaps with the vessel and
tumor masks, similar to a real setting with partially
labeled datasets. Further dataset details can be
found in Table A.1.

The question we want to answer is ”How can we
leverage auxiliary datasets with partial labels to im-
prove segmentation performance over only using the
fully labeled training set?”. To this end, we compare
the MC and MLx end-to-end segmentation setups
with their different loss masking strategies with 25
% FS with and without auxiliary PS datasets. For
comparison, we also provide the 100 % FS training
alternative.

We report the mean segmentation performance
on the HV test and the external Ircad [13] test set
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after 5-fold cross-validation training on the combined
full and partially labeled data splits. We measure
the Dice similarity coefficient (DSC) on the liver,
vessels, and tumors of the respective test sets. Our
full evaluation strategy can be found in Appendix
A.2.3.

Binary segmentation benefits from partial
supervision. Based on the results, presented in
Table 1, we make the following observations:

(1) In the fully supervised settings, the segmenta-
tion DSC are comparable for the liver class of MLx
and MC, and higher or on par for MLx on the vessel
and tumor classes across both datasets.

(2) With partial supervision and multi-class seg-
mentation, the DSC performance collapse compared
to full supervision for almost all classes. However,
the exception is segmentation performance on Ircad
vessels, which exceeds all other settings. Upon closer
inspection, the liver and vessel recalls of MCNPS
are actually the highest across all datasets, while
the precision is lowest. This can explain the ex-
tremes in DSC, because it suggests that the model
over-segments with many false positives. In the Hep-
aticVessel dataset, it is a clear disadvantage as the
vessel labels are minimal and to some degree lacking,
but an advantage in the Ircad dataset, which has
more dilated and detailed vessel structures. We sus-
pect the cause of over-segmentation is the individual
and unbalanced supervision each class receives in
the masked loss of the categorical loss formulation.
While an increase and drop in recall and precision,
respectively, are observed also in the MLxNPS setup,
the DSC does not suffer as severely. We attribute
this to the binary loss formulations, which natively
balance foreground/background better, also in the
partially labeled settings.

(3) Contrary to the MC setup, MLx benefits from
the auxiliary partially labeled data in all settings.
The results suggest that the masked binary loss
formulation in the multi-label setup can learn from
the available data, without interfering destructively
with the unlabeled classes.

4.2 Training on overlapping classes

Although our desired output space is exclusive, with
each voxel in the liver belonging to either the liver,
vessel, or tumor class, it might be suboptimal and
unnecessary during training. As binary outputs in
the segmentation head allow multi-label training
with overlapping classes, we investigate how the po-
tentially conflicting regions across partially labeled
datasets contribute to downstream performance.
In the same controlled environment as our partial
label experiment, we ablate the effect of training on
ambiguous regions. Specifically, we compare MLx
and ML trained with one-hot and multi-hot labels
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(Section 3.2), respectively, in the F'S and PS settings.

Liver tumor segmentation is sensitive to label
conflicts. We report the segmentation DSC and
the tumor detection sensitivity computed on the
connected components of the predictions. Based
on the results presented in Table 2, we make the
following observations:

(1) Vessel segmentation is largely unaffected by
the conflicting labels in the exclusive training setup.
We suspect it to be a consequence of segmenting
the small vessel structure in the comparatively large
surrounding liver. As the vessel structures are small,
the MLx model can learn to produce multi-label,
rather than exclusive, class outputs without being
punished significantly in the loss, as only the FS
training set has complete labels with vessel ” cutouts”
that punish such behaviour. (2) For the tumor DSC
in the non-overlapping baseline, the performance
is significantly worse compared to the overlapping
version. Contrary to the vessel class, the tumor class
is more massive, which leads to a larger loss impact
when the model predicts the liver without cutouts for
the FS set. (3) The tumor detection sensitivity drops
as a consequence of partial supervision on ambiguous
liver and tumor labels for both test sets. The impact
of this result is pivotal, as it is not a matter of
slightly worse or better segmentation overlap, but
more liver tumors that are being detected. Lesion
precision remains similar for both methods on Ircad,
and elevated for ML on the HepaticVessel test set.

