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Abstract

Accurate delineation of liver parenchyma, intrahep-
atic vessels, and tumors (LVT) may aid earlier tumor
detection, consistent response assessment, and sur-
gical planning for patients with liver cancer. Deep
learning (DL) may enable such automated delin-
eation, but available CT datasets are inconsistent
and partially labeled, making them unsuited for end-
to-end training. We investigate a single-head, 3D
segmentation framework that learns from partially
labeled data by: (i) loss masking per class or voxel
to ignore missing annotations, (ii) using multi-hot
targets and the anatomical hierarchy inherent to
liver, vessels, and tumors, to handle overlapping
structures without class competition. In controlled
ablations that simulate partial-label training, this
multi-label masked strategy reliably outperforms
masked multi-class baselines, avoids precision col-
lapse, and improves tumor overlap and lesion detec-
tion sensitivity. Scaling training to multiple partially
labeled datasets, the model surpasses full-resolution
nnU-Net on an external clinical cohort, with higher
tumor and vessel segmentation performance. We
conduct a retrospective feasibility analysis on clini-
cal data to illustrate the clinical potential of the LVT
application. We find that LVT models may facili-
tate earlier detection of metastasis, longitudinal size
tracking aligned with radiologist measurements, 3D
tumor—vessel visualization for surgical planning, and
stable inter-phase liver volumetry (=~ 5% deviation).
These results show that multi-label masked learning
enables robust, clinically relevant LVT segmentation
from partially labeled datasets.

1 Introduction

Effective management of liver cancer, includ-
ing patient follow-up and surgical treatment, re-
lies on patient-specific understanding of the liver
parenchyma, intrahepatic vasculature, and tumor
burden. Accurate delineation of these structures
may enable a range of impactful clinical tasks: ear-
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lier and more reliable tumor detection during patient
follow-up, objective and consistent longitudinal re-
sponse assessment, preoperative planning with 3D
visualization, and automatic liver volumetry to esti-
mate functional reserve before resections [1-7].

Deep learning (DL) based segmentation models
have the potential to automatically produce high-
quality segmentations of the liver parenchyma, in-
trahepatic vessels, and hepatic tumors (LVT) [8, 9].
However, publicly available 3D annotation of liver,
vessels, and tumors, to train such models, remains
scarce and partially labeled. This has constrained
clinically geared liver applications to single-task
models, limiting generalizability and complicating
clinical deployment.

In this paper, we address the scarcity of fully
labeled CT liver, vessel, and tumor segmentation
data and the fragmentation of labeled datasets. To
improve generalizability with limited data, we lever-
age a recently proposed augmentation strategy for
contrast-enhanced CT liver images called Random
windowing [10, 11]. Furthermore, to exploit datasets
with partial labels, we explore multiple segmenta-
tion strategies capable of learning from partial labels
and potentially overlapping structures end-to-end.
Ultimately, we try to answer the question: How to
leverage partially labeled datasets with overlapping
structures in LVT segmentation? We identify that
multi-label binary segmentation with a masked loss
and multi-hot encoded labels, to allow class overlaps,
can balance the loss contribution of partial labels
and better learn from overlapping classes (Figure 1).

We demonstrate the effectiveness and scalability
of our approach with quantitative evaluation against
the nnU-Net baseline [12]. To complement the quan-
titative evaluation and to demonstrate the clinical
potential of automatic DL segmentation of LVT
structures, we qualitatively evaluate a clinical case
study that highlights the potential of such models.

The case study illustrates clinical feasibility and
how automatic LVT predictions could facilitate ear-
lier detection of liver tumors, track tumor size over
time comparable to radiologist measurements, and
deliver 3D visualizations of tumor—vessel relation-
ships. We also show that automated liver volumes
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Figure 1. A schematic overview displaying our approach for learning robust and simultaneous liver, vessel, and
tumor segmentation from multiple partially labeled datasets. Formulating the objective functions for binary
segmentation allows us to define overlapping classes and mask the loss based on the missing labels.

remain stable across contrast phases, supporting
volumetric assessment in clinical workflows.
Our contributions are twofold:

1. We analyze how to efficiently use partially la-
beled data with overlapping regions to segment
the liver, vessels, and tumors in CT images.

2. We demonstrate clinical feasibility of LVT mod-
els through a combination of quantitative eval-
uation on challenging clinical data and quali-
tative retrospective cases that highlight earlier
tumor detection, longitudinal monitoring, 3D
surgical planning, and consistent volumetry.

2 Related work

CT-based segmentation of LVT has often been ad-
dressed with task-specific models, as many of the
impactful and available datasets provide only a sub-
set of these labels. Methodological developments
have been driven largely by medical segmentation
challenges, and public datasets from these, such as
LiTS/MSD Liver for liver and tumor, MSD Hep-
aticVessel for hepatic vessels [8, 9]. Additionally,
3Dircadb provides the complete label set, but on a
comparatively small cohort (20 cases) [13].
Architecturally, 3D encoder—decoder CNNs and
the self-configuring nnU-Net remain strong baselines
for medical 3D applications despite recent advances
in vision transformers [12, 14-16]. Vision transform-
ers have shown promise on large, diverse datasets,
but often underperform CNN in small-to-moderate
data regimes typical of clinical CT cohorts [16-18].
Reliable LVT segmentation in CT must be per-
formed on contrast-enhanced images to effectively
see the intrahepatic structures, such as vascula-
ture and tumors. Training DL models on contrast-
enhanced CT images on limited datasets is challeng-
ing due to the high image variability across contrast
phases and patients. Recently, Random windowing
was proposed as a CT-specific augmentation scheme

to expose the model to realistic phase variability due
to contrast-enhancement [10, 11]. It samples clin-
ically plausible HU windows stochastically during
training, and has been shown to improve robustness
in CT segmentation of liver tumors.

