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Towards clinical application of liver, vessel, and tumor segmen-
tation using partially labeled data

Anonymized authors ∗

Abstract001

Accurate delineation of liver parenchyma, intrahep-002

atic vessels, and tumors (LVT) may aid earlier tumor003

detection, consistent response assessment, and sur-004

gical planning for patients with liver cancer. Deep005

learning (DL) may enable such automated delin-006

eation, but available CT datasets are fragmented007

and partially labeled, making them unsuited for008

end-to-end training. We investigate a single-head,009

3D segmentation framework that learns from such010

fragmented data by: (i) loss masking per class or011

voxel to ignore missing annotations, (ii) using multi-012

hot targets and the anatomical hierarchy inherent013

to liver, vessels, and tumors, to handle overlapping014

structures without class competition. In controlled015

ablations that simulate partial-label training, this016

multi-label masked strategy reliably outperforms017

masked multi-class baselines, avoids precision col-018

lapse, and improves tumor overlap and lesion detec-019

tion sensitivity. Scaling training to multiple partially020

labeled datasets, the model surpasses full-resolution021

nnU-Net on an external clinical cohort, with higher022

tumor and vessel segmentation performance. We023

conduct a qualitative retrospective case study to il-024

lustrate the clinical potential of the LVT application.025

We find that LVT models can enable earlier detec-026

tion of metastasis by six months, longitudinal size027

tracking aligned with radiologist measurements, 3D028

tumor–vessel visualization for surgical planning, and029

stable inter-phase liver volumetry ( 2% deviation).030

These results show that multi-label masked learning031

enables robust, clinically relevant LVT segmentation032

from partially labeled datasets.033

1 Introduction034

Effective management of liver cancer, includ-035

ing patient follow-up and surgical treatment, re-036

lies on patient-specific understanding of the liver037

parenchyma, intrahepatic vasculature, and tumor038

burden. Accurate delineation of these structures039

may enable a range of impactful clinical tasks: ear-040

lier and more reliable tumor detection during pa-041

tient follow-up, objective and consistent longitudinal042

response assessment, preoperative virtual planning043

with 3D visualization, and automatic liver volumetry044

to estimate functional reserve before major resec-045
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tions [1–7]. 046

Deep learning (DL) based segmentation models 047

have the potential to automatically produce high- 048

quality segmentations of the liver parenchyma, in- 049

trahepatic vessels, and hepatic tumors (LVT) [8, 050

9]. However, publicly available 3D annotation of 051

liver, vessels, and tumors, to train such models, re- 052

mains scarce and fragmented. This fragmentation 053

has constrained clinically geared liver applications 054

to single-task models, limiting generalizability and 055

complicating clinical deployment. 056

In this paper, we address the scarcity of fully 057

labeled CT liver, vessel, and tumor segmentation 058

data and the fragmentation of labeled datasets. To 059

achieve generalizability with little data, we lever- 060

age a recently proposed augmentation strategy for 061

contrast-enhanced CT liver images called Random 062

windowing [10, 11]. Furthermore, to exploit datasets 063

with partial labels, we explore multiple segmenta- 064

tion strategies capable of learning from partial labels 065

and potentially overlapping structures end-to-end. 066

Ultimately, we try to answer the question: How to 067

leverage partially labeled datasets with overlapping 068

structures in LVT segmentation? We identify that 069

multi-label binary segmentation with a masked loss 070

and multi-hot encoded labels, to allow class overlaps, 071

can balance the loss contribution of partial labels 072

and better learn from overlapping classes (Figure 1). 073

We demonstrate the effectiveness of our approach 074

with quantitative evaluation against the strong nnU- 075

Net baseline[12]. To complement the quantitative 076

evaluation and to demonstrate the clinical potential 077

of automatic DL based segmentation of LVT struc- 078

tures, we qualitatively evaluate a clinical case study 079

that highlights the potential of such models. 080

The case study illustrates how automatic LVT 081

predictions could enable earlier detection of liver 082

tumors, track tumor size over time comparable to 083

radiologist measurements, and deliver 3D visualiza- 084

tions of tumor–vessel relationships. We also show 085

that automated liver volumes remain stable across 086

contrast phases, supporting volumetric assessment 087

in clinical workflows. 088

Our contributions are twofold: 089

1. We analyze how to efficiently leverage partially 090

labeled data with overlapping regions to seg- 091

ment the liver, vessels, and tumors in CT im- 092

ages. 093

2. We demonstrate real-world clinical potential of 094
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Figure 1. A schematic overview displaying our approach for learning robust and simultaneous liver, vessel, and
tumor segmentation from multiple partially labeled datasets. Formulating the objective functions for binary
segmentation allows us to define overlapping classes and mask the loss based on the missing labels.