4.3 Learning from public datasets
with partial labels

For the clinical case study, we aim to build on public
CT liver datasets with partial labels to scale up
the training data. Following the lessons from our
previous experiments, we train the LVT model under
the multi-label, class-masked regime described in
Section 3.2. For a solid quantitative baseline, we
evaluate against the strong, but specialized nnU-
Net.

We scale up partial labeled training using the com-
plete HepaticVessel dataset (vessel + tumor) with
additional liver labels from [30], the LiTS dataset [9]
(liver + tumor), and Ircad (liver, vessel, tumor). The
datasets are further described in Appendix A.1. We
use Random windowing for CT augmentation and
to mitigate cross-dataset shift. For all other training
configurations, we follow the nnU-Net setup.

For quantitative evaluation, we compare against
full-resolution nnU-Net baselines trained on MSD
Liver (liver+tumor) and MSD HepaticVessel (vessel).
We report DSC and normalized surface dice (NSD)
on an external test set of contrast-enhanced CT
images from ExDS (anonymized). Following [8], we
use 7 mm tolerance for liver and 3 mm for vessels
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Table 1. Segmentation DSC reported on the liver, vessel, and tumor classes of the HepaticVessel test set and the
external Ircad test set. We report the segmentation performance along with the proportion of full supervision
(FS) in the training set, whether partial labeled datasets (PS) were used as auxiliary training signal, and the
segmentation head used, multi-class (MC) vs. multi-label exclusive (MLx).

HepaticVessel Ircad
FS PS Head Liver Vessel Tumor Liver Vessel Tumor
25 % X MC | 0.977 &+ 0.001 0.579 4+ 0.010 0.517 £ 0.024 | 0.951 4+ 0.003 0.372 + 0.033 0.484 + 0.013
0 x  MLx | 0.975 £ 0.002 0.600 £ 0.004 0.536 £ 0.009 | 0.950 £+ 0.002 0.439 + 0.012 0.501 + 0.003
25 % v MC | 0.940 4+ 0.002 0.428 4+ 0.006 0.221 £ 0.026 | 0.913 4+ 0.002 0.489 4+ 0.026 0.341 £ 0.045
0 v’ MLx | 0.977 &£ 0.001 0.629 £ 0.003 0.561 £ 0.018 | 0.946 £+ 0.002 0.466 + 0.011 0.525 4+ 0.037
100 % X MC | 0.980 & 0.000 0.638 & 0.008 0.615 & 0.023 | 0.948 & 0.001 0.397 & 0.008 0.462 + 0.017
° x  MLx | 0.978 = 0.001 0.698 & 0.004 0.790 + 0.010 | 0.946 &+ 0.001 0.468 + 0.010 0.573 =+ 0.025

Table 2. We ablate the effect of ambiguous regions, due to partial labels, during training. By allowing overlapping
classes through multi-hot encoded labels, the binary segmentation head avoids mixed signals from the partially
labeled liver dataset (lacking vessel and tumor). Allowing overlapping classes in the partial supervision setting
leads to improved tumor segmentation.

LVT HepaticVessel Ircad
FS PSS overlap Vessel Tumor Sensitivity Vessel Tumor Sensitivity
959 < X 0.600 + 0.004 0.536 &+ 0.009 0.734 £ 0.034 | 0.439 £+ 0.012 0.501 £ 0.003 0.639 + 0.031
00 v 0.601 £+ 0.009 0.535 4+ 0.016 0.740 £+ 0.033 | 0.437 £ 0.015 0.472 £ 0.031 0.663 &+ 0.037
25 % v X 0.629 + 0.003 0.561 + 0.018 0.779 £ 0.027 | 0.466 £ 0.011 0.525 £ 0.037 0.706 &+ 0.017
LV v 0.629 + 0.005 0.611 £+ 0.013 0.818 4+ 0.037 | 0.462 £ 0.011 0.536 + 0.035 0.714 £ 0.065

Table 3. Evaluation of our multi-label segmentation
network and the full-res nnU-Net trained on MSD Liver
(liver 4+ tumor) and MSD HepaticVessel (vessel). The
models are evaluated on contrast-enhanced CT images
from the ExDS external dataset.