We aim to build on these aforementioned advances
to make a unified LVT segmentation model from
the available public datasets and demonstrate its
potential for the clinic.

2.1 Learning from partial labels

As public datasets rarely share a complete LVT label
space, combining them during training must be done
with care to avoid class conflicts. A typical challenge
is handling missing classes, because treating them as
background in a softmax multi-class setup can cause
conflicting regions. Prior work has addressed miss-
ing annotations via masked or partial-label losses
that ignore unlabeled classes during training, pre-
venting spurious gradients from missing annotations
[19-21]. To this end, binary formulations with sig-
moid outputs are particularly suitable, as they avoid
the competition inherent in softmax and allow per-
class supervision wherever labels are present [20, 22].
To mitigate noisy gradients from a multi-class seg-
mentation setting using softmax, the loss masking
must happen on a per-voxel basis, ignoring signals
from all non-foreground regions [19].

Alternative strategies include weakly or semi-
supervised learning using pseudo-labels [20, 23], and
multi-task/multi-head designs [24, 25] where each
dataset supervises a subset of heads while shar-
ing an encoder. While effective in some settings,
pseudo-labels can introduce confirmation bias from
erroneous predictions, and multi-task heads can be
difficult to calibrate across datasets.

Compared to approaches that stitch together sep-
arate binary models or rely on pseudo-labels to fill
missing classes, we investigate segmentation models
with a single segmentation head and an end-to-end
training pipeline. In this setting, we investigate



how to benefit from and train on partially labeled
datasets using various loss masking strategies.

2.2 Overlapping classes

Within the context of partial label supervision, over-
lapping classes are often treated as separate classes,
masking the loss contribution of any missing class
during training [21, 26]. Although possible in certain
settings, it does not address the potential label con-
flicts across datasets, and could lead to suboptimal
performance (Section 4.2).

Another established approach is cascaded mod-
els, which segment organ regions of interest (ROI)
like the liver, before specialized models are trained
for vessels and tumors within the organ ROI [9].
However, this approach leads to extra compute over-
head during training and inference compared to an
end-to-end pipeline in a complete label space.

Semantic segmentation on overlapping and par-
tial labels has been addressed by probabilistic ap-
proaches that aggregate predictions [27] and multi-
label approaches [28], but the approach within med-
ical and LVT applications is largely underexplored.

2.3 Clinical potential for liver, vessel,
and tumor segmentation

The clinical implications of LVT models are substan-
tial. Below, we identify four routine scenarios where
the LVT application has clinical potential: surgical
planning, automatic liver volumetry, longitudinal
patient follow-up, and tumor detection. In our final
case study, we evaluate the current feasibility of LVT
segmentation for each use case.

Surgical planning using accurate 3D spatial
delineation of tumors to surrounding hepatic vascu-
lature allows for more precise surgical planning. In
an ongoing tangential study of the clinical impact
of LVT models at the University Hospital of North
Norway (UNN), initial results suggest significant
improvements in surgical planning when a 3D LVT
model was used along with CT and MRI images.

The integration of automatically generated 3D
models into surgical procedures may significantly im-
pact the management of complex hepatic resections
[5]. 3D visualization of tumor-vessel relationships
can aid surgeons when navigating in challenging
anatomical landscapes [4, 7], and may reduce unin-
tended vessel injury and improve resection margins.

Automatic liver volumetry further aids surgi-
cal decision-making by providing essential data for
assessing hepatic functional reserve, which is crucial
before for major liver resections [2, 3].

During patient follow-up, the LVT model has
potential to benefit the clinical follow-up of oncology
patients undergoing chemotherapy. By automati-
cally measuring tumor sizes and the liver volume,

the model can provide a consistent and objective
assessment of tumor response over time [6]. This
may facilitate timely therapeutic decisions, allowing
clinicians to optimize the treatment based on tumor
volume changes.

Tumor detection using a segmentation model
enables precise identification of potential tumor re-
gions in the CT scan. For patients at risk of liver
metastasis, DL based tumor segmentation tools may
help radiologists detect tumors early, improving di-
agnosis and treatment for patients.

In general, a performant LVT segmentation
model has the potential to be a clinical tool and may
improve diagnostic accuracy, enhance therapeutic
planning, optimize patient follow-up, and increase
surgical safety in hepatic tumor management.

3 Methodology

In this section, we present the baseline segmenta-
tion formulations and how we modify the setup and
training loss to accommodate learning from partial
labels. We present the masked loss formulations, be-
fore presenting how we handle label overlaps when
learning from overlapping structures in the liver.

3.1 Training on partially labeled data

To enable training with partially labeled datasets,
we investigate loss-masking of inconsistent signals
in multi-class and multi-label segmentation.

Multi-class (MC) segmentation assumes mutually
exclusive classes with one-hot encoded labels, and
typically employs softmax activation function in the
final layer. Multi-label (ML) segmentation treats
each class independently using sigmoid activation,
which allows overlapping regions through multi-hot
encoded labels. If we leverage the ML architecture
with the exclusive one-hot labels from MC, we refer
to the setup as MLx.

In the partial label setting, computing the loss
over regions with missing labels requires special care,
as unlabeled ground truth could penalize valid pre-
dictions. To solve this, we formulate the objective
functions as masked losses to zero out gradients from
missing classes or ambiguous regions.

Multi-label masked loss. In the ML setting,
the independence of class predictions allows us to
selectively disable supervision for missing classes,
without affecting others. We define a class-specific
weight with values set to 0 or 1 depending on the
available annotations for each dataset. Missing or
unlabeled classes weigh the loss contribution to 0,
while fully annotated classes with 1.