LVT models through a combination of quanti-095

tative evaluation on challenging clinical data096

and qualitative retrospective cases that high-097

light earlier tumor detection, longitudinal mon-098

itoring, 3D surgical planning, and consistent099

volumetry.100

2 Related work101

CT-based segmentation of LVT has often been ad-102

dressed with task-specific models, as many of the103

impactful and available datasets provide only a sub-104

set of these labels. Methodological developments105

have been driven largely by medical segmentation106

challenges, and public datasets from these, such as107

LiTS/MSD Liver for liver and tumor, MSD Hep-108

aticVessel for hepatic vessels [8, 9]. Additionally,109

3Dircadb provides the complete label set, but on a110

comparatively small cohort (20 cases) [13].111

Architecturally, 3D encoder–decoder CNNs and112

the self-configuring nnU-Net remain strong baselines113

for medical 3D applications despite recent advances114

in vision transformers [12, 14–16]. Vision transform-115

ers have shown promise on large, diverse datasets,116

but often underperform CNN in small-to-moderate117

data regimes typical of clinical CT cohorts [16–18].118

Reliable LVT segmentation in CT must be per-119

formed on contrast-enhanced images to effectively120

see the intrahepatic structures, such as vascula-121

ture and tumor. Training DL models on contrast-122

enhanced CT images on limited datasets is chal-123

lenging due to the high image variability across124

contrast phases and between patients for a given125

phase. Recently, Random windowing was proposed126

as a CT-specific augmentation scheme to expose the127

model to realistic phase variability due to contrast-128

enhancement [10, 11]. It samples clinically plausible129

HU windows stochastically during training, and has130

been shown to improve robustness in CT segmenta-131

tion of liver tumors.132

We aim to build on these aforementioned advances 133

to make a unified LVT segmentation model from 134

the available public datasets and demonstrate its 135

potential for the clinic. 136

2.1 Learning from partial labels 137

As public datasets rarely share a complete LVT label 138

space, combining them during training must be done 139

with care to avoid class conflicts. A typical challenge 140

is handling missing classes, because treating them as 141

background in a softmax multi-class setup can cause 142

conflicting regions. Prior work has addressed miss- 143

ing annotations via masked or partial-label losses 144

that ignore unlabeled classes during training, pre- 145

venting spurious gradients from missing annotations 146

[19–21]. To this end, binary formulations with sig- 147

moid outputs are particularly suitable, as they avoid 148

the competition inherent in softmax and allow per- 149

class supervision wherever labels are present [20, 22]. 150

To mitigate noisy gradients from a multi-class seg- 151

mentation setting using softmax, the loss masking 152

must happen on a per-voxel basis, ignoring signals 153

from all non-foreground regions [19]. 154

Alternative strategies include weakly or semi- 155

supervised learning using pseudo-labels [20, 23], and 156

multi-task/multi-head designs [24, 25] where each 157

dataset supervises a subset of heads while shar- 158

ing an encoder. While effective in some settings, 159

pseudo-labels can introduce confirmation bias from 160

erroneous predictions, and multi-task heads can be 161

difficult to calibrate across datasets. 162

Compared to approaches that stitch together sep- 163

arate binary models or rely on pseudo-labels to fill 164

missing classes, we investigate segmentation models 165

with a single segmentation head and an end-to-end 166

training pipeline. In this setting, we investigate 167

how to benefit from and train on partially labeled 168

datasets using various loss masking strategies. 169
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2.2 Overlapping classes170