5 Case study

Up until this point, we have validated our methods
from a quantitative perspective. In this section, we

shift our focus to the clinical practice and highlight
the clinical usefulness of the LVT application.
Task  Metric nnU-Net LVT (ours)
DSC  0.723 £ 0.145 0.778 + 0.106 .
Tumor  \op 0706 + 0214 0.771 + 0.136 0L Lwmor detection
' DSC  0.912 + 0.07  0.898 + 0.066 Retrospectively analyzing the longitudinal CT scans
Liver NSD 0.951 + 0.058 0.959 + 0.051 of a patient and comparing the predictions with the
radiology reports from the follow-up allows us to
Vessels DSC ~ 0.545 £ 0.051  0.575 £ 0.048 identify if the model could have assisted in the early
NSD ~ 0.788 £ 0.061  0.808 + 0.053 (etection of tumors. Such retrospective analysis

and tumors (Table 3).

Our model outperforms nnU-Net on tumors and
vessels across DSC and NSD, and achieves higher
liver NSD with slightly lower liver DSC, consis-
tent with minor over-segmentation addressed by
the surface-tolerant NSD metric. These results indi-
cate that learning from additional partially labeled
datasets with a multi-label, masked loss and Ran-
dom windowing improves robustness and clinical
relevance. We next present qualitative retrospective
analyses in Section 5.

helps identify when what might seem like a false
positive tumor prediction by the model actually was
a missed tumor by the radiologist.

For a given patient surgically treated for colorectal
cancer at Hospitall (anonymized), with a high risk of
developing liver metastasis, we obtained predictions
for the contrast-enhanced liver CT scans from the
follow-up studies in the patient pathway from both
our LVT model and the nnU-Net baseline. After the
patient’s initial treatment, they had no metastasized
liver cancer for the following 1,5 years, but in March
2009, a 4 cm tumor was discovered in the left liver
lobe. In the preceding CT scan, 6 months before,
the radiologist stated that there were no suspicious
lesions in the liver. However, retrospective analysis
with our LVT model marked a small tumor region in
the left liver lobe in the same scan, 6 months prior
to the radiologist identifying a liver tumor in that
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Early detection of liver metastasis
September 2008

March 2009

Figure 2. Comparison of CT images of the same patient
6 months apart. In the precedent scan from September
2008, the radiologist identified no suspicious lesions in
the liver. 6 months later, the radiologist found a tumor
measuring 4 cm in diameter. Our LVT model marked a
corresponding lesion displayed in the image in the former
image, 6 months before the radiologist.

same region (Figure 2). The prediction from the
nnU-Net did not detect this tumor.

This example illustrates the potential of DL as-
sisted image analysis and how it may lead to signifi-
cantly earlier detection of liver metastasis.

5.2 Follow-up and tumor monitoring

A key consideration when treating a patient with,
e.g., liver metastasis, is the size of the metastatic
region over time. Tracking the lesion’s size helps
assess how the patient responds to the treatment
they receive. Decreasing tumor size suggests that
the patient responds well to the treatment, while
growth indicates tumor resistance to the treatment.

We retrospectively analyze a patient’s CT liver
scans during the follow-up period and assess how the
LVT model performs automatic size measurements
of the tumor. We report the largest dimension of
the tumor in the x-y plane and compare it against
the radiologist’s measurements at the time of the
study.