During training, for each class k of a given sample
with N voxels, we compute the mean voxel loss £y,
and mask it with the per-class weight w € {0, 1}%.



The masked binary loss Lp for partially labeled
samples is thus computed for each voxel i as

o= Zk 1 Wk (Z?MZ&k)

The normalization term Y wy ensures the gradi-
ents are scaled dynamically based on the number
of supervised classes, preventing magnitude shifts
when switching between fully and partially labeled
datasets.

(1)

Multi-class masked loss. In the MC setting,
supervision is enforced across each voxel over all
classes, using one-hot encoded labels and softmax
outputs. The background is modeled explicitly in a
separate channel, and any missing foreground label
would be treated as background. To enable MC
loss masking, the weight mask must therefore be
enforced spatially to eliminate gradients from non-
foreground regions not present in the partial labeled
training set.

The per-voxel weight mask W € {0,1}"V enables
the categorical loss L¢ for a partially labeled sample

WZeW

1 =1

Lo = (2)

il

Unlike the binary formulation, which normalizes
by the count of active classes, Lo normalizes by
the count of active voxels, essentially yielding the
mean foreground loss. This eliminates the problem
of ambiguous regions, also when the background is
modeled explicitly.

3.2 Segmenting overlapping struc-
tures

Given complete annotations, class exclusive segmen-
tation setup has the benefit of yielding unambigu-
ous regions and explicit information about bound-
aries between classes. However, for partially labeled
datasets, class exclusivity is not guaranteed, and
overlapping classes risk regions of conflicting super-
vision due to overlap.

To avoid this issue across partially labeled
datasets, ML can be trained with overlapping classes
if labels are represented as multi-hot vectors, with
per-voxel labels y;;, € {0,1} for each class k. This
avoids competition between classes during training
and allows supervision of whichever labels are avail-
able for that sample. In the context of partial labels,
w can seamlessly be applied in Equation 1 to mask
the loss contribution of unlabeled classes.

Anatomical liver hierarchy. In the context of
LVT segmentation, vessels and tumors are anatom-
ically contained within the liver. In our following
experimental settings, we enforce this anatomical hi-
erarchy by mapping vessel and tumor label positives

into the liver channel: y; 1, < v, Vi v Vy;,1. Cru-
cially, this ensures that the model learns to jointly
predict all intrahepatic contents, and does not incur
penalty if e.g. vessel labels are missing. This map-
ping is applied on-the-fly for datasets that provide
one-hot labels, yielding a consistent multi-hot label
space across datasets. When a class is not annotated
for a sample, its loss weight wy = 0, so it does not
contribute to the objective.

4 Experiments

In this section, we study the presented categori-
cal and binary loss formulations of Equation 2 and
Equation 1 when training on partially labeled data
using the MC and MLx setup. We also investigate
how ambiguous regions from overlapping classes af-
fect performance and how the anatomical hierarchy
addresses this in the ML setup. We present the
experiments and their results sequentially, and use
the novel insight to inform our clinical case study.

Experimental setup. All experiments are per-
formed under an identical medical image segmenta-
tion setup, where the objective is a segmentation
map with mutually exclusive classes. We focus on
end-to-end training pipelines using a U-Net-like ar-
chitecture [29], building on modifications from nnU-
Net [12] like deep supervision [30], and LeakyReLU
activations [31] for more robust training and results.
The model processes 3D patches of 128 x 128 x 96
voxels, sampled from training images of 1 x1x1 mm
voxel spacing. We leverage Random windowing [11]
for joint CT preprocessing and intensity augmenta-
tion. Further details on the training and evaluation
settings can be found in the Appendix A.2.

4.1 Learning from partial labels

We construct a controlled experiment simulating a
training setting with multiple datasets with partial
and missing labels. Specifically, we create partially
labeled training sets from different partitions of one
fully annotated source dataset. This lets us test
and evaluate various approaches without considering
noise from distribution shifts from other data and
label sources.

Simulating partial labeled training. Based
on the 303 images from the HepaticVessel dataset
[8], with vessel and tumor segmentation labels, and
the auxiliary liver segmentation labels from Tian
et al. [32], we randomly sample 5 datasets of similar
size. Specifically, 20 % fully annotated (LVT masks)
are reserved as hold-out test set (HV test), 20 % are
used as full supervision (FS) training with complete
LVT annotations, 20 % have partial supervision (PS)
with tumor mask only, 20 % with PS vessel mask
only, and 20 % with PS from liver mask only. Note



that the liver mask comprises the complete liver
organ, without ”cutouts” for the vessel and tumor
classes. In this regard, the liver overlaps with the
vessel and tumor masks, similar to a real setting with
partially labeled datasets. Further dataset details
can be found in Table A.1.

The question we want to answer is ”How can
auxiliary datasets with partial labels enhance seg-
mentation performance over only using the fully
labeled training set?”. To this end, we compare the
MC and MLx end-to-end setups with their respec-
tive loss masking strategies with 25 % FS with and
without auxiliary PS datasets. For reference, we
also provide the 100 % FS training setting.

We report the mean segmentation performance on
the HV test,the external Ircad [13], and Colorectal
Liver Metastasis (CRLM) [33] test sets after 5-fold
cross-validation training on the combined full and
partially labeled data splits. We measure the Dice
similarity coefficient (DSC) on the liver, vessels, and
tumors of the respective test sets. Our full evaluation
strategy can be found in Appendix A.2.3.

Binary segmentation benefits from partial
supervision. Based on the results, presented in
Table 1, we make the following observations:

(1) In the fully supervised settings, the segmenta-
tion DSC are comparable for the liver class of MLx
and MC, and higher or on par for MLx on the vessel
and tumor classes across both datasets.