Within the context of partial label supervision, over-171

lapping classes are often treated as separate classes,172

masking the loss contribution of any missing class173

during training [21, 26]. Although possible in certain174

settings, it does not address the potential label con-175

flicts across datasets, and could lead to suboptimal176

performance (Section 4.2).177

Another established approach is cascaded mod-178

els, which segment organ regions of interest (ROI)179

like the liver, before specialized models are trained180

for vessels and tumors within the organ ROI [9].181

However, this approach leads to extra compute over-182

head during training and inference compared to an183

end-to-end pipeline in a complete label space.184

Semantic segmentation on overlapping and par-185

tial labels has been addressed by probabilistic ap-186

proaches that aggregate predictions [27] and multi-187

label approaches [28], but the approach within med-188

ical and LVT applications is largely underexplored.189

2.3 Clinical potential for liver, vessel,190

and tumor segmentation191

The clinical implications of LVT models are substan-192

tial. Below, we identify four routine scenarios where193

the LVT application has clinical potential: surgical194

planning, automatic liver volumetry, longitudinal195

patient follow-up, and tumor detection. In our final196

case study, we evaluate the current utility of LVT197

segmentation for each use case.198

Surgical planning using accurate 3D spatial199

delineation of tumors to surrounding hepatic vascu-200

lature allows for more precise surgical planning. In201

an ongoing tangential study of the clinical impact of202

3D liver models at Hospital1 (Anonymized), initial203

results suggest significant improvements in surgical204

planning when a 3D LVT model was used along with205

traditional radiological images (CT/MRI).206

The integration of automatically generated 3D207

models into surgical procedures may significantly im-208

pact the management of complex hepatic resections209

[5]. 3D visualization of tumor-vessel relationships210

can aid surgeons when navigating in challenging211

anatomical landscapes [4, 7], and may reduce unin-212

tended vessel injury and improve resection margins.213

Automatic liver volumetry further aids sur-214

gical decision-making by providing essential data215

needed for assessing hepatic functional reserve,216

which is particularly beneficial for major liver resec-217

tions [2, 3].218

During patient follow-up, the LVT model has219

potential to benefit the clinical follow-up of oncology220

patients undergoing chemotherapy. By automati-221

cally measuring tumor sizes and the liver volume,222

the model can provide a consistent and objective223

assessment of tumor response over time [6]. This224

may facilitate timely therapeutic decisions, allowing225

clinicians to optimize the treatment based on tumor 226

volume changes. 227

Tumor detection using a segmentation model 228

enables precise identification of potential tumor re- 229

gions in the CT scan. For patients at risk of liver 230

metastasis, DL based tumor segmentation tools may 231

help radiologists detect tumors early, improving di- 232

agnosis and treatment for patients. 233

In general, a performant liver, vessel, and tumor 234

segmentation model has the potential to be a clinical 235

tool and may improve diagnostic accuracy, enhance 236

therapeutic planning, optimize patient follow-up, 237

and increase surgical safety in hepatic tumor man- 238

agement. 239

3 Methodology 240

In this section, we describe how we adjust the de- 241

fault segmentation setup and training regime to 242

accommodate partial labels, and how to learn from 243

overlapping structures in the liver. Finally, we il- 244

lustrate the clinical impact of our application by 245

performing a qualitative retrospective analysis of 246

the follow-up of typical liver metastasis patients. 247

3.1 Training on partially labeled data 248

In the partial label setting, computing the loss over 249

regions with missing labels or unlabeled background 250

regions requires special care. To simplify training on 251

such datasets, we avoid evaluating the loss over un- 252

labeled or potentially ambiguous regions in a binary 253

and multi-class segmentation setting. 254

We achieve this by formulating the objective func- 255

tions with a weight mask w or W to ignore the 256

contribution of a given class or voxel, respectively, 257

depending on the loss formulation. 258

Binary losses can be computed per-class on the 259

sigmoid probabilities of the segmentation network. 260

For each class k of a given sample with N voxels, we 261

compute the mean voxel loss ℓk and mask it with the 262

per-class weight wk, essentially removing the loss 263

contribution for the classes with missing labels. The 264

masked binary loss LB for partially labeled samples 265

is thus computed for each voxel i and class as 266

LB =
1∑K

k=1 wk

K∑
k=1

wk
1

N

N∑
i=1

ℓik. (1) 267

In multi-class segmentation, the loss ℓi is computed 268

for each voxel over all classes, using one-hot encoded 269

labels and softmax output probabilities. Masking 270

out the loss contribution for ambiguous regions must 271

therefore be performed on a per-voxel basis with 272

Wi ∈ {0, 1}, yielding the categorical loss for partially 273

labeled sample LC 274

LC =
1∑N

i=1 Wi

N∑
i=1

ℓiWi. (2) 275
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This formulation removes the loss contribution of276

all non-foreground voxels, essentially giving us the277

mean foreground loss. This eliminates the problem278

of ambiguous regions, also when the background is279

modeled explicitly.280

Multi-class and multi-label segmentation281

Multi-class segmentation (MC) predicts exclusive282

classes using softmax activation function and the283

categorical loss LC with weight mask W from Equa-284

tion 2. MC predicts K + 1 classes and models the285

background explicitly in the initial channel. The286

explicit background channel will potentially interfere287

with all missing ROI. Therefore, W must mask out288

the loss contribution of all non-foreground regions289

for classes not present in the PS training set.290

Multi-label segmentation (ML) uses the sigmoid291

activation independently for each K output chan-292

nels. Training a ML model with one-hot labels for293

all datasets with full or partial supervision is compa-294

rable to the MC setup wrt. the training signal from295

exclusive classes. Loss masking is done per channel296

using w in Equation 1. We refer to this setup as297

Multi-label exclusive segmentation (MLx).298

3.2 Segmenting overlapping struc-299

tures300

Given complete annotations, class exclusive segmen-301

tation setup has the benefit of yielding unambigu-302

ous regions and explicit information about bound-303

aries between classes. However, for partially labeled304

datasets, class exclusivity is not guaranteed, and305

overlapping classes risk regions of conflicting super-306

vision due to overlap.307

To avoid this issue across partially labeled308

datasets, ML can be trained with overlapping classes309

if labels are represented as multi-hot vectors, with310

per-voxel labels yik ∈ {0, 1} for each class k. This311

avoids competition between classes during training312

and allows supervision of whichever labels are avail-313

able for that sample. In the context of partial labels,314

w can seamlessly be applied in Equation 1 to mask315

the loss contribution of unlabeled classes.316

Anatomical liver hierarchy317

In the context of LVT segmentation, vessels and318

tumors are anatomically contained within the liver.319

In our following experimental settings, we enforce320

this anatomical hierarchy by mapping vessel and321

tumor label positives into the liver channel: yi,L ←322

yi,L ∨ yi,V ∨ yi,T. This mapping is applied on-the-fly323

for datasets that provide one-hot labels, yielding324

a consistent multi-hot label space across datasets.325

When a class is not annotated for a sample, its loss326

weight wk = 0, so it does not contribute to the327

objective.328

4 Experiments 329

In this section, we investigate multiple strategies for 330

training segmentation models on partially labeled 331

datasets and how potentially overlapping classes im- 332

pact the performance. We present the experiments 333

and their results sequentially, and use the novel 334

insight to inform our clinical case study. 335

Experimental setup. All experiments are per- 336

formed under an identical medical image segmenta- 337

tion setup, where the objective is a segmentation 338

map with mutually exclusive classes. We focus on 339

end-to-end training pipelines using a U-Net-like ar- 340

chitecture [29], with several modifications for robust 341

training and results. The detailed experimental 342

setup and evaluation settings can be found in the 343

Appendix A.2. 344

4.1 Learning from partial labels 345

We construct a controlled experiment simulating 346

a training setting with multiple datasets with par- 347

tial/missing labels. Specifically, we create partially 348

labeled training sets from different partitions of one 349

fully annotated source dataset. This lets us test 350

and evaluate various approaches without consider- 351

ing noise from distribution shifts from other data 352

and label sources. 353

Simulating partial labeled training. Based 354

on the 303 images from the HepaticVessel dataset 355

[8], with vessel and tumor segmentation labels, and 356

the auxiliary liver segmentation labels from Tian 357

et al. [30], we randomly sample 5 datasets of similar 358

size. Specifically, 20 % fully annotated (LVT masks) 359

are reserved as hold-out test set (HV test), 20 % are 360

used as fully supervision (FS) training with complete 361

LVT annotations, 20 % have partial supervision (PS) 362

with tumor mask only, 20 % with PS vessel mask, 363

and 20 % with PS from liver mask only. Note that 364

the liver mask comprises the complete liver organ, 365

without ”cutouts” for the vessel and tumor classes. 366

In this regard, the liver overlaps with the vessel and 367

tumor masks, similar to a real setting with partially 368

labeled datasets. Further dataset details can be 369

found in Table A.1. 370

The question we want to answer is ”How can we 371

leverage auxiliary datasets with partial labels to im- 372

prove segmentation performance over only using the 373

fully labeled training set?”. To this end, we compare 374

the MC and MLx end-to-end segmentation setups 375

with their different loss masking strategies with 25 376

% FS with and without auxiliary PS datasets. For 377

comparison, we also provide the 100 % FS training 378

alternative. 379

We report the mean segmentation performance 380

on the HV test and the external Ircad [13] test set 381
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after 5-fold cross-validation training on the combined382