We present the results in Figure 3 and find the
extracted measurements to correlate well with the
radiologist’s measurements. During the follow-up
period, the patient experienced an initial period of
tumor growth after a lesion of liver metastasis was
located in liver segment 4. The radiologist’s and
the model’s predictions align well during this period.
After the initial tumor growth, the patient was con-
sidered inoperable and began chemotherapy with a
good response, leading to tumor regression. How-
ever, in two scans during the regression, the model
yielded false positives in another liver segment, com-
pared with the radiologists’ findings. Six months
post-treatment, disease progression was again ob-
served, and despite further management, the malig-

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Predicted vs reference tumor sizes over time

i v
1007, ‘¥-- Predicted (nnUNet) F
é Predicted (LVT) 7
E 8079 _@- Reference ’/
k51
g o0 3
5 7
5 J
£ 407 X
8
20 4 > '/'
2 f K ' o
— ‘r/ '.. Jlr
) o
od ¥ »w
T T T T T T T T T T
RIS
PP EFFEE O S
O S I S S T S SN

Study date

Figure 3. Comparison of tumor measurements from the
LVT model’s predictions and the radiologist’s reference
measurements. The patient develops liver metastasis in
segment 4 of the liver and responds well to the treat-
ment initially. After a period of tumor regression, the
malignancy continued to advance.

nancy continued to progress. During this critical
period, the LVT model matches the radiologist in
tumor detection and size prediction.

5.3 Surgery planning

Surgical resection of tumors is, in most cases, con-
sidered the only cure for liver metastasis [1]. As
the liver is a complex organ with eight independent
anatomical segments with its own blood supplies
from the hepatic arteries and portal veins, the tu-
mor’s precise location and relation to the vessels are
crucial. Manual segmentation of these structures is
too costly and rare in clinical practice. Automatic
segmentation tools provide totally novel insight for
the multidisciplinary team and surgeons treating the
patient.

Our LVT segmentation model is able to precisely
delineate the tumor and blood vessels in high-quality
contrast-enhanced CT images of the liver. For a pa-
tient at Hospitall (Anonymized), we retrospectively
obtain LVT predictions from their CT images to
illustrate the output when visualized in 3D software.
The results are shown in Figure 4 and display the
liver and delineation of a liver tumor in segment 7
with its surrounding vessels. The 3D view of the
LVT predictions makes the evaluation of proxim-
ity to the structures surrounding the tumor. The
visualizations are produced with 3D Slicer image
computing platform [31], where the user can edit
the predictions if needed, and subsequently make
precise measurements before final assessment.
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Illustration of the potential of automatic
3D segmentation of liver, vessels, and tumors in CT
images. For a patient who is considered for surgical
resection of liver metastasis, the 3D visualization of the
liver parenchyma, hepatic vessels, and liver tumor can
be a valuable support in surgical planning.

Figure 4.

Liver volume deviation
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Figure 5. Relative deviation of estimated liver volume
between images of different contrast phases.

5.4 Automatic liver volumetry

Prior to major liver resections, CT volumetry can
be used to measure the liver volume and estimate
the hepatic functional reserve for the patient.

We aim to illustrate the efficacy of the LVT model
for this purpose in a clinical setting by retrospec-
tively analyzing unlabeled images from the clinic.
We assume that a patient’s liver on images from the
same day is similar in size, and we aim to compare
the model’s predictions across contrast phases. To
this end, we retrieved 33 images from 14 patient
studies, where there are 2 or 3 contrast-enhanced
images in each study, with images in the arterial,
venous, or late phase. We use the LVT model to
obtain liver masks for each patient and compute
the liver volumes for each image. As the liver sizes
vary from 1.3 L to 2.5 L across patients, we report
the relative residuals in percentages of the mean
liver volume of each study and plot the results in
Figure 5.

We find the liver volume deviation from the refer-
ence to be within ~ 2% for all cases, and show that
the liver measurements are consistent across images
of the same patient. This is within the margin of
what is expected, as the measured volume usually
varies slightly between images of different contrast
phases [3].