(2) With partial supervision and multi-class seg-
mentation, the DSC performance collapse compared
to full supervision for almost all classes. However,
the exception is segmentation performance on Ircad
vessels, which exceeds all other settings. Upon closer
inspection, the liver and vessel recalls of MCNPS
are actually the highest across all datasets, while
the precision is lowest. This can explain the ex-
tremes in DSC, because it suggests that the model
over-segments with many false positives. In the Hep-
aticVessel dataset, it is a clear disadvantage as the
vessel labels are minimal and to some degree lacking,
but an advantage in the Ircad dataset, which has
more dilated and detailed vessel structures. We sus-
pect the cause of over-segmentation is the individual
and unbalanced supervision each class receives in
the masked loss of the categorical loss formulation.
While an increase and drop in recall and precision,
respectively, are observed also in the MLxNPS setup,
the DSC does not suffer as severely. We attribute
this to the binary loss formulations, which natively
balance foreground/background better, also in the
partially labeled settings.

(3) Contrary to the MC setup, MLx benefits from
the auxiliary partially labeled data in all settings.
The results suggest that the masked binary loss
formulation in the multi-label setup can learn from
the available data, without interfering destructively
with the unlabeled classes.

4.2 Training on overlapping classes

Although our desired output space is exclusive, with
each voxel in the liver belonging to either the liver,
vessel, or tumor class, it might be suboptimal and
unnecessary during training. As binary outputs in
the segmentation head allow multi-label training
with overlapping classes, we investigate how the po-
tentially conflicting regions across partially labeled
datasets contribute to downstream performance.

In the same controlled environment as our partial
label experiment, we ablate the effect of training on
ambiguous regions. Specifically, we compare MLx
and ML trained with one-hot and multi-hot labels
(Section 3.2), respectively, in the F'S and PS settings.

Liver tumor segmentation is sensitive to label
conflicts. We report the segmentation DSC and
the tumor detection sensitivity computed on the
connected components of the predictions. Based
on the results presented in Table 2, we make the
following observations:

(1) Vessel segmentation is largely unaffected by
the conflicting labels in the exclusive training setup.
We suspect it to be a consequence of segmenting
the small vessel structure in the comparatively large
surrounding liver. As the vessel structures are small,
the MLx model can learn to produce multi-label,
rather than exclusive, class outputs without being
punished significantly in the loss, as only the FS
training set has complete labels with vessel ” cutouts”
that punish such behaviour.

(2) For the tumor DSC in the non-overlapping
baseline, the performance is significantly worse com-
pared to the overlapping version. Contrary to the
vessel class, the tumor class is more massive, which
leads to a larger loss impact when the model predicts
the liver without cutouts for the FS set.

(3) The tumor detection sensitivity drops signif-
icantly as a consequence of partial supervision on
ambiguous liver and tumor labels for HV test. The
impact of this result is key, as it is not a matter of
slightly worse or better segmentation overlap, but
more liver tumors that are being detected. Lesion
detection precision remains similar for both methods
on HepaticVessel and CRLM test sets, and elevated
for ML on Ircad.

4.3 Learning from public datasets
with partial labels

For the clinical case study, we aim to build on public
CT liver datasets with partial labels to scale up
the training data. Leveraging the insights on PS
with binary segmentation and anatomical hierarchy
from our previous experiments, we train the LVT
model under the multi-label, class-masked regime
with overlapping classes described in Section 3.2. For
a solid quantitative baseline, we evaluate against the



Table 1. Segmentation DSC reported on the liver, vessel, and tumor classes of the HepaticVessel test set and
the external Ircad and CRLM test sets. We report the segmentation performance along with the proportion of
full supervision (FS) in the training set, whether partial labeled datasets (PS) were used as auxiliary training
signal, and the segmentation head used, multi-class (MC) vs. multi-label exclusive (MLx). We measure statistical
significance (*) at p < 0.05 using Wilcoxon signed-rank test.

HepaticVessel Trcad CRLM
FS PS  Head Liver Vessel Tumor Liver Vessel Tumor Liver Vessel Tumor
25% x  MC | 0977 £ 0.001* 0.579 & 0.010  0.517 £ 0.024 | 0.951 & 0.003* 0.372 & 0.033  0.484 £ 0.013 | 0.937 & 0.000* 0.579 £ 0.005  0.564 + 0.020
x  MLx | 0.975 £ 0.002  0.600 £ 0.004* 0.536 £ 0.009 | 0.950 & 0.002  0.439 £ 0.012* 0.501 £ 0.003 | 0.936 + 0.001  0.610 & 0.007* 0.613 + 0.016*
25 % v MC | 0.940 £ 0.002 0.428 £ 0.006 0.221 £ 0.026 0.913 £ 0.002 0.489 £ 0.026 0.341 £ 0.045 0.897 £ 0.003 0.445 £ 0.017 0.394 £ 0.032
v’ MLx | 0977 £ 0.001*  0.629 £ 0.003* 0.561 £ 0.018* | 0.946 4 0.002* 0.466 & 0.011  0.525 £ 0.037* | 0.937 4+ 0.001*  0.650 & 0.004* 0.640 + 0.015*
100 % x MC | 0.980 =+ 0.000* 0.638 + 0.008 0.615 £ 0.023 0.948 £ 0.001*  0.397 + 0.008 0.462 £ 0.017 0.939 + 0.000* 0.618 + 0.003 0.578 £ 0.015
X MLx | 0.978 £ 0.001 0.698 £ 0.004*  0.790 = 0.010* | 0.946 + 0.001 0.468 £ 0.010*  0.573 &+ 0.025* | 0.938 £ 0.001 0.651 £ 0.003*  0.697 £ 0.005*

Table 2. We ablate the effect of ambiguous regions, due to partial labels, during training. By allowing overlapping
classes through multi-hot encoded labels, the binary segmentation head avoids mixed signals from the partially
labeled liver dataset (lacking vessel and tumor). Allowing overlapping classes in the partial supervision setting
leads to improved tumor segmentation.