full and partially labeled data splits. We measure383

the Dice similarity coefficient (DSC) on the liver,384

vessels, and tumors of the respective test sets. Our385

full evaluation strategy can be found in Appendix386

A.2.3.387

Binary segmentation benefits from partial388

supervision. Based on the results, presented in389

Table 1, we make the following observations:390

(1) In the fully supervised settings, the segmenta-391

tion DSC are comparable for the liver class of MLx392

and MC, and higher or on par for MLx on the vessel393

and tumor classes across both datasets.394

(2) With partial supervision and multi-class seg-395

mentation, the DSC performance collapse compared396

to full supervision for almost all classes. However,397

the exception is segmentation performance on Ircad398

vessels, which exceeds all other settings. Upon closer399

inspection, the liver and vessel recalls of MC∩PS400

are actually the highest across all datasets, while401

the precision is lowest. This can explain the ex-402

tremes in DSC, because it suggests that the model403

over-segments with many false positives. In the Hep-404

aticVessel dataset, it is a clear disadvantage as the405

vessel labels are minimal and to some degree lacking,406

but an advantage in the Ircad dataset, which has407

more dilated and detailed vessel structures. We sus-408

pect the cause of over-segmentation is the individual409

and unbalanced supervision each class receives in410

the masked loss of the categorical loss formulation.411

While an increase and drop in recall and precision,412

respectively, are observed also in the MLx∩PS setup,413

the DSC does not suffer as severely. We attribute414

this to the binary loss formulations, which natively415

balance foreground/background better, also in the416

partially labeled settings.417

(3) Contrary to the MC setup, MLx benefits from418

the auxiliary partially labeled data in all settings.419

The results suggest that the masked binary loss420

formulation in the multi-label setup can learn from421

the available data, without interfering destructively422

with the unlabeled classes.423

4.2 Training on overlapping classes424

Although our desired output space is exclusive, with425

each voxel in the liver belonging to either the liver,426

vessel, or tumor class, it might be suboptimal and427

unnecessary during training. As binary outputs in428

the segmentation head allow multi-label training429

with overlapping classes, we investigate how the po-430

tentially conflicting regions across partially labeled431

datasets contribute to downstream performance.432

In the same controlled environment as our partial433

label experiment, we ablate the effect of training on434

ambiguous regions. Specifically, we compare MLx435

and ML trained with one-hot and multi-hot labels436

(Section 3.2), respectively, in the FS and PS settings. 437

Liver tumor segmentation is sensitive to label 438

conflicts. We report the segmentation DSC and 439

the tumor detection sensitivity computed on the 440

connected components of the predictions. Based 441

on the results presented in Table 2, we make the 442

following observations: 443

(1) Vessel segmentation is largely unaffected by 444

the conflicting labels in the exclusive training setup. 445

We suspect it to be a consequence of segmenting 446

the small vessel structure in the comparatively large 447

surrounding liver. As the vessel structures are small, 448

the MLx model can learn to produce multi-label, 449

rather than exclusive, class outputs without being 450

punished significantly in the loss, as only the FS 451

training set has complete labels with vessel ”cutouts” 452

that punish such behaviour. (2) For the tumor DSC 453

in the non-overlapping baseline, the performance 454

is significantly worse compared to the overlapping 455

version. Contrary to the vessel class, the tumor class 456

is more massive, which leads to a larger loss impact 457

when the model predicts the liver without cutouts for 458

the FS set. (3) The tumor detection sensitivity drops 459

as a consequence of partial supervision on ambiguous 460

liver and tumor labels for both test sets. The impact 461

of this result is pivotal, as it is not a matter of 462

slightly worse or better segmentation overlap, but 463

more liver tumors that are being detected. Lesion 464

precision remains similar for both methods on Ircad, 465

and elevated for ML on the HepaticVessel test set. 466

4.3 Learning from public datasets 467

with partial labels 468

For the clinical case study, we aim to build on public 469

CT liver datasets with partial labels to scale up 470

the training data. Following the lessons from our 471

previous experiments, we train the LVT model under 472

the multi-label, class-masked regime described in 473

Section 3.2. For a solid quantitative baseline, we 474

evaluate against the strong, but specialized nnU- 475

Net. 476

We scale up partial labeled training using the com- 477

plete HepaticVessel dataset (vessel + tumor) with 478

additional liver labels from [30], the LiTS dataset [9] 479

(liver + tumor), and Ircad (liver, vessel, tumor). The 480

datasets are further described in Appendix A.1. We 481

use Random windowing for CT augmentation and 482

to mitigate cross-dataset shift. For all other training 483

configurations, we follow the nnU-Net setup. 484

For quantitative evaluation, we compare against 485

full-resolution nnU-Net baselines trained on MSD 486

Liver (liver+tumor) and MSD HepaticVessel (vessel). 487

We report DSC and normalized surface dice (NSD) 488

on an external test set of contrast-enhanced CT 489

images from ExDS (anonymized). Following [8], we 490

use 7 mm tolerance for liver and 3 mm for vessels 491
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Table 1. Segmentation DSC reported on the liver, vessel, and tumor classes of the HepaticVessel test set and the
external Ircad test set. We report the segmentation performance along with the proportion of full supervision
(FS) in the training set, whether partial labeled datasets (PS) were used as auxiliary training signal, and the
segmentation head used, multi-class (MC) vs. multi-label exclusive (MLx).