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

6 Limitations and future work

Despite recent efforts, consistent and reliable seg-
mentation of liver tumors and vessels remains a
difficult task. Table 3 reports improvements over
the baseline, but DSC scores remain below 0.8 for
tumors and vessels, which suggests that false posi-
tives and missed structures are to be expected. False
positives may arise when cysts, necrotic tissue, or
low attenuation liver regions are misclassified as
tumors, or when blurred vessel boundaries lead to
over-segmentation. Conversely, missed structures
may occur for small and early-stage tumors, and
poorly contrasted or thin vessels.

In the partial label experiments in subsection 4.1
and subsection 4.2, we observed certain inconsisten-
cies in vessel segmentation performance across the
HV Test set and Ircad dataset. These inconsisten-
cies are symptoms of different label characteristics of
the vessels in the two datasets, which have different
quality and level of detail. We therefore recommend
careful evaluation when comparing these datasets.

While our retrospective analyses demonstrate the
potential for clinical utility of the LVT model, inte-
grating it into real-time clinical workflows remains
an open challenge. To further identify the strengths
and limitations of DL-based liver, vessel, and tu-
mor applications, we recommend thorough clinical
validation with expert supervision to validate the
model’s impact on patient outcomes and clinicians’
workflows.

7 Conclusion

This study explores multi-label and multi-class ap-
proaches in the context of CT liver, vessel, and tumor
segmentation, to effectively handle overlapping and
potentially ambiguous regions from partially labeled
datasets. We find a binary multi-label segmentation
setup with class-wise loss masking to work well for
this setting. Allowing overlapping regions in the
label space enables the use of public datasets with
partial labels during training to learn simultaneous
liver, vessel, and tumors labels in CT images. Our
results show that our approach is particularly bene-
ficial for tumors and vessels, allowing us to benefit
from datasets with partial and ambiguous labels.

We evaluate the LVT model on clinical data to
illustrate the potential for real-world utility in the
clinic. In retrospective analysis of real patients, we
demonstrated that the model has the potential to
detect tumors earlier than the radiologist, accurately
track tumor progression, provide 3D visualization of
complex liver structures, and reliably perform liver
volumetry for real patients. These results underscore
the potential for Al-driven tools for diagnostic accu-
racy, optimizing treatment planning, and improving
patient outcomes.
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A Appendix

A.1 Datasets

In our experiments, we leverage multiple datasets
that are publicly available, in addition to external
test data from Hospitall (Anonymized). The fol-
lowing sections describe the datasets used in our
experiments.

A.1.1 Hepatic vessels dataset

The HepaticVessel dataset is from the Medical Seg-
mentation Decathlon challenge [32] and consists of
303 portal-venous phase CT scans from the US. The
dataset has an out-of-plane voxel spacing ranging
from 0.8 to 8.0 mm. The images contain the liver
with segmented liver tumors and vessel structures.
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A.1.2 HepaticVessel Liver dataset

Building on the HepaticVessel dataset, a supplemen-
tary label set’ of the liver (HV Liver) and Couinaud
segments of the liver was released by Tian et al. [30].
The dataset contains all the same images as the
HepaticVessel dataset, but the additional liver and
Couinaud segmentation masks are created indepen-
dently. We leverage the additional liver masks from
HV Liver together with the HepaticVessel dataset
in our experiments.

A.1.3 3D-ircadb-01 dataset

The 3D-ircadb-01-dataset® [13] (Ircad), contains 20
CT scans from France that are labeled with various
organs, including liver, hepatic vessels, and any liver
tumors. The scans from the IRCAD dataset are a
subset of the LiTS dataset; however, with only the
liver and tumor masks are present, and no vessel
masks [9].

A.1.4 Liver tumor segmentation (LiTS)
dataset

The LiTS dataset [9] contains 131 segmented CT
volumes from different patients. The CT scans are
from 7 different institutions in Canada, the Nether-
lands, Germany, France, and Israel. The CT images
are contrast-enhanced and captured in the portal-
venous phase and have an out-of-plane voxel spacing
ranging from 0.7 to 5.0 mm. All images contain a
rough segmentation mask of the liver in addition
to a radiologist’s segmentation of any liver tumors.
The liver tumors are both primary and metastatic
from colorectal, breast, and lung primary cancers.