HepaticVessel Trcad CRLM
FS PS LVT overlap Vessel Tumor Sensitivity Vessel Tumor Sensitivity Vessel Tumor Sensitivity
25 %  x X 0.600 £ 0.004 0.536 & 0.009  0.734 £ 0.034 | 0.439 £ 0.012 0.501 £ 0.003 0.639 £ 0.031 | 0.610 &£ 0.007 0.613 £ 0.016  0.712 & 0.034
3 v 0.601 £ 0.009 0.535 & 0.016  0.740 £ 0.033 | 0.437 £ 0.015 0.472 £ 0.031 0.663 £ 0.037 | 0.609 + 0.008 0.613 £ 0.017  0.714 &+ 0.034
25% v x 0.629 £ 0.003 0.561 £+ 0.018 0.779 £ 0.027 0.466 £+ 0.011  0.525 &+ 0.037 0.706 + 0.017 | 0.650 £ 0.004 0.640 £ 0.015 0.770 £ 0.013
v v 0.629 £ 0.005 0.611 £ 0.013* 0.818 £ 0.037* | 0.462 £ 0.011  0.536 + 0.035 0.714 + 0.065 | 0.649 £ 0.006 0.649 £ 0.008* 0.767 £ 0.007

Table 3. Evaluation of our multi-label segmentation
network and the full-res nnU-Net trained on MSD Liver
(liver 4+ tumor) and MSD HepaticVessel (vessel). The
models are evaluated on contrast-enhanced CT images
from the UNN external dataset.

datasets with a multi-label, masked loss and Ran-
dom windowing improves robustness and clinical
relevance. We attribute the main driver of gains to
the scaled up training data enabled by the multi-
label masked loss. We next present our qualitative

Task Metric nnU-Net LVT (ours) retrospective analyses in Section 5.
Tumor DSC 0.723 + 0.145 0.778 £ 0.106
NSD 0.706 + 0.214 0.771 + 0.136 5 Case study
Liver DSC 0.912 £+ 0.07 0.898 + 0.066
NSD 0.951 + 0.058 0.959 + 0.051 Up until this point, we have validated our meth-
DSC 0.545 + 0.051 0.575 + 0.048 ods from a quantitative perspective. In this section,
Vessels NSD  0.788 + 0.061 0.808 + 0.053 W€ shift our focus to the clinical practice and high-

strong, but specialized nnU-Net.

We scale up partial labeled training using the com-
plete HepaticVessel dataset (vessel + tumor) with
additional liver labels from [32], the LiTS dataset
[9] (liver + tumor), and Ircad (liver, vessel, tumor).
We use Random windowing [11] for CT intensity
augmentation and to mitigate cross-dataset shift.
For all other training configurations, we follow the
nnU-Net setup. Additional dataset and training
details can be found in Appendix A.1 and A.2.

For quantitative evaluation, we compare against
full-resolution nnU-Net baselines trained on MSD
Liver (liver+tumor) and MSD HepaticVessel (vessel).
We report DSC and normalized surface dice (NSD)
on an external test set of contrast-enhanced CT
images from UNN in Table 3.

Our model outperforms nnU-Net on tumors and
vessels across DSC and NSD, and achieves higher
liver NSD with slightly lower liver DSC, consis-
tent with minor over-segmentation addressed by
the surface-tolerant NSD metric. These results indi-
cate that learning from additional partially labeled

light the clinical usefulness of the LVT application
through a retrospective feasibility analysis on longi-
tudinal clinical data.

5.1 Tumor detection

Retrospectively analyzing the longitudinal CT scans
of a patient and comparing the predictions with the
radiology reports from the follow-up allows us to
identify if the model could have assisted in the early
detection of tumors. Such retrospective analysis
helps identify when what might seem like a false
positive tumor prediction by the model actually was
a missed tumor by the radiologist.

For a given patient surgically treated for colorectal
cancer at UNN, with a high risk of developing liver
metastasis, we obtained predictions for the contrast-
enhanced liver CT scans from the follow-up studies
in the patient pathway from both our LVT model
and the nnU-Net baseline. After the patient’s initial
treatment, they had no metastasized liver cancer for
the following 1.5 years, but in March 2009, a 4 cm
tumor was discovered in the left liver lobe. In the
preceding CT scan, 6 months before, the radiologist



Early detection of liver metastasis
September 2008

March 2009

Figure 2. Comparison of CT images of the same patient
6 months apart. In the preceding scan from September
2008, the radiologist identified no suspicious lesions in
the liver. 6 months later, the radiologist found a tumor
measuring 4 cm in diameter. Our LVT model marked a
corresponding lesion displayed in the image in the former
image, 6 months before the radiologist.

stated that there were no suspicious lesions in the
liver. However, retrospective analysis with our LVT
model marked a small tumor region in the left liver
lobe in the same scan, 6 months prior to the radiol-
ogist identifying a liver tumor in that same region
(Figure 2). The prediction from the nnU-Net did
not flag this region, likely due to limited diversity
of its training set compared to the LVT model.

The flagged region was later confirmed by clinical
liver expert and co-author MD K.R. as a plausible
missed tumor due to its characteristics and location.
However, confirming this with absolute certainty is
difficult due to the retrospective nature.

Nonetheless, the example demonstrates the poten-
tial feasibility of DL assisted image analysis and how
it could have led to significantly earlier detection of
liver metastasis if it was used during follow-up of
the patient.