HepaticVessel Ircad
FS PS Head Liver Vessel Tumor Liver Vessel Tumor

25 %
× MC 0.977 ± 0.001 0.579 ± 0.010 0.517 ± 0.024 0.951 ± 0.003 0.372 ± 0.033 0.484 ± 0.013
× MLx 0.975 ± 0.002 0.600 ± 0.004 0.536 ± 0.009 0.950 ± 0.002 0.439 ± 0.012 0.501 ± 0.003

25 %
✓ MC 0.940 ± 0.002 0.428 ± 0.006 0.221 ± 0.026 0.913 ± 0.002 0.489 ± 0.026 0.341 ± 0.045
✓ MLx 0.977 ± 0.001 0.629 ± 0.003 0.561 ± 0.018 0.946 ± 0.002 0.466 ± 0.011 0.525 ± 0.037

100 %
× MC 0.980 ± 0.000 0.638 ± 0.008 0.615 ± 0.023 0.948 ± 0.001 0.397 ± 0.008 0.462 ± 0.017
× MLx 0.978 ± 0.001 0.698 ± 0.004 0.790 ± 0.010 0.946 ± 0.001 0.468 ± 0.010 0.573 ± 0.025

Table 2. We ablate the effect of ambiguous regions, due to partial labels, during training. By allowing overlapping
classes through multi-hot encoded labels, the binary segmentation head avoids mixed signals from the partially
labeled liver dataset (lacking vessel and tumor). Allowing overlapping classes in the partial supervision setting
leads to improved tumor segmentation.

LVT
overlap

HepaticVessel Ircad
FS PS Vessel Tumor Sensitivity Vessel Tumor Sensitivity

25 %
× × 0.600 ± 0.004 0.536 ± 0.009 0.734 ± 0.034 0.439 ± 0.012 0.501 ± 0.003 0.639 ± 0.031
× ✓ 0.601 ± 0.009 0.535 ± 0.016 0.740 ± 0.033 0.437 ± 0.015 0.472 ± 0.031 0.663 ± 0.037

25 %
✓ × 0.629 ± 0.003 0.561 ± 0.018 0.779 ± 0.027 0.466 ± 0.011 0.525 ± 0.037 0.706 ± 0.017
✓ ✓ 0.629 ± 0.005 0.611 ± 0.013 0.818 ± 0.037 0.462 ± 0.011 0.536 ± 0.035 0.714 ± 0.065

Table 3. Evaluation of our multi-label segmentation
network and the full-res nnU-Net trained on MSD Liver
(liver + tumor) and MSD HepaticVessel (vessel). The
models are evaluated on contrast-enhanced CT images
from the ExDS external dataset.

Task Metric nnU-Net LVT (ours)

Tumor
DSC 0.723 ± 0.145 0.778 ± 0.106
NSD 0.706 ± 0.214 0.771 ± 0.136

Liver
DSC 0.912 ± 0.07 0.898 ± 0.066
NSD 0.951 ± 0.058 0.959 ± 0.051

Vessels
DSC 0.545 ± 0.051 0.575 ± 0.048
NSD 0.788 ± 0.061 0.808 ± 0.053

and tumors (Table 3).492

Our model outperforms nnU-Net on tumors and493

vessels across DSC and NSD, and achieves higher494

liver NSD with slightly lower liver DSC, consis-495

tent with minor over-segmentation addressed by496

the surface-tolerant NSD metric. These results indi-497

cate that learning from additional partially labeled498

datasets with a multi-label, masked loss and Ran-499

dom windowing improves robustness and clinical500

relevance. We next present qualitative retrospective501

analyses in Section 5.502

5 Case study 503

Up until this point, we have validated our methods 504

from a quantitative perspective. In this section, we 505

shift our focus to the clinical practice and highlight 506

the clinical usefulness of the LVT application. 507

5.1 Tumor detection 508

Retrospectively analyzing the longitudinal CT scans 509

of a patient and comparing the predictions with the 510

radiology reports from the follow-up allows us to 511

identify if the model could have assisted in the early 512

detection of tumors. Such retrospective analysis 513

helps identify when what might seem like a false 514

positive tumor prediction by the model actually was 515

a missed tumor by the radiologist. 516

For a given patient surgically treated for colorectal 517

cancer at Hospital1 (anonymized), with a high risk of 518

developing liver metastasis, we obtained predictions 519

for the contrast-enhanced liver CT scans from the 520

follow-up studies in the patient pathway from both 521

our LVT model and the nnU-Net baseline. After the 522

patient’s initial treatment, they had no metastasized 523

liver cancer for the following 1,5 years, but in March 524

2009, a 4 cm tumor was discovered in the left liver 525

lobe. In the preceding CT scan, 6 months before, 526

the radiologist stated that there were no suspicious 527

lesions in the liver. However, retrospective analysis 528

with our LVT model marked a small tumor region in 529

the left liver lobe in the same scan, 6 months prior 530

to the radiologist identifying a liver tumor in that 531

6
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Early detection of liver metastasis
September 2008 March 2009

Figure 2. Comparison of CT images of the same patient
6 months apart. In the precedent scan from September
2008, the radiologist identified no suspicious lesions in
the liver. 6 months later, the radiologist found a tumor
measuring 4 cm in diameter. Our LVT model marked a
corresponding lesion displayed in the image in the former
image, 6 months before the radiologist.