The LiTS dataset has 20 volumes (volumes 28-47)
overlapping with the 3D-ircadb-01 dataset [13]. This
subset contains the same segmented liver and tumor
masks as LiTS, in addition to vessel masks, which
are used in the LVT application.

A.1.5 External dataset

The External Dataset (ExDS) is under develop-
ment at Hospitall (Anonymized) and Institutionl
(Anonymized) and is used for evaluation in our final
experiments. The dataset is from a large database
of CT images from the follow-up period of 376 pa-
tients that was treated for colorectal cancer from
2006 to 2011 at Hospitall. From this database, we
have created two labeled subsets: ExDS LT, which
contains liver and tumor masks, and ExDS V, which
contains liver and vessel masks. The former is used
for external validation and testing of the liver and
tumor segmentation performance of the model and
consists of 18 contrast-enhanced CT volumes with

1Available at: https://github.com/GLCUnet/dataset
2Available  at: https://www.ircad.fr/research/
data-sets/liver-segmentation-3d-ircadb-01/
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Table A.1. An overview of the different datasets with
partial labels used in this paper and the corresponding
class weights wy, for classes liver, vessel and tumor in
Equation 1. HV test and datasets are only used for
testing purposes.

Dataset Liver Vessel Tumor Images Class weights, w
FSLVT v v v 61 [1,1,1]
PSL v X X 61 [1,0,0]
PSV X v X 61 [0,1,0]
PST X X v 60 [0,0,1]
HV test v v v 60 -
LiTS v X v 131 [1,0,1]
HepaticVessel X v v 303 [0,1,1]
IRCAD v v v 20 [1,1,1]
HV Liver v X X 303 [1,0,0]
ExDS LT v X v 18 -
ExDS V X v X 10 -

segmented liver and liver tumor masks. ExDS V
contains 10 contrast-enhanced CT volumes of the
liver with segmented liver vessels and is used to eval-
uate the vessel segmentation performance in Section
4.3.

A.1.6 Partial labels in datasets

As we train on datasets with partial labels for certain
experiments, we present an overview of the present
label classes for each dataset and the class weights
w needed for Equation 1 is presented in Table A.1.

A.2 Experimental setup

All models in this paper are trained on 3D patches of
128 x 128 x 96 voxels, sampled from training images
resampled to isotropic voxel spacing of 1 X 1 X 1 mm
using trilinear interpolation. The U-Net-like archi-
tecture uses deep supervision [33] with two auxiliary
heads at intermediate resolutions and LeakyReLU
activations [34]. During training, patches are over-
sampled from a foreground region with p = 0.333,
and we apply the following augmentations in se-
quence: random crop resizing applied with probabil-
ity p = 0.2 and a scale factor a ~ U(0.7,1.4), ran-
dom rotation with p = 0.2 and angle § ~ U(—30, 30),
and random flip with p = 0.5 along all axes. We
leverage Random windowing [11] for preprocess-
ing and CT intensity augmentation, applying win-
dow shifting and scaling independently with a total
probability p = 0.3, sampling the Hounfield unit
window parameters from W ~ U(11.5,152.9) and
L ~ [141.2,325.9] [10]. Training is done with the
combined CE and Dice loss (Equation 3 and Equa-
tion 4). All models are trained with a batch size of
112 images across 8 GPU compute dies on 4 AMD
MI250x GPUs on the LUMI supercomputer.

The PS experiments in Section 4.1 and 4.2 are
performed with a residual encoder [35] and batch
normalization [36]. Training is done with AdamW
[37] optimizer with learning rate 0.001 and cosine
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decay with warmup [37]. The models are trained 40
epochs with 100 steps each. The masking weights
used for each dataset are listed in Table A.1.

The LVT model trained in Section 4.3 deviates
from this setup to match the one used by the nnU-
Net baseline. Specifically, we no residual connections
in the encoder, instance normalization [38], stochas-
tic gradient descent with weight decay optimizer
[37] and polynomial learning rate decay. The model
is trained on 448 000 training samples over 1000
epochs, which is comparable to the baseline, which
sees 500 000 training samples.