5.2 Follow-up and tumor monitoring

A key consideration when treating a patient with,
e.g., liver metastasis, is the size of the metastatic
region over time. Tracking the lesion’s size helps
assess how the patient responds to the treatment
they receive. Decreasing tumor size suggests that
the patient responds well to the treatment, while
growth indicates tumor resistance to the treatment.

We retrospectively analyze a patient’s CT liver
scans during the follow-up period and assess how the
LVT model performs automatic size measurements
of the tumor. We report the largest dimension of
the tumor in the x-y plane and compare it to the
radiologist’s measurements at the time of the study.

We present the results in Figure 3 and find the
extracted measurements to correlate well with the
radiologist’s measurements. During the follow-up
period, the patient experienced an initial period of
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Figure 3. Comparison of model vs. radiologist mea-
surements for a patient with metastasis, tracking initial
treatment response followed by progression.

tumor growth after a lesion of liver metastasis was
located in liver segment 4. The radiologist’s and
the model’s predictions align well during this period.
After the initial tumor growth, the patient was con-
sidered inoperable and began chemotherapy with a
good response, leading to tumor regression. How-
ever, in two scans during the regression, the model
yielded false positives in another liver segment, com-
pared with the radiologists’ findings. Six months
post-treatment, disease progression was again ob-
served, and despite further management, the malig-
nancy continued to progress. During this critical
period, the LVT model matches the radiologist in
tumor detection and size prediction.

5.3 Surgery planning

Surgical resection of tumors is, in most cases, con-
sidered the only cure for liver metastasis [1]. Due to
the complex hepatic vasculature the tumor’s precise
location and relation to surrounding vessels are cru-
cial. Since manual segmentation of these structures
is expensive and rare in clinical practice, automatic
segmentation provides novel insight for the multidis-
ciplinary team and surgeons treating the patient.
Our LVT segmentation model is able to precisely
delineate the tumor and blood vessels in high-quality
contrast-enhanced CT images of the liver. For a
patient at UNN, we retrospectively obtain LVT pre-
dictions from their CT images to illustrate the out-
put when visualized in 3D software. The results
are shown in Figure 4 and display the liver and
delineation of a liver tumor in segment 7 with its
surrounding vessels. The 3D view of the LVT pre-
dictions makes the evaluation of proximity to the
structures surrounding the tumor. The visualiza-
tions are produced with 3D Slicer image computing



Figure 4. Illustration of automatic 3D segmentation of
liver, vessels, and tumors in a CT image.
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Figure 5. Relative deviation of estimated liver volume
between images of different contrast phases.

platform [34], where the user can edit the predictions
if needed, and subsequently make precise measure-
ments before final assessment.

5.4 Automatic liver volumetry

Prior to major liver resections, CT volumetry can
be used to measure the liver volume and estimate
the hepatic functional reserve for the patient.

We aim to illustrate the efficacy of the LVT model
for this purpose in a clinical setting by retrospec-
tively analyzing unlabeled images from the clinic.
We assume that a patient’s liver on images from the
same day is similar in size, and we aim to compare
the model’s predictions across contrast phases. To
this end, we retrieved 33 images from 14 patient
studies, where there are 2 or 3 contrast-enhanced
images in each study, with images in the arterial,
venous, or late phase. We use the LVT model to
obtain liver masks for each patient and compute the
liver volumes for each image. As the liver sizes vary
from 1.3 L to 2.5 L across patients, we report the
relative residuals in percentages of the mean liver
volume of each study shown in Figure 5.

We find the liver volume deviation from the ref-
erence to be within ~ 5% for most cases, and show
that the liver measurements are consistent across
images of the same patient. 5 % deviation is within
the margin of what is expected from intra-observer
variability [3]. Additionally, the measured volume is
expected to vary slightly between images of different
contrast phases [3].

6 Limitations and future work

Despite recent efforts, consistent and reliable seg-
mentation of liver tumors and vessels remains a
difficult task. Table 3 reports improvements over
the baseline, but DSC scores remain below 0.8 for
tumors and vessels, which suggests that false posi-
tives and missed structures are to be expected. False
positives may arise when cysts, necrotic tissue, or
low attenuation liver regions are misclassified as
tumors, or when blurred vessel boundaries lead to
over-segmentation. Conversely, missed structures
may occur for small and early-stage tumors, and
poorly contrasted or thin vessels.

In the partial label experiments in Section 4.1 and
4.2, we observed certain inconsistencies in vessel
segmentation performance across the HV Test set
and Ircad dataset. These inconsistencies are symp-
toms of different label characteristics of the vessels
in the two datasets, which have different quality
and level of detail. We therefore recommend careful
evaluation when comparing these datasets.

While our retrospective analyses demonstrate the
potential for clinical utility of the LVT model, inte-
grating it into real-time clinical workflows remains
an open challenge. To further identify the strengths
and limitations of DL-based liver, vessel, and tu-
mor applications, we recommend thorough clinical
validation with expert supervision to validate the
model’s impact on patient outcomes and clinicians’
workflows.

7 Conclusion

This study explores multi-label and multi-class ap-
proaches in the context of CT liver, vessel, and tumor
segmentation, to effectively handle overlapping and
potentially ambiguous regions from partially labeled
datasets. We find a binary multi-label segmentation
setup with class-wise loss masking to work well for
this setting. Allowing overlapping regions in the
label space enables the use of public datasets with
partial labels during training to learn simultaneous
liver, vessel, and tumors labels in CT images. Our
results show that our approach is particularly bene-
ficial for tumors and vessels, allowing us to benefit
from datasets with partial and ambiguous labels.
We evaluate the LVT model on longitudinal clin-
ical data to illustrate the potential for real-world
utility in the clinic. In retrospective analysis of pre-
vious patients, we demonstrated that the model has
the potential to detect tumors earlier than the radi-
ologist, accurately track tumor progression, provide
3D visualization of complex liver structures, and
reliably perform liver volumetry for real patients.
These results underscore the potential for Al-driven
tools for diagnostic accuracy, optimizing treatment
planning, and improving patient outcomes.
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A Appendix

A.1 Datasets

In our experiments, we leverage multiple datasets
that are publicly available, in addition to external
test data from UNN. The following sections describe
the datasets used in our experiments.