same region (Figure 2). The prediction from the532

nnU-Net did not detect this tumor.533

This example illustrates the potential of DL as-534

sisted image analysis and how it may lead to signifi-535

cantly earlier detection of liver metastasis.536

5.2 Follow-up and tumor monitoring537

A key consideration when treating a patient with,538

e.g., liver metastasis, is the size of the metastatic539

region over time. Tracking the lesion’s size helps540

assess how the patient responds to the treatment541

they receive. Decreasing tumor size suggests that542

the patient responds well to the treatment, while543

growth indicates tumor resistance to the treatment.544

545

We retrospectively analyze a patient’s CT liver546

scans during the follow-up period and assess how the547

LVT model performs automatic size measurements548

of the tumor. We report the largest dimension of549

the tumor in the x-y plane and compare it against550

the radiologist’s measurements at the time of the551

study.552

We present the results in Figure 3 and find the553

extracted measurements to correlate well with the554

radiologist’s measurements. During the follow-up555

period, the patient experienced an initial period of556

tumor growth after a lesion of liver metastasis was557

located in liver segment 4. The radiologist’s and558

the model’s predictions align well during this period.559

After the initial tumor growth, the patient was con-560

sidered inoperable and began chemotherapy with a561

good response, leading to tumor regression. How-562

ever, in two scans during the regression, the model563

yielded false positives in another liver segment, com-564

pared with the radiologists’ findings. Six months565

post-treatment, disease progression was again ob-566

served, and despite further management, the malig-567
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Figure 3. Comparison of tumor measurements from the
LVT model’s predictions and the radiologist’s reference
measurements. The patient develops liver metastasis in
segment 4 of the liver and responds well to the treat-
ment initially. After a period of tumor regression, the
malignancy continued to advance.

nancy continued to progress. During this critical 568

period, the LVT model matches the radiologist in 569

tumor detection and size prediction. 570

5.3 Surgery planning 571

Surgical resection of tumors is, in most cases, con- 572

sidered the only cure for liver metastasis [1]. As 573

the liver is a complex organ with eight independent 574

anatomical segments with its own blood supplies 575

from the hepatic arteries and portal veins, the tu- 576

mor’s precise location and relation to the vessels are 577

crucial. Manual segmentation of these structures is 578

too costly and rare in clinical practice. Automatic 579

segmentation tools provide totally novel insight for 580

the multidisciplinary team and surgeons treating the 581

patient. 582

Our LVT segmentation model is able to precisely 583

delineate the tumor and blood vessels in high-quality 584

contrast-enhanced CT images of the liver. For a pa- 585

tient at Hospital1 (Anonymized), we retrospectively 586

obtain LVT predictions from their CT images to 587

illustrate the output when visualized in 3D software. 588

The results are shown in Figure 4 and display the 589

liver and delineation of a liver tumor in segment 7 590

with its surrounding vessels. The 3D view of the 591

LVT predictions makes the evaluation of proxim- 592

ity to the structures surrounding the tumor. The 593

visualizations are produced with 3D Slicer image 594

computing platform [31], where the user can edit 595

the predictions if needed, and subsequently make 596

precise measurements before final assessment. 597

7
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Figure 4. Illustration of the potential of automatic
3D segmentation of liver, vessels, and tumors in CT
images. For a patient who is considered for surgical
resection of liver metastasis, the 3D visualization of the
liver parenchyma, hepatic vessels, and liver tumor can
be a valuable support in surgical planning.
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Figure 5. Relative deviation of estimated liver volume
between images of different contrast phases.