A.2.1 Training loss

For each sample with K classes, the cross-entropy
loss is defined per voxel as

K
05 =~ Zyik log pik, (3)
k=1

where y;, and p; are the target and prediction from
the one-hot encoded mask and softmax probabilities,
respectively.

For the same network with sigmoid outputs, we
obtain the case for binary cross-entropy, where the
per-voxel per-class loss is defined as

(4)

The dice loss is computed independently for each
voxel and class, given the output probabilities, and
is given by

Liy, = —[yi log p; + (1 — y;) log(1 — py)].

2 YirDik

gDice _ .
Y + 03,

ik =1 (5)
In the multi-class segmentation setup, it is typically
reduced over the class dimension to match the per-
voxel loss formulation of the ¢$'F.

A.2.2 Inference settings

As our models are trained on crops smaller than
a typical CT image, we follow the sliding window
inference pipeline of Isensee et al. [12] to obtain
predictions. Specifically, each test volume is cropped
into patches of 128 x 128 x 96 voxels, with 50 %
overlap. The model predictions on each patch are
aggregated to a complete output with a gaussian
weighing, as the predictions are usually more stable
towards the center. The final semantic output is
obtained through the argmax across channels. For
the binary segmentation outputs, we use a sigmoid
threshold of p = 0.5, and obtain mutually exclusive
outputs by giving positives of the overlapping classes
priority based on the heuristic hierarchy: tumor,
vessel, liver, background.

For comparison with the nnU-Net in Section 5, we
use the 5-fold cross-validation models to obtain an
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ensemble prediction of each pred. During inference,
we use test-time augmentation by flipping each crop
along all axes. We also limit the final prediction to
the largest connected component. These inference
settings are also employed by the baseline.

A.2.3 Evaluation

Precision and recall are common metrics for
evaluating classification performance using the true
positives (T'P), false positives (F'P), and false nega-
tive (F'N) predictions. Precision measures the pro-

portion of predicted positives that are correct:
TP
Precision = ———, 6
recision = s (6)

while recall (sensitivity) measures the proportion of
actual positives that are correctly identified:

TP

Recall = i;j;‘;:‘jﬁ]&f.

(7)
Although pixel-wise precision and recall are not com-
monly used to evaluate segmentation masks, they
can assist in diagnosing under and over-segmentation
in models. Specifically, low recall tends to corre-
spond to under-segmentation, and low precision to
over-segmentationMonteiro and Campilho [39].

Dice similarity coefficient (DSC). To evalu-
ate segmentation predictions against ground truth
masks more reliably, we rely on the DSC, which
measures volume overlap between predicted and
true masks, X and Y, as the harmonic mean of the
precision and recall:

21X NY]|

DSC = ————.
X[+ Y]

(8)

Normalized surface dice (NSD). While widely
used, DSC treats all pixel errors equally, which may
obscure clinically important mistakes (e.g., missing
an entire tumor vs. scattered noise). Therefore, we
additionally leverage NSD [40] in our clinical eval-
uation. NSD addresses this by comparing surfaces
within a tolerance, defined per class in millimeters.
Errors inside the tolerance do not reduce the score,
making NSD more clinically meaningful.

Lesion sensitivity. Based on a connected com-
ponent analysis of the ground-truth and predicted
tumor segmentation, we classify a tumor in the
ground truth as detected if they have a correspond-
ing prediction with ; 10 % overlap. Based on this
classification, we can compute the lesion recall/sen-
sitivity using FEquation 7.
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Reporting In most evaluations, we report the
mean result for each model in the 5-fold cross-
validation evaluation. To showcase the variation
between multiple runs of comparable methods, we
use the standard deviation of performance between
runs. The result in Table 3 deviates from this pro-
tocol, as the whole ensemble is used to obtain each
prediction. We therefore report the per-case mean
and standard deviation for this result.
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