A.1.1 HepatiVessel dataset

The HepaticVessel dataset is from the Medical Seg-
mentation Decathlon challenge [8] and consists of
303 portal-venous phase CT scans from the US. The
dataset has an out-of-plane voxel spacing ranging
from 0.8 to 8.0 mm. The images contain the liver
with segmented liver tumors and vessel structures.

A.1.2 HepaticVessel Liver dataset

Building on the HepaticVessel dataset, a supplemen-
tary label set’ of the liver (HV Liver) and Couinaud
segments of the liver was released by Tian et al. [32].
The dataset contains all the same images as the
HepaticVessel dataset, but the additional liver and
Couinaud segmentation masks are created indepen-
dently. We leverage the additional liver masks from
HYV Liver together with the HepaticVessel dataset
in our experiments.

A.1.3 3D-ircadb-01 dataset

The 3D-ircadb-01-dataset® [13] (Ircad), contains 20
CT scans from France that are labeled with various
organs, including liver, hepatic vessels, and any liver
tumors. The scans from the IRCAD dataset are a
subset of the LiTS dataset; however, with only the
liver and tumor masks are present, and no vessel
masks [9].

1Available at: https://github.com/GLCUnet/dataset
2Available  at: https://www.ircad.fr/research/
data-sets/liver-segmentation-3d-ircadb-01/
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A.1.4 Liver tumor segmentation (LiTS)
dataset

The LiTS dataset [9] contains 131 segmented CT
volumes from different patients. The CT scans are
from 7 different institutions in Canada, the Nether-
lands, Germany, France, and Israel. The CT images
are contrast-enhanced and captured in the portal-
venous phase and have an out-of-plane voxel spacing
ranging from 0.7 to 5.0 mm. All images contain a
rough segmentation mask of the liver in addition
to a radiologist’s segmentation of any liver tumors.
The liver tumors are both primary and metastatic
from colorectal, breast, and lung primary cancers.

The LiTS dataset has 20 volumes (volumes 28-47)
overlapping with the 3D-ircadb-01 dataset [13]. This
subset contains the same segmented liver and tumor
masks as LiTS, in addition to vessel masks, which
are used in the LVT application.

A.1.5 Colorectal Liver Metastasis (CRLM)
dataset

The CRLM dataset [33] contains 197 cases of portal-
venous contrast-enhanced CT scans of patients with
colorectal liver metastasis. The CT images are la-
beled with segmentation mask of the liver, hepatic
vessels and tumor. We leverage the CRLM dataset
as a fully labeled external test set.

A.1.6 UNN Dataset

The UNN Dataset is under development at The
University Hospital of North Norway (UNN) and
UiT The Arctic University of Norway and is used
for evaluation in our final experiments. The dataset
is from a large database of CT images from the
follow-up period of 376 patients that were treated for
colorectal cancer from 2006 to 2011 at UNN. From
this database, we have created two labeled subsets:
UNN LT, which contains liver and tumor masks, and
UNN V, which contains liver and vessel masks. The
former is used for external validation and testing of
the liver and tumor segmentation performance of
the model and consists of 18 contrast-enhanced CT
volumes with segmented liver and liver tumor masks.
UNN V contains 10 contrast-enhanced CT volumes
of the liver with segmented liver vessels and is used
to evaluate the vessel segmentation performance in
Section 4.3.

A.1.7 Partial labels in datasets

As we train on datasets with partial labels for certain
experiments, we present an overview of the present
label classes for each dataset and the class weights
w needed for Equation 1 is presented in Table A.1.
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Table A.1. An overview of the different datasets with
partial labels used in this paper and the corresponding
class weights wy for classes liver, vessel and tumor in
Equation 1. Datasets with unspecified w are only used
for testing purposes.

Dataset Liver Vessel Tumor Images Class weights, w
FSILVT v v v 61 [1,1,1]
PSL v X X 61 (1,0,0]
PSV X v X 61 [0,1,0]
PST X X v 60 [0,0,1]
CRLM v v v 197 -
IRCAD v v v 20

HV test v v v 60 -
LiTS v X v 131 [1,0,1]
HepaticVessel X v v 303 [0,1,1]
IRCAD v v v 20 1,1,1]
HV Liver v X X 303 [1,0,0]
UNN LT v X v 18 -
UNNV X v X 10 -

A.2 Experimental setup

All models in this paper are trained on 3D patches of
128 x 128 x 96 voxels, sampled from training images
resampled to isotropic voxel spacing of 1 x 1 x 1 mm
using trilinear interpolation. The U-Net-like archi-
tecture uses deep supervision [30] with two auxiliary
heads at intermediate resolutions and LeakyReLLU
activations [31]. During training, patches are over-
sampled from a foreground region with p = 0.333,
and we apply the following augmentations in se-
quence: random crop resizing applied with probabil-
ity p = 0.2 and a scale factor a ~ U(0.7,1.4), ran-
dom rotation with p = 0.2 and angle 8 ~ U(—30, 30),
and random flip with p = 0.5 along all axes. We
leverage Random windowing [11] for preprocess-
ing and CT intensity augmentation, applying win-
dow shifting and scaling independently with a total
probability p = 0.3, sampling the Hounfield unit
window parameters from W ~ U(11.5,152.9) and
L ~ [141.2,325.9] [10]. Training is done with the
combined CE and Dice loss (Equation 3 and Equa-
tion 4). All models are trained with a batch size of
112 images across 8 GPU compute dies on 4 AMD
MI250x GPUs on the LUMI supercomputer.