5.4 Automatic liver volumetry598

Prior to major liver resections, CT volumetry can599

be used to measure the liver volume and estimate600

the hepatic functional reserve for the patient.601

We aim to illustrate the efficacy of the LVT model602

for this purpose in a clinical setting by retrospec-603

tively analyzing unlabeled images from the clinic.604

We assume that a patient’s liver on images from the605

same day is similar in size, and we aim to compare606

the model’s predictions across contrast phases. To607

this end, we retrieved 33 images from 14 patient608

studies, where there are 2 or 3 contrast-enhanced609

images in each study, with images in the arterial,610

venous, or late phase. We use the LVT model to611

obtain liver masks for each patient and compute612

the liver volumes for each image. As the liver sizes613

vary from 1.3 L to 2.5 L across patients, we report614

the relative residuals in percentages of the mean615

liver volume of each study and plot the results in616

Figure 5.617

We find the liver volume deviation from the refer-618

ence to be within ≈ 2% for all cases, and show that619

the liver measurements are consistent across images620

of the same patient. This is within the margin of621

what is expected, as the measured volume usually622

varies slightly between images of different contrast623

phases [3].624

6 Limitations and future work 625

Despite recent efforts, consistent and reliable seg- 626

mentation of liver tumors and vessels remains a 627

difficult task. Table 3 reports improvements over 628

the baseline, but DSC scores remain below 0.8 for 629

tumors and vessels, which suggests that false posi- 630

tives and missed structures are to be expected. False 631

positives may arise when cysts, necrotic tissue, or 632

low attenuation liver regions are misclassified as 633

tumors, or when blurred vessel boundaries lead to 634

over-segmentation. Conversely, missed structures 635

may occur for small and early-stage tumors, and 636

poorly contrasted or thin vessels. 637

In the partial label experiments in subsection 4.1 638

and subsection 4.2, we observed certain inconsisten- 639

cies in vessel segmentation performance across the 640

HV Test set and Ircad dataset. These inconsisten- 641

cies are symptoms of different label characteristics of 642

the vessels in the two datasets, which have different 643

quality and level of detail. We therefore recommend 644

careful evaluation when comparing these datasets. 645

While our retrospective analyses demonstrate the 646

potential for clinical utility of the LVT model, inte- 647

grating it into real-time clinical workflows remains 648

an open challenge. To further identify the strengths 649

and limitations of DL-based liver, vessel, and tu- 650

mor applications, we recommend thorough clinical 651

validation with expert supervision to validate the 652

model’s impact on patient outcomes and clinicians’ 653

workflows. 654

7 Conclusion 655

This study explores multi-label and multi-class ap- 656

proaches in the context of CT liver, vessel, and tumor 657

segmentation, to effectively handle overlapping and 658

potentially ambiguous regions from partially labeled 659

datasets. We find a binary multi-label segmentation 660

setup with class-wise loss masking to work well for 661

this setting. Allowing overlapping regions in the 662

label space enables the use of public datasets with 663

partial labels during training to learn simultaneous 664

liver, vessel, and tumors labels in CT images. Our 665

results show that our approach is particularly bene- 666

ficial for tumors and vessels, allowing us to benefit 667

from datasets with partial and ambiguous labels. 668

We evaluate the LVT model on clinical data to 669

illustrate the potential for real-world utility in the 670

clinic. In retrospective analysis of real patients, we 671

demonstrated that the model has the potential to 672

detect tumors earlier than the radiologist, accurately 673

track tumor progression, provide 3D visualization of 674

complex liver structures, and reliably perform liver 675

volumetry for real patients. These results underscore 676

the potential for AI-driven tools for diagnostic accu- 677

racy, optimizing treatment planning, and improving 678

patient outcomes. 679
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A.1.2 HepaticVessel Liver dataset1009

Building on the HepaticVessel dataset, a supplemen-1010

tary label set1 of the liver (HV Liver) and Couinaud1011

segments of the liver was released by Tian et al. [30].1012

The dataset contains all the same images as the1013

HepaticVessel dataset, but the additional liver and1014

Couinaud segmentation masks are created indepen-1015

dently. We leverage the additional liver masks from1016

HV Liver together with the HepaticVessel dataset1017

in our experiments.1018

A.1.3 3D-ircadb-01 dataset1019

The 3D-ircadb-01-dataset2 [13] (Ircad), contains 201020

CT scans from France that are labeled with various1021

organs, including liver, hepatic vessels, and any liver1022

tumors. The scans from the IRCAD dataset are a1023

subset of the LiTS dataset; however, with only the1024

liver and tumor masks are present, and no vessel1025

masks [9].1026

A.1.4 Liver tumor segmentation (LiTS)1027

dataset1028

The LiTS dataset [9] contains 131 segmented CT1029

volumes from different patients. The CT scans are1030

from 7 different institutions in Canada, the Nether-1031

lands, Germany, France, and Israel. The CT images1032

are contrast-enhanced and captured in the portal-1033

venous phase and have an out-of-plane voxel spacing1034

ranging from 0.7 to 5.0 mm. All images contain a1035

rough segmentation mask of the liver in addition1036

to a radiologist’s segmentation of any liver tumors.1037

The liver tumors are both primary and metastatic1038

from colorectal, breast, and lung primary cancers.1039

The LiTS dataset has 20 volumes (volumes 28-47)1040

overlapping with the 3D-ircadb-01 dataset [13]. This1041

subset contains the same segmented liver and tumor1042

masks as LiTS, in addition to vessel masks, which1043

are used in the LVT application.1044

A.1.5 External dataset1045

The External Dataset (ExDS) is under develop-1046

ment at Hospital1 (Anonymized) and Institution11047

(Anonymized) and is used for evaluation in our final1048

experiments. The dataset is from a large database1049

of CT images from the follow-up period of 376 pa-1050

tients that was treated for colorectal cancer from1051

2006 to 2011 at Hospital1. From this database, we1052

have created two labeled subsets: ExDS LT, which1053

contains liver and tumor masks, and ExDS V, which1054

contains liver and vessel masks. The former is used1055

for external validation and testing of the liver and1056

tumor segmentation performance of the model and1057

consists of 18 contrast-enhanced CT volumes with1058

1Available at: https://github.com/GLCUnet/dataset
2Available at: https://www.ircad.fr/research/

data-sets/liver-segmentation-3d-ircadb-01/

Table A.1. An overview of the different datasets with
partial labels used in this paper and the corresponding
class weights wk for classes liver, vessel and tumor in
Equation 1. HV test and datasets are only used for
testing purposes.

Dataset Liver Vessel Tumor Images Class weights, w

FS LVT ✓ ✓ ✓ 61 [1, 1, 1]
PS L ✓ × × 61 [1, 0, 0]
PS V × ✓ × 61 [0, 1, 0]
PS T × × ✓ 60 [0, 0, 1]
HV test ✓ ✓ ✓ 60 –

LiTS ✓ × ✓ 131 [1, 0, 1]
HepaticVessel × ✓ ✓ 303 [0, 1, 1]
IRCAD ✓ ✓ ✓ 20 [1, 1, 1]
HV Liver ✓ × × 303 [1, 0, 0]