The PS experiments in Section 4.1 and 4.2 are
performed with a residual encoder [35] and batch
normalization [36]. Training is done with AdamW
[37] optimizer with learning rate 0.001 and cosine
decay with warmup [37]. The models are trained 40
epochs with 100 steps each. The masking weights
used for each dataset are listed in Table A.1.

The LVT model trained in Section 4.3 deviates
from this setup to match the one used by the nnU-
Net baseline. Specifically, we no residual connections
in the encoder, instance normalization [38], stochas-
tic gradient descent with weight decay optimizer
[37] and polynomial learning rate decay. The model
is trained on 448 000 training samples over 1000
epochs, which is comparable to the baseline, which

sees 500 000 training samples.

A.2.1 Training loss

For each sample with K classes, the cross-entropy
loss is defined per voxel as

K
(78 = =" yirlog pir, (3)
k=1

where y;;, and p;; are the target and prediction from
the one-hot encoded mask and softmax probabilities,
respectively.

For the same network with sigmoid outputs, we
obtain the case for binary cross-entropy, where the
per-voxel per-class loss is defined as

(4)

The dice loss is computed independently for each
voxel and class, given the output probabilities, and
is given by

L, = —[yilog p; + (1 — y;) log(1 — py)].

2 - YikPik
(Dice —q _ Z_TRE (5)
" Yo + Dl

In the multi-class segmentation setup, it is typically
reduced over the class dimension to match the per-
voxel loss formulation of the £§'F.

A.2.2 Inference settings

As our models are trained on crops smaller than
a typical CT image, we follow the sliding window
inference pipeline of Isensee et al. [12] to obtain
predictions. Specifically, each test volume is cropped
into patches of 128 x 128 x 96 voxels, with 50 %
overlap. The model predictions on each patch are
aggregated to a complete output with a gaussian
weighing, as the predictions are usually more stable
towards the center. The final semantic output is
obtained through the argmax across channels. For
the binary segmentation outputs, we use a sigmoid
threshold of p = 0.5, and obtain mutually exclusive
outputs by giving positives of the overlapping classes
priority based on the heuristic hierarchy: tumor,
vessel, liver, background.

For comparison with the nnU-Net in Section 5, we
use the 5-fold cross-validation models to obtain an
ensemble prediction of each pred. During inference,
we use test-time augmentation by flipping each crop
along all axes. We also limit the final prediction to
the largest connected component. These inference
settings are also employed by the baseline.

A.2.3 Evaluation

Precision and recall are common metrics for
evaluating classification performance using the true
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positives (T'P), false positives (F'P), and false nega-
tive (F'N) predictions. Precision measures the pro-
portion of predicted positives that are correct:

TP

TP+ FP’ ()

Precision =
while recall (sensitivity) measures the proportion of
actual positives that are correctly identified:

TP

Recall = m

(7)
Although pixel-wise precision and recall are not com-
monly used to evaluate segmentation masks, they
can assist in diagnosing under and over-segmentation
in models. Specifically, low recall tends to corre-
spond to under-segmentation, and low precision to
over-segmentationMonteiro and Campilho [39].

Dice similarity coefficient (DSC). To evalu-
ate segmentation predictions against ground truth
masks more reliably, we rely on the DSC, which
measures volume overlap between predicted and
true masks, X and Y, as the harmonic mean of the
precision and recall:

21X NY]|

DSC = ————.
X[+ Y]

(®)

Normalized surface dice (NSD). While widely
used, DSC treats all pixel errors equally, which may
obscure clinically important mistakes (e.g., missing
an entire tumor vs. scattered noise). Therefore, we
additionally leverage NSD [40] in our clinical eval-
uation. NSD addresses this by comparing surfaces
within a tolerance, defined per class in millimeters.
Errors inside the tolerance do not reduce the score,
making NSD more clinically meaningful. Following
[8], we use 7 mm tolerance for liver and 3 mm for
vessels and tumors.

Lesion sensitivity. Based on a connected com-
ponent analysis of the ground-truth and predicted
tumor segmentation, we classify a tumor in the
ground truth as detected if they have a correspond-
ing prediction with > 10 % overlap. Based on this
classification, we can compute the lesion recall/sen-
sitivity using Equation 7.

Reporting In most evaluations, we report the
mean result for each model in the 5-fold cross-
validation evaluation. To showcase the variation
between multiple runs of comparable methods, we
use the standard deviation of performance between
runs. The result in Table 3 deviates from this pro-
tocol, as the whole ensemble is used to obtain each
prediction. We therefore report the per-case mean
and standard deviation for this result.

Statistical testing When measuring statistical
significance, we use Wilcoxon signed-rank test using
pairwise metric performance across cases and folds.
We indicate statistical significance (*) at p < 0.05
when a result is better than the comparable alterna-
tive.

A.3 Case study details

Below we provide additional details on how patients
were selected for the case study in section 5.

For Section 5.1, we manually screened the ret-
rospective Hospitall database (radiology reports
and images) for a patient with a single liver le-
sion emerging during follow-up, with artifact-free
portal-venous CTs at regular intervals and detailed
reports. Additionally, we looked for cases where a
preceding scan was flagged with a lesion by the LVT
model, and the first patient meeting these criteria
was used. The “early detection” judgment was based
on image co-registration and qualitative review by a
liver-expert and co-author MD K.R. The patient in
Section 5.2 was selected for appropriate pathology,
image quality, and consistently documented radi-
ologist measurements. Section 5.3 shows the first
patient from the UNN V dataset. In Section 5.4 we
use all artifact free images with appropriate ROI
and imaging protocol from the database.
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