ExDS LT ✓ × ✓ 18 –
ExDS V × ✓ × 10 –

segmented liver and liver tumor masks. ExDS V 1059

contains 10 contrast-enhanced CT volumes of the 1060

liver with segmented liver vessels and is used to eval- 1061

uate the vessel segmentation performance in Section 1062

4.3. 1063

A.1.6 Partial labels in datasets 1064

As we train on datasets with partial labels for certain 1065

experiments, we present an overview of the present 1066

label classes for each dataset and the class weights 1067

w needed for Equation 1 is presented in Table A.1. 1068

A.2 Experimental setup 1069

All models in this paper are trained on 3D patches of 1070

128× 128× 96 voxels, sampled from training images 1071

resampled to isotropic voxel spacing of 1×1×1 mm 1072

using trilinear interpolation. The U-Net-like archi- 1073

tecture uses deep supervision [33] with two auxiliary 1074

heads at intermediate resolutions and LeakyReLU 1075

activations [34]. During training, patches are over- 1076

sampled from a foreground region with p = 0.333, 1077

and we apply the following augmentations in se- 1078

quence: random crop resizing applied with probabil- 1079

ity p = 0.2 and a scale factor α ∼ U(0.7, 1.4), ran- 1080

dom rotation with p = 0.2 and angle β ∼ U(−30, 30), 1081

and random flip with p = 0.5 along all axes. We 1082

leverage Random windowing [11] for preprocess- 1083

ing and CT intensity augmentation, applying win- 1084

dow shifting and scaling independently with a total 1085

probability p = 0.3, sampling the Hounfield unit 1086

window parameters from W ∼ U(11.5, 152.9) and 1087

L ∼ [141.2, 325.9] [10]. Training is done with the 1088

combined CE and Dice loss (Equation 3 and Equa- 1089

tion 4). All models are trained with a batch size of 1090

112 images across 8 GPU compute dies on 4 AMD 1091

MI250x GPUs on the LUMI supercomputer. 1092

The PS experiments in Section 4.1 and 4.2 are 1093

performed with a residual encoder [35] and batch 1094

normalization [36]. Training is done with AdamW 1095

[37] optimizer with learning rate 0.001 and cosine 1096

12
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decay with warmup [37]. The models are trained 401097

epochs with 100 steps each. The masking weights1098

used for each dataset are listed in Table A.1.1099

The LVT model trained in Section 4.3 deviates1100

from this setup to match the one used by the nnU-1101

Net baseline. Specifically, we no residual connections1102

in the encoder, instance normalization [38], stochas-1103

tic gradient descent with weight decay optimizer1104

[37] and polynomial learning rate decay. The model1105

is trained on 448 000 training samples over 10001106

epochs, which is comparable to the baseline, which1107

sees 500 000 training samples.1108

A.2.1 Training loss1109

For each sample with K classes, the cross-entropy1110

loss is defined per voxel as1111

ℓCE
i = −

K∑
k=1

yik log pik, (3)1112

where yik and pik are the target and prediction from1113

the one-hot encoded mask and softmax probabilities,1114

respectively.1115

For the same network with sigmoid outputs, we1116

obtain the case for binary cross-entropy, where the1117

per-voxel per-class loss is defined as1118

ℓik = −[yi log pi + (1− yi) log(1− pi)]. (4)1119

The dice loss is computed independently for each1120

voxel and class, given the output probabilities, and1121

is given by1122

ℓDice
ik = 1− 2 · yikpik

y2ik + p2ik
. (5)1123

In the multi-class segmentation setup, it is typically1124

reduced over the class dimension to match the per-1125

voxel loss formulation of the ℓCE
i .1126

A.2.2 Inference settings1127

As our models are trained on crops smaller than1128

a typical CT image, we follow the sliding window1129

inference pipeline of Isensee et al. [12] to obtain1130

predictions. Specifically, each test volume is cropped1131

into patches of 128 × 128 × 96 voxels, with 50 %1132

overlap. The model predictions on each patch are1133

aggregated to a complete output with a gaussian1134

weighing, as the predictions are usually more stable1135

towards the center. The final semantic output is1136

obtained through the argmax across channels. For1137

the binary segmentation outputs, we use a sigmoid1138

threshold of p = 0.5, and obtain mutually exclusive1139

outputs by giving positives of the overlapping classes1140

priority based on the heuristic hierarchy: tumor,1141

vessel, liver, background.1142

For comparison with the nnU-Net in Section 5, we1143

use the 5-fold cross-validation models to obtain an1144

ensemble prediction of each pred. During inference, 1145

we use test-time augmentation by flipping each crop 1146

along all axes. We also limit the final prediction to 1147

the largest connected component. These inference 1148

settings are also employed by the baseline. 1149

A.2.3 Evaluation 1150

Precision and recall are common metrics for 1151

evaluating classification performance using the true 1152

positives (TP ), false positives (FP ), and false nega- 1153

tive (FN) predictions. Precision measures the pro- 1154

portion of predicted positives that are correct: 1155

Precision =
TP

TP + FP
, (6) 1156

while recall (sensitivity) measures the proportion of 1157

actual positives that are correctly identified: 1158

Recall =
TP

TP + FN
. (7) 1159

Although pixel-wise precision and recall are not com- 1160

monly used to evaluate segmentation masks, they 1161

can assist in diagnosing under and over-segmentation 1162

in models. Specifically, low recall tends to corre- 1163

spond to under-segmentation, and low precision to 1164

over-segmentationMonteiro and Campilho [39]. 1165

Dice similarity coefficient (DSC). To evalu- 1166

ate segmentation predictions against ground truth 1167

masks more reliably, we rely on the DSC, which 1168

measures volume overlap between predicted and 1169

true masks, X and Y , as the harmonic mean of the 1170

precision and recall: 1171

DSC =
2|X ∩ Y |
|X|+ |Y |

. (8) 1172

Normalized surface dice (NSD). While widely 1173

used, DSC treats all pixel errors equally, which may 1174

obscure clinically important mistakes (e.g., missing 1175

an entire tumor vs. scattered noise). Therefore, we 1176

additionally leverage NSD [40] in our clinical eval- 1177

uation. NSD addresses this by comparing surfaces 1178

within a tolerance, defined per class in millimeters. 1179

Errors inside the tolerance do not reduce the score, 1180

making NSD more clinically meaningful. 1181

Lesion sensitivity. Based on a connected com- 1182

ponent analysis of the ground-truth and predicted 1183

tumor segmentation, we classify a tumor in the 1184

ground truth as detected if they have a correspond- 1185

ing prediction with ¿ 10 % overlap. Based on this 1186

classification, we can compute the lesion recall/sen- 1187

sitivity using Equation 7. 1188
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Reporting In most evaluations, we report the1189

mean result for each model in the 5-fold cross-1190

validation evaluation. To showcase the variation1191

between multiple runs of comparable methods, we1192

use the standard deviation of performance between1193

runs. The result in Table 3 deviates from this pro-1194

tocol, as the whole ensemble is used to obtain each1195

prediction. We therefore report the per-case mean1196

and standard deviation for this result.1197
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